JP3252726B2 - Vacuum refining method for molten steel - Google Patents

Vacuum refining method for molten steel

Info

Publication number
JP3252726B2
JP3252726B2 JP30659096A JP30659096A JP3252726B2 JP 3252726 B2 JP3252726 B2 JP 3252726B2 JP 30659096 A JP30659096 A JP 30659096A JP 30659096 A JP30659096 A JP 30659096A JP 3252726 B2 JP3252726 B2 JP 3252726B2
Authority
JP
Japan
Prior art keywords
molten steel
immersion
gas
tuyere
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30659096A
Other languages
Japanese (ja)
Other versions
JPH10147811A (en
Inventor
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30659096A priority Critical patent/JP3252726B2/en
Publication of JPH10147811A publication Critical patent/JPH10147811A/en
Application granted granted Critical
Publication of JP3252726B2 publication Critical patent/JP3252726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の脱ガス、脱
硫等を行う真空精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum refining method for degassing and desulfurizing molten steel.

【0002】[0002]

【従来の技術】溶鋼の真空精錬方法としては、VOD法
のように取鍋内の溶鋼を真空雰囲気下におき脱ガスなど
を施す方法、RH法およびDH法のように浸漬管を取鍋
内の溶鋼に浸漬し、真空槽と浸漬管内とを減圧して精錬
を行う方法がある。
2. Description of the Related Art As a method of vacuum refining molten steel, a method of degassing a molten steel in a ladle under a vacuum atmosphere like a VOD method, and a method of removing a dip tube inside a ladle like a RH method and a DH method. And smelting by reducing the pressure in the vacuum tank and the immersion tube.

【0003】VOD法ではフリーボードを大きくとるこ
とができないため、溶鋼溢流の問題を回避するのは不可
能である。したがって、溶鋼の攪拌力を増加させること
が困難となり、それにともない真空精錬能力に限界が生
じる。
[0003] In the VOD method, the free board cannot be made large, so that it is impossible to avoid the problem of molten steel overflow. Therefore, it is difficult to increase the stirring power of the molten steel, and the vacuum refining capacity is limited accordingly.

【0004】DH法では、真空槽の下部に備えた1本の
浸漬管を取鍋内の溶鋼に浸漬し、真空槽または取鍋のい
ずれかを繰り返し昇降させる必要がある。そのため、大
がかりな昇降装置が必要で設備費が増大する。
In the DH method, it is necessary to immerse one dipping tube provided at the lower part of the vacuum tank in molten steel in a ladle and repeatedly raise and lower either the vacuum tank or the ladle. Therefore, a large-scale lifting device is required, and the equipment cost increases.

【0005】RH法では、真空槽の下部に設けた2本の
浸漬管を取鍋内の溶鋼に浸漬し、片方の浸漬管から環流
用ガスを吹き込んで溶鋼を循環させるが、取鍋内の溶鋼
およびスラグの攪拌を行うことができない。
In the RH method, two dip tubes provided at the lower part of a vacuum chamber are immersed in molten steel in a ladle, and the molten steel is circulated by blowing a reflux gas from one of the dip tubes. Stirring of molten steel and slag cannot be performed.

【0006】上記のような問題を解消するために、従来
のDHやRH法と異なる次のような精錬方法が提案され
ている。
[0006] In order to solve the above problems, the following refining methods different from the conventional DH or RH method have been proposed.

【0007】1) 特開平3−6317号公報には、溶融金属
内に内径の大きいシュノーケル (浸漬管) を浸漬し、こ
の内部を減圧して溶融金属を吸い上げながら、その下端
部の内周面全域からArガスを吹き込んで脱ガスを行う取
鍋精錬法が示されている。この方法では、溶融金属は壁
面に沿ったArガスバブリングによってシュノーケル内周
壁に沿う上昇流を形成させる。シュノーケルの中央部で
は、上昇量に見合う下降量が生成して溶融金属の循環が
行われる。上記公報には、シュノーケル内壁およびその
下方延長面、取鍋底面さらにシュノーケル内の溶融金属
浴面で囲まれる部分の溶融金属の容積W1 と、取鍋内の
溶融金属全体の容積Wo との関係をW1 /Wo ≧0.4 と
するのがよい、と記載されている。
[0007] 1) Japanese Patent Application Laid-Open No. Hei 3-6317 discloses that a snorkel (immersion pipe) having a large inner diameter is immersed in a molten metal, and the inside of the snorkel is depressurized to suck up the molten metal. A ladle refining method in which Ar gas is blown from the whole area to degas is shown. In this method, the molten metal forms an upward flow along the inner peripheral wall of the snorkel by bubbling Ar gas along the wall. At the center of the snorkel, a descending amount corresponding to the rising amount is generated and circulation of the molten metal is performed. The above publication discloses the relationship between the volume W1 of the molten metal in the portion surrounded by the inner wall of the snorkel and its lower extension surface, the bottom surface of the ladle and the molten metal bath surface in the snorkel, and the total volume Wo of the molten metal in the ladle. It is described that W1 / Wo ≧ 0.4 is preferable.

【0008】2) 特開昭52−52109 号公報には、溶鋼中
に浸漬した筒体 (浸漬管) 中に溶融金属を吸い上げ、そ
の筒体の周壁下端の一部 (中心角 120°の範囲) からガ
スを吹き込んで上昇流を形成させ、対面側には下降流を
形成させて処理溶融金属全体を攪拌混合する精錬方法が
示されている。
2) Japanese Patent Application Laid-Open No. 52-52109 discloses that a molten metal is sucked into a cylindrical body (immersion tube) immersed in molten steel, and a part of the lower end of the peripheral wall of the cylindrical body (with a central angle of 120 °). )), A refining method is shown in which a gas is blown from above to form an ascending flow, and a descending flow is formed on the opposite side to stir and mix the entire treated molten metal.

【0009】3) 特開平5-271748号公報には、上記 2)
に記載の方法と基本的に同じ技術であって、円筒容器
(浸漬管) の下端浸漬部の内径(D) と浸漬部下端からの
溶鋼の吸上げ高さ(H) との比(D/H) を1以上とすると共
に、不活性ガスの吹込みポイントを円筒容器の中心角に
して60〜270 度の範囲とする、という発明が開示されて
いる。
3) JP-A-5-217748 discloses the above 2)
The technique is basically the same as the method described in
The ratio (D / H) between the inner diameter (D) of the lower end immersion part of the (immersion tube) and the suction height (H) of molten steel from the lower end of the immersion part is 1 or more, and the inert gas injection point Is set in the range of 60 to 270 degrees with respect to the central angle of the cylindrical container.

【0010】[0010]

【発明が解決しようとする課題】しかし、上述の従来方
法 1) 〜 3) においても以下の問題点がある。
However, the conventional methods 1) to 3) have the following problems.

【0011】従来方法 1) では、シュノーケル (浸漬
管) の下方からガスを吹き込むというのであるが、攪拌
や溶鋼の循環におよぼす攪拌ガス羽口の配置については
何ら明らかにされていない。その公報の第3図から推測
すると、攪拌ガス羽口はシュノーケル内の全周に配置し
ていると考えられる。しかし、攪拌ガスを浸漬管の全周
から吹き込むのでは、溶鋼の混合が不十分で精錬特性を
十分に向上させることができない。
In the conventional method 1), gas is blown from below the snorkel (immersion pipe). However, the arrangement of the stirring gas tuyere for stirring and circulation of molten steel is not disclosed at all. Inferring from FIG. 3 of the publication, it can be considered that the stirring gas tuyeres are arranged all around the snorkel. However, if the stirring gas is blown from the entire circumference of the immersion pipe, the mixing of the molten steel is insufficient and the refining characteristics cannot be sufficiently improved.

【0012】従来方法 2) は、筒体 (浸漬管) の下方部
からガスを吹き込む点では前記 1)の方法と同じである
が、羽口を偏在設置し、下降流領域を十分に確保するこ
とにより溶鋼の循環量を確保しようとしている。この方
法では、筒体中への溶鋼の吸上げ量を可及的に多くする
(溶鋼吸入率15%以上) というが、その条件は、均一混
合時間を短くし、浴の均一反応および金属添加時の早期
均一溶解を促進する目的で与えられたものである。した
がって、脱ガス反応を促進するための最適条件は明らか
になっていない。また、攪拌ガス羽口の配置に関しては
中心角 120°の範囲と述べているが、攪拌ガス羽口の配
置には取鍋や浸漬管の形状、寸法により最適な条件があ
るはずであるのに、この点に全く配慮していない。
The conventional method 2) is the same as the above-mentioned method 1) in that gas is blown from the lower portion of the cylindrical body (immersion tube), but the tuyeres are unevenly installed to sufficiently secure a downward flow area. This is trying to secure the amount of molten steel circulated. In this method, the amount of molten steel sucked into the cylinder is increased as much as possible.
(The molten steel inhalation rate is 15% or more.) The conditions are given for the purpose of shortening the uniform mixing time and promoting the uniform reaction of the bath and the early uniform dissolution at the time of metal addition. Therefore, the optimal conditions for promoting the degassing reaction have not been clarified. Although the arrangement of the stirring gas tuyere is described as being within the range of the central angle of 120 °, there should be optimal conditions for the arrangement of the stirring gas tuyere depending on the shape and dimensions of the ladle and immersion tube. I do not consider this point at all.

【0013】従来方法 3) は、円筒容器 (浸漬管) の下
方部からガスを吹き込む羽口を偏在設置して下降流領域
を十分に確保することにより溶鋼循環量を確保しようと
する点で、従来方法 2) と同じである。この方法では、
真空槽内の下端浸漬部の内径Dと溶鋼吸い上げ高さHと
の比 (D/H) を 1.0以上にするという条件に着目して
いるが、取鍋形状に対しての最適浸漬管内径に関する配
慮が無い。上記のD/Hは、溶鋼の全循環量に占める取
鍋への循環流量の比を高めるという不可欠の要件を満足
するために規定されたにすぎない。従って、このD/H
の条件は脱ガス反応に着目した場合の浸漬管のサイズの
最適条件とはいい難い。また、3)の方法では不活性ガス
の吹き込みポイントを円筒容器の中心角にして60〜270
°の範囲とするとしている。しかし上述のように、最適
なガス吹き込みの中心角は取鍋や浸漬管の形状に依存す
るはずである。前記 2) の発明と同じく、3)の発明でも
この点が全く考慮されていない。
The conventional method 3) is characterized in that the tuyere for injecting gas from the lower part of the cylindrical vessel (immersion pipe) is unevenly installed to secure a sufficient downward flow area to secure the molten steel circulation amount. Same as conventional method 2). in this way,
Focusing on the condition that the ratio (D / H) of the inner diameter D of the lower end immersion part in the vacuum chamber to the molten steel suction height H should be 1.0 or more, the optimum immersion pipe inner diameter for the ladle shape is considered. There is no consideration. The above D / H is merely specified in order to satisfy the essential requirement of increasing the ratio of the circulation flow rate to the ladle to the total circulation amount of the molten steel. Therefore, this D / H
Conditions are not optimal conditions for the size of the immersion tube when focusing on the degassing reaction. In the method 3), the injection point of the inert gas is set to 60 to 270
° range. However, as described above, the optimum central angle of gas injection should depend on the shape of the ladle and the dip tube. As with the invention 2), the invention 3) does not consider this point at all.

【0014】本発明の目的は、取鍋と減圧可能な浸漬管
とを用いる溶鋼の精錬処理において、これまで充分に解
明されていないガス吹き込みに係わる最適条件を明らか
にし、極低炭素鋼、極低水素鋼、極低窒素鋼、極低硫鋼
および高清浄鋼を迅速に溶製するのに好適な溶鋼の真空
精錬方法を提供することにある。
An object of the present invention is to clarify the optimum conditions for gas injection, which have not been sufficiently elucidated, in the smelting treatment of molten steel using a ladle and a dip tube capable of reducing pressure. An object of the present invention is to provide a vacuum refining method for molten steel suitable for rapidly melting low hydrogen steel, extremely low nitrogen steel, extremely low sulfur steel, and high clean steel.

【0015】[0015]

【課題を解決するための手段】本発明の要旨は次の真空
精錬方法にある。
The gist of the present invention resides in the following vacuum refining method.

【0016】下記の式を満たす内径Dを有し、かつ下
記式を満たす範囲の下端部内壁にガス吹き込み用浸漬
羽口を有する浸漬管を用い、この浸漬管を取鍋中の溶鋼
に浸漬した後、浸漬管内を減圧することにより溶鋼を浸
漬管内に吸い上げ、前記の浸漬羽口から溶鋼中に溶鋼1
トン当たり0.004〜0.03Nm /minのガスを吹き込むこと
を特徴とする溶鋼の真空精錬方法。 0.5≦D/Do≦0.8 ・・・・・・・・・・・・・・ 100×(D/Do)+85≦θ≦100×(D/Do)+145 ・・・・ ただし、D/Doは浸漬管内径Dと取鍋内径Doとの比、θは
ガス吹き込み用浸漬羽口の設置範囲を表す浸漬管の中心
角(deg)である。以下、本発明では角度の単位「°」
または「度」を「deg」で表す。
A dip tube having an inner diameter D satisfying the following formula and having a submerged tuyere for gas injection on the inner wall at the lower end within a range satisfying the following formula was used, and the dip tube was immersed in molten steel in a ladle. Then, the molten steel is sucked into the dip tube by reducing the pressure in the dip tube, and the molten steel is introduced into the molten steel from the above-mentioned dip tuyere.
A vacuum refining method for molten steel, characterized by blowing a gas at a rate of 0.004 to 0.03 Nm 3 / min per ton . 0.5 ≦ D / Do ≦ 0.8 ・ ・ ・ ・ ・ ・ 100 × (D / Do) + 85 ≦ θ ≦ 100 × (D / Do) +145 ・ ・ ・ ・ However, D / Do is The ratio between the inner diameter D of the immersion pipe and the inner diameter Do of the ladle, θ, is the central angle (deg) of the immersion pipe representing the installation range of the gas injection immersion tuyere. Hereinafter, in the present invention, the unit of angle “°”
Alternatively, “degree” is represented by “deg”.

【0017】[0017]

【発明の実施の形態】図1および図2は、本発明方法を
実施するための装置の例を模式的に示したものである。
これらの図に基づいて本発明方法を説明する。
FIG. 1 and FIG. 2 schematically show an example of an apparatus for carrying out the method of the present invention.
The method of the present invention will be described based on these figures.

【0018】図1(a) は、装置の主要部の概略を示す縦
断面図であり、真空排気して定常操業しているときの状
況を示す。図1(b) は図1(a) の浸漬羽口の線における
水平断面の概略図である。この装置は、溶鋼4を収容す
る取鍋1、下端が開口し、その下端部の内壁にガス吹き
込み用の複数の浸漬羽口3を有する筒状浸漬管2を備え
る。筒状浸漬管2の上部周壁には酸化性ガス供給用の上
吹き羽口5が設けられている。なお、浸漬管2の上部は
図2と同様の構造(但し、上吹きランス6はない)であ
るが、図1では省略してある。
FIG. 1 (a) is a longitudinal sectional view schematically showing a main part of the apparatus, and shows a state in which a vacuum pumping is performed and a normal operation is performed. FIG. 1 (b) is a schematic view of a horizontal section taken along the line of the immersion tuyere of FIG. 1 (a). The apparatus comprises a ladle 1 for accommodating molten steel 4, a tubular immersion tube 2 having a lower end opened and having a plurality of immersion tuyeres 3 on the inner wall at the lower end for gas injection. An upper blowing tuyere 5 for supplying an oxidizing gas is provided on an upper peripheral wall of the cylindrical immersion pipe 2. The upper part of the immersion pipe 2 has the same structure as that of FIG. 2 (however, there is no upper lance 6), but is omitted in FIG.

