JP6623933B2 - Desulfurization method of molten steel - Google Patents

Desulfurization method of molten steel Download PDF

Info

Publication number
JP6623933B2
JP6623933B2 JP2016106265A JP2016106265A JP6623933B2 JP 6623933 B2 JP6623933 B2 JP 6623933B2 JP 2016106265 A JP2016106265 A JP 2016106265A JP 2016106265 A JP2016106265 A JP 2016106265A JP 6623933 B2 JP6623933 B2 JP 6623933B2
Authority
JP
Japan
Prior art keywords
molten steel
desulfurizing agent
desulfurization
vacuum vessel
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016106265A
Other languages
Japanese (ja)
Other versions
JP2017210670A (en
Inventor
紀史 浅原
紀史 浅原
田中 康弘
康弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016106265A priority Critical patent/JP6623933B2/en
Publication of JP2017210670A publication Critical patent/JP2017210670A/en
Application granted granted Critical
Publication of JP6623933B2 publication Critical patent/JP6623933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、真空脱ガス装置を用いて行う溶鋼の脱硫方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for desulfurizing molten steel performed using a vacuum degassing apparatus.

硫黄(以下、Sと記載する場合あり)含有量が数十ppmである低硫鋼を溶製する場合、溶銑予備処理で脱硫処理した後に転炉等で脱炭処理するのみでは、十分な低硫レベルに到達しないため、溶鋼脱硫処理が必要となる。   When smelting low-sulfur steel having a sulfur (hereinafter sometimes referred to as S) content of several tens of ppm, it is sufficiently low only to perform desulfurization in hot metal pretreatment and then decarburize in a converter or the like. Since the sulfur level is not reached, molten steel desulfurization is required.

溶鋼脱硫処理として、溶鋼を加熱しつつスラグ精錬によりSを除去する方法(いわゆるLF法)が実用化されているが、二次精錬工程としてのLF工程が必須となり、製造時間の延長や製造コストの増加を招いている。   As a method for desulfurizing molten steel, a method of removing S by slag refining while heating molten steel (so-called LF method) has been put to practical use. However, an LF step as a secondary refining step is indispensable, which leads to an increase in production time and cost. Is increasing.

そこで二次精錬工程として汎用されている真空脱ガス装置での脱硫処理の確立が求められている。真空脱ガス装置での脱硫処理としては、真空容器内で溶鋼表面に上方から粉体状の脱硫剤を吹き付ける方法が一般的である。脱硫剤としては、CaO系フラックスが一般的に用いられる。溶鋼表面に吹き付けられた脱硫剤は溶鋼内に侵入し、溶鋼との間で脱硫反応が生じる。CaO系フラックスは溶鋼より比重が小さく、浮力によっていずれは溶鋼表面に浮上分離するため、浮上分離するまでの間にいかに脱硫反応を進行させるかが重要である。   Therefore, it is required to establish a desulfurization treatment using a vacuum degassing device that is widely used as a secondary refining process. As a desulfurization treatment in a vacuum degassing apparatus, a method of spraying a powdery desulfurizing agent from above onto a molten steel surface in a vacuum vessel is generally used. As a desulfurizing agent, a CaO-based flux is generally used. The desulfurizing agent sprayed on the molten steel surface enters the molten steel, and a desulfurization reaction occurs with the molten steel. Since the CaO-based flux has a lower specific gravity than molten steel and eventually floats and separates on the molten steel surface due to buoyancy, it is important how the desulfurization reaction proceeds before the floatation and separation.

従来、CaO系フラックスを使用する際にはCaF2(蛍石)が媒溶剤として用いられてきた。CaO系フラックスにCaF2を添加すると、脱硫能の高い液相を形成しうる。脱硫剤に液相を形成することで、脱硫剤内部でのSの移動が容易となり、脱硫反応を迅速に進めさせる効果がある。よって脱硫剤が溶鋼表面に浮上分離するまでの時間が短くても、脱硫反応を十分に進行させることができた。 Conventionally, CaF 2 (fluorite) has been used as a solvent when a CaO-based flux is used. When CaF 2 is added to a CaO-based flux, a liquid phase having a high desulfurization ability can be formed. Forming a liquid phase in the desulfurizing agent facilitates the movement of S inside the desulfurizing agent, and has the effect of promptly promoting the desulfurization reaction. Therefore, the desulfurization reaction was able to proceed sufficiently even if the time until the desulfurizing agent floated and separated on the molten steel surface was short.

しかし、フッ素を含有するフラックスで脱硫処理を行うと、処理後のスラグにもフッ素が残留する。そのため、スラグ中のフッ素が環境に及ぼす影響を考慮し、昨今ではフッ素源を使用しない溶鋼脱硫法が望まれている。   However, when desulfurization treatment is performed with a flux containing fluorine, fluorine remains in the slag after the treatment. Therefore, in consideration of the influence of fluorine in slag on the environment, a molten steel desulfurization method that does not use a fluorine source has recently been desired.

実質的にFを含まないCaO系フラックスによる溶鋼脱硫を行う場合、脱硫剤は溶鋼処理温度で固相が主体となり、脱硫剤内部では固相内拡散によってSが移動することになる。固相内拡散によるSの移動は、液相状態での移動にくらべて極めて遅く、溶鋼との脱硫反応に時間を要する。   When performing desulfurization of molten steel using a CaO-based flux that does not substantially contain F, the desulfurization agent is mainly composed of a solid phase at the molten steel processing temperature, and S moves inside the desulfurization agent by diffusion in the solid phase. The movement of S by diffusion in the solid phase is extremely slow as compared with the movement in the liquid phase, and a long time is required for the desulfurization reaction with molten steel.

したがって、実質的にFを含まないCaO系フラックスによる溶鋼脱硫では、脱硫剤がSを十分に吸収する前に溶鋼表面に浮上分離してしまうため、脱硫剤の利用効率が低下する課題があった。   Therefore, in the desulfurization of molten steel with a CaO-based flux substantially containing no F, the desulfurizing agent floats and separates on the surface of the molten steel before the sulfur is sufficiently absorbed, so that there is a problem that the use efficiency of the desulfurizing agent is reduced. .

特許文献1は、真空脱ガス装置において実施的にFを含まないCaO系脱硫剤を用いる場合に、脱硫剤の凝集を防ぐためのAl濃度と粉体供給速度の関係を規定している。脱硫剤の溶鋼中での凝集を防ぐことで、脱硫剤と溶鋼の反応界面積を確保することができ、脱硫反応を進行させることができる。しかし、Al濃度は脱硫処理中に経時変化するため、適正範囲内への制御が困難であり、結果として脱硫速度が低下する場合があった。   Patent Literature 1 specifies the relationship between the Al concentration and the powder supply rate for preventing agglomeration of a desulfurizing agent when a CaO-based desulfurizing agent containing no F is practically used in a vacuum degassing apparatus. By preventing agglomeration of the desulfurizing agent in the molten steel, a reaction interface area between the desulfurizing agent and the molten steel can be secured, and the desulfurization reaction can proceed. However, since the Al concentration changes over time during the desulfurization treatment, it is difficult to control the Al concentration within an appropriate range, and as a result, the desulfurization rate may decrease.

特許文献2は、ランス高さを下げてハードブロー化することで脱硫剤の溶鋼内侵入率は向上するとしている。このとき、脱硫剤には1重量%以上のフッ化物が含まれる。   Patent Document 2 states that the penetration rate of the desulfurizing agent into the molten steel is improved by lowering the lance height and performing hard blowing. At this time, the desulfurizing agent contains 1% by weight or more of fluoride.

特開2007−270178号公報JP 2007-270178 A 特開平6−322431号公報JP-A-6-322431

発明者らは、実質的にFを含まないCaO系脱硫剤において、特許文献2の方法での脱硫処理を試みた。しかし特許文献2の方法では、溶鋼内に侵入するものの、溶鋼表面から溶鋼内に侵入しようとする粉体が互いに衝突しやすくなり、衝突した粉体を主体とした積層物を形成して、脱硫に寄与しない脱硫剤(粉体)が発生してしまい、脱硫速度が低下することを知見した。   The inventors attempted a desulfurization treatment by the method of Patent Document 2 using a CaO-based desulfurizing agent containing substantially no F. However, in the method of Patent Document 2, although the powder intrudes into the molten steel from the surface of the molten steel, the powders tend to collide with each other, so that a laminate mainly composed of the collided powder is formed, and the desulfurization is performed. It has been found that a desulfurizing agent (powder) that does not contribute to the generation is generated, and the desulfurization rate is reduced.

本発明は、真空脱ガス装置において脱硫剤吹き付けノズルから真空容器内の溶鋼表面に脱硫剤を吹き付けて脱硫する方法において、実質的にFを含まない脱硫剤を効率よく利用する溶鋼の脱硫方法を提供することを目的とする。   The present invention provides a method of desulfurizing a molten steel in a vacuum degassing apparatus by spraying a desulfurizing agent from a desulfurizing agent spray nozzle onto a surface of molten steel in a vacuum vessel to desulfurize the molten steel. The purpose is to provide.

本発明の要旨とするところは以下のとおりである。
(1)真空脱ガス装置において溶鋼の脱硫処理を行う際に、脱硫剤吹き付けノズルから真空容器内の溶鋼表面に脱硫剤を吹き付け、前記脱硫剤として実質的にFを含まないCaO系脱硫剤を使用する方法において、真空脱ガス装置として、溶鋼鍋底部から撹拌用ガスを吹きこむ装置を使用するとともに、前記脱硫剤吹き付けノズルと真空容器内溶鋼表面との距離(以下「ランス高さ」という。)を2.6m以上とすることを特徴とする、溶鋼の脱硫方法。
(2)脱硫前の溶鋼鍋内溶鋼面に存在しているスラグのFeO成分とMnO成分の合計が10質量%以下であることを特徴とする、上記(1)に記載の溶鋼の脱硫方法。
The gist of the present invention is as follows.
(1) When desulfurizing molten steel in a vacuum degassing apparatus, a desulfurizing agent is sprayed from a desulfurizing agent spray nozzle onto the surface of the molten steel in the vacuum vessel, and a CaO-based desulfurizing agent containing substantially no F as the desulfurizing agent In the method to be used, a device for blowing a stirring gas from the bottom of a molten steel pot is used as a vacuum degassing device, and a distance between the desulfurizing agent spray nozzle and the surface of molten steel in a vacuum vessel (hereinafter referred to as "lance height"). ) Is set to 2.6 m or more.
(2) The method for desulfurizing molten steel according to (1), wherein the total of the FeO component and the MnO component of the slag existing on the molten steel surface in the molten steel pot before desulfurization is 10% by mass or less.

本発明に従えば、従来技術に比べて溶鋼内に実質的にFを含まないCaO系脱硫剤を均一に供給でき、積層合体による反応効率低下を防ぐことができる。   According to the present invention, a CaO-based desulfurizing agent containing substantially no F in molten steel can be supplied more uniformly than in the prior art, and a reduction in reaction efficiency due to lamination can be prevented.

溶鋼内での循環流を利用することにより、溶鋼内での反応時間を確保し、固相率の高いFレスフラックスでも十分に反応させることができる。   By utilizing the circulating flow in the molten steel, the reaction time in the molten steel can be secured, and the F-less flux having a high solid fraction can be sufficiently reacted.

真空脱ガス装置を用いて行う溶鋼の脱硫方法を示す図であり、(A)は大径浸漬管方式を用いた例、(B)はRH方式を用いた例である。It is a figure which shows the desulfurization method of the molten steel performed using a vacuum degassing apparatus, (A) is an example using a large diameter immersion tube system, (B) is an example using an RH system. 脱硫剤吹き付けノズルからのガス噴流を示す図であり、(A)はランス高さHが低い場合、(B)はランス高さHが高い場合である。It is a figure which shows the gas jet from a desulfurizing agent spray nozzle, (A) is when the lance height H is low, (B) is when the lance height H is high.

