JPH08325629A - Method for smelting ultra-low carbon steel - Google Patents

Method for smelting ultra-low carbon steel

Info

Publication number
JPH08325629A
JPH08325629A JP13143395A JP13143395A JPH08325629A JP H08325629 A JPH08325629 A JP H08325629A JP 13143395 A JP13143395 A JP 13143395A JP 13143395 A JP13143395 A JP 13143395A JP H08325629 A JPH08325629 A JP H08325629A
Authority
JP
Japan
Prior art keywords
molten steel
ton
gas
decarburization
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13143395A
Other languages
Japanese (ja)
Inventor
Eiji Sakurai
栄司 櫻井
Yoshikatsu Furuno
好克 古野
Hideto Takasugi
英登 高杉
Manabu Tano
学 田野
Junichi Fukumi
純一 福味
Ryuji Yamaguchi
隆二 山口
Eiju Matsuno
英寿 松野
Takeshi Murai
剛 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP13143395A priority Critical patent/JPH08325629A/en
Publication of JPH08325629A publication Critical patent/JPH08325629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To make it possible to smelt ultra-low carbon steel with high productiv ity and high reliability. CONSTITUTION: This refining method comprises blowing gas for reflux from a tuyere disposed by penetrating through the side wall of a riser or from a lance immersed into the molten steel in a ladle right under the riser in an RH decarburization refining method at a rate of blowing of the gas for reflux of >=30Nl/min.ton per 1ton reflux rate of the molten steel. This smelting method comprises controlling the displacement H(kg/Hr.ton) per 1ton amt. of the molten steel to be treated to the following range according to the vacuum degree P(Torr) in a degassing chamber: 100>=H>=70 at P>=300, 80>=H>=40 at 30>=P>=200, 60>=H>=25 at 200>P>=100, 30>=H>=13 at 100>P>=50 and 15>=H>=8 at 50>P>=10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、RH脱ガス装置を用い
た極低炭素鋼の溶製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting ultra-low carbon steel using an RH degasser.

【0002】[0002]

【従来の技術】近年、冷延鋼板、表面処理鋼板の用途多
様化や材質向上要求に応えるため、連続焼鈍化による極
低炭素鋼の生産比率が増大しており、RH真空脱ガス法
による極低炭素鋼の溶製技術の開発が盛んである。この
際に、脱炭反応を効率良く促進して処理時間の短縮を図
り、脱炭処理後の到達〔C〕濃度の低減を図ることが重
要となる。
2. Description of the Related Art In recent years, the production ratio of ultra-low carbon steel by continuous annealing has been increasing in order to meet diversified uses of cold-rolled steel sheets and surface-treated steel sheets and demands for material improvement. Development of low carbon steel melting technology is active. At this time, it is important to efficiently promote the decarburization reaction to shorten the treatment time and to reduce the reached [C] concentration after the decarburization treatment.

【0003】通常、脱炭反応を促進するためには、環流
用ガス吹込み量を増大して鋼浴を強攪拌し、気−液界面
積の増大を図る手段が適用される。この強攪拌技術を脱
炭初期の高炭素溶鋼に適用すると、急激に発生するCO
ガス気泡により鋼浴は大量に飛散して真空脱ガス槽の側
壁に付着する。これが脱炭末期の極低炭素域に溶け出す
ため、到達〔C〕濃度が下がらず処理時間の延長を招
く。
Usually, in order to accelerate the decarburization reaction, a means for increasing the gas injection amount for reflux to stir the steel bath strongly to increase the gas-liquid interface area is applied. When this strong stirring technology is applied to high carbon molten steel in the early stages of decarburization, CO is suddenly generated.
A large amount of the steel bath is scattered by the gas bubbles and adheres to the side wall of the vacuum degassing tank. Since this melts into the extremely low carbon region at the final stage of decarburization, the concentration of [C] reached does not decrease and the treatment time is prolonged.

【0004】上記問題点を解決する方法として、特開平
2−122012号公報(従来技術1)には、脱炭進行
に伴って変化する(低下する)〔C〕濃度に応じて真空
度を制御し、極低炭素鋼を溶製する技術が開示されてい
る。
As a method for solving the above-mentioned problems, Japanese Patent Application Laid-Open No. H2-122012 (Prior Art 1) controls the degree of vacuum according to the [C] concentration that changes (decreases) with the progress of decarburization. However, a technique for melting ultra low carbon steel is disclosed.

【0005】従来技術1は、平衡〔C〕濃度に対して過
度に真空度を下げない方法である。言い換えると、精錬
途中、特に高炭素域(脱炭初期)の〔C〕濃度に対して
真空度を適切な範囲に規制することにより、脱炭速度を
確保しつつ、COガス発生量を抑制し溶鋼スプラッシュ
の飛散量を抑制する方法である。この結果、処理時間は
延長することなく、スプラッシュの溶け出すことがない
ので到達〔C〕濃度の低減が達成され、同時に、過度に
真空度を下げないから減圧のための蒸気エネルギーの削
減も達成出来る。
Prior art 1 is a method in which the degree of vacuum is not excessively lowered with respect to the equilibrium [C] concentration. In other words, during refining, by controlling the degree of vacuum to an appropriate range for the [C] concentration particularly in the high carbon region (initial stage of decarburization), the decarburization rate is secured and the CO gas generation amount is suppressed. This is a method of suppressing the amount of splash of molten steel splash. As a result, the processing time is not extended and the splash does not elute, so the concentration [C] reached is reduced, and at the same time, the vapor energy for reducing pressure is also reduced because the vacuum degree is not excessively lowered. I can.

【0006】特開昭63−213617号公報(従来技
術2)には、溶鋼環流量を脱炭処理中の〔C〕濃度に応
じて変化させて、極低炭素鋼を製造する方法が開示され
ている。
Japanese Patent Laid-Open No. 63-213617 (Prior Art 2) discloses a method for producing an ultra-low carbon steel by changing the molten steel ring flow rate according to the [C] concentration during decarburization. ing.

【0007】従来技術2は、脱炭開始から〔C〕濃度が
100ppm以上の高炭素域では、溶鋼環流量を低く規
制し、これ以降の低炭素域では、溶鋼環流量を増大させ
て脱炭速度を促進させる方法である。これにより、脱炭
初期では、環流用ガス吹込み量を規制し、攪拌力が抑制
されるので溶鋼スプラッシュの飛散量は抑制され、脱炭
後期では脱炭が促進されて、到達〔C〕濃度の低減と処
理時間の短縮を同時に達成するものである。
In the prior art 2, in the high carbon region where the [C] concentration is 100 ppm or more from the start of decarburization, the molten steel ring flow rate is regulated low, and in the subsequent low carbon region, the molten steel ring flow rate is increased to decarburize. This is a method of speeding up. As a result, in the initial stage of decarburization, the injection amount of the circulating gas is regulated, and the stirring force is suppressed, so the amount of splash of molten steel splash is suppressed, and in the latter stage of decarburization, decarburization is promoted and the [C] concentration reached. And reduction of processing time are achieved at the same time.

【0008】[0008]

【発明が解決しようとする課題】現状の技術では、脱炭
処理途中の〔C〕濃度の分析(サンプリングから〔C〕
濃度判明まで)におよそ3〜5分間要する。従って、処
理開始からおよそ10分前後で〔C〕濃度が400pp
mから20ppm前後まで低減するRHの脱炭精錬で
は、サンプリング時点と分析値判明時点の〔C〕濃度は
大きく変化してしまう。
In the current technology, analysis of the [C] concentration during decarburization (from sampling to [C]
It takes about 3 to 5 minutes to determine the concentration). Therefore, about 10 minutes after the start of the treatment, the [C] concentration was 400 pp.
In the decarburization refining of RH in which m is reduced to around 20 ppm, the [C] concentration at the time of sampling and the time of analysis value determination changes greatly.

【0009】このため、従来技術1の方法では、判明時
点の〔C〕濃度を精錬指標として真空度を適切な範囲に
制御する、言い換えると、3〜5分間前の高い〔C〕濃
度に対応して低真空度に制御される。この方法は、過度
に真空度を下げないため、スプラッシュ飛散量は抑制さ
れるものの脱炭速度は低下するので、RHの生産性は低
下してしまう。
Therefore, in the method of Prior Art 1, the degree of vacuum is controlled within an appropriate range by using the [C] concentration at the time of determination as a refining index, in other words, it corresponds to a high [C] concentration 3-5 minutes before. Then, the degree of vacuum is controlled. In this method, since the degree of vacuum is not excessively lowered, the splash amount of splash is suppressed, but the decarburization rate is reduced, so that the productivity of RH is reduced.

【0010】同様に、従来技術2では、〔C〕濃度を精
錬指標として溶鋼環流量を規制するため、前述の技術と
同様に分析時間が遅れ時間となって、脱炭進行中の
〔C〕濃度に対応した適切な溶鋼環流量が設定出来ず、
槽内地金付着量を抑制できても高脱炭速度は得られな
い。
Similarly, in the prior art 2, since the molten steel ring flow rate is regulated by using the [C] concentration as a refining index, the analysis time becomes a delay time as in the above-mentioned technique, and [C] during decarburization is in progress. It was not possible to set an appropriate molten steel ring flow rate corresponding to the concentration,
A high decarburization rate cannot be obtained even if the amount of metal deposits in the tank can be suppressed.

【0011】また、従来技術2では、脱炭後期の低炭素
域程、溶鋼環流量を増大させる必要があり、このため吹
き込みガス量を増大させねばならない。この結果、排気
能力の小さなRH脱ガス設備では、極低炭素鋼の溶製に
必要な高真空を確保できなくなって高脱炭速度が得られ
ない。
Further, in Prior Art 2, it is necessary to increase the molten steel ring flow rate in the low carbon region in the latter stage of decarburization, and therefore the amount of gas blown in must be increased. As a result, in the RH degassing equipment having a small exhaust capacity, it is not possible to secure a high vacuum necessary for melting ultra-low carbon steel, and thus a high decarburization rate cannot be obtained.

【0012】更に、従来技術2では、溶鋼環流量の絶対
量を規制して、脱炭速度を大きく保ちつつ槽内付着地金
を減少させる溶製方法である。従って、取鍋内径が大き
く、大きな浸漬管径を確保出来るRH脱ガス設備ではこ
の絶対量を確保出来るため、脱炭速度を確保出来るが、
取鍋内径制約から小さな浸漬管径しか確保出来ないRH
脱ガス設備では、吹き込みガス量の増大によりこの絶対
量を確保出来ない場合が生じる。
Further, the prior art 2 is a melting method in which the absolute amount of the molten steel ring flow rate is regulated so as to keep the decarburization rate high and reduce the amount of metal adhered in the tank. Therefore, in the RH degassing equipment that has a large ladle inner diameter and can secure a large immersion pipe diameter, this absolute amount can be secured, so the decarburization rate can be secured,
RH that can only secure a small dip pipe diameter due to ladle inner diameter restriction
In the degassing equipment, there are cases where this absolute amount cannot be secured due to the increase in the amount of gas blown in.

【0013】また、従来技術2では、発明者らの提唱す
る指標(詳しくは、後述する)、即ち、溶鋼環流量1ト
ン当たりのガス吹き込み量が、3.21〜10.6Nl
/min・tonと低いため、発明者らの調査研究によ
れば槽内付着地金を減少させることは出来ても、高脱炭
速度は得られない。
In the prior art 2, the index proposed by the inventors (details will be described later), that is, the gas injection amount per ton of molten steel ring flow rate is 3.21-10.6 Nl.
Since it is as low as / min · ton, according to the research conducted by the inventors, a high decarburization rate cannot be obtained even though the amount of metal in the tank can be reduced.

【0014】本発明は、上記問題点を解決するために提
案されたものであって、適切な環流用ガス量を吹き込ん
で、真空度の低下を防止しつつ鋼浴攪拌量を確保し、脱
炭速度を確保すると共に、溶鋼スプラッシュの飛散量を
抑制できる極低炭素鋼の溶製方法を提供する。合わせ
て、遅れ時間の生じない精錬指標を用いて脱炭反応を制
御し、生産性および信頼性の高い極低炭素鋼の溶製方法
を提供するものである。
The present invention has been proposed in order to solve the above-mentioned problems, and an appropriate amount of gas for recirculation is blown in to secure a sufficient amount of stirring in the steel bath while preventing a decrease in the degree of vacuum. (EN) Provided is a method for melting ultra-low carbon steel capable of securing a charcoal speed and suppressing the amount of splash of molten steel splash. In addition, the decarburization reaction is controlled by using a refining index that does not cause a delay time, and a method for melting ultra-low carbon steel with high productivity and reliability is provided.