【0019】図1において、符号D は筒状浸漬管2の内
径、Doは取鍋1の内径すなわち定常操業中における溶鋼
4の表面位置での内径、θは浸漬管2における浸漬羽口
3の設置範囲を表す中心角、Δθは複数の浸漬羽口3を
設置する際の羽口間角度、hは浸漬羽口3の位置から吸
い上げた溶鋼表面までの距離である。
In FIG. 1, reference symbol D denotes the inner diameter of the cylindrical immersion pipe 2, Do denotes the inner diameter of the ladle 1, that is, the inner diameter at the surface position of the molten steel 4 during steady operation, and θ denotes the immersion tuyere 3 of the immersion pipe 2. The central angle representing the installation range, Δθ is the angle between the tuyeres when a plurality of immersion tuyeres 3 are installed, and h is the distance from the position of the immersion tuyeres 3 to the surface of the molten steel sucked up.

【0020】図2は、上吹き羽口5に替えて酸化性ガス
供給用の昇降可能な上吹きランス6を備えた装置例を示
す概略の縦断面図である。
FIG. 2 is a schematic longitudinal sectional view showing an example of an apparatus provided with a vertically movable upper blowing lance 6 for supplying an oxidizing gas, instead of the upper blowing tuyere 5.

【0021】本発明方法では、上記の図1または図2の
ような構成の装置を用いて次のような方法で溶鋼の真空
精錬を行う。
In the method of the present invention, molten steel is subjected to vacuum refining by the following method using the apparatus having the structure shown in FIG. 1 or FIG.

【0022】転炉などで処理した溶鋼4を取鍋1へ出鋼
したのち筒状浸漬管2を溶鋼4に浸漬し、浸漬管2内を
真空排気して減圧して溶鋼4を浸漬管2内へ吸い上げ
る。この時、溶鋼の吸い上げ高さ(図1、2のh)は、
1000〜2000 mm 程度にするのが望ましい。
After the molten steel 4 treated in a converter or the like is tapped into a ladle 1, the cylindrical immersion pipe 2 is immersed in the molten steel 4, and the interior of the immersion pipe 2 is evacuated to a reduced pressure to reduce the molten steel 4 to the immersion pipe 2. Suck up inside. At this time, the suction height of molten steel (h in FIGS. 1 and 2)
It is desirable to set it to about 1000 to 2000 mm.

【0023】次いで、浸漬管2の下端部の内壁に設けた
浸漬羽口3から溶鋼4の攪拌のためのガス(Arなどの不
活性ガスが望ましい)を吹き込みながら、浸漬管2に設
けた投入口7(図1では図示せず)から浸漬管2内の溶
鋼4に必要に応じて合金鉄やフラックスなどを添加す
る。また、溶鋼4を昇温する場合には上吹き羽口5また
は浸漬羽口3や上吹きランス6から酸化性ガスを供給す
る。
Next, a gas (preferably an inert gas such as Ar) for stirring the molten steel 4 is blown from the immersion tuyere 3 provided on the inner wall at the lower end portion of the immersion tube 2, while the gas is supplied to the immersion tube 2. From the port 7 (not shown in FIG. 1), alloy iron, flux or the like is added to the molten steel 4 in the immersion pipe 2 as needed. When the temperature of the molten steel 4 is to be raised, an oxidizing gas is supplied from the upper blowing tuyere 5 or the immersion tuyere 3 or the upper blowing lance 6.

【0024】上記のような方法における望ましい条件は
次のとおりである。
Desirable conditions in the above method are as follows.

【0025】筒状浸漬管2の水平断面形状には特別な制
約はないが、取鍋が通常円形であることを考慮すれば、
図1(b) に示すような円形とするのが望ましい。
There is no particular restriction on the horizontal cross-sectional shape of the cylindrical immersion tube 2, but considering that the ladle is usually circular,
It is desirable to have a circular shape as shown in FIG.

【0026】浸漬羽口3は、複数個を図1(b) に示す羽
口間角度(Δθ)を持たせて配置する。Δθの範囲は5
〜30deg とするのが望ましい。
A plurality of immersion tuyeres 3 are arranged with a tuyere angle (Δθ) shown in FIG. 1 (b). Δθ range is 5
It is desirable to set it to 30 deg.

【0027】各浸漬羽口3から吹き込まれるガスは、浸
漬管2内における溶鋼4の上昇流域内で平均的に分散さ
せる必要がある。羽口間角度(Δθ)が5deg 未満では
隣接する浸漬羽口3から吹き込まれたガスが合体し、上
昇流を生じさせる効率が低下する。一方、30deg より大
きい角度にすると浸漬羽口3の間で溶鋼4中のガスの存
在分布が局所的に粗になる領域が生じ、上昇流を生じさ
せる効率が局所的に低下する。
The gas blown from each immersion tuyere 3 must be dispersed evenly in the ascending flow area of the molten steel 4 in the immersion pipe 2. When the tuyere angle (Δθ) is less than 5 °, the gas blown from the adjacent immersion tuyere 3 is united, and the efficiency of generating the upward flow decreases. On the other hand, if the angle is larger than 30 deg, a region where the distribution of gas in the molten steel 4 is locally coarse occurs between the immersion tuyere 3 and the efficiency of generating the ascending flow is locally reduced.

【0028】浸漬管2の上下方向における浸漬羽口3の
設置位置の望ましい範囲は、この浸漬管2の下端から50
〜500 mmである。下端から50mm未満では、操業初期にお
ける耐火物の脱落や操業末期(後期)における浸漬管2
の溶損の危険性があるため、浸漬羽口3が損傷を受けて
操業が不可能となる可能性がある。浸漬羽口3の位置を
筒状浸漬管2の下端から50mm以上高くしておけば、これ
らの問題を回避することができる。一方、下端から500m
m を超えると浸漬羽口3が浸漬管2内の溶鋼4の表面に
近づきすぎるため、管内のスプラッシュが増大し、地金
付きが大きくなる。こうなると、非操業時の地金切り作
業の頻度が高まり、生産性の低下および作業要員の確保
による人件費の高騰などの問題点が生じる。
The desirable range of the installation position of the immersion tuyere 3 in the vertical direction of the immersion tube 2 is 50 mm from the lower end of the immersion tube 2.
~ 500 mm. If it is less than 50 mm from the lower end, the refractory may fall off in the early stage of operation or the immersion pipe 2
Because of the danger of erosion, the immersion tuyere 3 may be damaged, making operation impossible. These problems can be avoided if the position of the immersion tuyere 3 is set higher than the lower end of the tubular immersion tube 2 by 50 mm or more. On the other hand, 500m from the lower end
If it exceeds m, the immersion tuyere 3 will be too close to the surface of the molten steel 4 in the immersion pipe 2, so that the splash in the pipe will increase and the ingot will increase. In such a case, the frequency of the slashing operation during non-operation increases, which causes problems such as a decrease in productivity and a rise in labor costs due to securing of work personnel.

【0029】溶鋼の攪拌のために浸漬羽口3から吹き込
む攪拌ガス流量の望ましい範囲は、処理する溶鋼の1ト
ン当たり 0.004〜0.03Nm3/min である。
A desirable range of the flow rate of the stirring gas blown from the immersion tuyere 3 for stirring the molten steel is 0.004 to 0.03 Nm 3 / min per ton of the molten steel to be treated.

【0030】溶鋼の循環を効果的に行うための攪拌ガス
流量を調査し、上記の範囲に関して次に述べるような知
見を得た。
The flow rate of the stirring gas for effectively circulating the molten steel was investigated, and the following findings were obtained regarding the above range.

【0031】攪拌ガス流量を 0.004Nm3/(min・ton)以上
にすれば、筒状浸漬管内の攪拌を十分に行うことが可能
で、しかも、管内の溶鋼と取鍋内の溶鋼との循環も著し
く促進される。また、溶鋼中の脱ガス種成分の気泡界面
あるいは真空雰囲気に面する自由表面への物質の移動速
度を十分に確保することができるので、脱ガス効率を大
きくすることができる。
By setting the flow rate of the stirring gas to 0.004 Nm 3 / (min · ton) or more, it is possible to sufficiently stir the inside of the cylindrical immersion tube, and to circulate the molten steel in the tube and the molten steel in the ladle. Is also significantly promoted. In addition, since the moving speed of the substance to the free surface facing the bubble interface or the vacuum atmosphere of the degassing species component in the molten steel can be sufficiently secured, the degassing efficiency can be increased.

【0032】ただし、攪拌ガス流量が0.03Nm3/(min・to
n)を超えると、浸漬管内のスプラッシュが増大し、管内
の地金付きや地金の排気系への吸い込みなどが生じて安
定操業に問題が生じる。また、真空ポンプの負荷が増大
し、浸漬管内の圧力が低下せず(真空度を高めることが
できず)、除去すべきガスの溶鋼中の平衡濃度が低下し
なくなる。したがって、脱ガス速度も低下してしまう場
合がある。
However, the flow rate of the stirring gas is 0.03 Nm 3 / (min · to
If the value exceeds n), the splash in the immersion tube increases, and there is a problem in stable operation due to sticking of metal in the tube and suction of metal into the exhaust system. Further, the load of the vacuum pump increases, the pressure in the immersion tube does not decrease (the degree of vacuum cannot be increased), and the equilibrium concentration of the gas to be removed in the molten steel does not decrease. Therefore, the degassing speed may be reduced.

【0033】浸漬管内の到達圧力は脱ガス速度に大きな
影響を与えるから、圧力を低下させる(真空度を高め
る)ことが重要である。到達圧力は吹き込みガスの流量
と真空ポンプの排気能力との兼ね合いで決まるが、脱ガ
ス処理時の望ましい到達圧力は100Torr以下、さらに望
ましいのは5Torr以下である。
Since the ultimate pressure in the immersion tube greatly affects the degassing speed, it is important to reduce the pressure (increase the degree of vacuum). The ultimate pressure is determined by a balance between the flow rate of the blown gas and the exhaust capacity of the vacuum pump. The ultimate pressure at the time of the degassing process is preferably 100 Torr or less, more preferably 5 Torr or less.

【0034】以上の前提条件の下での検討結果に基づ
き、本発明方法における前記式および式の条件につ
いて説明する。
Based on the results of the study under the above preconditions, the above formulas and the conditions of the formulas in the method of the present invention will be described.

【0035】浸漬管2の内径D と取鍋1の内径Doとの比
D/Do は、下記式の範囲としなければならない。
Ratio of inner diameter D of immersion tube 2 to inner diameter Do of ladle 1
D / Do must be within the range of the following formula.

【0036】0.5≦ D/Do ≦0.8 ・・・・・・・ 浸漬管2の内径D が小さいと、それにともない、その内
側の脱ガス反応に有効に寄与する反応界面積が減少す
る。有効反応界面積を確保するために必要な筒状浸漬管
2の内径条件を種々検討した結果、比 D/Do が 0.5より
小さいと脱ガス速度が著しく低下することが判明した。
したがって、 D/Do は 0.5以上であることが必要であ
る。一方、浸漬管2は耐火物で被覆されているため、そ
の内径D を取鍋1の内径まで大きくすることはできな
い。操業上、筒状浸漬管2の外面と取鍋1の内面との間
のクリアランスを確保する必要があることを考慮すると
D/Do の上限は 0.8である。
0.5 ≦ D / Do ≦ 0.8 When the inner diameter D of the immersion tube 2 is small, the reaction interface area effectively contributing to the degassing reaction inside the immersion tube 2 decreases. As a result of various examinations of the inner diameter conditions of the cylindrical immersion pipe 2 necessary for securing an effective reaction interface area, it was found that when the ratio D / Do was smaller than 0.5, the degassing rate was significantly reduced.
Therefore, D / Do needs to be 0.5 or more. On the other hand, since the immersion pipe 2 is covered with a refractory, its inner diameter D cannot be increased to the inner diameter of the ladle 1. Considering that it is necessary to secure a clearance between the outer surface of the cylindrical immersion pipe 2 and the inner surface of the ladle 1 in operation.
The upper limit of D / Do is 0.8.

【0037】更に本発明方法では前記の式と同時に下
記の式を満足させる必要がある。
Further, in the method of the present invention, it is necessary to satisfy the following equation simultaneously with the above equation.

【0038】 100×(D/Do)+85≦θ≦ 100×(D/Do)+145 ・・・・・ ただし、θはガス吹き込み用浸漬羽口3の設置範囲を表
す浸漬管2の中心角(deg) である(図1(b) 参照)。
100 × (D / Do) + 85 ≦ θ ≦ 100 × (D / Do) +145 where θ is the central angle of the immersion tube 2 representing the installation range of the gas-blowing immersion tuyere 3 ( deg) (see Fig. 1 (b)).

【0039】上記の中心角θが適切でないと、前記の
式を満足させても脱ガス、脱硫および清浄化が十分でな
い場合が発生する。
If the above center angle θ is not appropriate, there may be cases where degassing, desulfurization and cleaning are not sufficient even if the above equation is satisfied.

【0040】図3は脱水素速度定数に及ぼす D/Do と中
心角θの影響を示す図である。図3に示すように溶鋼の
脱水素速度定数(KH ) を 0.2 min-1以上とするために
は、前記のおよび式を同時に満足させる必要があ
る。ただし、この脱水素速度定数KH は次の式から求め
た値である。
FIG. 3 is a diagram showing the influence of D / Do and central angle θ on the dehydrogenation rate constant. As shown in FIG. 3, in order to set the dehydrogenation rate constant (K H ) of molten steel to 0.2 min −1 or more, it is necessary to satisfy the above and the above expressions at the same time. However, the dehydrogenation rate constant K H is a value obtained from the following equation.

【0041】KH = ln (〔H〕o /〔H〕e)/T 〔H〕o :処理前の溶鋼中水素濃度 (ppm) 〔H〕e :処理後の溶鋼中水素濃度 (ppm) T:処理時間 (min) 図4は脱硫速度定数に及ぼす D/Do と中心角θの影響を
示す図である。図4に示すように溶鋼の脱硫速度定数
(KS ) を 0.2 min-1以上とするためには、前記のお
よび式を同時に満足させる必要がある。ただし、脱硫
速度定数KS は次の式から求めた値である。
K H = ln ([H] o / [H] e) / T [H] o: Hydrogen concentration in molten steel before treatment (ppm) [H] e: Hydrogen concentration in molten steel after treatment (ppm) T: treatment time (min) FIG. 4 is a diagram showing the influence of D / Do and central angle θ on the desulfurization rate constant. As shown in FIG. 4, in order to set the desulfurization rate constant (K S ) of molten steel to 0.2 min −1 or more, it is necessary to simultaneously satisfy the above expression and the expression. However, the desulfurization rate constant K S is a value obtained from the following equation.

