JP2002363636A - Method for smelting molten steel in rh vacuum degassing apparatus - Google Patents

Method for smelting molten steel in rh vacuum degassing apparatus

Info

Publication number
JP2002363636A
JP2002363636A JP2001178621A JP2001178621A JP2002363636A JP 2002363636 A JP2002363636 A JP 2002363636A JP 2001178621 A JP2001178621 A JP 2001178621A JP 2001178621 A JP2001178621 A JP 2001178621A JP 2002363636 A JP2002363636 A JP 2002363636A
Authority
JP
Japan
Prior art keywords
gas
molten steel
inner diameter
flow rate
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001178621A
Other languages
Japanese (ja)
Other versions
JP4806863B2 (en
Inventor
Takeshi Murai
剛 村井
Eiju Matsuno
英寿 松野
Eiji Sakurai
栄司 櫻井
Yoshiyuki Nakamura
善幸 中村
Atsushi Tsunoda
篤史 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001178621A priority Critical patent/JP4806863B2/en
Publication of JP2002363636A publication Critical patent/JP2002363636A/en
Application granted granted Critical
Publication of JP4806863B2 publication Critical patent/JP4806863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform efficient smelting by circulating molten steel under an adequate condition taking into consideration not only the inside diameter of a riser side immersion pipe and the flow rate of an inert gas for circulation but also the inside diameter and the number of installation of gas-blowing nozzles when smelting the molten steel by using an RH vacuum degassing apparatus. SOLUTION: The molten steel is circulated by blowing the inert gas for circulation through an adjustment so that an inequality (1): 20<n/[[ρg /(ρl -ρg )]<1/2> ×(G/d)×D<-3/2> ]<100 is satisfied in terms of the inside diameter of the riser side immersion pipe, the number of the gas-blowing nozzles installed in the immersion pipe, the inside diameter of the gas-blowing nozzles, and the flow rate of the inert gas for circulation which is blown from the gas-blowing nozzles, where n: number of the gas-flowing nozzles, ρg : density (kg/m<3> ) of the inert gas for circulation, ρl : density (kg/m<3> ) of molten steel, G: flow rate (m<2> /sec) of the inert gas for circulation, d: inside diameter (m) of the gas- blowing nozzle, D: inside diameter (m) of the riser side immersion pipe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、RH真空脱ガス装
置における溶鋼の精錬方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for refining molten steel in an RH vacuum degassing apparatus.

【0002】[0002]

【従来の技術】RH真空脱ガス装置は、真空槽とその下
部に設けられた2本の浸漬管(上昇側浸漬管及び下降側
浸漬管)とを備えている。このRH真空脱ガス装置を用
いて溶鋼を精錬する際には、取鍋内に収容された溶鋼中
に2本の浸漬管を浸漬し、真空槽の内部を減圧して溶鋼
を浸漬管内に引き上げ、そして上昇側浸漬管に設けられ
たガス吹き込みノズルからAr等の不活性ガスを吹込
み、ガスリフトポンプの原理により溶鋼を上昇させて真
空槽内に送り込み、真空槽内で真空処理を行い、下降側
浸漬管から取鍋内に戻している。このようにして溶鋼を
取鍋と真空槽との間を環流させることにより連続的に真
空精錬を行っている。
2. Description of the Related Art An RH vacuum degassing apparatus is provided with a vacuum chamber and two immersion pipes provided below the vacuum chamber (an ascending immersion pipe and a descending immersion pipe). When refining molten steel using this RH vacuum degassing device, two immersion tubes are immersed in the molten steel accommodated in the ladle, the inside of the vacuum chamber is depressurized, and the molten steel is pulled up into the immersion tube. Then, an inert gas such as Ar is blown from a gas blowing nozzle provided on the rising side immersion pipe, the molten steel is raised by the principle of a gas lift pump, sent into a vacuum chamber, vacuum-processed in the vacuum chamber, and lowered. It is returned to the ladle from the side dip tube. Thus, the vacuum refining is continuously performed by circulating the molten steel between the ladle and the vacuum tank.

【0003】このRH真空脱ガス装置において処理能力
及び処理効率を増大させるには、溶鋼の単位時間当たり
の環流量を増大させることが必要である。
In order to increase the processing capacity and the processing efficiency of this RH vacuum degassing apparatus, it is necessary to increase the annular flow rate of molten steel per unit time.

【0004】溶鋼の環流量は、浸漬管の内径、環流用不
活性ガスの流量、真空槽内と大気との圧力差等に依存す
ることが経験的に分かっており、従来、浸漬管内径の拡
大や環流用不活性ガス流量の増加により環流量の増加が
図られてきた。しかし、浸漬管内径の拡大は大幅な設備
改造を伴い、設備費の増大を招き、又、拡大するにして
も真空槽の大きさにより自ずと限界がある。環流用不活
性ガス流量の増加は効果があるものの、Ar等の不活性
ガスは高価であり、又、或る限界以上に増大させると逆
に溶鋼環流量を減少させると云う問題もある。
It has been empirically known that the annular flow rate of molten steel depends on the inner diameter of the dip tube, the flow rate of the inert gas for reflux, the pressure difference between the vacuum chamber and the atmosphere, and the like. An increase in the reflux rate has been attempted by enlarging or increasing the flow rate of the inert gas for reflux. However, the enlargement of the inner diameter of the immersion tube involves a great deal of equipment remodeling, which leads to an increase in equipment cost, and even if it is expanded, there is a natural limit due to the size of the vacuum chamber. Although increasing the flow rate of the inert gas for reflux is effective, inert gas such as Ar is expensive, and increasing the flow rate above a certain limit conversely decreases the flow rate of the molten steel.