本発明の溶鋼の脱硫方法において、溶鋼の脱硫は真空脱ガス装置を用いて行う。溶鋼の真空脱ガス装置には種々の方式が存在する。溶鋼を真空脱ガスするに際し、溶鋼鍋全体を真空容器内に収容して真空容器内を真空とする方法(例えばVOD(Vacuum Oxygen Decarburization)法、VAD(Vacuum Arc Degassing)法など)、あるいは真空容器の下方開口部を溶鋼鍋内の溶鋼中に浸漬して真空容器内を真空とする方法(例えば大径浸漬管方式、RH真空脱ガス装置など)がある。大径浸漬管方式真空脱ガス装置21とは、図1(A)に示すように、真空容器2の下部に一つの大径浸漬管3が設けられ、この大径浸漬管3を溶鋼鍋1に収容した溶鋼10中に浸漬し、真空容器2内を減圧して溶鋼を真空容器内に吸い上げ、溶鋼鍋底部の撹拌用ガスを吹きこむ装置6からガスを吹き込み、吹き込んだガスによって溶鋼鍋中の溶鋼と真空容器内の溶鋼との間に攪拌流を形成することにより、溶鋼を攪拌・混合する方法である。RH方式真空脱ガス装置22の場合、図1(B)に示すように、真空容器2の底部に2つの浸漬管が設けられ、一方が上昇管7、他方が下降管8となる。上昇管7の中間位置側壁のガス吹き込み口9から溶鋼中にガスを吹き込み、ガスの浮力によって上昇管7中を溶鋼が上昇し、溶鋼は真空容器2内を経由して下降管8から下降し、溶鋼鍋1中に放出される。   In the method for desulfurizing molten steel of the present invention, desulfurization of molten steel is performed using a vacuum degassing apparatus. There are various types of vacuum degassing apparatus for molten steel. When vacuum degassing molten steel, a method in which the entire molten steel pot is housed in a vacuum vessel and the inside of the vacuum vessel is evacuated (eg, VOD (Vacuum Oxygen Decarburization) method, VAD (Vacuum Arc Degassing) method, etc.), or a vacuum vessel Is immersed in molten steel in a molten steel pot to evacuate the inside of a vacuum vessel (for example, a large-diameter immersion pipe method, an RH vacuum degassing apparatus, etc.). As shown in FIG. 1A, one large-diameter immersion pipe 3 is provided at the lower part of a vacuum vessel 2 and the large-diameter immersion pipe 3 is Is immersed in molten steel 10 housed in a vacuum vessel, the pressure inside the vacuum vessel 2 is reduced, the molten steel is sucked up into the vacuum vessel, and gas is blown from the stirring gas blower 6 at the bottom of the molten steel pot. Is a method of stirring and mixing the molten steel by forming a stirring flow between the molten steel and the molten steel in the vacuum vessel. In the case of the RH-type vacuum degassing device 22, as shown in FIG. 1B, two immersion tubes are provided at the bottom of the vacuum vessel 2, one of which is an ascending tube 7 and the other is a descending tube 8. Gas is blown into the molten steel from the gas injection port 9 on the side wall of the riser pipe 7 at the intermediate position, and the molten steel rises in the riser pipe 7 due to the buoyancy of the gas. Is discharged into the molten steel ladle 1.

真空脱ガス装置を用いた溶鋼の脱硫において、真空容器2内に脱硫剤吹き込みランス4を下方に向けて挿入する。脱硫剤吹き込みランス4の先端には脱硫剤吹き付けノズル5が配置されている。脱硫剤吹き付けノズル5から、ガス噴流14とともに真空容器内の溶鋼表面11に脱硫剤を吹き付ける。   In desulfurization of molten steel using a vacuum degassing device, a desulfurizing agent blowing lance 4 is inserted downward into the vacuum vessel 2. A desulfurizing agent spray nozzle 5 is disposed at the tip of the desulfurizing agent blowing lance 4. A desulfurizing agent is sprayed from the desulfurizing agent spray nozzle 5 to the molten steel surface 11 in the vacuum vessel together with the gas jet 14.

ここでは、溶鋼を攪拌・混合するための不活性ガスの吹き込み位置の違いによって真空脱ガス装置を分類する。真空脱ガス装置には、溶鋼鍋底部から撹拌用ガスを供給する方式(VOD方式や大型浸漬管方式など)と、溶鋼上方から浸漬する浸漬管の途中から撹拌・混合用ガスを供給するRH真空脱ガス装置がある。   Here, the vacuum degassing apparatus is classified according to the difference in the blowing position of the inert gas for stirring and mixing the molten steel. Vacuum degassing systems include a method of supplying a stirring gas from the bottom of a molten steel pot (VOD method, large immersion tube method, etc.) and an RH vacuum that supplies a stirring / mixing gas from the middle of an immersion pipe immersed from above the molten steel. There is a degassing device.

RH方式の場合、真空容器の底部に2つの浸漬管が設けられ、一方が上昇管、他方が下降管となる。上昇管の中間位置側壁から溶鋼中にガスを吹き込み、ガスの浮力によって上昇管中を溶鋼が上昇し、溶鋼は真空容器内を経由して下降管から下降し、溶鋼鍋中に放出される。下降管から溶鋼鍋に向かう溶鋼の流れが強く、その流れは溶鋼鍋の底部に衝突し、その後は流れが分散されて弱まる。真空容器内で溶鋼内に侵入した粉体については、下降管からの溶鋼の流れに乗って溶鋼鍋の底部で分散され、その後、主に溶鋼鍋の側壁に沿ってゆっくりと上昇し、溶鋼鍋内の溶鋼表面付近に至るとともに、溶鋼流れの弱い部分に到達する。溶鋼流れの弱い部分で粉体に働く力は、溶鋼から受ける粘性力よりも浮力の影響が大きくなり、浮上分離しやすい。溶鋼鍋の溶鋼表面付近で浮上分離した粉体は、溶鋼鍋内の表面に存在しているスラグに取り込まれ、その後は脱硫への寄与が大幅に低下する。CaF2を含むCaO系フラックスであれば、反応速度が大きく短時間でも十分に脱硫が進行するため、問題にはならない。一方、実質的にFを含まないCaO系脱硫剤を用いた場合は、脱硫剤中のSの移動は固相内拡散によるため、脱硫反応に時間を要するので、粉体が浮上分離するまでの時間では反応が十分に進行し難い。そのため、RH方式では、実質的にFを含まないCaO系脱硫剤を用いた際には反応効率の低下が顕著であった。 In the case of the RH method, two immersion tubes are provided at the bottom of the vacuum vessel, one is an ascending tube, and the other is a descending tube. Gas is blown into the molten steel from a side wall at an intermediate position of the riser, and the molten steel rises in the riser by the buoyancy of the gas, and the molten steel descends from the downcomer through the vacuum vessel and is discharged into the molten steel ladle. The flow of the molten steel from the downcomer to the ladle is strong, which collides with the bottom of the ladle, after which the flow is dispersed and weakened. The powder that has entered the molten steel in the vacuum vessel is dispersed at the bottom of the molten steel pot along with the flow of the molten steel from the downcomer pipe, and then slowly rises mainly along the side wall of the molten steel pot, As well as reaching the vicinity of the molten steel surface inside, it reaches the weak part of the molten steel flow. The force acting on the powder in the weak portion of the molten steel flow has a greater effect of buoyancy than the viscous force received from the molten steel, and the powder easily floats and separates. The powder floating and separating near the molten steel surface of the molten steel pot is taken into the slag existing on the surface in the molten steel pot, and the contribution to desulfurization is significantly reduced thereafter. A CaO-based flux containing CaF 2 does not pose a problem because the reaction rate is large and desulfurization proceeds sufficiently even in a short time. On the other hand, when a CaO-based desulfurizing agent containing substantially no F is used, since the movement of S in the desulfurizing agent is caused by diffusion in the solid phase, a time is required for the desulfurization reaction, and the time required for the powder to float and separate. The reaction does not proceed sufficiently in time. For this reason, in the RH method, when a CaO-based desulfurizing agent containing substantially no F was used, the reaction efficiency was significantly reduced.

本発明では、真空脱ガス装置として、溶鋼鍋底部から撹拌用ガスを吹きこむ装置を使用する。大径浸漬管方式、VOD法、VAD法などがこの分類に入る真空脱ガス装置である。VOD方式や大型浸漬管方式のように、溶鋼鍋底部から撹拌用ガスを吹きこむ装置6を用いることで、RH方式で問題となる上記課題を解決できることを知見した。溶鋼鍋底部の撹拌用ガスを吹きこむ装置6は、当該撹拌用ガスを吹きこむ装置6から溶鋼中に吹き込まれた気泡が上昇し、真空容器内の溶鋼表面11に到達するように配置される(図1参照)。   In the present invention, a device for blowing a stirring gas from the bottom of a molten steel pot is used as a vacuum degassing device. The large-diameter immersion tube method, the VOD method, the VAD method and the like are vacuum degassing devices falling into this category. It has been found that the use of the device 6 that blows the stirring gas from the bottom of the molten steel pot, such as the VOD method or the large immersion tube method, can solve the above-mentioned problems that are problematic in the RH method. The device 6 for blowing the stirring gas at the bottom of the molten steel pot is arranged such that the bubbles blown into the molten steel from the device 6 for blowing the gas for stirring rise and reach the molten steel surface 11 in the vacuum vessel. (See FIG. 1).

上記のような、溶鋼鍋底部から撹拌用ガスを吹きこむ装置6を用いる場合、撹拌用ガスを吹きこむ装置6から真空容器内の溶鋼表面11に向けた気泡上昇流に沿って、溶鋼の上昇流15が形成される。真空容器内の溶鋼表面11に到達した溶鋼の上昇流15は、真空容器内の溶鋼表面における上昇流の到達点から放射状に流れ、真空容器の側壁に至り、その位置から下降に転じる。下降流16は溶鋼鍋中において溶鋼鍋の底部に至るまで持続する下降流を形成する。すなわち、これらの装置では、溶鋼内に大きな循環流が生じる。脱硫剤吹き付けノズル5から真空容器内の溶鋼表面11に吹き付けられ、溶鋼内に侵入した粉体は、下降流16に付随して溶鋼鍋内を下降し、溶鋼鍋底部においてガス気泡による上昇流15に取り込まれ、真空容器内の溶鋼表面11まで循環する。真空容器内の溶鋼表面11では気泡の膨張によって溶鋼が激しく混合し、浮上した粉体は溶鋼表面に留まらずに溶鋼に取り込まれ、溶鋼の下降流16とともに溶鋼鍋中を下降する。このように、粉体は溶鋼の循環流の中に留まることで反応時間を確保することができる。よって、実質的にFを含まないCaO系脱硫剤を用いた場合でも、脱硫剤中のSの移動が固相内拡散であって脱硫反応に時間を要するものの、脱硫反応に必要な十分な時間を溶鋼中に滞在しているので、反応効率を確保できる。   When using the device 6 for blowing the stirring gas from the bottom of the molten steel pot as described above, the molten steel rises along the bubble rising flow from the device 6 for blowing the gas for stirring to the molten steel surface 11 in the vacuum vessel. A stream 15 is formed. The ascending flow 15 of the molten steel that has reached the molten steel surface 11 in the vacuum vessel flows radially from the reaching point of the ascending flow on the molten steel surface in the vacuum vessel, reaches the side wall of the vacuum vessel, and starts descending from that position. The downward flow 16 forms a downward flow in the ladle that lasts all the way to the bottom of the ladle. That is, in these devices, a large circulating flow occurs in the molten steel. The powder sprayed from the desulfurizing agent spray nozzle 5 onto the molten steel surface 11 in the vacuum vessel and entering the molten steel descends in the molten steel pot accompanying the descending flow 16, and rises due to gas bubbles at the bottom of the molten steel pan. And circulates to the molten steel surface 11 in the vacuum vessel. On the molten steel surface 11 in the vacuum vessel, the molten steel vigorously mixes due to the expansion of bubbles, and the floating powder is taken into the molten steel without remaining on the molten steel surface, and descends in the molten steel pot together with the descending flow 16 of the molten steel. In this way, the reaction time can be ensured by keeping the powder in the circulating flow of the molten steel. Therefore, even when a CaO-based desulfurizing agent containing substantially no F is used, although the movement of S in the desulfurizing agent is diffusion in the solid phase and requires a long time for the desulfurization reaction, a sufficient time for the desulfurization reaction is required. Because the steel stays in the molten steel, the reaction efficiency can be secured.

なお、実質的にFを含まないこととは、脱硫精錬後のスラグからフッ素(F)の溶出が顕著には認められないことを指すもので、本発明者らの知見では精錬後のスラグ組成においてFが1質量%以下となる場合を指す。Fが0.5質量%以下であれば更に好ましい。   In addition, the fact that F is not substantially contained means that elution of fluorine (F) from slag after desulfurization refining is not remarkably recognized, and the present inventors have found that the slag composition after refining is not considered. Refers to the case where F is 1% by mass or less. More preferably, F is 0.5% by mass or less.

本発明においてCaO系脱硫剤とは、CaOを50質量%以上含んでいる脱硫剤を指す。CaO源としてはCaOの他にCaCO3やCa(OH)2でもよく、完全にCaOに熱分解した際の質量でCaO含有量を計算できる。脱硫剤中のCaO以外の成分については特に限定しない。Mgなどのそれ自体で脱硫能力を有する成分を含むとより好ましい。 In the present invention, the CaO-based desulfurizing agent refers to a desulfurizing agent containing 50% by mass or more of CaO. As the CaO source, CaCO 3 or Ca (OH) 2 may be used in addition to CaO, and the CaO content can be calculated from the mass when completely pyrolyzed to CaO. Components other than CaO in the desulfurizing agent are not particularly limited. It is more preferable to include a component having a desulfurizing ability by itself such as Mg.

真空脱ガス装置を用いた溶鋼の脱硫において、真空容器内に脱硫剤吹き込みランスを下方に向けて挿入する。図2に示すように、脱硫剤吹き込みランス4の先端には脱硫剤吹き付けノズル5が配置されている。脱硫剤吹き付けノズル5から真空容器内の溶鋼表面11に脱硫剤を吹き付ける。本発明は、前記脱硫剤吹き付けノズル5と真空容器内溶鋼表面11との距離(ランス高さH)を2.6m以上とすることを特徴とする。以下、詳細に説明する。   In the desulfurization of molten steel using a vacuum degassing device, a lance for blowing a desulfurizing agent into a vacuum vessel is inserted downward. As shown in FIG. 2, a desulfurizing agent spray nozzle 5 is arranged at the tip of the desulfurizing agent blowing lance 4. A desulfurizing agent is sprayed from the desulfurizing agent spray nozzle 5 to the molten steel surface 11 in the vacuum vessel. The present invention is characterized in that the distance (lance height H) between the desulfurizing agent spray nozzle 5 and the molten steel surface 11 in the vacuum vessel is set to 2.6 m or more. The details will be described below.

脱硫剤粉体はキャリアガスによって脱硫剤吹き込みランス4中を搬送され、脱硫剤吹き込みランス4先端の脱硫剤吹き付けノズル5から真空容器内の溶鋼表面11に向けて噴出される。ここで、真空容器内の溶鋼表面11から脱硫剤吹き付けノズル5先端までの鉛直方向距離をランス高さHと称する。詳細には、脱硫剤を吹き付ける時の圧力に真空容器内を設定し、溶鋼鍋底部から撹拌用ガスを吹き込まない条件での真空容器内の溶鋼表面とノズル先端までの鉛直方向距離をランス高さHと称するものである。
ノズルからキャリアガスとともに脱硫剤を吹き込む際、ガスはノズル内外の圧力差によって急激に膨張する。また、ノズルから鉛直下向きに吹き出されたガス噴流14(脱硫剤を含む)は、ランス近傍ではジェットコア17(ノズル開口面積と同程度の広がり面積)を持ち、汎用されているランスの開口面積ではランス高さ1m程度以降では、溶鋼湯面に向かって進行するとともに水平方向に広がる末広がり部18を形成する。この際、粉体も水平方向に分散する。
The desulfurizing agent powder is transported through the desulfurizing agent blowing lance 4 by the carrier gas, and is jetted from the desulfurizing agent blowing nozzle 5 at the tip of the desulfurizing agent blowing lance 4 toward the molten steel surface 11 in the vacuum vessel. Here, the vertical distance from the molten steel surface 11 in the vacuum vessel to the tip of the desulfurizing agent spray nozzle 5 is referred to as a lance height H. In detail, the pressure inside the vacuum vessel is set to the pressure at which the desulfurizing agent is sprayed, and the vertical distance between the surface of the molten steel in the vacuum vessel and the tip of the nozzle in the condition where the stirring gas is not blown from the bottom of the molten steel pot is lance height. H.
When blowing the desulfurizing agent together with the carrier gas from the nozzle, the gas expands rapidly due to the pressure difference between the inside and outside of the nozzle. The gas jet 14 (including the desulfurizing agent) blown vertically downward from the nozzle has a jet core 17 (spread area approximately equal to the nozzle opening area) near the lance. After the lance height is about 1 m, a divergent portion 18 is formed which advances toward the molten steel surface and spreads in the horizontal direction. At this time, the powder is also dispersed in the horizontal direction.

ランス高さHが低い場合、図2(A)に示すように、粉体の広がりが小さく、溶鋼表面の一部に局所的に粉体が供給されることになる。局所的に供給された粉体は、粒子同士が衝突する確率が高まる。実質的にFを含まないCaO系脱硫剤を用いた場合は、粒子同士が衝突すると溶鋼表面で積層し、合体してしまう。積層合体が生じると、粉体の比表面積(体積に対する表面積の比率)が小さくなる。その結果、粒子が単独で存在する場合よりも反応速度が低下してしまう。   When the lance height H is low, as shown in FIG. 2A, the spread of the powder is small, and the powder is locally supplied to a part of the surface of the molten steel. In the locally supplied powder, the probability that the particles collide with each other increases. When a CaO-based desulfurizing agent containing substantially no F is used, when particles collide with each other, they are laminated on the surface of the molten steel and coalesce. When lamination and coalescence occur, the specific surface area (ratio of surface area to volume) of the powder decreases. As a result, the reaction rate is lower than when the particles exist alone.

これに対して、ランス高さHを高くすることで、上記課題を解決できることを知見した。すなわち、ランス高さHが高ければ、図2(B)に示すように、粉体が分散した状態で真空容器内の溶鋼表面11に到達するため、粒子同士の衝突が生じにくくなる。よって、実質的にFを含まないCaO系脱硫剤を用いた場合でも、反応効率を確保できる。   In contrast, it has been found that the above problem can be solved by increasing the lance height H. That is, if the lance height H is high, as shown in FIG. 2 (B), the powder reaches the molten steel surface 11 in the vacuum vessel in a dispersed state, so that the collision of particles hardly occurs. Therefore, even when a CaO-based desulfurizing agent containing substantially no F is used, the reaction efficiency can be ensured.

上記効果を得るためには、本発明者らの知見ではランス高さを2.6m以上とするとよい。2.6m未満だと、脱硫反応効率が低下する。一方、ランス高さが2.6m以上となると、キャリアガス吹付け面の面積はノズル下端開口径の6倍以上となり、溶鋼表面の脱硫剤の積層は十分に防止できるものと推定できた。ランス高さが高くなるほど脱硫剤粒子間の衝突確率は減少するので、その上限を規定する必要はないが、ランス高さが6mを超えるとその効果は飽和する。   In order to obtain the above-mentioned effects, the present inventors have found that the lance height is preferably set to 2.6 m or more. If it is less than 2.6 m, the efficiency of the desulfurization reaction will decrease. On the other hand, when the lance height was 2.6 m or more, the area of the carrier gas spraying surface became 6 times or more the opening diameter of the nozzle lower end, and it was estimated that lamination of the desulfurizing agent on the molten steel surface could be sufficiently prevented. The higher the lance height, the lower the probability of collision between the desulfurizing agent particles. Therefore, it is not necessary to specify the upper limit, but when the lance height exceeds 6 m, the effect is saturated.

以上のとおり、真空脱ガス装置において溶鋼の脱硫処理を行う際に、脱硫剤吹き付けノズル5から真空容器内の溶鋼表面11に脱硫剤を吹き付け、前記脱硫剤として実質的にFを含まないCaO系脱硫剤を使用する方法において、脱硫剤吹き付けノズル5と真空容器内の溶鋼表面11との距離(ランス高さH)を2.6m以上とすることにより、脱硫剤の粒子同士の衝突が生じにくくなる。また、真空脱ガス装置として、溶鋼鍋底部から撹拌用ガスを吹きこむ装置6を使用することにより、実質的にFを含まないCaO系脱硫剤を用いた場合でも、反応効率を確保できる。   As described above, when performing desulfurization treatment of molten steel in the vacuum degassing apparatus, a desulfurizing agent is sprayed from the desulfurizing agent spray nozzle 5 onto the molten steel surface 11 in the vacuum vessel, and a CaO-based material substantially free of F as the desulfurizing agent is used. In the method using the desulfurizing agent, the distance (lance height H) between the desulfurizing agent spray nozzle 5 and the molten steel surface 11 in the vacuum vessel is set to 2.6 m or more, so that the particles of the desulfurizing agent hardly occur. Become. In addition, by using the apparatus 6 that blows the stirring gas from the bottom of the molten steel pot as a vacuum degassing apparatus, the reaction efficiency can be ensured even when a CaO-based desulfurizing agent containing substantially no F is used.

本発明において、脱硫前における溶鋼鍋内の溶鋼表面12に存在しているスラグ13のFeO成分とMnO成分の合計が10質量%以下であると好ましい。以下詳述する。   In the present invention, the total of the FeO component and the MnO component of the slag 13 present on the molten steel surface 12 in the molten steel pot before desulfurization is preferably 10% by mass or less. The details will be described below.

上記の通り、溶鋼鍋底部から撹拌用ガスを吹きこむ装置6を使用する本発明においては、循環溶鋼流中の脱硫剤粒子は、溶鋼中を循環し、脱硫への寄与を継続するが、一定の確率で循環溶鋼流から逸脱し、溶鋼鍋浴面へ浮上し、溶鋼鍋浴面に存在するスラグ13に取り込まれる。溶鋼鍋浴面のスラグ13は、転炉からの出鋼時に転炉から流出した酸化精錬スラグを主体とするものであり、FeO成分やMnO成分含有量が高く、いわゆる酸化性の高いスラグである。そのため、溶鋼鍋浴面へ浮上した脱硫剤粒子を構成する脱硫生成物は、浴面のスラグ13により酸化されて溶鋼中に復硫する場合がある。   As described above, in the present invention using the device 6 for blowing the stirring gas from the bottom of the molten steel pot, the desulfurizing agent particles in the circulating molten steel flow circulate in the molten steel and continue to contribute to desulfurization. Deviates from the circulating molten steel flow with the probability of, rises to the molten steel ladle bath surface, and is taken into the slag 13 existing on the molten steel ladle bath surface. The slag 13 on the bath surface of the molten steel pot is mainly composed of oxidized and refined slag flowing out of the converter at the time of tapping from the converter, and has a high FeO component and MnO component content, and is a so-called highly oxidizable slag. . Therefore, the desulfurization product constituting the desulfurization agent particles floating on the bath surface of the molten steel pot may be oxidized by the slag 13 on the bath surface and resulfurized in the molten steel.

そこで本発明では、脱硫前の溶鋼面に存在しているスラグは、FeO成分とMnO成分の合計が10質量%以下であることを好適(スラグの酸化度が低いと好適)とする。スラグ中のFeO成分やMnO成分の濃度を低減する方法としては、例えば、Al等の強脱酸元素を添加して還元する方法や、スラグにCaO源を添加して希釈する方法などを用いることができる。なお実操業においては、FeO成分量(質量%)は、T−Fe量(質量%)分析値に基づき、T.FeのすべてがFeOであるとしてFeO含有量を算出しても良い。   Therefore, in the present invention, the slag existing on the molten steel surface before desulfurization preferably has a total of the FeO component and the MnO component of 10% by mass or less (preferably, the slag has a low degree of oxidation). As a method of reducing the concentration of the FeO component or the MnO component in the slag, for example, a method of adding and reducing a strong deoxidizing element such as Al or a method of adding a CaO source to the slag and diluting the slag is used. Can be. In actual operation, the amount of FeO component (% by mass) was determined based on the T-Fe amount (% by mass) analysis value. The FeO content may be calculated assuming that all of Fe is FeO.

本発明の効果を検証するために実施した検証試験について説明する。   A verification test performed to verify the effects of the present invention will be described.

検証試験には、300〜350ton/チャージ、低炭素アルミキルド鋼(脱硫前のS濃度が30ppm〜40ppm)の溶鋼を用いた。溶鋼鍋の内径は5mである。真空脱ガス装置は大径浸漬管方式(図1参照)(大径浸漬管3の内径:2m)及びRH方式とし、真空容器内の圧力を400Pa〜1200Paとして脱硫処理を実施した。なお本発明では、溶鋼鍋の内径3〜6m、大径浸漬管の内径1.5〜2.5m、のものを想定している。   In the verification test, molten steel of 300 to 350 ton / charge, low carbon aluminum killed steel (S concentration before desulfurization was 30 ppm to 40 ppm) was used. The inside diameter of the molten steel pot is 5 m. The vacuum degassing apparatus was a large-diameter immersion pipe system (see FIG. 1) (inner diameter of the large-diameter immersion pipe 3: 2 m) and an RH system, and the desulfurization treatment was performed by setting the pressure in the vacuum vessel to 400 Pa to 1200 Pa. In the present invention, it is assumed that a molten steel pot has an inner diameter of 3 to 6 m and a large-diameter immersion pipe has an inner diameter of 1.5 to 2.5 m.

大径浸漬管方式を用いた水準では、鍋底に備えた撹拌ガス吹込みプラグ(撹拌用ガスを吹きこむ装置6)から撹拌用ガスを供給した。RH方式を用いた水準では、真空容器2に備えた2本の浸漬管のうち1本の浸漬管(上昇管7)のガス吹き込み口9から撹拌用ガスを供給した。いずれの水準でも、撹拌用ガスにはArガスを用いた。   At the level using the large-diameter immersion tube method, the stirring gas was supplied from a stirring gas injection plug (device 6 for blowing the stirring gas) provided at the bottom of the pot. In the level using the RH method, a stirring gas was supplied from the gas injection port 9 of one of the two immersion tubes (rising tube 7) among the two immersion tubes provided in the vacuum vessel 2. Ar gas was used as a stirring gas at any level.

脱硫剤は、キャリアガスとともに、脱硫剤吹き込みランス4先端の脱硫剤吹き付けノズル5から真空容器内の溶鋼表面11に向けて噴出される。CaO系脱硫剤を吹き付けるためのキャリアガスにはArガスを用い、175(kg/min)の量を溶鋼に吹き付けた。脱硫剤吹き付けノズル5は、ノズル下端開口径(直径)が120mmのラバールノズルを用いた。本発明では75〜150mmのものを想定している。   The desulfurizing agent is jetted together with the carrier gas from the desulfurizing agent spray nozzle 5 at the tip of the desulfurizing agent injection lance 4 toward the molten steel surface 11 in the vacuum vessel. Ar gas was used as a carrier gas for spraying the CaO-based desulfurizing agent, and 175 (kg / min) was sprayed on the molten steel. As the desulfurizing agent spray nozzle 5, a Laval nozzle having a nozzle lower end opening diameter (diameter) of 120 mm was used. In the present invention, a size of 75 to 150 mm is assumed.

CaO系脱硫剤の成分としては、実施例1、2、比較例1、2については80質量%CaO+20質量%Al23を使用した。従来技術を用いた水準では、80質量%CaO+20質量%CaF2を使用した。なお本発明では、CaO系脱硫剤の単位時間あたりの供給量は、50〜300(kg/min)を想定している。 As the components of the CaO-based desulfurizing agent, 80% by mass CaO + 20% by mass Al 2 O 3 was used in Examples 1 and 2 and Comparative Examples 1 and 2. At the level using the prior art, 80% by mass CaO + 20% by mass CaF 2 was used. In the present invention, the supply amount of the CaO-based desulfurizing agent per unit time is assumed to be 50 to 300 (kg / min).

試験結果の評価は以下のように行った。
脱硫前のS濃度30ppm〜40ppmを、脱硫処理によって到達S濃度5ppm〜13ppmとし、脱硫処理開始から脱硫処理終了までの時間を測定した。次いで、S濃度変化を時間の一次関数と仮定し、当該関数を用いて30ppmから15ppmに低下するのに必要な時間に換算して「脱硫処理時間」とした。そして、比較例1における脱硫処理時間を基準とし、10%超改善したものを◎、5%以上10%以下改善したものを○、悪化または5%未満の改善であったものを×として評価した。
検証試験の結果を表1に示す。
Evaluation of the test results was performed as follows.
The S concentration of 30 ppm to 40 ppm before desulfurization was changed to the ultimate S concentration of 5 ppm to 13 ppm by desulfurization treatment, and the time from the start of desulfurization treatment to the end of desulfurization treatment was measured. Next, the change in S concentration was assumed to be a linear function of time, and the time required to decrease from 30 ppm to 15 ppm was converted to “desulfurization treatment time” using the function. Then, based on the desulfurization treatment time in Comparative Example 1, the case of improving more than 10% was evaluated as ◎, the case of improving 5% or more and 10% or less was evaluated as 、, and the case of deterioration or improvement of less than 5% was evaluated as ×. .
Table 1 shows the results of the verification test.

Fを含まないCaO系脱硫剤を用いた場合で対比すると、大径浸漬管方式(実施例1、比較例1)では、RH方式(比較例2)に比べて脱硫処理時間が短くなる。大径浸漬管方式は溶鋼鍋底部から撹拌用ガスを吹きこむ装置6を使用しているため、吹き込んだ脱硫剤が溶鋼循環流に乗って長い時間溶鋼中に滞在しているため、Fを含まないので脱硫所要時間が長い脱硫剤であるにもかかわらず、十分な脱硫が行われたためと推定される。   In comparison with the case where a CaO-based desulfurizing agent containing no F is used, the desulfurization treatment time is shorter in the large diameter immersion tube method (Example 1, Comparative Example 1) than in the RH method (Comparative Example 2). The large-diameter immersion pipe system uses the device 6 that blows gas for stirring from the bottom of the molten steel pot, so that the injected desulfurization agent stays in the molten steel for a long time on the molten steel circulating flow. It is presumed that sufficient desulfurization was performed despite the fact that the desulfurization agent required a long time for desulfurization.

また、同じ大径浸漬管方式で比較すると、ランス高さHが高くなるにつれて脱硫処理時間が短くなり、ランス高さHが2.6mにおいて十分な脱硫性能を実現している(実施例1、比較例1)。ランス高さHを高くすることで、吹き込んだ粉体が分散した状態で溶鋼表面に到達するため、粒子同士の衝突が生じにくくなるので、実質的にFを含まないCaO系脱硫剤を用いた場合でも、反応効率を確保できているものと推定される。なお、表1の「従来技術」は脱硫剤中にCaF2を使用しており、ランス高さHは1.5mと低かったものの、評価結果は良好であった。 In addition, when compared with the same large-diameter immersion tube method, the desulfurization treatment time becomes shorter as the lance height H increases, and sufficient desulfurization performance is realized when the lance height H is 2.6 m (Example 1, Comparative Example 1). By increasing the lance height H, the blown powder reaches the surface of the molten steel in a dispersed state, so that collision of particles hardly occurs. Therefore, a CaO-based desulfurizing agent containing substantially no F was used. Even in this case, it is presumed that the reaction efficiency has been secured. In addition, the "prior art" in Table 1 used CaF 2 in the desulfurizing agent, and although the lance height H was as low as 1.5 m, the evaluation result was good.

スラグのFeO成分+MnO成分の割合が減少するにつれて脱硫処理時間が短くなる(実施例1、実施例2)。   As the ratio of the FeO component + MnO component of the slag decreases, the desulfurization treatment time becomes shorter (Examples 1 and 2).

Figure 0006623933
Figure 0006623933

1 溶鋼鍋
2 真空容器
3 大径浸漬管
4 脱硫剤吹き込みランス
5 脱硫剤吹き付けノズル
6 撹拌用ガスを吹きこむ装置
7 上昇管
8 下降管
9 ガス吹き込み口
10 溶鋼
11 真空容器内の溶鋼表面
12 溶鋼鍋内の溶鋼表面
13 スラグ
14 ガス噴流
15 上昇流
16 下降流
17 ジェットコア
18 末広がり部
21 大径浸漬管方式真空脱ガス装置
22 RH方式真空脱ガス装置
DESCRIPTION OF SYMBOLS 1 Molten steel pot 2 Vacuum container 3 Large diameter immersion pipe 4 Desulfurizing agent blowing lance 5 Desulfurizing agent spray nozzle 6 Device for blowing gas for agitation 7 Ascending tube 8 Descending tube 9 Gas blowing port 10 Molten steel 11 Molten steel surface in vacuum container 12 Molten steel Molten steel surface 13 in slag 14 Slag 14 Gas jet 15 Upflow 16 Downflow 17 Jet core 18 Divergent portion 21 Large diameter immersion tube type vacuum degassing device 22 RH type vacuum degassing device

Claims (2)

真空脱ガス装置において溶鋼の脱硫処理を行う際に、脱硫剤吹き付けノズルから真空容器内の溶鋼表面に脱硫剤を吹き付け、前記脱硫剤として実質的にFを含まないCaO系脱硫剤を使用する方法において、
真空脱ガス装置として、溶鋼鍋底部から撹拌用ガスを吹きこむ装置を使用するとともに、
前記脱硫剤吹き付けノズルと真空容器内溶鋼表面との距離(以下「ランス高さ」という。)を2.6m以上とすることを特徴とする、溶鋼の脱硫方法。
When performing desulfurization treatment of molten steel in a vacuum degassing apparatus, a method of spraying a desulfurizing agent onto the surface of molten steel in a vacuum vessel from a desulfurizing agent spray nozzle and using a CaO-based desulfurizing agent containing substantially no F as the desulfurizing agent At
As a vacuum degassing device, while using a device that blows gas for stirring from the bottom of the molten steel pot,
A method for desulfurizing molten steel, comprising: setting a distance (hereinafter, referred to as a "lance height") between the desulfurizing agent spray nozzle and the surface of molten steel in a vacuum vessel to be 2.6 m or more.
脱硫前の溶鋼鍋内溶鋼面に存在しているスラグのFeO成分とMnO成分の合計が10質量%以下であることを特徴とする、請求項1に記載の溶鋼の脱硫方法。
The desulfurization method for molten steel according to claim 1, wherein the total of the FeO component and the MnO component of the slag existing on the molten steel surface in the molten steel pot before desulfurization is 10% by mass or less.
JP2016106265A 2016-05-27 2016-05-27 Desulfurization method of molten steel Active JP6623933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016106265A JP6623933B2 (en) 2016-05-27 2016-05-27 Desulfurization method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016106265A JP6623933B2 (en) 2016-05-27 2016-05-27 Desulfurization method of molten steel

Publications (2)

Publication Number Publication Date
JP2017210670A JP2017210670A (en) 2017-11-30
JP6623933B2 true JP6623933B2 (en) 2019-12-25

Family

ID=60474537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106265A Active JP6623933B2 (en) 2016-05-27 2016-05-27 Desulfurization method of molten steel

Country Status (1)

Country Link
JP (1) JP6623933B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665625A (en) * 1992-08-24 1994-03-08 Sumitomo Metal Ind Ltd Desulphurization method for molten steel
JPH0673429A (en) * 1992-08-28 1994-03-15 Sumitomo Metal Ind Ltd Method for desulfurizing and denitrogenizing molten steel
JPH06322431A (en) * 1993-05-10 1994-11-22 Sumitomo Metal Ind Ltd Method for desulfurizing and denitriding molten steel
JP5786470B2 (en) * 2010-06-17 2015-09-30 Jfeスチール株式会社 Vacuum refining method for molten steel

Also Published As

Publication number Publication date
JP2017210670A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP6686838B2 (en) Highly clean steel manufacturing method
JP2010189705A (en) Apparatus for refining molten steel
JP6623933B2 (en) Desulfurization method of molten steel
JP6686703B2 (en) Method of desulfurizing molten steel
JP6372540B2 (en) Vacuum degassing apparatus and vacuum degassing treatment method
JPH0420967B2 (en)
JP6686702B2 (en) Method of desulfurizing molten steel
JP6358039B2 (en) Desulfurization method for molten steel
JP6848437B2 (en) Desulfurization method and desulfurization equipment for molten steel
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JP6372541B2 (en) Vacuum degassing apparatus and vacuum degassing treatment method
JP6354472B2 (en) Desulfurization treatment method for molten steel
JP3290794B2 (en) Molten steel refining method under reduced pressure
JP2008261014A (en) Method for adding rare earth element into molten steel
JP6435983B2 (en) Method for refining molten steel
JP6638538B2 (en) RH type vacuum degassing equipment
KR101840962B1 (en) Method for suppressing re-sulfurization of hot metal after desulfurization treatment
KR101790608B1 (en) Apparatus for controling fluid(stream) of melting steel
JP6268963B2 (en) Method for refining molten steel
JP2014148695A (en) High efficiency dehydrogenation method of molten steel
JPH11293331A (en) Refining of molten steel
JP2018095942A (en) Vacuum degassing apparatus and secondary refining apparatus for molten steel
JP2005068488A (en) Method for adjusting component of molten steel in rh-degassing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R151 Written notification of patent or utility model registration

Ref document number: 6623933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151