【0042】KS = ln (〔S〕o /〔S〕e)/T 〔S〕o :処理前の溶鋼中硫黄濃度(ppm) 〔S〕e :処理後の溶鋼中硫黄濃度(ppm) T:処理時間(min) なお、ここでKH が 0.2 min-1以上、KS が 0.2 min-1
以上という基準を設けたのは、それぞれ、現在のRH法
および大気圧下でのガスバブリング法による脱水素およ
び脱流の精錬限界が 0.2 min-1であるので、これと同等
以上の精錬効果を得るためである。
K S = ln ([S] o / [S] e) / T [S] o: Sulfur concentration in molten steel before treatment (ppm) [S] e: Sulfur concentration in molten steel after treatment (ppm) T: processing time (min) where K H is 0.2 min −1 or more and K S is 0.2 min −1
The above criteria were established because the refining limits for dehydrogenation and deflow by the current RH method and gas bubbling method under atmospheric pressure are 0.2 min -1 , respectively. To get it.

【0043】図5は、脱炭速度定数に及ぼす D/Do と中
心角θの影響を示す図である。同図に示すように、前記
のおよび式を同時に満足させれば、溶鋼の脱炭速度
定数(KC ) を 0.3 min-1以上とすることも可能であ
る。ただし、脱炭速度定数KCは次の式から求めた値で
ある。
FIG. 5 is a diagram showing the influence of D / Do and central angle θ on the decarburization rate constant. As shown in the figure, if the above and the above expressions are simultaneously satisfied, the decarburization rate constant (K C ) of the molten steel can be set to 0.3 min −1 or more. However, the decarburization rate constant K C is a value obtained from the following equation.

【0044】KC = ln (〔C〕o /〔C〕e)/T 〔C〕o :処理前の溶鋼中炭素濃度(ppm) 〔C〕e :処理後の溶鋼中炭素濃度(ppm) T:処理時間(min) 図6は脱窒処理による到達窒素濃度に及ぼす D/Do と中
心角θとの影響を示す図である。同図から明らかなよう
に、前記のおよび式を同時に満足させれば、溶鋼の
到達窒素濃度を 20 ppm 以下とすることができる。
K C = ln ([C] o / [C] e) / T [C] o: concentration of carbon in molten steel before treatment (ppm) [C] e: concentration of carbon in molten steel after treatment (ppm) T: Processing time (min) FIG. 6 is a diagram showing the influence of D / Do and central angle θ on the attained nitrogen concentration by the denitrification processing. As is clear from the figure, if the above and the above expressions are simultaneously satisfied, the ultimate nitrogen concentration of the molten steel can be reduced to 20 ppm or less.

【0045】中心角θが 100×(D/Do)+85未満では、浸
漬管内の溶鋼の上昇流域が下降流域よりも小さくなり、
下降流域での溶鋼の下降流速が著しく低下し、浸漬管内
の溶鋼と取鍋内の溶鋼との入れ替え、循環の速度が小さ
くなる。また、浸漬管の内径D が大きくなるほど相対的
に攪拌ガスの水平到達距離が短くなり、溶鋼の上昇流域
が相対的に低下する。したがって、図3および図4に示
すように、D/Doが大きくなるにつれてθの下限値を大き
くする必要がある。
When the central angle θ is less than 100 × (D / Do) +85, the rising flow area of the molten steel in the immersion pipe is smaller than the falling flow area,
The descending flow velocity of the molten steel in the descending flow area is remarkably reduced, and the speed of replacing and circulating the molten steel in the immersion pipe with the molten steel in the ladle is reduced. Further, as the inner diameter D of the immersion pipe increases, the horizontal reach distance of the stirring gas becomes relatively shorter, and the ascending flow area of the molten steel relatively decreases. Therefore, as shown in FIGS. 3 and 4, it is necessary to increase the lower limit value of θ as D / Do increases.

【0046】一方、中心角θが 100×(D/Do)+145 を超
えると、上記と逆に浸漬管内の溶鋼の上昇流域が下降流
域よりも大きくなって下降流域面積が相対的に小さくな
り、上昇流域の溶鋼上昇流との干渉により、溶鋼の下降
流が十分に取鍋内に侵入しなくなる。また、浸漬管の内
径D が大きくなるにつれて、上記と同様に溶鋼の上昇流
域が相対的に低下する。したがって、図3および図4に
示すように、D/Doが大きくなるにつれてθの上限値も大
きくする必要がある。
On the other hand, if the central angle θ exceeds 100 × (D / Do) +145, the upflow area of the molten steel in the immersion pipe is larger than the downflow area, and the downflow area becomes relatively small, contrary to the above. Due to the interference with the upward flow of molten steel in the upward flow region, the downward flow of molten steel does not sufficiently enter the ladle. Further, as the inner diameter D of the immersion pipe increases, the upward flow area of the molten steel relatively decreases as described above. Therefore, as shown in FIGS. 3 and 4, it is necessary to increase the upper limit value of θ as D / Do increases.

【0047】このように本発明方法では、 0.2 min-1
上の脱水素速度定数および脱硫速度定数を達成し、併せ
て脱炭と脱窒の効率も上げ、真空精錬処理時間を短縮す
ることができる。また、後述する実施例で示すように酸
化性ガスの吹き込みによる溶鋼の昇温処理の際には、処
理後の溶鋼中の全酸素、T.〔O〕が20ppm 未満の良好な
清浄性を得ることができる。
As described above, in the method of the present invention, a dehydrogenation rate constant and a desulfurization rate constant of 0.2 min -1 or more can be achieved, the efficiency of decarburization and denitrification can be increased, and the vacuum refining time can be shortened. it can. Also, as shown in the examples described later, when the temperature of the molten steel is increased by blowing an oxidizing gas, good cleanliness is obtained in which the total oxygen and T. [O] in the molten steel after the treatment are less than 20 ppm. be able to.

【0048】[0048]

【実施例】【Example】

(試験1)図1に示す構成の装置を用い、取鍋(Do=4
m)に収容した250 トンの溶鋼中に浸漬管2を浸漬し、内
部を真空排気した状態で浸漬管の下端近傍(下端から浸
漬羽口までの距離=300 mm) の内壁に設けた内径3mm×
12本(Δθ=9 〜21 deg)の浸漬羽口からArガスを2500
Nリットル/minで吹き込んで溶鋼をガス攪拌し、処理中
の浸漬管内圧力(真空度)を2Torrに制御し、h=1.8m
に維持しながら脱水素処理を9〜11分間おこなった。処
理条件および処理結果を表1に示す。なお、処理溶鋼量
に対する攪拌ガス流量は 0.01 Nm3/(min・ton)となる。
(Test 1) Ladle (Do = 4) using the apparatus shown in FIG.
The immersion pipe 2 is immersed in 250 tons of molten steel housed in the m), and the inside is evacuated to an inner wall near the lower end of the immersion pipe (distance from the lower end to the immersion tuyere = 300 mm). ×
Ar gas is 2,500 from 12 immersion tuyeres (Δθ = 9 to 21 deg).
The molten steel was gas-stirred by blowing at N l / min, and the pressure (degree of vacuum) in the immersion pipe during processing was controlled to 2 Torr, and h = 1.8 m
The dehydrogenation treatment was carried out for 9 to 11 minutes while maintaining the temperature. Table 1 shows the processing conditions and processing results. The flow rate of the stirring gas with respect to the amount of the molten steel to be processed is 0.01 Nm 3 / (min · ton).

【0049】[0049]

【表1】 [Table 1]

【0050】表1に示すとおり、D/Doが 0.7の条件にお
いて、前記式で求められるθの最適範囲 155〜215deg
内にある試験 No.2〜4では 0.2 min-1以上の高い脱水
素速度定数が得られたが、上記の範囲を除くθでは脱水
素速度定数は0.15 min-1未満であった。
As shown in Table 1, under the condition that D / Do is 0.7, the optimum range of θ obtained by the above equation is 155 to 215 deg.
In Test Nos. 2 to 4, which are inside, a high dehydrogenation rate constant of 0.2 min -1 or more was obtained, but the dehydrogenation rate constant was less than 0.15 min -1 at θ other than the above range.

【0051】D/Do が 0.4の条件では、θの最適範囲は
125〜185degとなるが、試験 No.8および9のようにこ
の範囲内であっても脱水素速度定数は0.12 min-1以下と
低かった。
Under the condition that D / Do is 0.4, the optimum range of θ is
Although it is 125 to 185 deg, the dehydrogenation rate constant was as low as 0.12 min -1 or less even in this range as in Test Nos. 8 and 9.

【0052】以上から、脱水素速度定数を 0.2 min-1
上にするためには、D/Doを 0.5以上とし、しかもθの範
囲を前記式を満たすように制御する必要があることが
わかる。
From the above, it can be seen that in order to set the dehydrogenation rate constant to 0.2 min -1 or more, it is necessary to control D / Do to 0.5 or more and to control the range of θ so as to satisfy the above expression.

【0053】(試験2)出鋼時に脱酸をおこなうととも
に出鋼中に生石灰を投入してスラグ中の(%CaO)/(%Al
2O3) を 1.2〜2.0 に調整し、真空処理前の溶鋼中
〔S〕濃度を40〜50ppmとした。
(Test 2) Deoxidation is performed at the time of tapping, and quick lime is put into tapping to add (% CaO) / (% Al in slag.
2 O 3 ) was adjusted to 1.2 to 2.0, and the [S] concentration in molten steel before vacuum treatment was set to 40 to 50 ppm.

【0054】試験1と同様に図1に示す構成の装置を用
い、取鍋(Do=4m)に収容した250トンの溶鋼中に浸漬
管を浸漬し、浸漬管内を真空排気した状態で浸漬管の下
端近傍 (下端から浸漬羽口までの距離=300 mm) の内壁
に設けた内径3mm×12本(Δθ= 8〜20deg)の浸漬羽口
からArガスを2500 Nリットル/minで吹き込んで溶鋼をガ
ス攪拌し、処理中の浸漬管内圧力(真空度)を10Torrに
制御しながら脱硫処理を9〜10min 間おこなった。hは
1.8 mに維持した。なお、全処理溶鋼量に対する攪拌ガ
ス流量は0.01Nm3/(min・ton)である。試験条件および結
果を表2に示す。
Using an apparatus having the structure shown in FIG. 1 as in Test 1, the immersion tube was immersed in 250 tons of molten steel housed in a ladle (Do = 4 m), and the immersion tube was evacuated to a vacuum. Ar gas is blown at 2500 Nl / min from an immersion tuyere with an inner diameter of 3 mm x 12 pieces (Δθ = 8 to 20 deg) provided on the inner wall near the lower end of the tub (distance from the lower end to the immersion tuyere = 300 mm). Was subjected to gas agitation, and a desulfurization treatment was performed for 9 to 10 minutes while controlling the pressure (degree of vacuum) in the immersion tube during the treatment at 10 Torr. h is
Maintained at 1.8 m. In addition, the stirring gas flow rate with respect to the total amount of molten steel to be treated is 0.01 Nm 3 / (min · ton). Table 2 shows the test conditions and results.

【0055】[0055]

【表2】 [Table 2]

【0056】表2に示すとおり、D/Doが 0.6の条件にお
いて、θの最適範囲(145〜205deg)内にある試験 No.12
〜14では 0.2 min-1以上の高い脱硫速度定数が得られた
が、上記範囲を除くθでは脱硫速度定数は 0.15min-1
満であった。
As shown in Table 2, under the condition that D / Do is 0.6, Test No. 12 which is within the optimal range of θ (145 to 205 deg)
At ~ 14, a high desulfurization rate constant of 0.2 min -1 or more was obtained, but at θ excluding the above range, the desulfurization rate constant was less than 0.15 min -1 .

【0057】D/Do が 0.3の条件ではθの最適範囲は 11
5〜175degとなるが、この範囲内である試験 No.18、19
でも脱硫速度定数は0.15 min-1以下と低かった。
Under the condition that D / Do is 0.3, the optimum range of θ is 11
Test Nos. 18 and 19 within 5 to 175 deg are within this range.
However, the desulfurization rate constant was as low as 0.15 min -1 or less.

【0058】以上から、脱硫速度定数を 0.2 min-1以上
にするためにも、D/Doを 0.5以上とし、かつθの範囲を
前記式を満たすように制御する必要があることがわか
る。
From the above, it can be seen that in order to make the desulfurization rate constant 0.2 min -1 or more, it is necessary to control D / Do to 0.5 or more and to control the range of θ so as to satisfy the above equation.

【0059】(試験3)図2に示す構成の装置を用い、
取鍋(Do=4m)に収容した250 トンの溶鋼中に浸漬管を
浸漬し、浸漬管内を真空排気した状態で浸漬管の下端近
傍(下端から浸漬羽口までの距離=300 mm) の内壁に設
けた内径3mm×12本(Δθ= 9〜20deg)の浸漬羽口から
Arガスを 2500 N リットル/minで吹き込むとともに、浸
漬管内に金属アルミニウムを溶鋼1トン当たり1.6kg 添
加しつつガス攪拌を5分間おこなった。到達真空度は 5
0 Torr、h=1.7mとした。昇温処理前の溶鋼サンプルを
採取してT.〔O〕を分析した。
(Test 3) Using the apparatus having the configuration shown in FIG.
An immersion pipe is immersed in 250 tons of molten steel stored in a ladle (Do = 4m), and the inner wall near the lower end of the immersion pipe (distance from the lower end to the immersion tuyere = 300 mm) is evacuated. 3mm x 12 (Δθ = 9-20deg) immersion tuyere
Ar gas was blown at 2500 Nl / min, and gas agitation was performed for 5 minutes while adding 1.6 kg of metallic aluminum per ton of molten steel into the immersion tube. Ultimate vacuum is 5
0 Torr, h = 1.7 m. A sample of molten steel before the heating treatment was collected and analyzed for T. [O].

【0060】その後、溶鋼のガス攪拌を継続しながら、
上吹きランスから酸素ガス0.2 Nm3/(min・ton)を溶鋼表
面に5分間吹き付ける昇温処理をおこなった。このとき
ランス高さは3m とした。
Thereafter, while the gas stirring of the molten steel is continued,
A heating treatment was performed in which oxygen gas 0.2 Nm 3 / (min · ton) was blown from the top blowing lance onto the molten steel surface for 5 minutes. At this time, the lance height was 3 m.

【0061】昇温処理前の溶鋼温度は1580〜1620℃、各
チャージの昇温処理での昇温は約40℃であった。なお、
全処理溶鋼量に対する攪拌ガス流量は0.01Nm3/(min・to
n)となる。
The temperature of the molten steel before the temperature increase was 1580 to 1620 ° C., and the temperature increase in the temperature increase of each charge was about 40 ° C. In addition,
The stirring gas flow rate with respect to the total amount of molten steel is 0.01 Nm 3 / (min
n).

【0062】さらに、酸素ガスの供給を止めたのちガス
攪拌を3min 間継続し、昇温処理後の溶鋼サンプルを採
取してT.〔O〕を分析した。試験条件および結果を表3
に示す。
Further, after the supply of oxygen gas was stopped, gas stirring was continued for 3 minutes, and a sample of the molten steel after the heating treatment was taken to analyze T. [O]. Table 3 shows test conditions and results.
Shown in

【0063】[0063]

【表3】 [Table 3]

【0064】表3に示すとおり、D/Doが0.65の条件にお
いて、θの最適範囲(150〜210 deg)内にある試験No.22
〜24では昇温処理後のT.〔O〕が20ppm 未満の良好な溶
鋼の清浄性が得られたが、θが上記範囲にない場合は昇
温処理後のT.〔O〕は50ppmを超え、溶鋼の清浄性は悪
化した。
As shown in Table 3, under the condition that D / Do is 0.65, Test No. 22 which is within the optimal range of θ (150 to 210 deg)
~ 24, good cleanliness of molten steel having a T. [O] after the temperature rise of less than 20 ppm was obtained, but when θ was not within the above range, T. [O] after the temperature rise was 50 ppm. Above, the cleanliness of the molten steel deteriorated.

【0065】D/Doが 0.4の条件ではθの最適範囲は 125
〜175degとなるが、この範囲内にある試験 No.28、29で
あっても、処理後のT.〔O〕は 50ppmを超え、溶鋼の清
浄性は良くない。
Under the condition that D / Do is 0.4, the optimum range of θ is 125
175175 °, but even in Test Nos. 28 and 29 within this range, T. [O] after treatment exceeds 50 ppm, and the cleanliness of molten steel is not good.

【0066】以上から、昇温処理後のT.〔O〕を20ppm
未満にするためには、D/Doを0.5 以上とした上でθの範
囲を前記で定められる範囲に制御する必要があること
がわかる。
From the above, T. [O] after the temperature raising treatment was reduced to 20 ppm.
It can be seen that in order to make the ratio less than 0.5, it is necessary to control the range of θ to the above-defined range after setting D / Do to 0.5 or more.

【0067】(試験4)転炉で吹錬した250 トンの溶鋼
を取鍋(Do=4m)に脱酸出鋼した。出鋼時には脱酸剤と
して溶鋼トン当たり1kgの金属アルミニウムを使用し
た。その後、図1に示す構成の装置を用いて、取鍋内の
溶鋼中に浸漬管を浸漬し、浸漬管内を真空排気した状態
で浸漬管の下端近傍(下端から浸漬羽口までの距離=30
0 mm) の内壁に設けた内径3mm×12本の浸漬羽口からAr
ガスを 2500 N リットル/minで吹き込んで、溶鋼のガス
攪拌を行い脱炭処理を行った。なお、脱炭処理での到達
真空度は1Torr、h=1.8 m とした。全処理溶鋼量に対
する攪拌ガス流量は0.01Nm3/(min・ton)である。処理前
の溶鋼の炭素濃度は 380〜420 ppm 、酸素濃度は 480〜
530 ppm であり、各ヒートで 9〜11分間の脱炭処理とし
た。結果を表4に示す。
(Test 4) A 250-ton molten steel blown in a converter was deoxidized and discharged into a ladle (Do = 4 m). At the time of tapping, 1 kg of metallic aluminum per ton of molten steel was used as a deoxidizing agent. Thereafter, using a device having the configuration shown in FIG. 1, the immersion tube is immersed in molten steel in a ladle, and the interior of the immersion tube is evacuated to a vacuum and the vicinity of the lower end of the immersion tube (distance from lower end to immersion tuyere = 30).
0 mm) from the inner immersion tuyere with an inner diameter of 3 mm × 12
Gas was blown in at 2500 Nl / min, and the molten steel was agitated for decarburization. The ultimate vacuum in the decarburization treatment was 1 Torr and h = 1.8 m. The stirring gas flow rate with respect to the total amount of molten steel treated is 0.01 Nm 3 / (min · ton). The carbon concentration of the molten steel before treatment is 380-420 ppm, and the oxygen concentration is 480-
It was 530 ppm, and decarburization treatment was performed for 9 to 11 minutes in each heat. Table 4 shows the results.

【0068】[0068]

【表4】 [Table 4]

【0069】表4に示すとおり、D/Doが 0.65 の条件で
はθの最適範囲は 150〜210degとなるが、この範囲内で
は高い脱炭速度定数が得られた。この範囲外では、脱炭
速度定数は 0.30min-1に達していない。一方、D/Doが
0.35 の場合には、θの最適範囲 150〜210degの範囲内
でも脱炭速度定数は著しく小さい。
As shown in Table 4, under the condition that D / Do is 0.65, the optimum range of θ is 150 to 210 deg. Within this range, a high decarburization rate constant was obtained. Outside this range, the decarburization rate constant does not reach 0.30 min -1 . On the other hand, D / Do
In the case of 0.35, the decarburization rate constant is extremely small even within the optimal range of θ of 150 to 210 deg.

【0070】(試験5)転炉で低炭素濃度域まで吹錬し
た250 トンの溶鋼を取鍋(Do=4m)に脱酸出鋼した。出
鋼時には脱酸剤として溶鋼トン当たり1kgの金属アルミ
ニウムを使用した。その後、図1に示す構成の装置を用
いて、取鍋内の溶鋼中に浸漬管を浸漬し、浸漬管内を真
空排気した状態で浸漬管の下端近傍(下端から浸漬羽口
までの距離=300 mm) の内壁に設けた内径3mm×12本の
浸漬羽口からArガスを 2500 N リットル/minで吹き込ん
で、溶鋼のガス攪拌を行い脱窒処理を行った。脱窒処理
での到達真空度は1Torr、h=1.8 m とした。なお、全
処理溶鋼量に対する攪拌ガス流量は0.01Nm3/(min・ton)
となる。処理前の溶鋼の窒素濃度は36〜41 ppmであり、
各ヒートで 9〜13分間の脱窒処理とした。結果を表5に
示す。
(Test 5) A 250-ton molten steel blown to a low carbon concentration region in a converter was deoxidized and removed into a ladle (Do = 4 m). At the time of tapping, 1 kg of metallic aluminum per ton of molten steel was used as a deoxidizing agent. Then, using a device having the configuration shown in FIG. 1, the immersion tube is immersed in molten steel in a ladle, and the inside of the immersion tube is evacuated to a vacuum and the vicinity of the lower end of the immersion tube (distance from lower end to immersion tuyere = 300). Ar gas was blown in at 2500 Nl / min from a submerged tuyere having an inner diameter of 3 mm x 12 provided on the inner wall of (mm) and the molten steel was agitated for denitrification. The ultimate vacuum degree in the denitrification treatment was 1 Torr and h = 1.8 m. In addition, the stirring gas flow rate with respect to the total amount of molten steel is 0.01 Nm 3 / (min ・ ton)
Becomes The nitrogen concentration of the molten steel before treatment is 36-41 ppm,
Each heat was subjected to a denitrification treatment for 9 to 13 minutes. Table 5 shows the results.

【0071】[0071]

【表5】 [Table 5]

【0072】表5から明らかなとおり、D/Doが 0.75 の
条件ではθが最適範囲 160〜220degにあるとき、20ppm
以下の到達窒素濃度になっている。他方、D/Doが 0.4の
場合は、θが最適範囲 125〜185degにあっても、到達窒
素濃度は高い。
As is clear from Table 5, when D / Do is 0.75, when θ is in the optimum range of 160 to 220 deg, 20 ppm
The ultimate nitrogen concentration is as follows. On the other hand, when D / Do is 0.4, the attained nitrogen concentration is high even when θ is in the optimal range of 125 to 185 deg.

【0073】この結果から、本発明で定める式および
式の条件を満たせば、12分以下の処理で〔N〕が20pp
m 以下の極低窒素鋼が得られることが分かる。
From these results, if the formula and the conditions of the formula defined by the present invention are satisfied, [N] can be increased to 20 pp in 12 minutes or less.
It can be seen that extremely low nitrogen steel of m or less can be obtained.

【0074】[0074]

【発明の効果】本発明の方法により、溶鋼の真空精錬処
理時間を短縮することができるとともに、除去すべき
〔H〕、〔S〕、〔C〕および〔N)の到達濃度を著し
く低減させて清浄な鋼を溶製することが可能である。
According to the method of the present invention, the time required for the vacuum refining of molten steel can be shortened, and the ultimate concentration of [H], [S], [C] and [N] to be removed can be significantly reduced. It is possible to melt clean steel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するための装置の構成例を示
す概略図であり、(a) は定常操業しているときの状況を
示す要部の縦断面図、(b) は (a)の浸漬羽口の線におけ
る水平断面の概略図である。
FIG. 1 is a schematic view showing a configuration example of an apparatus for carrying out the method of the present invention, in which (a) is a longitudinal sectional view of a main part showing a situation during steady operation, and (b) is (a). 3) is a schematic view of a horizontal cross section taken along the line of the submerged tuyere.

【図2】本発明方法を実施するための装置の別の構成例
を示す概略縦断面図である。
FIG. 2 is a schematic longitudinal sectional view showing another example of the configuration of an apparatus for performing the method of the present invention.

【図3】脱水素速度定数に及ぼす D/Do と中心角θの影
響を示す図である。
FIG. 3 is a diagram showing the influence of D / Do and central angle θ on the dehydrogenation rate constant.

【図4】脱硫速度定数に及ぼす D/Do と中心角θの影響
を示す図である。
FIG. 4 is a diagram showing the influence of D / Do and central angle θ on the desulfurization rate constant.

【図5】脱炭速度定数に及ぼす D/Do と中心角θの影響
を示す図である。
FIG. 5 is a diagram showing the influence of D / Do and central angle θ on the decarburization rate constant.

【図6】脱窒処理時の到達窒素濃度に及ぼす D/Do と中
心角θの影響を示す図である。
FIG. 6 is a diagram showing the influence of D / Do and central angle θ on the attained nitrogen concentration during the denitrification treatment.

【符号の説明】[Explanation of symbols]

1:取鍋、2:浸漬管、 3:浸漬羽口、4:溶
鋼、5:上吹き羽口、 6:上吹きランス、7:投入
口、D:浸漬管の内径、 Do:取鍋の内径、
θ:浸漬羽口の設置範囲を表す中心角、Δθ:浸漬羽口
の羽口間角度、h:浸漬羽口から吸い上げた溶鋼表面ま
での距離
1: Ladle, 2: Immersion tube, 3: Immersion tuyere, 4: Molten steel, 5: Top blowing tuyere, 6: Top blowing lance, 7: Input port, D: Inner diameter of dipping tube, Do: Ladle of ladle Inner diameter,
θ: central angle representing the installation range of the immersion tuyere, Δθ: angle between the tuyere of the immersion tuyere, h: distance from the immersion tuyere to the surface of the molten steel sucked up

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 7/10 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C21C 7/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の式を満たす内径Dを有し、かつ下
記式を満たす範囲の下端部内壁にガス吹き込み用浸漬
羽口を有する浸漬管を用い、この浸漬管を取鍋中の溶鋼
に浸漬した後、浸漬管内を減圧することにより溶鋼を浸
漬管内に吸い上げ、前記の浸漬羽口から溶鋼中に溶鋼1
トン当たり0.004〜0.03Nm /minのガスを吹き込むこと
を特徴とする溶鋼の真空精錬方法。 0.5≦D/Do≦0.8 ・・・・・・・・・・・・・・ 100×(D/Do)+85≦θ≦100×(D/Do)+145 ・・・・ ただし、 D/Do:浸漬管内径Dと取鍋内径Doとの比 θ:ガス吹き込み用浸漬羽口の設置範囲を表す浸漬管の
中心角(deg)
1. An immersion tube having an inner diameter D satisfying the following formula and having a immersion tuyere for gas injection on the inner wall at the lower end in a range satisfying the following formula: After immersion, the molten steel is sucked into the dip tube by reducing the pressure in the dip tube, and the molten steel is introduced into the molten steel from the above-mentioned immersion tuyere.
A vacuum refining method for molten steel, characterized by blowing a gas at a rate of 0.004 to 0.03 Nm 3 / min per ton . 0.5 ≦ D / Do ≦ 0.8 ・ ・ ・ ・ ・ ・ 100 × (D / Do) + 85 ≦ θ ≦ 100 × (D / Do) +145 ・ ・ ・ ・ However, D / Do: The ratio of the inner diameter D of the immersion tube to the inner diameter Do of the ladle. Θ: Central angle (deg) of the immersion tube, which indicates the installation range of the immersion tuyere for gas injection.
JP30659096A 1996-11-18 1996-11-18 Vacuum refining method for molten steel Expired - Fee Related JP3252726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30659096A JP3252726B2 (en) 1996-11-18 1996-11-18 Vacuum refining method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30659096A JP3252726B2 (en) 1996-11-18 1996-11-18 Vacuum refining method for molten steel

Publications (2)

Publication Number Publication Date
JPH10147811A JPH10147811A (en) 1998-06-02
JP3252726B2 true JP3252726B2 (en) 2002-02-04

Family

ID=17958904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30659096A Expired - Fee Related JP3252726B2 (en) 1996-11-18 1996-11-18 Vacuum refining method for molten steel

Country Status (1)

Country Link
JP (1) JP3252726B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252109A (en) * 1975-10-24 1977-04-26 Nippon Steel Corp Proces and equipment for refining molten metal under reduced pressure
JPS6137912A (en) * 1984-07-30 1986-02-22 Nippon Steel Corp Method for vacuum-refining molten steel
JPH0192314A (en) * 1987-10-02 1989-04-11 Sumitomo Metal Ind Ltd Ladle refining method
JPH036317A (en) * 1989-06-02 1991-01-11 Nkk Corp Method and device for ladle refining
JPH0721562Y2 (en) * 1991-06-27 1995-05-17 新日本製鐵株式会社 Large amount gas injection dip tube
JPH05271748A (en) * 1992-03-25 1993-10-19 Kobe Steel Ltd Vacuum degassing method

Also Published As

Publication number Publication date
JPH10147811A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
JP5428447B2 (en) Method for refining molten steel in RH vacuum degassing equipment
JP3252726B2 (en) Vacuum refining method for molten steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JPH11315315A (en) Metallurgical reaction apparatus for treating molten metal under reduced pressure
KR100422886B1 (en) Refining method and refining apparatus of molten steel
JP3891013B2 (en) Method of refining molten steel with RH degassing equipment
JP3374618B2 (en) Vacuum refining method for molten steel
JP2000212641A (en) High speed vacuum refining of molten steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JP2724030B2 (en) Melting method of ultra low carbon steel
JP3742534B2 (en) Vacuum refining apparatus and method for melting low carbon steel using the same
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPH0754034A (en) Production of ultralow carbon steel
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JPH1161237A (en) Production of extra-low carbon steel by vacuum refining
JP3070416B2 (en) Vacuum degassing method for molten steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP3282530B2 (en) Method for producing high cleanliness low Si steel
JPH04131316A (en) Method and device for vacuum degassing of extra-low-carbon steel
JPH11158536A (en) Method for melting extra-low carbon steel excellent in cleanliness
JPH06322430A (en) Vacuum refining method of molten metal
JPH02267213A (en) Method for vacuum-decarbonizing molten steel
JPH0741835A (en) Method for vacuum-refining molten steel by gas injection

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees