JP6435983B2 - Method for refining molten steel - Google Patents

Method for refining molten steel Download PDF

Info

Publication number
JP6435983B2
JP6435983B2 JP2015093010A JP2015093010A JP6435983B2 JP 6435983 B2 JP6435983 B2 JP 6435983B2 JP 2015093010 A JP2015093010 A JP 2015093010A JP 2015093010 A JP2015093010 A JP 2015093010A JP 6435983 B2 JP6435983 B2 JP 6435983B2
Authority
JP
Japan
Prior art keywords
molten steel
vacuum chamber
inclusions
ladle
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015093010A
Other languages
Japanese (ja)
Other versions
JP2016211018A (en
Inventor
光裕 沼田
光裕 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015093010A priority Critical patent/JP6435983B2/en
Publication of JP2016211018A publication Critical patent/JP2016211018A/en
Application granted granted Critical
Publication of JP6435983B2 publication Critical patent/JP6435983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は炭素鋼、低合金鋼、合金鋼などの溶鋼の二次精錬で用いられる、脱ガス、脱炭、温度調整、成分調整、介在物除去などの処理を行うための溶鋼の精錬処理方法に関する。   The present invention is used in secondary refining of molten steel such as carbon steel, low alloy steel, and alloy steel, and a method for refining molten steel for performing treatments such as degassing, decarburization, temperature adjustment, component adjustment, and inclusion removal. About.

一般に転炉で脱炭処理された溶鋼は二次精錬と呼ばれる製鋼精錬処理が行われる。二次精錬には不活性ガス吹き込み精錬、タンク脱ガス精錬、アーク加熱精錬など多数の処理方法があるが、真空排気装置に接続された真空槽と真空槽の底部に取り付けられた上昇管と下降管を有し、上昇管には環流ガスの吹き込み羽口が設けられ、前記上昇管と下降管を取鍋内の溶鋼に浸漬して取鍋内の溶鋼を真空槽に吸い上げた後、上昇管内に吹き込み羽口から環流ガスを吹き込んで溶鋼を循環させる溶鋼の精錬処理装置(以下、RH)が広く用いられている。   Generally, molten steel decarburized in a converter is subjected to a steel refining process called secondary refining. Secondary refining includes a number of processing methods such as inert gas blowing refining, tank degassing refining, and arc heating refining, but the vacuum tank connected to the vacuum exhaust system and the riser pipe attached to the bottom of the vacuum tank and the descent The riser is provided with a recirculation gas blowing tuyere, and after the riser and downcomer are immersed in the molten steel in the ladle, the molten steel in the ladle is sucked into the vacuum chamber, 2. Description of the Related Art Molten steel refining treatment equipment (hereinafter referred to as RH) that circulates molten steel by blowing recirculation gas from the tuyere is widely used.

RHは真空槽と取鍋との間で溶鋼を循環させることで真空槽内での脱ガス等の反応と取鍋内での混合とが同時に進行する。このため、RHでの各種精錬効果を高めるにはこの溶鋼の循環を円滑に行うことが最も重要である。   In RH, the molten steel is circulated between the vacuum tank and the ladle so that the reaction such as degassing in the vacuum tank and the mixing in the ladle proceed simultaneously. For this reason, it is most important to smoothly circulate the molten steel in order to enhance various refining effects in RH.

溶鋼の循環を示す指標として環流量なる指標が広く用いられており、単位時間当たりに真空槽と取鍋間を移動する溶鋼質量で示される。   As an index indicating the circulation of the molten steel, an index which is an annular flow rate is widely used, and is indicated by a molten steel mass moving between the vacuum tank and the ladle per unit time.

環流量は、一方の浸漬管(上昇管)に吹き込む環流ガスの流量と浸漬管の断面積に依存するが、環流ガス流量の上限値は浸漬管の断面積に依存するため、浸漬管の断面積もしくは浸漬管の内径をより大きくして、真空槽内の溶鋼の流れを変化させることが、RH精錬能力を高めるにあたっての技術思想の主流であり、例えば、特許文献1では、上昇管と下降管を一体に形成して両者間に仕切りを設けることにより両者の有効断面積を拡大し、溶鋼の環流量を増大化する技術が開示されている。   The recirculation flow rate depends on the flow rate of the recirculation gas blown into one dip tube (rising tube) and the cross-sectional area of the dip tube, but the upper limit value of the recirculation gas flow rate depends on the cross-sectional area of the dip tube. Changing the flow of molten steel in the vacuum chamber by increasing the area or the inner diameter of the dip tube is the mainstream of the technical idea for enhancing the RH refining capacity. A technique is disclosed in which a pipe is formed integrally and a partition is provided between the two to increase the effective cross-sectional area of both, thereby increasing the flow rate of the molten steel.

特許文献2では、真空槽の形状を長円とし、その長軸方向に2本の浸漬管を配置することにより、真空槽を循環する溶鋼やスラグの滞留をなくし、脱炭反応や脱水素反応を促進する技術が開示されている。   In Patent Document 2, the shape of the vacuum tank is an ellipse, and two dip pipes are arranged in the long axis direction, thereby eliminating the stay of molten steel and slag circulating in the vacuum tank, and the decarburization reaction or dehydrogenation reaction. A technique for promoting the above is disclosed.

特許文献3では、上昇管の上端開口と下端開口の位置、および、下降管の上端開口と下端開口の位置の少なくとも一方を真空槽の周方向にずらすことによって真空槽内の溶融金属に旋回流を付与し、脱ガス速度、介在物除去速度を速める技術が開示されている。   In Patent Document 3, swirl flows to the molten metal in the vacuum chamber by shifting at least one of the positions of the upper end opening and the lower end opening of the rising tube and the positions of the upper end opening and the lower end opening of the descending tube in the circumferential direction of the vacuum chamber. And a technique for increasing the degassing rate and inclusion removal rate is disclosed.

特許文献4では、浸漬管形状を二重管構造とし、内管から真空槽に溶鋼を吸い上げて外管から溶鋼を取鍋に排出して、取鍋と真空槽間の溶鋼の循環速度を大きくし、脱ガス速度を向上させる技術が開示されている。   In Patent Document 4, the shape of the dip tube is a double tube structure, the molten steel is sucked up from the inner tube into the vacuum chamber, the molten steel is discharged from the outer tube into the ladle, and the circulation rate of the molten steel between the ladle and the vacuum chamber is increased. However, a technique for improving the degassing rate is disclosed.

特開平2−200721号公報Japanese Patent Laid-Open No. 2-200721 特開平4−272120号公報JP-A-4-272120 特開平6−10027号公報Japanese Patent Laid-Open No. 6-10027 特開平8−193215号公報JP-A-8-193215

以上のように先行技術において環流量を増加させる技術が多数開示されているが、先行技術では環流量を装置全体における流れを巨視的に把握し、解析する手法が一般的であった。   As described above, a number of techniques for increasing the ring flow rate have been disclosed in the prior art. However, in the prior art, a method for macroscopically grasping and analyzing the flow in the entire apparatus is generally used.

例えば代表的な開発手法として均一混合時間測定法が挙げられるが、この方法では混合時間を測定することにより装置形状や装置運転条件が混合全体すなわちRH内流動全体に与える影響を定量化し、最適な条件を探査することができる。   For example, as a typical development method, there is a uniform mixing time measurement method. In this method, by measuring the mixing time, the influence of the apparatus shape and apparatus operating conditions on the entire mixing, that is, the entire flow in the RH, is quantified, and the optimum mixing time is measured. You can explore the conditions.

このような開発手法を応用することで、多数の優れた環流量高位安定技術が開発されてきた。そして、これらの技術開発により、水素、窒素などの脱ガス、極低濃度域までの脱炭、合金成分濃度の最終調整、温度調整、非金属介在物の除去といったRHで求められる諸機能が大幅に改善されてきた。   By applying such a development technique, a number of excellent ring flow high level stabilization techniques have been developed. These technological developments greatly improve the various functions required by RH, such as degassing of hydrogen and nitrogen, decarburization to extremely low concentrations, final adjustment of alloy component concentration, temperature adjustment, and removal of non-metallic inclusions. Has been improved.

一方、近年では高性能高機能鋼材において非金属介在物(以下、単に介在物)に対する要求が厳格化し、より一層の清浄性が求められている。同時に、高性能高機能鋼材の需要増加に伴い、高い清浄性を有した鋼材をより効率よく製造することも求められている。しかし、先行技術にてこれらの要求に対応するにはいくつかの課題があった。   On the other hand, in recent years, demands for non-metallic inclusions (hereinafter simply referred to as inclusions) in high-performance, high-function steel materials have become stricter, and further cleanliness is required. At the same time, as the demand for high-performance, high-function steel materials increases, it is also required to produce steel materials with high cleanliness more efficiently. However, there are some problems in the prior art to meet these requirements.

第一の課題は生産性の低下である。高清浄化達成に必要な介在物除去に要する時間が長くなるため、RH処理時間が大幅に延長されてしまう。このため、生産性が大幅に低下してしまう。   The first problem is a decrease in productivity. Since the time required to remove inclusions necessary to achieve high cleaning becomes longer, the RH treatment time is greatly extended. For this reason, productivity will fall significantly.

第二の課題は清浄性の限界である。微小な介在物、特に20μm以下の介在物の除去は量産鋼では困難であるため、特に量産鋼においては得られる清浄性に限界があるとされていた。   The second problem is the limit of cleanliness. Since removal of minute inclusions, particularly inclusions of 20 μm or less, is difficult in mass-produced steel, it has been considered that there is a limit to the cleanability obtained particularly in mass-produced steel.

すなわち、先行技術により従来よりも高い清浄性を有する鋼の製造は可能になったものの、近年の清浄性に対する高い要求水準を満足することは困難であった。   That is, although it has become possible to produce steel having higher cleanliness than before by the prior art, it has been difficult to satisfy the recent high requirement level for cleanliness.

さらに、清浄性を高めるには一般的に用いられるRH以外の精錬装置による処理を追加する、あるいはRH装置自体を大幅に改造するなどの手法も想定されるが、これらの手法ではコストや生産性の面であらたな課題が生じる。   Furthermore, in order to improve cleanliness, methods such as adding processing by a refining device other than RH that is generally used, or remodeling the RH device itself, can be envisaged. However, these methods are costly and productive. A new problem arises in this aspect.

本発明は、上記従来技術における問題を解決し、RH装置の大幅な改造や精錬処理を追加することなく、短時間で高い清浄性を有することができる溶鋼のRH精錬方法を提供することを課題としている。   This invention solves the problem in the said prior art, and provides the RH refining method of the molten steel which can have high cleanliness in a short time, without adding the big remodeling and refining process of a RH apparatus. It is said.

本発明者等は上記の目的を達成すべく鋭意研究を重ねた結果、RH装置を用いた溶鋼の精錬処理方法において、特定の条件に制御することによりRH装置の下降管内に下降流の他に循環流が生成し、介在物の凝集合体が進行して浮上除去されることにより溶鋼の清浄性が向上することを見出した。   As a result of intensive studies to achieve the above-mentioned object, the present inventors, in addition to the downflow in the downcomer of the RH apparatus, by controlling to a specific condition in the molten steel refining treatment method using the RH apparatus. It has been found that the cleanliness of the molten steel is improved by the generation of a circulating flow, and the agglomeration and coalescence of inclusions progressing and being lifted and removed.

本発明は以上の知見に基づいてなされたもので、その要旨は以下の通りである。
(a) 真空排気装置に接続された真空槽と、前記真空槽の底部に取り付けられた上昇管と下降管を有し、前記上昇管には環流ガスの吹き込み羽口が設けられ、前記上昇管と下降管を取鍋内の溶鋼に浸漬して取鍋内の溶鋼を真空槽に吸い上げた後、上昇管内に吹き込み羽口から環流ガスを吹き込んで溶鋼を循環させる精錬処理装置を用いた溶鋼の精錬処理方法において、
前記上昇管の内壁と前記下降管の内壁との最短水平距離D、下降管内径d、真空槽内浴深Hとの関係が下記(1)式を満足することを特徴とする溶鋼の精錬処理方法。
0.03≦H/(D+d)≦0.10 ・・・(1)
(b) 真空槽内溶鋼または取鍋内溶鋼にCaOを30質量%以上含有するフラックスを添加することを特徴とする(a)に記載の溶鋼の精錬処理方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(A) a vacuum tank connected to an evacuation device; a riser pipe and a downfall pipe attached to the bottom of the vacuum tank; the riser pipe is provided with a bubbling tuyere of reflux gas; After the dipping pipe is immersed in the molten steel in the ladle, the molten steel in the ladle is sucked into the vacuum chamber, and then blown into the ascending pipe and the recirculation gas is blown from the tuyere to circulate the molten steel. In the refining treatment method,
The relation between the inner wall of the riser and the inner wall of the downcomer, the minimum horizontal distance D, the inner diameter d of the downcomer, and the bath depth H in the vacuum chamber satisfies the following formula (1). Method.
0.03 ≦ H / (D + d) ≦ 0.10 (1)
(B) The molten steel refining method according to (a), wherein a flux containing 30% by mass or more of CaO is added to the molten steel in the vacuum chamber or the molten steel in the ladle.

本発明によればRH装置の大幅な改造や精錬処理を追加することなく、短時間で高い清浄性を有する鋼を製造することができる。   According to the present invention, steel having high cleanliness can be produced in a short time without adding significant remodeling or refining treatment of the RH device.

通常のRH下降側浸漬管内の流れの模式図Schematic diagram of the flow in a normal RH descending dip tube 制御されたRH下降側浸漬管内の流れの模式図Schematic diagram of flow in controlled RH downside dip tube A値と介在物個数指数の関係を示す図Diagram showing the relationship between A value and inclusion number index A値と均一混合時間指数との関係を示す図Diagram showing the relationship between A value and uniform mixing time index フラックス有無による介在物個数変化を比較した図Figure comparing the number of inclusions with and without flux フラックス中CaO濃度と介在物個数との関係を示す図The figure which shows the relationship between CaO concentration in flux and the number of inclusions

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

上記の課題を解決するための検討を加えるにあたり、本発明者らは、環流量などのRH装置全体における巨視的な流れに注目するのではなく、装置各部分に生じる微視的な流れに注目し、検討を行った。   In adding studies for solving the above-mentioned problems, the present inventors pay attention not to the macroscopic flow in the entire RH device such as the ring flow rate but to the microscopic flow generated in each part of the device. And examined.

RH型水モデル実験装置(水量150L)と介在物を模擬した粒子(直径0.5mm以下)を用いてRH各部の流動状態と介在物運動を仔細に観察した結果、以下を見出した。   Using the RH type water model experimental apparatus (water volume 150 L) and particles (diameter 0.5 mm or less) simulating inclusions, the flow state and inclusion movement of each part of the RH were closely observed, and the following was found.

RH真空脱ガス装置においては、図1に示すように、取鍋内溶鋼9が上昇管2から上昇流6として真空槽1内に吸い上げられ、RH下降側浸漬管(以下、下降管3)から下降流7として取鍋内溶鋼9に戻る流れを形成している。下降管3内の流動は図1に示すように真空槽1から取鍋内溶鋼9へ流下する下降流7であり、下降管3内は下降流7によって充満されている。しかし、特定の条件に制御することにより下降管内に下降流の他に循環流が生成する。この流れを図2に示す。図2中に破線で示す下降管3内に生成させた循環流8により介在物凝集合体が進行することを確認した。   In the RH vacuum degassing apparatus, as shown in FIG. 1, molten steel 9 in the ladle is sucked up into the vacuum chamber 1 as an upward flow 6 from the ascending pipe 2, and from the RH descending side immersion pipe (hereinafter referred to as the descending pipe 3). A flow returning to the molten steel 9 in the ladle is formed as the downward flow 7. As shown in FIG. 1, the flow in the downcomer 3 is a downflow 7 that flows down from the vacuum chamber 1 to the molten steel 9 in the ladle, and the downcomer 3 is filled with the downflow 7. However, by controlling to a specific condition, a circulating flow is generated in the downcomer in addition to the downflow. This flow is shown in FIG. It was confirmed that inclusion agglomeration proceeded by the circulating flow 8 generated in the downcomer 3 shown by a broken line in FIG.

この凝集合体により介在物がより大きな介在物に取り込まれるため、浮上が容易になり、清浄度向上に要するRH処理時間を短縮することが可能となる。加えて、浮上速度が遅く浮上分離が困難な微細な介在物もより大きな介在物に取り込まれるため、従来困難であった微細介在物も低減された高い清浄度が得られる。   Since the inclusions are taken into larger inclusions by this aggregation and coalescence, the floating becomes easy and the RH treatment time required for improving the cleanliness can be shortened. In addition, since fine inclusions that have a low flying speed and are difficult to float and separate are taken into larger inclusions, a high cleanliness with reduced fine inclusions that has been difficult in the past can be obtained.

そこで、上記水モデル実験により循環流生成条件と介在物除去効果定量化を行った。実験から循環流の生成と介在物個数変化は(1)式で整理できると結論した。なお、Hは環流を実施していない静止状態での浴深である。
0.03≦H/(D+d)≦0.1 ・・・(1)
ここで、D:上昇管の内壁と下降管の内壁との最短水平距離、d:下降管内径、H:真空槽内浴深
Therefore, the circulation flow generation condition and inclusion removal effect were quantified by the water model experiment. From the experiment, it was concluded that the generation of the circulating flow and the change in the number of inclusions can be arranged by equation (1). In addition, H is the bath depth in a stationary state where no reflux is performed.
0.03 ≦ H / (D + d) ≦ 0.1 (1)
Where D: shortest horizontal distance between the inner wall of the riser and the inner wall of the downcomer, d: inner diameter of the downcomer, H: bath depth in the vacuum chamber

以下、H/(D+d)をA値とする。図3にA値とRH環流開始180s後の水中の模擬介在物粒子個数指数との関係を示す。介在物個数はA値=0.01での個数を1として指数化した。RH環流開始180s後に環流を停止し、取鍋内水から100ccの水を採取し、濾過により分別した粒子を実体顕微鏡を用いて粒子の個数を計測した。図3からA値が0.03以上0.1以下の範囲において介在物個数が低減されていることが解る。実験の目視観察の結果からA値が0.1以下となると図2に示す循環流8の生成が確認されたことから、A値を0.1以下とすることで循環流8による介在物の凝集合体が進行し、結果、介在物個数が低減される。   Hereinafter, H / (D + d) is defined as an A value. FIG. 3 shows the relationship between the A value and the simulated inclusion particle number index in water 180 s after the start of RH reflux. The number of inclusions was indexed with the number at A value = 0.01 being 1. The circulation was stopped 180 s after the start of RH reflux, 100 cc of water was collected from the water in the ladle, and the number of particles separated by filtration was counted using a stereomicroscope. It can be seen from FIG. 3 that the number of inclusions is reduced when the A value is in the range of 0.03 to 0.1. From the result of visual observation of the experiment, when the A value was 0.1 or less, it was confirmed that the circulating flow 8 shown in FIG. 2 was generated. Aggregation and coalescence proceed, and as a result, the number of inclusions is reduced.

一方、A値が0.03未満では循環流8は生成しているが、介在物個数は増加している。この理由について説明する。図4にA値と均一混合時間との関係を示す。均一混合時間はA値が0.2の時の均一混合時間を1として指数化した。図4からA値が0.03未満となると急激に均一混合時間が長くなることが解る。つまり、RH全体の流動すなわち環流量が低下していることを示している。実験の目視観察の結果から、A値が0.03未満となると図2に示す下降管3内の循環流8が発達し、真空槽1から取鍋内溶鋼9への本来の下降流7が縮小し、環流量が低下することが確認された。従って、A値が0.03未満では介在物の凝集合体は促進される一方で、RH全体の環流が低下するため介在物の浮上除去が進行しにくくなる。   On the other hand, when the A value is less than 0.03, the circulating flow 8 is generated, but the number of inclusions is increased. The reason for this will be described. FIG. 4 shows the relationship between the A value and the uniform mixing time. The uniform mixing time was indexed assuming that the uniform mixing time when the A value was 0.2 was 1. It can be seen from FIG. 4 that when the A value is less than 0.03, the uniform mixing time increases abruptly. That is, the flow of the entire RH, that is, the ring flow rate is reduced. From the result of the visual observation of the experiment, when the A value is less than 0.03, the circulating flow 8 in the downcomer 3 shown in FIG. 2 develops, and the original downward flow 7 from the vacuum chamber 1 to the molten steel 9 in the ladle is generated. It was confirmed that the ring flow rate was reduced. Therefore, when the A value is less than 0.03, inclusion coalescence and coalescence are promoted. On the other hand, the circulating flow of the entire RH is reduced, so that the removal of inclusions is difficult to proceed.

以上から、真空排気装置11に接続された真空槽1と、前記真空槽1の底部に取り付けられた上昇管2と下降管3を有し、上昇管2には環流ガスの吹き込み羽口12が設けられ、前記上昇管2と下降管3を取鍋内溶鋼9に浸漬して取鍋内溶鋼9を真空槽1に吸い上げた後、上昇管2内に吹き込み羽口12から環流ガスを吹き込んで溶鋼を循環させる溶鋼の精錬処理装置において、上昇管2の内壁と下降管3の内壁との最短水平距離D、下降管3内径d、真空槽内浴深Hとの関係が下記(1)式を満足することを特徴とする溶鋼の精錬処理方法により、介在物を大幅に低減できる。
0.03≦H/(D+d)≦0.1 ・・・(1)
なお、Hは以下の方法で求めることができる。大気圧力をP'(Pa)、真空槽内圧力をP(Pa)とすると取鍋内溶鋼表面4と真空槽内溶鋼表面5との落差h(m)は(2)式で示される。
h={(P'−P)+ρS・g・hS}/(ρM・g)・・・(2)
ここで、ρM:溶鋼密度(kg/m3)、ρS:スラグ密度(kg/m3)、hS:スラグ厚み(m)、g:重力加速度(m/s2)である。次に、浸漬管下端面と真空槽内槽底面との垂直距離をh'(m)、浸漬管の溶鋼への浸漬深さをhd(m)とすると、H(m)は(3)式で示される。
H=h−(h'−hd)・・・(3)
From the above, it has the vacuum chamber 1 connected to the vacuum exhaust device 11, the rising pipe 2 and the down pipe 3 attached to the bottom of the vacuum tank 1, and the rising pipe 2 has the bubbling tuyere 12 for circulating gas. The riser 2 and the downfall pipe 3 are immersed in the molten steel 9 in the ladle and the molten steel 9 in the ladle is sucked into the vacuum chamber 1, and then blown into the riser 2 and the reflux gas is blown from the tuyere 12. In the molten steel refining apparatus for circulating molten steel, the relationship between the shortest horizontal distance D between the inner wall of the riser 2 and the inner wall of the downcomer 3, the inner diameter d of the downcomer 3, and the bath depth H in the vacuum chamber is expressed by the following formula (1) The inclusions can be greatly reduced by the molten steel refining treatment method characterized by satisfying the above.
0.03 ≦ H / (D + d) ≦ 0.1 (1)
H can be obtained by the following method. When the atmospheric pressure is P ′ (Pa) and the pressure in the vacuum chamber is P (Pa), the drop h (m) between the molten steel surface 4 in the ladle and the molten steel surface 5 in the vacuum chamber is expressed by equation (2).
h = {(P′−P) + ρ S · g · h S } / (ρ M · g) (2)
Here, ρ M : molten steel density (kg / m 3 ), ρ S : slag density (kg / m 3 ), h S : slag thickness (m), g: gravitational acceleration (m / s 2 ). Next, assuming that the vertical distance between the lower end surface of the dip tube and the bottom surface of the tank in the vacuum chamber is h ′ (m) and the immersion depth of the dip tube in molten steel is h d (m), H (m) is (3) It is shown by the formula.
H = h− (h′−h d ) (3)

次に、本発明者らは下降管3内の循環流8に着目し、更なる介在物除去方法を検討した。先の実験では介在物同士の凝集合体を活用し、介在物の浮上除去を促進させる条件を探査した。さらに介在物の浮上除去を促進させるには凝集合体後の介在物大きさを増加させればよいが、介在物同士の凝集合体では限界が生じる。そこで、介在物と凝集合体させる大きな粒子を積極的に溶鋼に添加する方法を想到した。図3と同様の実験において、粒子径4mmのフラックス粒子を真空槽内水面に吹き付ける方法で連続添加し、水中の模擬介在物粒子個数を測定した。介在物個数はA値=0.01、フラックスなしでの個数を1として指数化した。RH環流開始180s後に環流を停止し、取鍋内水から100ccの水を採取し、濾過により分別した粒子を実体顕微鏡を用いて粒子の個数を計測した。   Next, the inventors focused on the circulating flow 8 in the downcomer 3 and studied further methods for removing inclusions. In the previous experiment, we investigated the conditions for promoting the floating removal of inclusions by utilizing the aggregation and coalescence of inclusions. Further, in order to promote the floating removal of inclusions, the size of inclusions after aggregation and coalescence should be increased, but there is a limit in the aggregation and coalescence of inclusions. Therefore, a method has been conceived in which large particles to be aggregated and coalesced with inclusions are positively added to the molten steel. In the same experiment as FIG. 3, flux particles having a particle diameter of 4 mm were continuously added by a method of spraying on the water surface in the vacuum chamber, and the number of simulated inclusion particles in water was measured. The number of inclusions was indexed with A value = 0.01 and the number without flux as 1. The circulation was stopped 180 s after the start of RH reflux, 100 cc of water was collected from the water in the ladle, and the number of particles separated by filtration was counted using a stereomicroscope.

結果を図5に示す。図5にはフラックスなしの実験結果として図3に示した結果も併せて示す。図からフラックスを添加することで総じて介在物個数が低下することが明らかであるが、これはフラックス粒子が介在物模擬粒子と合体することによって生じている。   The results are shown in FIG. FIG. 5 also shows the results shown in FIG. 3 as experimental results without flux. From the figure, it is clear that the number of inclusions decreases as a result of the addition of flux, but this is caused by coalescence of flux particles with inclusion simulation particles.

さらに、循環流8が生成し、かつ、均一混合が図れるA値範囲0.03以上0.1以下ではフラックスによる介在物除去効果が更に高まっていることが解る。これは、循環流によってフラックス粒子と介在物との合体がさらに促進されるためである。   Furthermore, it can be seen that the inclusion removal effect by the flux is further enhanced in the A value range of 0.03 to 0.1 in which the circulating flow 8 is generated and uniform mixing can be achieved. This is because coalescence of the flux particles and inclusions is further promoted by the circulating flow.

上記水モデル実験によりフラックス添加により介在物除去が促進されることを見出したが、介在物と接触した際により介在物を吸着できるフラックス組成を溶鋼実験により調査した。溶鋼15kgを1873Kに保持し、Al,Siなどの脱酸剤を溶鋼中質量濃度で0.01〜0.2%の範囲で所定量添加し、介在物を生成させた。その後、溶鋼にフラックスを添加し、10分間保持した後、溶鋼からサンプルを採取し、光学顕微鏡により5μm以上の介在物個数を測定した。実験に用いたフラックスはCaO、0〜50%CaOで残部がAl23あるいはMgOとしたCaO−Al23系フラックス、CaO−MgOフラックスである。結果を図6に示す。いずれのフラックスでもCaO濃度=0%での介在物個数を1として指数化した。図6から、フラックス種類によらずCaO濃度を30%以上とすることで安定して介在物個数を低減できることが解る。よって、フラックス中CaO濃度は30質量%以上とすることが好ましい。 The above water model experiment found that inclusion removal was promoted by flux addition. The flux composition capable of adsorbing inclusions when in contact with inclusions was investigated by molten steel experiments. 15 kg of molten steel was maintained at 1873 K, and a deoxidizer such as Al and Si was added in a predetermined amount in a range of 0.01 to 0.2% by mass concentration in the molten steel to generate inclusions. Thereafter, flux was added to the molten steel and held for 10 minutes, and then a sample was taken from the molten steel, and the number of inclusions of 5 μm or more was measured with an optical microscope. The flux used in the experiment is CaO, 0 to 50% CaO, and the remainder is Al 2 O 3 or MgO CaO—Al 2 O 3 based flux, CaO—MgO flux. The results are shown in FIG. In any flux, the number of inclusions at a CaO concentration = 0% was taken as 1 and indexed. FIG. 6 shows that the number of inclusions can be stably reduced by setting the CaO concentration to 30% or more regardless of the type of flux. Accordingly, the CaO concentration in the flux is preferably 30% by mass or more.

以上から、(1)式を満足させることに加え、真空槽内溶鋼または取鍋内溶鋼にCaOを30質量%以上含有するフラックスを添加することによりさらなる介在物除去が可能である。   From the above, in addition to satisfying the formula (1), further inclusion removal is possible by adding a flux containing 30 mass% or more of CaO to the molten steel in the vacuum chamber or the molten steel in the ladle.

本発明を実施するための形態について、以下述べる。   Embodiments for carrying out the present invention will be described below.

既存のRHにて本発明を実施するには下降管内径dと真空槽内浴深Hの両方、あるいはdとHのいずれか一方を調整する方法があるが、Hを調整することが最も容易である。   In order to carry out the present invention with the existing RH, there is a method of adjusting both the inner diameter d of the downcomer pipe and the bath depth H in the vacuum chamber, or either d or H, but it is easiest to adjust H. It is.

Hを調整する方法としては真空槽内槽底耐火物の積み上げ高さを変更する方法、浸漬管長さに余裕がある場合は真空槽と取鍋との鉛直距離を調整することでHを調整する方法、真空度を調整する方法などがある。   As a method of adjusting H, a method of changing the stack height of the tank bottom refractories in the vacuum chamber, and when there is a margin in the immersion tube length, H is adjusted by adjusting the vertical distance between the vacuum chamber and the ladle. And a method of adjusting the degree of vacuum.

ただし、鉛直距離を調整する方法では浸漬管の取鍋内溶鋼への浸漬深さが浅くなるため、取鍋スラグの巻き込みなどの課題が生じやすい。また、真空度を調整する方法では槽内圧力を高める調整となる場合は、環流量が低下するため効果が若干縮小する。   However, in the method of adjusting the vertical distance, since the immersion depth of the dip tube into the molten steel in the ladle becomes shallow, problems such as entrainment of ladle slag are likely to occur. Further, in the method of adjusting the degree of vacuum, when the adjustment in the tank pressure is increased, the effect is slightly reduced because the ring flow rate is reduced.

従って、Hを調整する場合は真空槽内耐火物の積み上げ高さなどを調整することにより、より安定的な効果を得ることができる。   Therefore, when adjusting H, a more stable effect can be obtained by adjusting the stacking height of the refractories in the vacuum chamber.

また、本発明の実施により合金調整や脱ガス処理などのその他のRH処理に制約は生じないため、合金添加による成分調整ならびに脱ガス処理などは既存の条件で実施することができる。また、介在物除去を促進させるために、成分調整や脱ガス処理の後にHを調整してもよい。   In addition, since the present invention does not restrict other RH treatments such as alloy adjustment and degassing treatment, component adjustment by alloy addition and degassing treatment can be carried out under existing conditions. Further, in order to promote inclusion removal, H may be adjusted after component adjustment or degassing treatment.

ただし、真空槽内に設置した上吹きランスを介して溶鋼表面に酸素ガスを吹き付ける処理においては調整されたHと真空槽内溶鋼表面における上吹き酸素ガス噴流の動圧に注意する必要がある。高い動圧を有した酸素ガス噴流を用いる際に、Hが過剰に浅いと槽底の耐火物を損傷する場合があるので、Hまたはランス高さを調整する必要がある。   However, in the process of blowing oxygen gas to the surface of the molten steel through the upper blowing lance installed in the vacuum chamber, it is necessary to pay attention to the adjusted H and the dynamic pressure of the upper blowing oxygen gas jet on the molten steel surface in the vacuum chamber. When an oxygen gas jet having a high dynamic pressure is used, if H is excessively shallow, the refractory at the bottom of the tank may be damaged. Therefore, it is necessary to adjust H or the lance height.

また、真空槽内に設置した上吹きランスを介して溶鋼表面に酸素ガスを吹き付ける処理を行う場合は、本発明の前に実施することが望ましい。酸素ガスを吹き付ける処理では吹き付けられた酸素と溶鋼、溶鋼中Al,Si,Mn等の反応により介在物が生成するため、介在物除去を図る本発明の前に実施することが望ましいためである。   Moreover, when performing the process which sprays oxygen gas on the molten steel surface via the top blowing lance installed in the vacuum chamber, it is desirable to implement before this invention. This is because in the treatment of blowing oxygen gas, inclusions are generated by the reaction of the blown oxygen with molten steel, Al, Si, Mn, etc. in the molten steel, and therefore it is desirable to carry out before the present invention for removing inclusions.

同様の理由により、Al,Si,Mn,Ti,Ceなどの希土類元素,Zrなど脱酸によって介在物を形成する金属や合金も本発明実施前に完了しておくことが望ましい。すなわち、本発明を実施する場合の処理は、脱酸元素添加、酸素吹き付け、本発明の順で実行されることが望ましい。   For the same reason, it is desirable that metals and alloys that form inclusions by deoxidation, such as rare earth elements such as Al, Si, Mn, Ti, and Ce, and Zr, are also completed before the present invention is implemented. That is, it is desirable that the processing in the case of carrying out the present invention is performed in the order of deoxidation element addition, oxygen spraying, and the present invention.

本発明を実施する際の真空槽内雰囲気圧力は溶鋼環流が維持できる圧力で良いが、7kPa以下が望ましく、1kPa以下がさらに望ましい。7kPaを超えて圧力が高いと環流速度が遅いため処理時間が長くなる。一方、1kPa以下とすることで循環流への介在物供給速度が速くなるため、効果がより安定する。   The atmospheric pressure in the vacuum chamber when carrying out the present invention may be a pressure that can maintain the molten steel reflux, but is preferably 7 kPa or less, and more preferably 1 kPa or less. When the pressure exceeds 7 kPa and the pressure is high, the circulation time is slow and the processing time becomes long. On the other hand, by setting the pressure to 1 kPa or less, the inclusion supply speed to the circulation flow is increased, so that the effect is more stable.

本発明条件を満足する処理時間は3分以上20分以下が望ましく、6分以上10分以下であることがさらに望ましい。3分未満では循環流8に全ての溶鋼が接触することが難しく、6分以上とすることで溶鋼は循環流8と2回接触することが可能となるため、より効果が安定する。10分を超えると効果が飽和し、20分を超えて長くなると耐火物の損耗を誘発する。   The treatment time that satisfies the conditions of the present invention is preferably from 3 minutes to 20 minutes, and more preferably from 6 minutes to 10 minutes. If it is less than 3 minutes, it is difficult for all the molten steel to come into contact with the circulating flow 8, and by setting it to 6 minutes or more, the molten steel can come into contact with the circulating flow 8 twice, so that the effect becomes more stable. If it exceeds 10 minutes, the effect is saturated, and if it is longer than 20 minutes, wear of the refractory is induced.

請求項2記載の発明で用いるフラックスは溶鋼より比重の軽い物質である必要があるが、具体的にはCaO、CaO−Al23、CaO−CaF2、CaO−MgOなどの広く用いられているCaO系フラックスで良い。また、溶鋼中で液相率が高い低融点のフラックスを用いることで介在物との凝集合体が促進されるためCaO−Al23やCaO−Al23−SiO2系フラックスを用いることが望ましい。なお、これらの酸化物系フラックスに補助脱酸材としてSi,Al,Ca,Mg,Ti,希土類金属などを5〜20質量%の範囲で混合してもよい。 The flux used in the invention of claim 2 needs to be a substance having a specific gravity lighter than that of molten steel. Specifically, CaO, CaO—Al 2 O 3 , CaO—CaF 2 , and CaO—MgO are widely used. The CaO-based flux is acceptable. In addition, the use of CaO—Al 2 O 3 or CaO—Al 2 O 3 —SiO 2 type fluxes is promoted by the use of a low melting point flux with a high liquid phase rate in molten steel, which promotes agglomeration with inclusions. Is desirable. In addition, Si, Al, Ca, Mg, Ti, rare earth metals, etc. as auxiliary deoxidizing materials may be mixed with these oxide fluxes in the range of 5 to 20% by mass.

これらのフラックスの溶鋼への添加方法は、取鍋中溶鋼内に吹き込む方法や真空槽内溶鋼表面に吹き付ける方法など、いかなる方法でもよいがフラックスが溶鋼に容易に進入できる溶鋼内への吹き込み法が望ましい。   The flux can be added to the molten steel by any method, such as by blowing it into the molten steel in the ladle or by spraying it on the molten steel surface in the vacuum chamber. desirable.

フラックスの添加量は溶鋼1t当たり3〜5kgが望ましい。3kg/ton未満では微細な介在物の除去効率がやや低下し、5kg/tonを超えて多いと効果が飽和する。   The amount of flux added is desirably 3 to 5 kg per ton of molten steel. If it is less than 3 kg / ton, the removal efficiency of fine inclusions is slightly lowered, and if it exceeds 5 kg / ton, the effect is saturated.

フラックスの添加速度は溶鋼1t当たり0.1〜1.3kg/minが望ましい。0.1kg/min・ton未満では処理時間が長くなりすぎ、操業負荷が増大する。一方、1.3kg/min・tonを超えて速いとフラックス同士の凝集合体が過剰に進行して肥大化するため、溶鋼に巻き込まれにくくなり、効果が小さくなる。   The flux addition rate is desirably 0.1 to 1.3 kg / min per ton of molten steel. If it is less than 0.1 kg / min · ton, the processing time becomes too long and the operation load increases. On the other hand, if the speed exceeds 1.3 kg / min · ton, the agglomeration and coalescence of the fluxes proceed excessively and become enlarged, so that it is difficult to be caught in the molten steel, and the effect is reduced.

転炉で脱炭した溶鋼300tonを取鍋内に出鋼した。出鋼時に取鍋内にAl,Si,MnならびにCaOを添加し、溶鋼中酸素ならびに取鍋内スラグ中FeOを低減した。   A 300 ton molten steel decarburized in the converter was taken out into the ladle. Al, Si, Mn, and CaO were added into the ladle at the time of steel removal to reduce oxygen in the molten steel and FeO in the slag in the ladle.

出鋼後、取鍋を直ちにRHへ移送し処理を開始した。RH真空脱ガス装置の上昇管2の内壁と下降管3の内壁との最短水平距離D、下降管3内径dとして、表1に示す寸法のものを用いた。処理開始後、真空槽内圧力9kPaで環流を行いつつ溶鋼に合金を添加し、溶鋼成分を調整した。その後、真空槽内圧力を5kPaに調整し、溶鋼にAlを添加した後に真空槽内に設置した上吹きランスを介して溶鋼に酸素ガスを吹き付け、溶鋼温度を調整した。   After steeling out, the ladle was immediately transferred to RH and processing was started. The shortest horizontal distance D between the inner wall of the riser 2 and the inner wall of the downcomer 3 and the inner diameter d of the downcomer 3 were used in the RH vacuum degassing apparatus. After the treatment was started, an alloy was added to the molten steel while recirculating at a vacuum tank pressure of 9 kPa to adjust the molten steel components. Thereafter, the pressure in the vacuum chamber was adjusted to 5 kPa, and after adding Al to the molten steel, oxygen gas was sprayed onto the molten steel through an upper blowing lance installed in the vacuum chamber to adjust the molten steel temperature.

酸素上吹き終了後、真空槽内圧力を800Paに調整し、環流処理を行った。還流時間は10分とした。この時、真空槽と取鍋の距離を調整することで真空槽内浴深Hを変化させ、介在物個数の評価を行った。また、一部の例ではフラックス中CaO濃度を0〜90%としたCaO−Al23粉体フラックス(100メッシュアンダー)を真空槽内上吹きランスを介して環流開始から5分間上吹きした。フラックスの添加速度は溶鋼1トン当たり毎分1kgとした。A=H/(D+d)の式で算出したA値を表1に示す。 After completion of oxygen top blowing, the pressure inside the vacuum chamber was adjusted to 800 Pa, and a reflux treatment was performed. The reflux time was 10 minutes. At this time, the bath depth H in the vacuum chamber was changed by adjusting the distance between the vacuum chamber and the ladle, and the number of inclusions was evaluated. In some cases, a CaO—Al 2 O 3 powder flux (100 mesh under) with a CaO concentration in the flux of 0 to 90% was blown up for 5 minutes from the start of reflux through an upper blowing lance in the vacuum chamber. . The rate of flux addition was 1 kg per ton per ton of molten steel. Table 1 shows the A value calculated by the formula of A = H / (D + d).

介在物個数は10分間の環流処理の後、溶鋼からサンプルを採取し、光学顕微鏡により評価した。観察視野は100mm2である。結果を表1に示す。介在物個数は試験番号1での個数を1として整理した。さらに、上記観察視野で観察された最も大きな介在物の大きさを介在物最大大きさと定義し、試験番号1での介在物最大大きさを1として整理した。 The number of inclusions was evaluated by an optical microscope after collecting a sample from the molten steel after 10 minutes of reflux treatment. The observation visual field is 100 mm 2 . The results are shown in Table 1. The number of inclusions was arranged with the number in test number 1 as 1. Furthermore, the size of the largest inclusion observed in the observation field was defined as the maximum inclusion size, and the maximum inclusion size in Test No. 1 was arranged as 1.

結果を表1に示す。本発明範囲から外れる数値にアンダーラインを付している。   The results are shown in Table 1. Numerical values that fall outside the scope of the present invention are underlined.

試験番号1〜10は本発明に従わなかった比較例であり、試験番号1〜5はフラックス上吹き無し、試験番号6から10はフラックス上吹き有りである。試験番号11〜22は発明例であり、試験番号11〜15はフラックス上吹き無しで発明(a)の条件を満足する例、試験番号16,17は発明(a)の条件を満足するがフラックス組成が発明(b)の条件を満足しない例、試験番号18〜22は発明(b)の条件を満足する例である。   Test numbers 1 to 10 are comparative examples not according to the present invention, test numbers 1 to 5 are no flux top blowing, and test numbers 6 to 10 are flux top blow. Test numbers 11 to 22 are invention examples, test numbers 11 to 15 are examples that satisfy the conditions of the invention (a) without blowing on the flux, and test numbers 16 and 17 are conditions that satisfy the conditions of the invention (a), but the flux Examples where the composition does not satisfy the conditions of the invention (b), test numbers 18 to 22 are examples of satisfying the conditions of the invention (b).

試験番号1〜5と試験番号6〜10を比較すると介在物個数、最大大きさともに若干低減されているが十分ではない。一方、試験番号1〜5と本発明に従った試験番号11〜15とを比較すると、介在物個数、最大大きさともに大幅に低減されていることが解る。さらに、試験番号11〜17と試験番号18〜22とを比較すると、発明(b)の条件を満たすフラックスの添加を行うと介在物個数、最大大きさ共に更に低減されることが分かる。このフラックスによる低減効果は 試験番号1〜5に対する試験番号6〜10の低減効果よりも大きいことから、発明(a)の条件下で発明(b)の条件を満たすフラックス添加を実施することが重要であることが理解できる。   When test numbers 1 to 5 and test numbers 6 to 10 are compared, both the number of inclusions and the maximum size are slightly reduced, but it is not sufficient. On the other hand, when the test numbers 1 to 5 and the test numbers 11 to 15 according to the present invention are compared, it can be seen that both the number of inclusions and the maximum size are significantly reduced. Furthermore, when the test numbers 11 to 17 and the test numbers 18 to 22 are compared, it can be seen that both the number of inclusions and the maximum size are further reduced when the flux satisfying the condition of the invention (b) is added. Since the reduction effect by this flux is larger than the reduction effect of test numbers 6 to 10 with respect to test numbers 1 to 5, it is important to perform flux addition that satisfies the conditions of invention (b) under the conditions of invention (a). It can be understood that.

1 真空槽
2 上昇管
3 下降管
4 取鍋内溶鋼表面
5 真空槽内溶鋼表面
6 上昇流
7 下降流
8 循環流
9 取鍋内溶鋼
10 取鍋内スラグ
11 真空排気装置
12 吹き込み羽口
DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Rising pipe 3 Downcomer pipe 4 Molten steel surface in a ladle 5 Molten steel surface in a vacuum tank 6 Upflow 7 Downflow 8 Circulating flow 9 Molten steel in a ladle 10 Slag 11 in a ladle Vacuum exhaust device 12 Blowing tuyere

Claims (2)

真空排気装置に接続された真空槽と、前記真空槽の底部に取り付けられた上昇管と下降管を有し、前記上昇管には環流ガスの吹き込み羽口が設けられ、前記上昇管と前記下降管を取鍋内の溶鋼に浸漬して取鍋内の溶鋼を真空槽に吸い上げた後、上昇管内に吹き込み羽口から環流ガスを吹き込んで溶鋼を循環させる精錬処理装置を用いた溶鋼の精錬処理方法において、
前記上昇管の内壁と前記下降管の内壁との最短水平距離D、下降管内径d、真空槽内浴深Hとの関係が下記(1)式を満足することを特徴とする溶鋼の精錬処理方法。
0.03≦H/(D+d)≦0.10 ・・・(1)
A vacuum chamber connected to an evacuation device, and a riser tube and a downcomer tube attached to the bottom of the vacuum chamber, and the riser tube is provided with a bubbling tuyere of reflux gas, the riser tube and the downcomer After the pipe is immersed in the molten steel in the ladle and the molten steel in the ladle is sucked into the vacuum chamber, the molten steel is smelted using a refining treatment device that circulates the molten steel by blowing it into the ascending pipe and blowing the circulating gas from the tuyere. In the method
The relation between the inner wall of the riser and the inner wall of the downcomer, the minimum horizontal distance D, the inner diameter d of the downcomer, and the bath depth H in the vacuum chamber satisfies the following formula (1). Method.
0.03 ≦ H / (D + d) ≦ 0.10 (1)
真空槽内溶鋼または取鍋内溶鋼にCaOを30質量%以上含有するフラックスを添加することを特徴とする請求項1記載の溶鋼の精錬処理方法。   The method for refining molten steel according to claim 1, wherein a flux containing 30 mass% or more of CaO is added to the molten steel in the vacuum chamber or the molten steel in the ladle.
JP2015093010A 2015-04-30 2015-04-30 Method for refining molten steel Active JP6435983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015093010A JP6435983B2 (en) 2015-04-30 2015-04-30 Method for refining molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015093010A JP6435983B2 (en) 2015-04-30 2015-04-30 Method for refining molten steel

Publications (2)

Publication Number Publication Date
JP2016211018A JP2016211018A (en) 2016-12-15
JP6435983B2 true JP6435983B2 (en) 2018-12-12

Family

ID=57551277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015093010A Active JP6435983B2 (en) 2015-04-30 2015-04-30 Method for refining molten steel

Country Status (1)

Country Link
JP (1) JP6435983B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214730B2 (en) * 1992-05-13 2001-10-02 川崎製鉄株式会社 Refining method of high purity steel using reflux type vacuum degasser
JPH0741838A (en) * 1993-06-30 1995-02-10 Nippon Steel Corp Rh vacuum degassing treatment
JP2001064719A (en) * 1999-08-26 2001-03-13 Sumitomo Metal Ind Ltd Method for vacuum-refining molten steel
JP4032930B2 (en) * 2002-11-05 2008-01-16 Jfeスチール株式会社 Oxygen-containing gas top blowing device and method for refining low carbon high manganese steel in RH degassing equipment

Also Published As

Publication number Publication date
JP2016211018A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP2009120899A (en) Steel for steel pipe excellent in sour resistance and production method therefor
JP5365241B2 (en) Molten steel refining equipment
JP6686838B2 (en) Highly clean steel manufacturing method
JP2014019886A (en) Ladle degassing method
JP6435983B2 (en) Method for refining molten steel
CN114672718B (en) Smelting method of high-grade silicon steel
JP2017166053A (en) Melting production method for high refined steel
JP2011153328A (en) Method for smelting low-carbon high-manganese steel
JP2019214057A (en) Continuous casting method
JP7015637B2 (en) Method for removing non-metal inclusions in molten steel
JP6330559B2 (en) Denitrification refining method
JP2018141194A (en) Molten steel refining method
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP2019014944A (en) Steel refining method
JP6337681B2 (en) Vacuum refining method for molten steel
KR20210109597A (en) Manufacturing method of Ti-containing ultra-low carbon steel
JP6897363B2 (en) Steel melting method
JP2006233254A (en) Method for producing high cleanliness steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP6358039B2 (en) Desulfurization method for molten steel
JP4816138B2 (en) Ladle refining method and ladle refining furnace
JP6354472B2 (en) Desulfurization treatment method for molten steel
JP6790796B2 (en) Vacuum degassing equipment
JP6268963B2 (en) Method for refining molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R151 Written notification of patent or utility model registration

Ref document number: 6435983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350