【0015】[0015]

【課題を解決するための手段】本発明は、RH脱ガス装
置を用いて真空脱炭精錬して極低炭素鋼を溶製する溶製
方法において、上昇管の側壁に貫通して設けた羽口か
ら、または上昇管直下の取鍋内溶鋼中に浸漬させ、ガス
噴出口が上昇管の開口部に向けて配置したランスから、
不活性ガスを溶鋼環流量1ton当たり30Nl/mi
n・ton以上吹込んで脱炭反応を進行させることを特
徴とする極低炭素鋼の溶製方法である。
DISCLOSURE OF THE INVENTION The present invention relates to a smelting method of vacuum decarburizing and refining using an RH degasser to melt extra-low carbon steel, and a wing provided through a side wall of a riser pipe. From the mouth, or from the lance soaked in the molten steel in the ladle just below the rising pipe, and the gas ejection port is arranged toward the opening of the rising pipe,
30Nl / mi per 1ton of molten steel ring flow rate with inert gas
It is a method for melting ultra-low carbon steel, which comprises blowing n or more ton to advance a decarburization reaction.

【0016】また、RH脱ガス装置を用いて真空脱炭精
錬して極低炭素鋼を溶製する溶製方法において、処理溶
鋼量1ton当たりの排気量Hを100kg/Hr・t
on以下に制御して脱炭反応を進行させることを特徴と
する極低炭素鋼の溶製方法である。
Further, in the melting method in which ultra-low carbon steel is melted by vacuum decarburization refining using an RH degasser, the exhaust gas amount H per 1 ton of treated molten steel is 100 kg / Hr · t.
It is a melting method for ultra-low carbon steel, characterized in that the decarburization reaction is allowed to proceed by controlling the temperature to be on or below.

【0017】更に、環流用不活性ガスを溶鋼環流量1t
on当たり30Nl/min・ton以上吹込み、かつ
処理溶鋼量1ton当たりの排気量H(kg/Hr・t
on)を、脱ガス槽内の真空度P(torr)に応じて
以下に定める範囲に制御することを特徴とする極低炭素
鋼の溶製方法である。
Further, an inert gas for reflux is used as a molten steel ring flow rate of 1 t.
Injection of 30 Nl / min · ton or more per 1 ton, and exhaust volume H (kg / Hr · t per 1 ton of molten steel to be treated)
on) is controlled within the range defined below according to the degree of vacuum P (torr) in the degassing tank.

【0018】(1)P≧300では、100≧H≧7
0、(2)300>P≧200では、80≧H≧40、
(3)200>P≧100では、60≧H≧25、
(4)100>P≧50では、30≧H≧13、(5)
50>P≧10では、15≧H≧8。
(1) When P ≧ 300, 100 ≧ H ≧ 7
0, (2) 300> P ≧ 200, 80 ≧ H ≧ 40,
(3) If 200> P ≧ 100, 60 ≧ H ≧ 25,
(4) If 100> P ≧ 50, 30 ≧ H ≧ 13, (5)
If 50> P ≧ 10, then 15 ≧ H ≧ 8.

【0019】[0019]

【作用】本発明では、RH真空脱ガス装置を用いて脱炭
精錬し極低炭素鋼を溶製する際に、環流用ガス吹き込み
手段として、上昇管の側壁に貫通して設けた羽口からA
rガス等の不活性ガスを吹込むか、またはガス噴出口が
上昇管の開口部に向いた上昇管直下の取鍋内溶鋼中に浸
漬させて配置したランスから不活性ガスを吹込む。
According to the present invention, when decarburizing and refining using an RH vacuum degassing apparatus to melt ultra-low carbon steel, a tuyere provided through the side wall of the rising pipe serves as a gas blowing means for reflux. A
An inert gas such as r gas is blown in, or an inert gas is blown in from a lance arranged so as to be immersed in molten steel in a ladle directly below the rising pipe with the gas ejection port facing the opening of the rising pipe.

【0020】このように配置される羽口またはランスよ
り吹込まれるガスは、その全量が上昇管内を浮上して
(上昇して)上向きの駆動力を溶鋼に与ええるので、R
H真空脱ガス装置と取鍋間で溶鋼は環流する。
The total amount of the gas blown from the tuyere or the lance arranged in this way floats (rises) in the rising pipe and can give an upward driving force to the molten steel.
Molten steel circulates between the H vacuum degasser and the ladle.

【0021】この際に、減圧下の槽内の溶鋼−ガス界面
では、以下の(1)式による脱炭反応が進行して極低炭
素鋼が溶製される。
At this time, at the molten steel-gas interface in the tank under reduced pressure, the decarburization reaction according to the following equation (1) proceeds and ultra low carbon steel is melted.

【0022】 → CO(g) (1) 本発明者らは、上記方法により極低炭素鋼の溶製試験を
鋭意実施し、前述した羽口から吹き込まれる不活性ガス
量(これを環流用ガス吹き込み量という)を変化させ、
脱炭開始から15分経過時点の到達〔C〕濃度に与える
影響を調査した。この結果を図1に示す。
C + O → CO (g) (1) The present inventors diligently carried out a melting test of an ultra-low carbon steel by the above method, and measured the amount of the inert gas blown from the tuyere as described above. Change the amount of gas for recirculation)
The effect on the reached [C] concentration after 15 minutes from the start of decarburization was investigated. The result is shown in FIG.

【0023】図1より、何れの環流用ガス吹き込み量に
おいても、溶鋼環流量の大きい150ton/minの
方が到達〔C〕濃度が低く、またガス吹き込み量が大き
い程、到達〔C〕濃度は低減している。しかし、環流用
ガス吹き込み量をある一定量以上流しても、到達〔C〕
濃度はそれ以上低減しない。
As shown in FIG. 1, at any injection amount of the circulating gas, the reached [C] concentration is lower at the flow rate of molten steel of 150 ton / min, and the reached [C] concentration is higher as the gas injection amount is larger. It is decreasing. However, even if the injection amount of the reflux gas is flown over a certain amount, it reaches [C].
The concentration does not decrease further.

【0024】なお、上記試験条件として、転炉から25
0トンの未脱酸溶鋼を出鋼し、その溶鋼成分は〔C〕濃
度がおよそ0.04%、可溶性酸素濃度をおよそ500
ppmに調整した。その他の溶鋼成分は表1に示す範囲
とした。
As the above test conditions, 25
0 ton of undeoxidized molten steel was tapped, and its molten steel composition had a [C] concentration of about 0.04% and a soluble oxygen concentration of about 500.
Adjusted to ppm. The other molten steel components were in the ranges shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】ここで、溶鋼環流量Q(ton/min)
は、文献1の中で提唱されている真空度を考慮した算出
式(2)式により計算した。(文献1:鉄と鋼、Vo
l.63(1987)p176) Q =11.4×D3/4 ×G1/3 ×〔ln(P1 /P2 )〕1/3 (2) ここで、Dは浸漬管径(m)、Gは環流用ガス吹き込み
量(Nl/min)、P1 は環流ガス吹き込み位置にお
ける圧力(torr)、P2 は真空槽内圧力(tor
r)である。
Here, the molten steel ring flow rate Q (ton / min)
Was calculated by the calculation formula (2) in consideration of the degree of vacuum proposed in Reference 1. (Reference 1: Iron and Steel, Vo
l. 63 (1987) p176) Q = 11.4 x D 3/4 x G 1/3 x [ln (P 1 / P 2 )] 1/3 (2) where D is the immersion pipe diameter (m), G is the flow rate of gas for recirculation (Nl / min), P 1 is the pressure at the recirculation gas injection position (torr), and P 2 is the pressure in the vacuum chamber (tor).
r).

【0027】また溶鋼環流量を100、150ton/
minの2水準とするため、表2に示すように環流用ガ
ス吹き込み量を1000〜8000Nl/minの範囲
で変化させ、このガス吹き込み量に対応して浸漬管径を
変化させて試験を実施した。また、真空槽内圧力P2
1torrとして計算した。
The molten steel ring flow rate is 100, 150 ton /
In order to have two levels of min, as shown in Table 2, the gas injection amount for reflux was changed in the range of 1000 to 8000 Nl / min, and the immersion pipe diameter was changed corresponding to this gas injection amount, and the test was conducted. . The pressure P 2 in the vacuum chamber was calculated as 1 torr.

【0028】[0028]

【表2】 [Table 2]

【0029】次に、本発明者らは、図1の環流用ガス吹
き込み量(横軸)を各々の溶鋼環流量で割り、溶鋼環流
量1トン当たりのガス吹き込み量を新しく指標として導
入し図1を整理した。この結果を図2に示す。
Next, the present inventors divide the amount of gas injected for circulation (horizontal axis) in FIG. 1 by each molten steel ring flow rate, and introduce a new amount of gas injected per ton of molten steel ring flow rate as an index. I arranged 1. The result is shown in FIG.

【0030】図2より、何れの溶鋼環流量の場合でも、
溶鋼環流量1トン当たりのガス吹き込み量が30Nl/
min・tonで飽和し、これ以上吹き込んでも到達
〔C〕濃度は一定範囲にあって変化しない。言い換える
と、少なくとも30Nl/min・tonのガス吹き込
み量を確保すれば、効率的な脱炭精錬が可能となること
を見出した。
From FIG. 2, regardless of the flow rate of the molten steel ring,
Gas injection amount per ton of molten steel ring flow rate is 30 Nl /
It is saturated at min · ton, and even if it is blown in further, the reached [C] concentration is within a certain range and does not change. In other words, it has been found that efficient decarburization refining can be achieved by ensuring a gas blowing amount of at least 30 Nl / min · ton.

【0031】一方、過剰にガスを吹き込むと溶鋼スプラ
ッシュ飛散量の増大により処理時間の延長、地金除去に
伴う生産停止や到達〔C〕濃度の低下を招く。
On the other hand, if the gas is blown in excessively, the amount of splash of molten steel splash increases, which leads to the extension of the processing time, the stop of production due to the removal of metal, and the reduction of the concentration [C] reached.

【0032】本発明者らは、処理溶鋼量1トン当たりの
排気量H(これは排気量を1ヒートの取鍋内溶鋼トン数
(処理溶鋼量)で割って得られ、これを排気能力と呼
ぶ)を、100kg/Hr・ton以下に規制すること
により、スプラッシュ飛散量を抑制できる。この結果、
到達〔C〕濃度の低下や生産性の低下を招くことがない
ことを見出した。
The inventors of the present invention obtained the exhaust amount H per ton of molten steel treated (this is obtained by dividing the exhaust amount by the tonnage of molten steel in the ladle for one heat (the amount of treated molten steel). The amount of splashing can be suppressed by controlling the value of 100) to 100 kg / Hr · ton or less. As a result,
It has been found that the ultimate [C] concentration does not decrease and the productivity does not decrease.

【0033】ここで、排気量は単位時間当たり槽内より
排気される空気重量であり、1気圧、25℃の標準状態
に換算して計算された値である。
Here, the exhaust amount is the weight of air exhausted from the inside of the tank per unit time, and is a value calculated by converting into a standard state of 1 atm and 25 ° C.

【0034】更に、本発明者らは、溶鋼環流量1トン当
たりのガス吹き込み量を30Nl/min・tonと
し、各真空度範囲における排気能力を表3(表の左側)
に示す排気パターンで脱炭精錬し、処理溶鋼1トン当た
りの排気量Hと脱炭速度定数kc との関係を調査した結
果、図3に示すような関係を見出した。
Further, the present inventors set the gas injection amount per 1 ton of molten steel ring flow rate to 30 Nl / min · ton, and the exhaust capacity in each vacuum degree range is shown in Table 3 (left side of the table).
As a result of investigating the relationship between the exhaust gas amount H per ton of treated molten steel and the decarburization rate constant kc after decarburization refining with the exhaust pattern shown in Fig. 3, the relationship shown in Fig. 3 was found.

【0035】[0035]

【表3】 [Table 3]

【0036】なお、脱炭速度定数kc は、以下の脱炭反
応速度式(3)式により算出される値である。
The decarburization rate constant kc is a value calculated by the following decarburization reaction rate equation (3).

【0037】 dC/dt= −kc {〔C〕−〔C〕eq} (3) ここで、(3)式の〔C〕eqは平衡〔C〕濃度であり、
処理中の真空槽内CO分圧、溶鋼中のフリー酸素濃度、
平衡定数Kにより決まる値である。
DC / dt = -kc {[C]-[C] eq} (3) where [C] eq in the equation (3) is the equilibrium [C] concentration,
CO partial pressure in the vacuum tank during processing, free oxygen concentration in molten steel,
It is a value determined by the equilibrium constant K.

【0038】図3より、ヒートNo.1〜No.5で
は、真空度Pが脱炭処理開始から300torr以上、
言い換えると、P≧300の範囲の排気量を15000
〜25000kg/Hr(この排気量を1ヒートの処理
溶鋼量250トンで割り、処理溶鋼量1トン当たりの排
気量Hは60〜100kg/Hr・tonが得られ
る。)の範囲で変化させて脱炭処理した。
As shown in FIG. 1 to No. In 5, the degree of vacuum P is 300 torr or more from the start of the decarburization treatment,
In other words, the displacement in the range of P ≧ 300 is 15000.
〜25,000kg / Hr (This exhaust amount is divided by 250 tons of molten steel for one heat treatment, and the exhaust amount H per ton of treated molten steel is 60 to 100kg / Hr · ton.) Charcoal treated.

【0039】この結果、排気能力の増加に従い脱炭速度
定数kc は増加するが、70kg/Hr・ton以上に
増加させても脱炭速度定数kc は飽和してしまい、脱炭
速度は増加しないことを見出した。
As a result, the decarburization rate constant kc increases as the exhaust capacity increases, but even if the decarburization rate constant kc is increased to 70 kg / Hr · ton or more, the decarburization rate constant kc becomes saturated and the decarburization rate does not increase. Found.

【0040】ヒートNo.6〜No.11では、真空度
P≧300の排気能力を本発明範囲80kg/Hr・t
onとし、真空度Pが300>P≧200の範囲を排気
能力を30〜80kg/Hr・tonの範囲で変化させ
て処理した。
Heat No. 6-No. In No. 11, the exhaust capacity of vacuum degree P ≧ 300 is 80 kg / Hr · t in the present invention range.
When the degree of vacuum P was 300> P ≧ 200, the exhaust capacity was changed in the range of 30 to 80 kg / Hr · ton.

【0041】この結果、排気能力の増加に従い、脱炭速
度定数kc は増加するが、40kg/Hr・ton以上
に増加させても脱炭速度定数kc は飽和してしまい、脱
炭速度は増加しないことを見出した。
As a result, the decarburization rate constant kc increases as the exhaust capacity increases, but even if the decarburization rate constant kc is increased to 40 kg / Hr · ton or more, the decarburization rate constant kc becomes saturated and the decarburization rate does not increase. I found that.

【0042】真空度P>200の範囲においても、表3
に示す排気パターンにより脱炭処理した。即ち、真空度
Pが200>P≧100の範囲(ヒートNo.12〜N
o.16)では排気能力を25kg/Hr・ton以
上、真空度Pが100>P≧50の範囲(ヒートNo.
17〜No.21)では排気能力を13kg/Hr・t
on以上、真空度Pが50>P≧10の範囲(ヒートN
o.22〜No.26)では排気能力を8kg/Hr・
ton以上に増加させても脱炭速度定数kc は飽和して
しまい、脱炭速度は増加しないことを見出した。
Even in the range of vacuum degree P> 200, Table 3
The decarburization process was performed according to the exhaust pattern shown in. That is, the degree of vacuum P is in the range of 200> P ≧ 100 (heat Nos. 12 to N).
o. 16), the exhaust capacity is 25 kg / Hr · ton or more, and the vacuum degree P is 100> P ≧ 50 (heat No.
17-No. In 21), the exhaust capacity is 13 kg / Hr · t
On or higher, and the degree of vacuum P is 50> P ≧ 10 (heat N
o. 22-No. In 26), the exhaust capacity is 8 kg / Hr.
It was found that the decarburization rate constant kc saturates even if the decarburization rate is increased above ton and the decarburization rate does not increase.

【0043】また本発明では、真空度P≧300の範囲
(ヒートNo.1〜No.5)では排気能力の上限を1
00kg/Hr・ton以下とする。この範囲は前述し
たように高炭素域にあり、100kg/Hr・tonを
越える排気能力を適用すると、急激な真空度の低下によ
る脱炭促進効果を得られるが、同時にスプラッシュ飛散
量の増大を招き、結果として到達〔C〕濃度を低減出来
ないためである。
Further, in the present invention, the upper limit of the exhaust capacity is 1 in the range of vacuum degree P ≧ 300 (heat No. 1 to No. 5).
The amount is set to 00 kg / Hr · ton or less. As mentioned above, this range is in the high carbon region, and if an exhaust capacity exceeding 100 kg / Hr · ton is applied, a decarburization promoting effect due to a sudden decrease in vacuum degree can be obtained, but at the same time an increase in the splash scattering amount is caused. This is because the ultimate [C] concentration cannot be reduced as a result.

【0044】同様に、真空度Pが300>P≧200の
範囲(ヒートNo.1〜No.5)では排気能力の上限
を80kg/Hr・ton以下、真空度Pが200>P
≧100の範囲(ヒートNo.12〜No.16)では
排気能力を60kg/Hr・ton以下、真空度Pが1
00>P≧50の範囲(ヒートNo.17〜No.2
1)では排気能力を30kg/Hr・ton以下、真空
度Pが50>P≧10の範囲(ヒートNo.22〜N
o.26)では排気能力を15kg/Hr・ton以下
とする。この理由は、上記各真空度範囲においてこれ以
上に排気能力を増大しても脱炭速度は増加せず、蒸気エ
ネルギーロスとなるためである。
Similarly, in the range where the vacuum degree P is 300> P ≧ 200 (heat Nos. 1 to 5), the upper limit of the exhaust capacity is 80 kg / Hr · ton or less, and the vacuum degree P is 200> P.
In the range of ≧ 100 (Heat No. 12 to No. 16), the exhaust capacity is 60 kg / Hr · ton or less, and the vacuum degree P is 1.
00> P ≧ 50 (heat No. 17 to No. 2)
In 1), the exhaust capacity is 30 kg / Hr · ton or less, and the vacuum degree P is in the range of 50> P ≧ 10 (heat No. 22 to N).
o. In 26), the exhaust capacity is set to 15 kg / Hr · ton or less. The reason is that the decarburization rate does not increase even if the exhaust capacity is further increased in each of the above-mentioned vacuum degree ranges, resulting in a vapor energy loss.

【0045】一方、RH脱ガス装置に付設される真空計
により脱炭処理中、真空度は常時測定される。本発明で
は、リアルタイムに測定される真空度を精錬指標として
排気量を制御するので、遅れ時間の少ない、応答性の高
い制御が可能となる。この結果、高脱炭速度を達成しつ
つ溶鋼飛散量を抑制でき、生産性および信頼性の高い極
低炭素鋼の溶製が可能となる。
On the other hand, the degree of vacuum is constantly measured during the decarburization process by the vacuum gauge attached to the RH degasser. In the present invention, since the exhaust amount is controlled by using the degree of vacuum measured in real time as a refining index, it is possible to perform control with short delay time and high responsiveness. As a result, the amount of molten steel scattered can be suppressed while achieving a high decarburization rate, and it becomes possible to produce extremely low carbon steel with high productivity and reliability.

【0046】また、ランスから環流用ガスを吹き込む
と、吹き込まれたガスは上昇管内全体に分散して上昇す
るので、羽口から吹き込む場合と比較してガスによる局
所的な損傷が抑制される。このため、上昇管耐火物内面
は均一に損傷して、上昇管の寿命は増大する。
Further, when the circulating gas is blown from the lance, the blown gas is dispersed and rises in the entire riser pipe, so that local damage due to the gas is suppressed as compared with the case where the gas is blown from the tuyere. Therefore, the inner surface of the riser refractory is uniformly damaged, and the life of the riser increases.

【0047】更に、羽口とランスとの両方から環流用ガ
スを吹き込めば、上昇管耐火物の損傷させることなく、
より多くの環流用ガス量を吹き込める。このため、設備
制約から小口径の上昇管しか設けられない少容量RHで
も、大きな溶鋼環流量が得られ生産性の高い極低炭素鋼
の溶製が可能となる。
Further, if the circulating gas is blown from both the tuyere and the lance, the riser pipe refractories are not damaged.
A larger amount of reflux gas can be blown. Therefore, even with a small volume RH in which only a small-diameter riser pipe is provided due to facility restrictions, it is possible to obtain a large molten steel ring flow rate and to produce extremely low carbon steel with high productivity.

【0048】[0048]

【実施例】【Example】

確認試験1:環流用ガス吹き込み量の影響調査 図4は、処理容量250トンのRH真空脱炭設備を使用
して真空脱炭精錬を実施し、極低炭素鋼を溶製している
状況を示す。
Confirmation test 1: Investigation of the influence of the injection amount of the gas for recirculation Fig. 4 shows the situation in which ultra-low carbon steel is melted by performing vacuum decarburization refining using an RH vacuum decarburization facility with a processing capacity of 250 tons. Show.

【0049】ここで、1はRH真空槽、2は上昇管、3
は下降管、4は排気管、5は合金投入口、6は環流用ガ
ス吹き込み羽口、7はガス気泡、8は取鍋、9は溶鋼、
10はスラグ、11は環流用ガス吹き込み管である。
Here, 1 is an RH vacuum chamber, 2 is a riser tube, 3
Is a downcomer pipe, 4 is an exhaust pipe, 5 is an alloy inlet, 6 is a gas inlet for recirculation, 7 is a gas bubble, 8 is a ladle, 9 is molten steel,
Reference numeral 10 is a slag, and 11 is a gas blowing pipe for reflux.

【0050】環流用ガス吹き込み羽口6は上昇管2の側
壁に貫通して設けられており、これよりArガスが吹き
込まれ、ガス気泡7の浮上力により図中の矢印ように溶
鋼は環流して槽内と取鍋間を循環する。
The circulating gas blowing tuyere 6 is provided so as to penetrate through the side wall of the rising pipe 2, from which Ar gas is blown, and the floating force of the gas bubbles 7 causes the molten steel to flow back as indicated by the arrow in the figure. Circulates between the tank and the ladle.

【0051】転炉にて1次精錬された250トンの未脱
酸溶鋼の脱炭開始前の成分を前述と同じく表1に示す範
囲とした。
The components of 250 tonnes of undeoxidized molten steel, which was primarily refined in the converter, before the start of decarburization were set within the ranges shown in Table 1 as described above.

【0052】脱炭処理から終了までの排気能力は80k
g/Hr・tonとし、浸漬管径(上昇管2、下降管3
共に同一径とした)および環流用ガス吹き込み量を表4
に示すように変化させ、溶鋼環流量を一律150ton
/minとした。
Exhaust capacity from decarburization to completion is 80k
g / Hr · ton, immersion pipe diameter (upward pipe 2, downward pipe 3
Both have the same diameter) and the injection amount of the reflux gas is shown in Table 4.
The flow rate of molten steel is uniformly set to 150 ton as shown in
/ Min.

【0053】[0053]

【表4】 [Table 4]

【0054】表4には得られた脱炭処理途中3分毎の炭
素濃度を示し、図5はこの炭素濃度および槽内真空度の
推移をグラフに示したものである。
Table 4 shows the carbon concentration obtained every 3 minutes during the decarburization treatment, and FIG. 5 is a graph showing the changes in the carbon concentration and the degree of vacuum in the tank.

【0055】図5の結果より、本発明範囲を満たす実施
例1および実施例2では、脱炭処理時間15分で〔C〕
濃度が10ppm以下の極低炭素鋼が得られたが、本発
明範囲を満たさない比較例1〜比較例3では、〔C〕濃
度が10ppm以下の極低炭素鋼は得られない。
From the results shown in FIG. 5, in Examples 1 and 2 satisfying the scope of the present invention, the decarburization treatment time was 15 minutes, and [C]
Ultra-low carbon steel having a concentration of 10 ppm or less was obtained, but in Comparative Examples 1 to 3 which do not satisfy the scope of the present invention, ultra-low carbon steel having a [C] concentration of 10 ppm or less cannot be obtained.

【0056】確認試験2:排気パターンの影響調査 環流用ガス吹き込み量を6000Nl/min、浸漬管
径を490mm、溶鋼環流量を150ton、溶鋼環流
量1トン当たりのガス吹き込み量を本発明範囲40Nl
/min・tonとし、表5に示す各真空度における排
気能力を得るために各ブースター、各エジェクターの蒸
気流量を変更して脱炭処理を実施し、排気パターンの影
響を調査した。図6にこの結果を示す。
Confirmation test 2: Investigation of influence of exhaust pattern: Gas injection amount for circulation is 6000 Nl / min, immersion pipe diameter is 490 mm, molten steel ring flow rate is 150 ton, gas injection amount per 1 ton of molten steel ring flow rate is 40 Nl of the present invention.
/ Min · ton, decarburization treatment was performed by changing the steam flow rate of each booster and each ejector in order to obtain the exhaust capacity at each vacuum degree shown in Table 5, and the influence of the exhaust pattern was investigated. This result is shown in FIG.

【0057】[0057]

【表5】 [Table 5]

【0058】図6より、実施例3、実施例4では、脱炭
処理時間15分で〔C〕濃度が10ppm以下の極低炭
素鋼が得られたが、本発明範囲を満たさない比較例4〜
比較例9では、〔C〕濃度が10ppm以下の極低炭素
鋼は得られない。
As shown in FIG. 6, in Examples 3 and 4, an ultra-low carbon steel having a [C] concentration of 10 ppm or less was obtained after a decarburizing treatment time of 15 minutes, but Comparative Example 4 which does not satisfy the scope of the present invention. ~
In Comparative Example 9, an ultra low carbon steel having a [C] concentration of 10 ppm or less cannot be obtained.

【0059】特に、比較例5では、脱炭開始から真空度
が300torr以上の高炭素域の排気能力を105k
g/Hr・tonとした場合であり、初期の脱炭速度は
最も大きく、脱炭開始から9分で20ppmまで低減し
ている。しかし、これ以降〔C〕濃度の低下は遅くなり
10ppm以下の極低炭素鋼は得られない。この理由
は、高炭素域で100kg/Hr・ton以上としたこ
とにより、溶鋼のスプラッシュ飛散量が増大し、これが
溶け出し、〔C〕濃度がピックアップしたためである。
Particularly, in Comparative Example 5, the exhaust capacity in the high carbon region where the degree of vacuum is 300 torr or more from the start of decarburization is 105 k.
In the case of g / Hr · ton, the initial decarburization rate is the highest, and it is reduced to 20 ppm in 9 minutes from the start of decarburization. However, after that, the decrease of the [C] concentration becomes slow, and an ultra-low carbon steel of 10 ppm or less cannot be obtained. The reason for this is that the splash scattering amount of the molten steel increases due to the amount of 100 kg / Hr · ton or more in the high carbon region, this melts out, and the [C] concentration is picked up.

【0060】確認試験3:酸素バーナ設置の効果 図7は、脱炭処理中、真空槽内壁に設けた酸素バーナ1
2から酸素ガスを真空槽内に吹き込み、極低炭素鋼を溶
製している状況を示す。
Confirmation Test 3: Effect of Installation of Oxygen Burner FIG. 7 shows the oxygen burner 1 installed on the inner wall of the vacuum chamber during decarburization.
2 shows the situation in which oxygen gas is blown into the vacuum chamber to melt ultra-low carbon steel.

【0061】試験条件は実施例1と同様とした。また真
空度が200torrに達してから、酸素ガス流量20
00Nm3 /Hrを5分間吹き込んだ。これにより、脱
炭反応により発生したCOガスと酸素ガスとは燃焼して
真空槽内は高温に加熱保持され、溶鋼スプラッシュは実
施例1に比較して更に付着しにくくなった。この結果、
15分間で10ppm以下の極低炭素鋼を更に安定して
溶製出来た。
The test conditions were the same as in Example 1. After the vacuum reaches 200 torr, the flow rate of oxygen gas is 20
Blowing 00 Nm 3 / Hr for 5 minutes. As a result, the CO gas and oxygen gas generated by the decarburization reaction were combusted and the vacuum tank was heated and maintained at a high temperature, and the molten steel splash became even harder to adhere than in Example 1. As a result,
An extremely low carbon steel of 10 ppm or less could be melted more stably in 15 minutes.

【0062】確認試験4:還流用ガスの吹き込み用ラン
スの効果 図8は、本発明の一実施例として、上昇管直下の取鍋内
溶鋼中に環流用ガス吹き込み用ランス13を浸漬して配
置し、このランス13から環流用ガスを吹き込んで真空
脱炭精錬を実施して極低炭素鋼を溶製している状況を示
す。
Confirmation Test 4: Effect of Lance for Injecting Refluxing Gas FIG. 8 shows, as an embodiment of the present invention, a lance 13 for injecting a recirculating gas soaked in molten steel in a ladle just below an ascending pipe. Then, a state in which a circulating gas is blown from the lance 13 to carry out vacuum decarburization refining to produce an extremely low carbon steel is shown.

【0063】本実施例で使用したランス13は金属製パ
イプの表面に不定形耐火物を被覆し、図のようにガス噴
出口を上昇管開口部のほぼ中心、かつ出来るだけ近接し
て配置した。この結果、図5の実施例(羽口より環流用
ガスを吹き込んだ場合)と同様にほぼ、吹き込んだ不活
性ガス量は上昇管外に漏れることなく、全量環流用ガス
として作用できた。
In the lance 13 used in this embodiment, the surface of a metal pipe is covered with an irregular refractory material, and the gas ejection port is arranged almost at the center of the ascending pipe opening and as close as possible as shown in the figure. . As a result, as in the case of the embodiment of FIG. 5 (when the circulating gas was blown from the tuyere), almost all of the blown inert gas could act as the circulating gas without leaking out of the rising pipe.

【0064】また、ランス13のパイプ口径を拡大すれ
ば、1本で6000Nl/minを越える大流量の環流
用ガスを吹き込むことが可能であり、上昇管羽口に比べ
大流量が流せる。
Further, if the pipe diameter of the lance 13 is enlarged, it is possible to blow a large amount of recirculation gas exceeding 6000 Nl / min with a single pipe, and a large flow rate can be flowed as compared with the riser tuyere.

【0065】[0065]

【発明の効果】本発明によれば、溶鋼環流量に応じて環
流用ガス吹き込み量を規制し、かつリアルタイムに測定
される真空度を精錬指標として脱炭途中の排気能力を規
制するので、鋼浴攪拌量を確保しつつ、脱炭速度を確保
できると共に、溶鋼スプラッシュの飛散量も抑制でき
る。この結果、生産性および信頼性の高い極低炭素鋼の
溶製方法が可能となる。
EFFECTS OF THE INVENTION According to the present invention, the gas injection amount for reflux is regulated according to the molten steel circulation flow rate, and the exhaust capacity during decarburization is regulated by using the vacuum degree measured in real time as a refining index. It is possible to secure the decarburization rate while securing the bath stirring amount, and also to suppress the splash amount of the molten steel splash. As a result, it becomes possible to provide a method for melting ultra-low carbon steel with high productivity and reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】環流用ガス吹き込み量が到達〔C〕濃度に及ぼ
す影響を示す図である。
FIG. 1 is a diagram showing the influence of the amount of blown-in gas for recirculation on the reached [C] concentration.

【図2】溶鋼環流量1トン当たりのガス吹き込み量と到
達〔C〕濃度との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of gas blown in per ton of molten steel ring flow rate and the reached [C] concentration.

【図3】各真空度における排気能力と脱炭速度定数kc
との関係を示す図である。
[Fig. 3] Exhaust capacity and decarburization rate constant kc at each vacuum level
It is a figure which shows the relationship with.

【図4】上昇管羽口から環流用ガスを吹き込んで極低炭
素鋼を溶製している状況を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which an extra low carbon steel is melted by blowing a circulating gas from an ascending pipe tuyere.

【図5】本発明方法の効果を確認するため〔C〕濃度推
移に及ぼす環流用ガス吹き込み量の影響を調査した図で
ある。
FIG. 5 is a diagram for investigating the influence of the injection amount of the reflux gas on the [C] concentration transition in order to confirm the effect of the method of the present invention.

【図6】本発明方法の効果を確認するため〔C〕濃度推
移に及ぼす排気パターンの影響を調査した図である。
FIG. 6 is a diagram in which the influence of the exhaust pattern on the [C] concentration transition is investigated in order to confirm the effect of the method of the present invention.

【図7】真空槽内壁に設けた酸素バーナから酸素ガスを
真空槽内に吹き込み、極低炭素鋼を溶製している状況を
示す。
FIG. 7 shows a situation in which oxygen gas is blown into the vacuum chamber from an oxygen burner provided on the inner wall of the vacuum chamber to melt the ultra-low carbon steel.

【図8】上昇管直下の取鍋内溶鋼中に浸漬したランスか
らガスを吹き込み、極低炭素鋼を溶製している状況を示
す図である。
FIG. 8 is a view showing a situation in which a gas is blown from a lance immersed in molten steel in a ladle just below an ascending pipe to produce an extremely low carbon steel.

【符号の説明】[Explanation of symbols]

1 RH真空槽 2 上昇管 3 下降管 6 環流用ガス吹き込み羽口 8 取鍋 9 溶鋼 10 スラグ 11 環流用ガス吹き込み管 12 酸素バーナ 13 環流用ガス吹き込みランス 1 RH vacuum tank 2 Rise pipe 3 Downcomer pipe 6 Circulation gas blowing tuyere 8 Ladle 9 Molten steel 10 Slag 11 Circulation gas blowing pipe 12 Oxygen burner 13 Circulation gas blowing lance

フロントページの続き (72)発明者 田野 学 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 福味 純一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 山口 隆二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松野 英寿 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 村井 剛 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Front Page Continuation (72) Inventor Manabu Tano 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Junichi Fukumi 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Pipe Incorporated (72) Inventor Ryuji Yamaguchi 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Hidetoshi Matsuno 1-2 1-2 Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Tsuyoshi Murai 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 RH脱ガス装置を用いて真空脱炭精錬し
て極低炭素鋼を溶製する溶製方法において、 上昇管の側壁に貫通して設けた羽口から、または上昇管
直下の取鍋内溶鋼中に浸漬させ、ガス噴出口が上昇管の
開口部に向けて配置したランスから、不活性ガスを溶鋼
環流量1ton当たり30Nl/min・ton以上吹
込んで脱炭反応を進行させることを特徴とする極低炭素
鋼の溶製方法。
1. A melting method of vacuum decarburizing and refining using an RH degassing device to melt ultra-low carbon steel, wherein a tuyere provided through a side wall of the rising pipe or directly below the rising pipe. Immerse in molten steel in a ladle, and inject deionizing gas of 30 Nl / min · ton or more per 1 ton of molten steel ring flow to advance decarburization reaction from a lance with a gas ejection port facing the opening of the rising pipe. A method for melting ultra-low carbon steel, characterized by:
【請求項2】 RH脱ガス装置を用いて真空脱炭精錬し
て極低炭素鋼を溶製する溶製方法において、 処理溶鋼量1ton当たりの排気量Hを100kg/H
r・ton以下に制御して脱炭反応を進行させることを
特徴とする極低炭素鋼の溶製方法。
2. A melting method in which ultra low carbon steel is melted by vacuum decarburization refining using an RH degasser, wherein an exhaust gas amount H per ton of treated molten steel is 100 kg / H.
A method for melting ultra-low carbon steel, characterized in that the decarburization reaction is allowed to proceed at a temperature of r · ton or less.
【請求項3】 処理溶鋼量1ton当たりの排気量H
(kg/Hr・ton)を、脱ガス槽内の真空度P(t
orr)に応じて以下に定める範囲に制御することを特
徴とする請求項1に記載の極低炭素鋼の溶製方法。 (1)P≧300では、100≧H≧70、 (2)300>P≧200では、80≧H≧40、 (3)200>P≧100では、60≧H≧25、 (4)100>P≧50では、30≧H≧13、 (5)50>P≧10では、15≧H≧8。
3. Exhaust volume H per ton of molten steel treated
(Kg / Hr · ton) is the vacuum degree P (t
The melting method of the ultra-low carbon steel according to claim 1, wherein the melting temperature is controlled within the following range according to the oror). (1) P ≧ 300, 100 ≧ H ≧ 70, (2) 300> P ≧ 200, 80 ≧ H ≧ 40, (3) 200> P ≧ 100, 60 ≧ H ≧ 25, (4) 100 > P ≧ 50, 30 ≧ H ≧ 13, (5) 50> P ≧ 10, 15 ≧ H ≧ 8.
JP13143395A 1995-05-30 1995-05-30 Method for smelting ultra-low carbon steel Pending JPH08325629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13143395A JPH08325629A (en) 1995-05-30 1995-05-30 Method for smelting ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13143395A JPH08325629A (en) 1995-05-30 1995-05-30 Method for smelting ultra-low carbon steel

Publications (1)

Publication Number Publication Date
JPH08325629A true JPH08325629A (en) 1996-12-10

Family

ID=15057855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13143395A Pending JPH08325629A (en) 1995-05-30 1995-05-30 Method for smelting ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JPH08325629A (en)

Similar Documents

Publication Publication Date Title
JP5904237B2 (en) Melting method of high nitrogen steel
JP4207820B2 (en) How to use vacuum degassing equipment
JP2007031820A (en) Vacuum-degassing treating method for molten steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JPH08325629A (en) Method for smelting ultra-low carbon steel
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
CN113490755A (en) Method for producing ultra-low carbon steel containing Ti
JP6337681B2 (en) Vacuum refining method for molten steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP3293023B2 (en) Vacuum blowing method for molten steel
JP3891013B2 (en) Method of refining molten steel with RH degassing equipment
KR200278673Y1 (en) Sedimentation pipe for improving refining capacity
KR100225249B1 (en) Remaining slag control method of of slopping control
JPH04131316A (en) Method and device for vacuum degassing of extra-low-carbon steel
JPH11158536A (en) Method for melting extra-low carbon steel excellent in cleanliness
JPH0665625A (en) Desulphurization method for molten steel
JPH0718322A (en) Method for refining highly clean aluminum-killed steel
JP3252726B2 (en) Vacuum refining method for molten steel
JP2940358B2 (en) Melting method for clean steel
JP3374618B2 (en) Vacuum refining method for molten steel
JP3742534B2 (en) Vacuum refining apparatus and method for melting low carbon steel using the same
JPH03107412A (en) Method for producing extremely low carbon steel
JPH0633133A (en) Production of ultralow carbon steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010605