【0005】これらの対策とは別に、浸漬管内の溶鋼流
を制御することにより環流量を増大させる方法も提案さ
れている。例えば、特開平3−36209号公報には、
上昇側浸漬管に設置するガス吹き込みノズルの吐出方向
を浸漬管の中心に向かう方向から測方へ傾斜させ、浸漬
管内の溶鋼上昇流に旋回流を発生させる方法が開示さ
れ、又、特開平5−1319号公報には、上昇側浸漬管
に設置するガス吹き込みノズルの吐出方向を水平方向か
ら20〜50°上向きに配置して、溶鋼を環流させる方
法が開示されている。これらの方法によれば、浸漬管内
径の拡大や環流用不活性ガス流量の増加をすることなく
環流量を増加させることができるが、どちらの方法もガ
ス吹き込みノズルの向きが特殊であるため、耐火物の施
行、製作にかなりの技術が必要である。
[0005] Apart from these countermeasures, there has been proposed a method of increasing the annular flow rate by controlling the flow of molten steel in a dip tube. For example, JP-A-3-36209 discloses that
There is disclosed a method in which the discharge direction of a gas injection nozzle installed on a rising side immersion pipe is inclined from the direction toward the center of the immersion pipe to a measurement direction to generate a swirl flow in molten steel ascending flow in the immersion pipe. Japanese Patent Application Laid-Open No. -1319 discloses a method of circulating molten steel by arranging a discharge direction of a gas blowing nozzle installed in an ascending side immersion pipe upward by 20 to 50 ° from a horizontal direction. According to these methods, the annular flow rate can be increased without increasing the inner diameter of the immersion tube or increasing the inert gas flow rate for reflux.However, since both methods have a special direction of the gas injection nozzle, Significant skills are required for refractory enforcement and fabrication.

【0006】[0006]

【発明が解決しようとする課題】ところで上昇側浸漬管
には、通常複数個のガス吹きノズルが設置されており、
ガス吹きノズルの個数も溶鋼環流量に影響を及ぼすこと
は明らかである。即ち、環流用不活性ガス流量が同一で
あっても、ガス吹きノズル個数が少な過ぎる場合にはガ
ス気泡が大きくなり、ガスの吹き抜けが生じて溶鋼の環
流を阻害し、一方、ガス吹きノズルの個数が多過ぎる場
合にはガス吹きノズルからのガスの吐出流速が遅くな
り、吹き込まれたガスは浸漬管内壁を伝わって上昇し、
溶鋼の環流に効果がないばかりか、浸漬管内壁の溶損を
促進させてしまう。又、同様に、ガス吹きノズルの内径
も、ガス吹きノズルからのガスの吐出流速を左右すると
云う観点から考えると、溶鋼環流量に影響を及ぼすこと
は明らかである。
A plurality of gas blowing nozzles are usually installed in the ascending-side immersion pipe.
It is clear that the number of gas blowing nozzles also affects the molten steel ring flow rate. That is, even if the flow rate of the inert gas for reflux is the same, if the number of gas blowing nozzles is too small, gas bubbles become large, and gas blow-through occurs, impeding the recirculation of molten steel. If the number is too large, the discharge speed of the gas from the gas blowing nozzle becomes slow, and the blown gas rises along the inner wall of the immersion pipe,
Not only is there no effect on the reflux of the molten steel, but it also promotes the erosion of the inner wall of the immersion tube. Similarly, from the viewpoint that the inner diameter of the gas blowing nozzle also affects the gas discharge flow rate from the gas blowing nozzle, it is apparent that the inner diameter of the gas blowing nozzle affects the flow rate of the molten steel ring.

【0007】このように、ガス吹きノズルの個数及びそ
の内径は溶鋼の環流に対して重要な要素であり、溶鋼環
流量を増大させる場合には、環流用不活性ガスの流量や
浸漬管内径と同様に考慮すべきであるが、上記公報を始
めとして従来、溶鋼環流量を増大させる観点からガス吹
きノズルの個数及びその内径について配慮された報告は
ない。
As described above, the number and the inner diameter of the gas blowing nozzles are important factors for the recirculation of the molten steel. When the flow rate of the molten steel is increased, the flow rate of the inert gas for the recirculation and the inner diameter of the immersion pipe are reduced. It should be similarly considered, but there has been no report such as the above-mentioned gazette considering the number of gas blowing nozzles and the inner diameter thereof from the viewpoint of increasing the flow rate of molten steel ring.

【0008】本発明は上記事情に鑑みなされたもので、
その目的とするところは、RH真空脱ガス装置を用いて
溶鋼を精錬する際に、上昇側浸漬管の内径及び環流用不
活性ガス流量のみならず、ガス吹き込みノズルの内径及
び設置個数をも配慮した適正な条件で溶鋼を環流させ、
効率の良い精錬を行うことができる精錬方法を提供する
ことである。
[0008] The present invention has been made in view of the above circumstances,
When refining molten steel using an RH vacuum degassing device, the purpose is to consider not only the inner diameter of the ascending immersion pipe and the flow rate of the inert gas for reflux, but also the inner diameter and the number of installed gas injection nozzles. The molten steel under the appropriate conditions
An object of the present invention is to provide a refining method capable of performing efficient refining.

【0009】[0009]

【課題を解決するための手段】本発明者等は上記課題を
解決するために鋭意検討を実施した。以下に検討結果を
説明する。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems. The results of the study are described below.

【0010】前述したように、ガス吹き込みノズル個数
が少な過ぎると、ノズル1本当たりのガス流量が増大し
過ぎてガスの吹き抜けが起こり、溶鋼の環流を阻害す
る。一方、ガス吹き込みノズル個数が多過ぎると、ノズ
ル1本当たりのガス流量が減少し過ぎてガスが浸漬管側
壁を伝わってしまい、溶鋼の環流に有効に作用しない。
[0010] As described above, if the number of gas injection nozzles is too small, the gas flow per nozzle will increase too much and gas will flow through, obstructing the recirculation of molten steel. On the other hand, if the number of gas blowing nozzles is too large, the gas flow per nozzle will be too small, and the gas will propagate along the side wall of the immersion pipe, and will not effectively act on the reflux of the molten steel.

【0011】これらの現象から判断して、ガスリフトポ
ンプの原理により溶鋼を環流させる際には、ガス吹き込
みノズルから吹き込まれる環流用不活性ガスの水平方向
到達距離が溶鋼の環流に影響を及ぼすことが類推でき
る。
Judging from these phenomena, when the molten steel is recirculated by the principle of the gas lift pump, the horizontal reach of the recirculating inert gas blown from the gas injection nozzle may affect the recirculation of the molten steel. I can analogy.

【0012】この不活性ガスの水平方向到達距離は、文
献1において、下記の(2)式により表されると提唱さ
れている(文献1:鉄と鋼,1979,A133)。但し、
(2)式において、L:水平方向到達距離(m)、d:
ガス吹き込みノズルの内径(m)、ρg :環流用不活性
ガスの密度(kg/m3 )、ρl :溶鋼の密度(kg/m3 )、
V:ガス吹き込みノズル出口におけるガス流速(m/sec
)、g:重力加速度(m/sec2)である。
It has been proposed in Document 1 that the horizontal gas arrival distance of the inert gas is represented by the following equation (2) (Reference 1: Iron and Steel, 1979, A133). However,
In the equation (2), L: distance reached in the horizontal direction (m), d:
Inner diameter of gas injection nozzle (m), ρ g : density of inert gas for reflux (kg / m 3 ), ρ l : density of molten steel (kg / m 3 ),
V: Gas flow velocity at the gas injection nozzle outlet (m / sec
), G: gravity acceleration (m / sec 2 ).

【0013】[0013]

【数1】 (Equation 1)

【0014】この場合、ガス吹き込みノズル出口におけ
るガス流速(V)は下記の(3)式で表すことができ
る。但し、(3)式において、G:環流用不活性ガスの
流量(m3/sec)、n:ガス吹き込みノズルの個数であ
る。
In this case, the gas flow velocity (V) at the outlet of the gas injection nozzle can be expressed by the following equation (3). In the equation (3), G is the flow rate of the inert gas for reflux (m 3 / sec), and n is the number of gas blowing nozzles.

【0015】[0015]

【数2】 (Equation 2)

【0016】(2)式に(3)式を代入して整理する
と、下記の(4)式が得られる。
By substituting equation (3) into equation (2) and rearranging, the following equation (4) is obtained.

【0017】[0017]

【数3】 (Equation 3)

【0018】このようにして定められる不活性ガスの水
平方向到達距離(L)が上昇側浸漬管の内径(D)に対
して大き過ぎても、又、小さ過ぎても溶鋼環流を阻害す
ると考えられる。そこで、上昇側浸漬管の内径(D)と
水平方向到達距離(L)との比(D/L)を種々変更し
た試験を実施し、この比(D/L)が溶鋼環流に及ぼす
影響を調査した。
[0018] It is considered that if the horizontal distance (L) of the inert gas determined in this way is too large or too small with respect to the inner diameter (D) of the ascending side immersion pipe, the molten steel reflux will be inhibited. Can be Therefore, a test was carried out in which the ratio (D / L) of the inner diameter (D) of the ascending side immersion pipe to the horizontal distance (L) was variously changed, and the effect of this ratio (D / L) on the molten steel reflux was examined. investigated.

【0019】ここで、上昇側浸漬管の内径(D)と水平
方向到達距離(L)との比(D/L)は下記の(5)式
で表すことができる。
Here, the ratio (D / L) of the inner diameter (D) of the rising side immersion tube to the horizontal distance (L) can be expressed by the following equation (5).

【0020】[0020]

【数4】 (Equation 4)

【0021】比(D/L)は、正確には上記(5)式で
表されるが、(5)式の右辺を3/2乗し更に係数を除
去して簡素化した下記の(6)式により表されるZと比
例関係が成立する。
The ratio (D / L) is accurately expressed by the above equation (5), but the following equation (6) is obtained by simplifying the equation (5) by removing the right side of the equation (3) to the power of 3/2 and removing coefficients. ) Holds a proportional relationship with Z expressed by the equation.

【0022】[0022]

【数5】 (Equation 5)

【0023】そこで、RH真空脱ガス装置を用いた溶鋼
の精錬の際に、上昇側浸漬管の内径(D)、ガス吹き込
みノズルの個数(n)及び内径(d)、環流用不活性ガ
ス流量(G)を種々変化させて溶鋼の均一混合時間を測
定し、(6)式で算出される計算値Zの均一混合時間に
及ぼす影響を調査した。均一混合時間は、溶鋼にトレー
サーとなる元素を微量添加してその濃度変化を測定し、
元素を添加した時点から濃度が一定になった時点までと
した。この場合、均一混合時間が短いほど溶鋼の環流が
効率良く行われていることを示す。表1に溶鋼環流試験
条件を示す。表1では、浸漬管内径(D)、ノズル内径
(d)及びガス流量(G)が同一な条件を1つの水準と
して表示して、計算値Zとノズル個数との関係を明示し
ている。
Therefore, when refining molten steel using an RH vacuum degassing apparatus, the inner diameter (D) of the ascending-side immersion pipe, the number (n) and inner diameter (d) of gas injection nozzles, the flow rate of the inert gas for recirculation, The uniform mixing time of the molten steel was measured by changing (G) variously, and the influence of the calculated value Z calculated by the equation (6) on the uniform mixing time was investigated. The uniform mixing time is measured by adding a trace element to the molten steel and measuring the change in concentration.
The time was from the time when the element was added to the time when the concentration became constant. In this case, the shorter the uniform mixing time, the more efficiently the molten steel is circulated. Table 1 shows the molten steel reflux test conditions. In Table 1, the condition in which the inner diameter (D) of the immersion tube, the inner diameter (d) of the nozzle, and the gas flow rate (G) are the same is displayed as one level, and the relationship between the calculated value Z and the number of nozzles is specified.

【0024】[0024]

【表1】 [Table 1]

【0025】図1に、(6)式で算出される計算値Zと
均一混合時間との関係を調査した結果を示す。この場
合、計算値Zは環流用不活性ガスの密度ρg としてAr
の密度である1.786kg/m3 を用い、溶鋼の密度ρl
を7000kg/m3 として計算した。図1に示すように、
均一混合時間の絶対値には各水準で差が見られるが、ど
の水準においても、ノズル個数が多く計算値Zが100
以上の場合と、ノズル個数が少なく計算値Zが20以下
の場合には、均一混合時間が長くなることが分かった。
即ち、上昇側浸漬管の内径(D)と、ガス吹き込みノズ
ルの個数(n)と、ガス吹き込みノズルの内径(d)
と、環流用不活性ガスのガス流量(G)とを下記の
(1)式を満足する範囲に調整して溶鋼を環流させるこ
とにより、均一混合時間を短くすることができ、効率良
く溶鋼を環流させることが可能となることが分かった。
FIG. 1 shows the result of investigation on the relationship between the calculated value Z calculated by the equation (6) and the uniform mixing time. In this case, the calculated value Z is expressed as Ar, as the density ρ g of the reflux inert gas.
Using the density of 1.786 kg / m 3 , the density of molten steel ρ l
Was calculated as 7000 kg / m 3 . As shown in FIG.
Although the absolute value of the uniform mixing time has a difference at each level, the number of nozzles is large and the calculated value Z is 100 at any level.
In the above cases and when the number of nozzles was small and the calculated value Z was 20 or less, it was found that the uniform mixing time was long.
That is, the inner diameter (D) of the ascending side immersion pipe, the number of gas injection nozzles (n), and the inner diameter of the gas injection nozzle (d)
By adjusting the gas flow rate (G) of the inert gas for reflux to the range satisfying the following formula (1), the molten steel is refluxed, whereby the uniform mixing time can be shortened, and the molten steel can be efficiently removed. It has been found that reflux is possible.

【0026】[0026]

【数6】 (Equation 6)

【0027】本発明は上記検討結果に基づきなされたも
ので、本発明によるRH真空脱ガス装置における溶鋼の
精錬方法は、上昇側浸漬管の内径(D)と、上昇側浸漬
管に配置されたガス吹き込みノズルの個数(n)と、こ
のガス吹き込みノズルの内径(d)と、ガス吹き込みノ
ズルから吹き込まれる環流用不活性ガスのガス流量
(G)とが上記の(1)式の範囲を満足するように調整
して上昇側浸漬管に環流用不活性ガスを吹き込み、溶鋼
を環流させることを特徴とするものである。
The present invention has been made on the basis of the above-described examination results. The method for refining molten steel in the RH vacuum degassing apparatus according to the present invention is arranged in the inner diameter (D) of the ascending side immersion pipe and the ascending side immersion pipe. The number (n) of the gas blowing nozzles, the inner diameter (d) of the gas blowing nozzles, and the gas flow rate (G) of the recirculating inert gas blown from the gas blowing nozzles satisfy the range of the above formula (1). This is characterized in that the inert gas for reflux is blown into the ascending-side immersion pipe so as to reflux the molten steel.

【0028】[0028]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施の形態を説明する。図2は、本発明を実施する際
に用いたRH真空脱ガス装置の概略縦断面である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 2 is a schematic vertical sectional view of an RH vacuum degassing apparatus used in carrying out the present invention.

【0029】図2に示すように、RH真空脱ガス装置1
は、上部槽6及び下部槽7からなる真空槽5と、下部槽
7の下部に設けた上昇側浸漬管8及び下降側浸漬管9と
を備え、上部槽6には、排気装置(図示せず)と接続す
るダクト11及び原料投入口12が設けられ、又、上昇
側浸漬管8にはガス吹き込みノズル10が設けられてい
る。ガス吹き込みノズル10からは環流用不活性ガスと
してArが上昇側浸漬管8内に吹き込まれる構造となっ
ている。図2ではガス吹き込みノズル10を1本のみ記
載しているが、上昇側浸漬管8にはその周囲方向に、複
数個(n個)のガス吹き込みノズル10がその吐出方向
を上昇側浸漬管8の中心部に向けた水平方向として設置
されている。ここで、上昇側浸漬管8の内径はD(m)
であり、ガス吹き込みノズル10の内径はd(m)であ
る。ガス吹き込みノズル10は、上昇側浸漬管8内の溶
鋼3を周方向で均等に上昇させる観点から、可能である
ならば上昇側浸漬管8の周方向で等間隔に設置すること
が望ましい。図ではガス吹き込みノズル10の吐出方向
を上昇側浸漬管8の中心部に向けた水平方向としている
が、上平方向上向きにする若しくは中心に向かう方向か
ら水平方向へ傾斜させても良い。
As shown in FIG. 2, the RH vacuum degassing device 1
Comprises a vacuum tank 5 composed of an upper tank 6 and a lower tank 7, an ascending immersion pipe 8 and a descending immersion pipe 9 provided below the lower tank 7, and the upper tank 6 includes an exhaust device (not shown). And an inlet 12 for the raw material, and a gas injection nozzle 10 is provided in the ascending immersion pipe 8. Ar is blown into the rising side immersion pipe 8 from the gas blowing nozzle 10 as an inert gas for reflux. Although only one gas injection nozzle 10 is shown in FIG. 2, a plurality of (n) gas injection nozzles 10 are provided around the ascending-side immersion pipe 8 in the circumferential direction thereof. It is installed as a horizontal direction toward the center of the. Here, the inner diameter of the ascending side immersion tube 8 is D (m).
And the inner diameter of the gas injection nozzle 10 is d (m). From the viewpoint of uniformly raising the molten steel 3 in the ascending-side immersion pipe 8 in the circumferential direction, it is desirable that the gas injection nozzles 10 be installed at equal intervals in the circumferential direction of the ascending-side immersion pipe 8 if possible. In the figure, the discharge direction of the gas injection nozzle 10 is set to the horizontal direction toward the center of the rising side immersion pipe 8, but it may be set to improve the upper square, or may be inclined from the direction toward the center to the horizontal direction.

【0030】このような構成のRH真空脱ガス装置1に
おいて、本発明による精錬方法を実施するに際しては、
先ず、転炉や電気炉等で精錬した溶鋼3を取鍋2に出鋼
し、溶鋼3を収納する取鍋2を真空槽5の直下に搬送す
る。取鍋2内には転炉や電気炉等における精錬で発生し
たスラグ4が一部混入し、溶鋼3の湯面を覆っている。
In the RH vacuum degassing apparatus 1 having such a configuration, when the refining method according to the present invention is performed,
First, molten steel 3 refined in a converter or an electric furnace is tapped into ladle 2, and ladle 2 containing molten steel 3 is conveyed directly below vacuum tank 5. Slag 4 generated by refining in a converter, an electric furnace, or the like is partially mixed in the ladle 2 and covers the molten metal surface of the molten steel 3.

【0031】次いで、昇降装置(図示せず)にて取鍋2
を上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋
2内の溶鋼3に浸漬させる。そして、ガス吹き込みノズ
ル10から上昇側浸漬管8内にその吹き込み流量をG
(m3/sec)としてArを吹き込むと前後して、真空槽5
内を排気装置にて排気して真空槽5内を減圧する。真空
槽5内が減圧されると、取鍋2内の溶鋼3は、ガス吹き
込みノズル10から吹き込まれるArと共に上昇側浸漬
管8を上昇して真空槽5内に流入し、その後、下降側浸
漬管9を介して取鍋2に戻る流れ、所謂、環流を形成し
てRH真空脱ガス精錬が施される。尚、ガス吹き込みノ
ズル10から吹き込むAr流量を最初からG(m3/sec)
とする必要はなく、溶鋼3の環流が定常状態になってか
らとしても良い。
Next, the ladle 2 is moved by a lifting device (not shown).
Is raised, and the ascending-side immersion pipe 8 and the descending-side immersion pipe 9 are immersed in the molten steel 3 in the ladle 2. Then, the blowing flow rate from the gas blowing nozzle 10 into the rising side immersion pipe 8 is G
(M 3 / sec) before and after Ar was blown,
The inside of the vacuum chamber 5 is evacuated by an exhaust device to reduce the pressure inside the vacuum chamber 5. When the pressure in the vacuum chamber 5 is reduced, the molten steel 3 in the ladle 2 rises along the rising side immersion pipe 8 together with Ar blown from the gas blowing nozzle 10 and flows into the vacuum chamber 5, and then flows into the falling side immersion. The flow returning to the ladle 2 via the pipe 9, forming a so-called reflux, is subjected to RH vacuum degassing refining. The Ar flow rate blown from the gas blowing nozzle 10 was initially set to G (m 3 / sec).
It does not need to be performed, and may be performed after the reflux of the molten steel 3 reaches a steady state.

【0032】その際に、上昇側浸漬管8の内径(D)
と、ガス吹き込みノズル10の個数(n)と、ガス吹き
込みノズル10の内径(d)と、ガス吹き込みノズル1
0から吹き込まれる環流用不活性ガスのガス流量(G)
とを、前述した(1)式の範囲を満足するように調整す
る。(1)式の計算に当たっては、環流用Arの密度ρ
g は1.786kg/m3 、溶鋼3の密度ρl は7000kg
/m3 とすれば良い。
At this time, the inner diameter (D) of the ascending side immersion tube 8
And the number (n) of gas blowing nozzles 10 and gas blowing
Inner diameter (d) of the gas injection nozzle 10 and the gas injection nozzle 1
The gas flow rate of the inert gas for recirculation blown from 0 (G)
Are adjusted so as to satisfy the range of the above-described expression (1).
You. In calculating equation (1), the density ρ of Ar for reflux is
g Is 1.786 kg / mThree , Density ρ of molten steel 3l Is 7000kg
/ mThree It is good.

【0033】具体的には、上昇側浸漬管8の内径
(D)、ガス吹き込みノズル10の個数(n)及びガス
吹き込みノズル10の内径(d)が設備的に既に決まっ
ている場合は、環流用不活性ガスのガス流量(G)を調
整して(1)式を満足させる。
Specifically, when the inner diameter (D) of the ascending side immersion pipe 8, the number (n) of the gas injection nozzles 10, and the inner diameter (d) of the gas injection nozzles 10 are already determined in terms of equipment, the circulation The gas flow rate (G) of the inert gas for use is adjusted to satisfy the expression (1).

【0034】又、環流用不活性ガス流量(G)を増大さ
せようとして、上昇側浸漬管8の内径(D)を拡大させ
る設備改造を行う場合には、目的とするガス吹き込み流
量(G)及び拡大しようとする上昇側浸漬管8の内径
(D)に対処して、(1)式を満足する範囲内でガス吹
き込みノズル10の個数(n)及びガス吹き込みノズル
10の内径(d)を設定する。但し、ガス吹き込みノズ
ル10の内径(d)は溶鋼3の差し込み等を考えると、
余り大きくすることはできないので、その場合には、ノ
ズル個数(n)で対処する方が望ましい。ガス吹き込み
ノズル10の内径(d)の最大値は5mm程度と考えて
置けば良い。
In order to increase the flow rate (G) of the inert gas for reflux, if the equipment is modified to increase the inner diameter (D) of the ascending immersion pipe 8, the desired gas injection flow rate (G) The number (n) of the gas blowing nozzles 10 and the inner diameter (d) of the gas blowing nozzles 10 are set within a range satisfying the expression (1) in consideration of the inner diameter (D) of the rising side immersion pipe 8 to be enlarged. Set. However, considering the inside diameter (d) of the gas injection nozzle 10 and the insertion of the molten steel 3,
Since it cannot be made too large, in that case, it is desirable to deal with the number of nozzles (n). The maximum value of the inner diameter (d) of the gas injection nozzle 10 may be set to about 5 mm.

【0035】処理する溶鋼3の用途に基づき、この条件
下で溶鋼3を環流させ、脱水素、脱炭、脱窒素等のRH
真空脱ガス精錬を施し、更に、溶鋼3が未脱酸状態であ
れば、必要に応じて溶鋼3を脱酸するために必要な量の
金属Alを原料投入口12から溶鋼3に添加して溶鋼3
を脱酸すると共に、必要に応じてC、Si、Mn等の成
分調整剤を原料投入口12から溶鋼3に添加して成分を
調整した後、真空槽5を大気圧に戻してRH真空脱ガス
精錬を終了する。
Based on the use of the molten steel 3 to be treated, the molten steel 3 is circulated under these conditions, and RH such as dehydrogenation, decarburization, denitrification, etc.
Vacuum degassing and refining, and if the molten steel 3 is in a non-deoxidized state, add a necessary amount of metal Al for deoxidizing the molten steel 3 from the raw material inlet 12 to the molten steel 3 as necessary. Molten steel 3
And, if necessary, a component modifier such as C, Si, Mn or the like is added to the molten steel 3 from the raw material inlet 12 to adjust the components, and then the vacuum chamber 5 is returned to the atmospheric pressure to perform RH vacuum desorption. End gas refining.

【0036】このようにしてRH真空脱ガス装置1で溶
鋼3を精錬することにより、溶鋼3を効率良く環流させ
ることができ、その結果、精錬時間の短縮、除去対象成
分の低減化、環流用Ar使用量の削減、浸漬管の長寿命
化等を達成することが可能となる。
By refining the molten steel 3 in the RH vacuum degassing apparatus 1 as described above, the molten steel 3 can be efficiently recirculated. As a result, the refining time can be reduced, the components to be removed can be reduced, and the recirculation can be performed. It is possible to reduce the amount of Ar used, extend the life of the immersion tube, and the like.

【0037】[0037]

【実施例】図2に示すRH真空脱ガス装置を用いて、上
昇側浸漬管の内径、ガス吹き込みノズルの個数及び内
径、環流用Ar流量を前述した表1と同一の溶鋼環流試
験条件で変化させ、転炉から出鋼された、炭素濃度が
0.03〜0.04mass%の約250トンの未脱酸溶鋼
を脱炭精錬する試験を合計4水準、28ヒート実施し
た。脱炭時間は全ての試験で20分間とし、その間の真
空槽内到達真空度を60〜270Paとして、脱炭精錬
中の溶鋼の到達炭素濃度に及ぼす溶鋼環流条件の影響を
調査した。
EXAMPLE Using the RH vacuum degassing apparatus shown in FIG. 2, the inner diameter of the ascending side immersion pipe, the number and inner diameter of the gas injection nozzles, and the Ar flow rate for reflux were changed under the same molten steel reflux test conditions as in Table 1 described above. Then, a test for decarburizing and refining about 250 tons of undeoxidized molten steel having a carbon concentration of 0.03 to 0.04 mass%, which had been discharged from the converter, was subjected to a total of four levels of 28 heats. The decarburization time was set to 20 minutes in all tests, and the ultimate degree of vacuum in the vacuum chamber during that time was set to 60 to 270 Pa, and the influence of molten steel reflux conditions on the ultimate carbon concentration of molten steel during decarburization refining was investigated.

【0038】図3に、調査結果を示す。図3の横軸は前
述した(6)式による計算値Zである。図3に示すよう
に、環流用Ar流量を増加した水準2及び上昇側浸漬管
の内径を拡大した水準4では、水準1及び水準3に比較
して到達炭素濃度の絶対値が特に低く、7〜8ppm程
度まで低減したが、どの水準の試験においても横軸の計
算値Zが20を越えて100未満の範囲では、到達炭素
濃度が安定して低く、脱炭反応が促進されていることが
分かった。
FIG. 3 shows the results of the investigation. The horizontal axis in FIG. 3 is the calculated value Z according to the above-described equation (6). As shown in FIG. 3, the absolute value of the attained carbon concentration was particularly low at Level 2 where the Ar flow rate for reflux was increased and at Level 4 where the inner diameter of the ascending-side immersion pipe was increased, as compared with Levels 1 and 3. However, when the calculated value Z on the horizontal axis is more than 20 and less than 100 in any level test, the reached carbon concentration is stably low and the decarburization reaction is promoted. Do you get it.

【0039】[0039]

【発明の効果】本発明によれば、RH真空脱ガス装置を
用いて溶鋼を精錬する際に、上昇側浸漬管の内径と、ガ
ス吹き込みノズルの個数と、ガス吹き込みノズルの内径
と、環流用不活性ガスのガス流量とを所定の範囲に調整
して溶鋼を環流させるので、溶鋼を効率良く環流させる
ことができ、その結果、精錬時間の短縮、除去対象成分
の低減化、環流用不活性ガス使用量の削減、浸漬管の長
寿命化等を達成することができ、工業上有益な効果がも
たらされる。
According to the present invention, when refining molten steel using the RH vacuum degassing apparatus, the inner diameter of the rising side immersion pipe, the number of gas injection nozzles, the inner diameter of the gas injection nozzle, Since the molten steel is recirculated by adjusting the gas flow rate of the inert gas to a predetermined range, the molten steel can be efficiently recirculated, thereby shortening the refining time, reducing the components to be removed, and recirculating the inert gas. It is possible to achieve a reduction in the amount of gas used, a longer life of the immersion tube, and the like, which brings about an industrially beneficial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】計算値Zと均一混合時間との関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a calculated value Z and a uniform mixing time.

【図2】本発明を実施する際に用いたRH真空脱ガス装
置の概略縦断面である。
FIG. 2 is a schematic vertical sectional view of an RH vacuum degassing apparatus used in carrying out the present invention.

【図3】計算値Zと到達炭素濃度との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a calculated value Z and a reached carbon concentration.

【符号の説明】[Explanation of symbols]

1 RH真空脱ガス装置 2 取鍋 3 溶鋼 5 真空槽 8 上昇側浸漬管 9 下降側浸漬管 10 ガス吹き込みノズル DESCRIPTION OF SYMBOLS 1 RH vacuum degassing apparatus 2 Ladle 3 Molten steel 5 Vacuum tank 8 Upside dipping tube 9 Downside dipping tube 10 Gas injection nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 栄司 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 中村 善幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 角田 篤史 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K013 BA02 BA08 BA09 BA11 CA02 CA21 CC01 CE01 CE05 CE06 CE09 EA19 EA20 EA28 EA30 ──────────────────────────────────────────────────続 き Continued on the front page (72) Eiji Sakurai, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Nihon Kokan Co., Ltd. (72) Yoshiyuki Nakamura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside the Honko Co., Ltd. (72) Inventor Atsushi Tsunoda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-term in the Nippon Kokan Co., Ltd. 4K013 BA02 BA08 BA09 BA11 CA02 CA21 CC01 CE01 CE05 CE06 CE09 EA19 EA20 EA28 EA30

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上昇側浸漬管の内径(D)と、上昇側浸
漬管に配置されたガス吹き込みノズルの個数(n)と、
このガス吹き込みノズルの内径(d)と、ガス吹き込み
ノズルから吹き込まれる環流用不活性ガスのガス流量
(G)とが下記の(1)式の範囲を満足するように調整
して上昇側浸漬管に環流用不活性ガスを吹き込み、溶鋼
を環流させることを特徴とする、RH真空脱ガス装置に
おける溶鋼の精錬方法。 20<n/[[ρg/(ρl−ρg)]1/2×(G/d)×D-3/2]<100 …(1) 但し、(1)式において、n:ガス吹き込みノズルの個
数、ρg :環流用不活性ガスの密度(kg/m3 )、ρl
溶鋼の密度(kg/m3 )、G:環流用不活性ガスの流量
(m3/sec)、d:ガス吹き込みノズルの内径(m)、
D:上昇側浸漬管の内径(m)である。
1. An inner diameter (D) of a rising side immersion tube, the number of gas blowing nozzles (n) arranged in the rising side immersion tube,
The inner diameter (d) of the gas injection nozzle and the gas flow rate (G) of the recirculating inert gas injected from the gas injection nozzle are adjusted so as to satisfy the range of the following equation (1), and the rising side immersion pipe is used. A method for refining molten steel in an RH vacuum degassing apparatus, characterized in that the molten steel is refluxed by blowing an inert gas for reflux into the furnace. 20 <n / [[ρ g / (ρ l −ρ g )] 1/2 × (G / d) × D −3/2 ] <100 (1) where, in the equation (1), n: gas Number of blowing nozzles, ρ g : density of inert gas for reflux (kg / m 3 ), ρ l :
Density of molten steel (kg / m 3 ), G: flow rate of inert gas for reflux (m 3 / sec), d: inner diameter of gas injection nozzle (m),
D: Inner diameter (m) of the ascending side dip tube.
JP2001178621A 2001-06-13 2001-06-13 Method for refining molten steel in RH vacuum degassing equipment Expired - Fee Related JP4806863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178621A JP4806863B2 (en) 2001-06-13 2001-06-13 Method for refining molten steel in RH vacuum degassing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178621A JP4806863B2 (en) 2001-06-13 2001-06-13 Method for refining molten steel in RH vacuum degassing equipment

Publications (2)

Publication Number Publication Date
JP2002363636A true JP2002363636A (en) 2002-12-18
JP4806863B2 JP4806863B2 (en) 2011-11-02

Family

ID=19019293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178621A Expired - Fee Related JP4806863B2 (en) 2001-06-13 2001-06-13 Method for refining molten steel in RH vacuum degassing equipment

Country Status (1)

Country Link
JP (1) JP4806863B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325664C (en) * 2005-07-29 2007-07-11 太原钢铁(集团)有限公司 Insert tube of vacuum circulating degasification apparatus
JP2008184668A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Method for estimating circulating flow rate of molten steel in rh vacuum degassing apparatus and method for blowing circulation flow gas
JP2008214655A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Upleg snorkel of rh vacuum degassing apparatus
JP2013076141A (en) * 2011-09-30 2013-04-25 Kurosaki Harima Corp Immersion tube for vacuum degassing for molten steel
JP2015096639A (en) * 2013-11-15 2015-05-21 新日鐵住金株式会社 Refining method for molten steel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811721A (en) * 1981-07-16 1983-01-22 Kawasaki Steel Corp Vacuum refining method for molten steel
JPS63153213A (en) * 1986-07-25 1988-06-25 Asahi Glass Co Ltd Submerged tube and method for gas blowing
JPS6479317A (en) * 1987-06-29 1989-03-24 Kawasaki Steel Co Gas blowing method of reflux type degassing device
JPH0336209A (en) * 1989-06-29 1991-02-15 Nippon Steel Corp Method and apparatus for rh vacuum degassing
JPH04168214A (en) * 1990-11-01 1992-06-16 Nippon Steel Corp Method and apparatus for melting extremely low carbon steel
JPH04235212A (en) * 1991-01-10 1992-08-24 Kawasaki Steel Corp Rh circulating type vacuum degassing method
JPH051319A (en) * 1991-02-18 1993-01-08 Sumitomo Metal Ind Ltd Vacuum treatment apparatus for steel
JPH0688117A (en) * 1992-08-13 1994-03-29 Kobe Steel Ltd Vacuum degassing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811721A (en) * 1981-07-16 1983-01-22 Kawasaki Steel Corp Vacuum refining method for molten steel
JPS63153213A (en) * 1986-07-25 1988-06-25 Asahi Glass Co Ltd Submerged tube and method for gas blowing
JPS6479317A (en) * 1987-06-29 1989-03-24 Kawasaki Steel Co Gas blowing method of reflux type degassing device
JPH0336209A (en) * 1989-06-29 1991-02-15 Nippon Steel Corp Method and apparatus for rh vacuum degassing
JPH04168214A (en) * 1990-11-01 1992-06-16 Nippon Steel Corp Method and apparatus for melting extremely low carbon steel
JPH04235212A (en) * 1991-01-10 1992-08-24 Kawasaki Steel Corp Rh circulating type vacuum degassing method
JPH051319A (en) * 1991-02-18 1993-01-08 Sumitomo Metal Ind Ltd Vacuum treatment apparatus for steel
JPH0688117A (en) * 1992-08-13 1994-03-29 Kobe Steel Ltd Vacuum degassing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325664C (en) * 2005-07-29 2007-07-11 太原钢铁(集团)有限公司 Insert tube of vacuum circulating degasification apparatus
JP2008184668A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Method for estimating circulating flow rate of molten steel in rh vacuum degassing apparatus and method for blowing circulation flow gas
JP2008214655A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Upleg snorkel of rh vacuum degassing apparatus
JP2013076141A (en) * 2011-09-30 2013-04-25 Kurosaki Harima Corp Immersion tube for vacuum degassing for molten steel
JP2015096639A (en) * 2013-11-15 2015-05-21 新日鐵住金株式会社 Refining method for molten steel

Also Published As

Publication number Publication date
JP4806863B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5904237B2 (en) Melting method of high nitrogen steel
JP2020002425A (en) Vacuum degassing apparatus and method for refining molten steel
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP5365241B2 (en) Molten steel refining equipment
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP2007031820A (en) Vacuum-degassing treating method for molten steel
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP2008214655A (en) Upleg snorkel of rh vacuum degassing apparatus
KR102652520B1 (en) Molten steel refining method
TWI764778B (en) The refining method of molten steel
JP2915631B2 (en) Vacuum refining of molten steel in ladle
KR200278673Y1 (en) Sedimentation pipe for improving refining capacity
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP3252726B2 (en) Vacuum refining method for molten steel
JP6435983B2 (en) Method for refining molten steel
JP3282487B2 (en) Manufacturing method of enamel steel
JP6268963B2 (en) Method for refining molten steel
JP3742534B2 (en) Vacuum refining apparatus and method for melting low carbon steel using the same
JP2001158911A (en) Method for decarburizing molten steel under vacuum
JPH0243315A (en) Method and device for reflux type degassing treatment of molten steel
JPH0361317A (en) Method for refining dead-soft carbon steel
JPH09118913A (en) Method for vacuum-refining molten steel
JPH08325629A (en) Method for smelting ultra-low carbon steel
JPH02267213A (en) Method for vacuum-decarbonizing molten steel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4806863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees