JP6268963B2 - Method for refining molten steel - Google Patents

Method for refining molten steel Download PDF

Info

Publication number
JP6268963B2
JP6268963B2 JP2013236979A JP2013236979A JP6268963B2 JP 6268963 B2 JP6268963 B2 JP 6268963B2 JP 2013236979 A JP2013236979 A JP 2013236979A JP 2013236979 A JP2013236979 A JP 2013236979A JP 6268963 B2 JP6268963 B2 JP 6268963B2
Authority
JP
Japan
Prior art keywords
tuyere
molten steel
flow rate
vacuum chamber
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013236979A
Other languages
Japanese (ja)
Other versions
JP2015096639A (en
Inventor
秀平 笠原
秀平 笠原
隆之 西
隆之 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013236979A priority Critical patent/JP6268963B2/en
Publication of JP2015096639A publication Critical patent/JP2015096639A/en
Application granted granted Critical
Publication of JP6268963B2 publication Critical patent/JP6268963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は製鋼工程の二次精錬処理である環流型真空脱ガス処理法を用いた溶鋼の精錬方法に関し、溶鋼の環流量を増大させることで均一混合時間を短縮し、真空処理の精錬特性を向上させて処理時間を短縮する技術を提供することにある。   The present invention relates to a method for refining molten steel using a recirculation-type vacuum degassing process, which is a secondary refining process in a steelmaking process, and by increasing the ring flow rate of the molten steel, the uniform mixing time is shortened, and the refining characteristics of vacuum treatment are The purpose is to provide a technique for improving the processing time.

近年の鋼材高級化に伴い、鋼材中の不純物(O,S,N等)の除去効率向上や、溶鋼成分のより狭い範囲での濃度管理が求められている。さらに、鋼の高清浄度化溶製に応えるために介在物の除去も求められている。   With the recent upgrading of steel materials, there is a demand for improving the removal efficiency of impurities (O, S, N, etc.) in steel materials and controlling the concentration of molten steel components in a narrower range. Furthermore, the removal of inclusions is also required in order to meet the high cleanliness melting of steel.

これらの要求に対し、製鋼工程の二次精錬処理が重要な役割を果たす。特に二次精錬処理の代表的な装置である環流型真空脱ガス処理装置を用いた処理では、これらの要求を満足するには処理時間の延長が必要である。しかし、処理時間の延長は、生産性を低下させることに加え、溶鋼温度の降下や耐火物損耗の促進といった問題を引き起こす。   In response to these requirements, the secondary refining process in the steelmaking process plays an important role. In particular, in a process using a recirculation type vacuum degassing apparatus which is a representative apparatus for secondary refining process, it is necessary to extend the processing time in order to satisfy these requirements. However, the extension of the treatment time causes problems such as a decrease in molten steel temperature and promotion of refractory wear in addition to reducing productivity.

処理時間を延長させずに鋼材高級化に対応するには、環流型真空脱ガス処理における精錬特性の向上が必要である。環流型真空脱ガス処理における精錬特性向上の解決策として環流量を増大させることで達成されることが知られている。そして、環流量は真空度、環流ガス流量とともに浸漬管径やガス吹き込み位置が影響を及ぼすことも知られている。しかし、環流型真空脱ガス装置の装置構成はコストと密接に関係し、真空度、環流ガス流量、浸漬管径およびガス吹き込み位置には自ずと制限があるため、大きな投資はできない。そこで、これまでに環流ガスの吹き込み方法に関する技術開発がなされている。   In order to cope with the upgrading of steel materials without extending the processing time, it is necessary to improve the refining characteristics in the reflux type vacuum degassing process. It is known that it can be achieved by increasing the ring flow rate as a solution for improving the refining characteristics in the reflux type vacuum degassing process. It is also known that the ring flow rate is influenced by the dip tube diameter and the gas blowing position together with the degree of vacuum and the reflux gas flow rate. However, the apparatus configuration of the recirculation type vacuum degassing apparatus is closely related to the cost, and the degree of vacuum, the recirculation gas flow rate, the dip tube diameter, and the gas blowing position are naturally limited, so that a large investment cannot be made. Thus, technical development relating to a method of blowing reflux gas has been made so far.

特開昭62−142715号公報ではガス吹き込み用孔が、浸漬管内に向って上向き傾斜状に設けられた羽口煉瓦を用いる方法が提示されている。この方法を用いた場合、ガスの垂直上向き方向の速度成分が溶鋼の上昇を促進するため、環流速度が増大するとしている。   Japanese Patent Application Laid-Open No. 62-142715 proposes a method of using tuyere bricks in which the gas blowing holes are inclined upwardly into the dip tube. When this method is used, the velocity component in the vertical upward direction of the gas promotes the rise of the molten steel, so the reflux velocity is increased.

特開平4−235212号公報では浸漬管の上昇管に配置する円周方向のアルゴンガス吹き込み羽口数を浸漬管内径、アルゴンガス流量、アルゴンガス吹き込み羽口内径を変数とする関数を満足するように設ける方法が提示されている。この方法を用いた場合、吐出ガスが溶鋼を水平方向に動かす距離が浸漬管円周方向全域に行き渡り、より効率的に環流速度の増加を図ることができるとしている。   In JP-A-4-235212, a function in which the number of argon gas blown tuyere in the circumferential direction arranged in the riser of the dip tube is a dip tube inner diameter, an argon gas flow rate, and an argon gas blown tuyere inner diameter are satisfied. A method of providing is presented. When this method is used, the distance by which the discharge gas moves the molten steel in the horizontal direction is spread over the entire area in the circumferential direction of the dip tube, and the circulation velocity can be increased more efficiently.

特開平3−36209号公報では上昇管内を上昇する溶鋼へ旋回力を与えて旋回させる方法が提示されている。さらに、旋回流を与えるために、上昇管外周に複数個設けるガス吹き込み羽口を、該上昇管水平断面中心点に向かう方向に対してそれぞれ側方へ傾斜させて設置する方法が提示されている。この方法を用いると、上昇管内を上昇する気泡に剪断力を与えて気泡の合体による大径化を防止して該気泡によるガスリフト効果を最大限に発揮させ、溶鋼の環流量を増加させることができるとしている。   Japanese Patent Application Laid-Open No. 3-36209 discloses a method of turning a molten steel ascending in an ascending pipe by applying a turning force. Furthermore, in order to give a swirl flow, a method is proposed in which a plurality of gas blowing tuyere provided on the outer periphery of the riser pipe are respectively inclined to the direction toward the center point of the riser horizontal cross section. . When this method is used, shearing force is applied to the bubbles rising in the riser pipe to prevent an increase in diameter due to the coalescence of the bubbles, and the gas lift effect due to the bubbles is maximized, and the ring flow rate of the molten steel can be increased. I can do it.

特開昭62−142715号公報Japanese Patent Laid-Open No. 62-142715 特開平4−235212号公報JP-A-4-235212 特開平3−36209号公報JP-A-3-36209

しかし、以上のように述べた技術は、単に羽口周りでのガス吹き込み技術について開示したのみで、精錬特性の直接の向上に関係づけられるものではない。例えば、浴深が比較的浅い場合に、真空槽内に流入した環流ガス気泡の分散が不十分となってしまうために、環流ガスの運動エネルギーの伝達効率が低く、環流ガス流量を増加させても環流量はほぼ一定となってしまう、という課題があった。   However, the technique described above merely discloses the gas blowing technique around the tuyere and is not related to the direct improvement of the refining characteristics. For example, when the bath depth is relatively shallow, the circulation of the circulating gas bubbles flowing into the vacuum chamber becomes insufficient, so the kinetic energy transfer efficiency of the circulating gas is low, and the circulating gas flow rate is increased. However, there was a problem that the ring flow rate was almost constant.

本発明は、同一環流ガス流量であっても精錬特性が向上し、さらに環流ガス流量を増加させた時は環流量の増大のみならず、精錬特性の更なる向上を果たすという課題を解決する。   The present invention solves the problem of improving the refining characteristics even when the recirculation gas flow rate is the same, and further improving the refining characteristics as well as increasing the recirculation flow rate when the recirculation gas flow rate is increased.

そこで、発明者は、精錬特性が低下しやすい比較的浴深が浅い場合において、真空槽内の環流ガス気泡を分散させ、環流ガス流量を増加させた条件でも環流量を増大させることができる条件について検討した。   Accordingly, the inventor has the condition that the recirculation gas bubbles in the vacuum chamber can be dispersed and the recirculation gas flow rate can be increased even when the bath depth is relatively shallow, where the refining characteristics are likely to deteriorate. Was examined.

一つは環流ガス流量を適正な範囲に制御することである。環流ガス流量が過度に小さい場合、気泡は上昇管の壁面を伝わってしまい、気泡の上昇に伴う運動エネルギー伝達効率が低減し、環流量も低減する。一方、環流ガス流量が過度に大きい場合、羽口から噴出された環流ガス気泡が上昇管の中心に達し、気泡の分散を図ることができなくなってしまう。   One is to control the reflux gas flow rate within an appropriate range. When the reflux gas flow rate is excessively small, the bubbles are transmitted along the wall surface of the riser tube, the kinetic energy transmission efficiency associated with the rise of the bubbles is reduced, and the circulation flow rate is also reduced. On the other hand, when the reflux gas flow rate is excessively large, the reflux gas bubbles ejected from the tuyere reach the center of the riser tube, and the bubbles cannot be dispersed.

もう一つは気泡を上昇管内で分散させることである。その方法として、環流ガス吹き込み羽口に、羽口と上昇管中心とを結ぶ直線に対し、水平面上で円周方向への角度、すなわち水平角を付与する方法がある。この水平角を付与することで吹き込まれたガスジェットは上昇管の中心方向からずれて、上昇管内に旋回流が生じる運動エネルギーを付与し、気泡に遠心力を働かせることで気泡を上昇管の中心に向かわせる。そのため、上昇管内面近傍にある気泡は中心に向かい、結果として気泡は上昇管内に分散する。ただし、水平角が過度に小さい場合は旋回流が発達せず、過度に大きい場合は羽口から噴出されたガス気泡が上昇管内の壁面に衝突し、気泡の上昇が抑制されて環流量も低減する。   Another is to disperse the bubbles in the riser. As a method therefor, there is a method in which an angle in the circumferential direction on the horizontal plane, that is, a horizontal angle is given to the straight line connecting the tuyere and the riser center to the reflux gas blowing tuyere. The gas jet blown by applying this horizontal angle shifts from the center direction of the riser, gives kinetic energy that generates a swirling flow in the riser, and applies centrifugal force to the bubbles to move the bubbles to the center of the riser To go to. For this reason, the bubbles in the vicinity of the inner surface of the riser tube are directed toward the center, and as a result, the bubbles are dispersed in the riser tube. However, if the horizontal angle is too small, the swirl flow will not develop, and if it is too large, the gas bubbles ejected from the tuyere will collide with the wall in the riser, suppressing the bubble rise and reducing the ring flow rate. To do.

このように、環流ガス吹き込み羽口に付与する環流ガス流量、水平角という条件には適正な範囲があることが分かる。さらに、浴深についても過度に浅い場合は、環流ガス気泡の分散が不十分になる上、槽底の摩擦の影響が支配的となり、環流量は増大せず、十分に深い場合には本発明を用いることもなく、環流量を増大させることができる。   Thus, it can be seen that there is an appropriate range for the conditions of the recirculation gas flow rate and the horizontal angle applied to the recirculation gas blowing tuyere. Furthermore, when the bath depth is too shallow, the circulation of the circulating gas bubbles becomes insufficient, and the influence of the friction at the bottom of the tank becomes dominant, and the circulation flow rate does not increase. The ring flow rate can be increased without using.

これらの条件の適正範囲を明確化するために、水モデルを用いた実験を実施し、環流量を測定した。   In order to clarify the appropriate range of these conditions, an experiment using a water model was performed and the ring flow rate was measured.

実験装置は155lの水を収容するアクリル製取鍋、内径100mmの上昇管および下降管が下部に取り付けられた内径330mmのアクリル製の真空槽、で構成した。本実験はアクリル製取鍋に150lの水を入れて実施された。   The experimental apparatus consisted of an acrylic ladle containing 155 liters of water, an acrylic vacuum tank with an inner diameter of 330 mm and a riser pipe with an inner diameter of 100 mm and a descender pipe attached to the lower part. This experiment was conducted with 150 liters of water in an acrylic ladle.

取鍋内に上昇管および下降管を浸漬し、真空槽内の浴深が所定の深さになるように減圧した。減圧完了後に環流ガスを導入し、環流を開始した。環流の安定を確認した後、真空槽内にKCl水溶液を添加し、取鍋内に設置した電気伝導度計によって電気伝導度の経時変化を連続的に測定した。KCl水溶液の添加開始から電気伝導度が一定値に収束するまでの時間を均一混合時間とした。電気伝導度の収束については、KClの添加量に応じた電気伝導度の増分に対する実測の電気伝導度の増分の相対的な差が±5%以内となった状態とした。なお、環流量は水量を均一混合時間で除した値であり、均一混合時間が短時間であるほど環流量は大きい。   The ascending pipe and the descending pipe were immersed in the ladle, and the pressure was reduced so that the bath depth in the vacuum chamber was a predetermined depth. After completion of the decompression, a reflux gas was introduced to start the reflux. After confirming the stability of the reflux, an aqueous KCl solution was added into the vacuum chamber, and the change in electrical conductivity over time was continuously measured with an electrical conductivity meter installed in the ladle. The time from the start of the addition of the KCl aqueous solution to the convergence of the electric conductivity to a constant value was defined as the uniform mixing time. Concerning the convergence of the electrical conductivity, the relative difference of the measured increase in electrical conductivity relative to the increase in electrical conductivity according to the amount of KCl added was within ± 5%. The ring flow rate is a value obtained by dividing the amount of water by the uniform mixing time. The shorter the uniform mixing time, the larger the ring flow rate.

均一混合時間(τ)と環流ガス流量(G)を羽口数(n)、羽口断面積(A)ならびに浸漬管径(d)で除した指標(G/(n・A・d))との関係を図1に示す。なお、図1は真空槽内の浴深(h)を真空槽内径(D)で除した規格化浴深(h/D)が0.020〜0.35の範囲で分類した。 An index (G / (n · A n · d) obtained by dividing the uniform mixing time (τ) and the reflux gas flow rate (G) by the number of tuyere (n), the tuyere cross-sectional area (A n ), and the immersion pipe diameter (d u ). The relationship with u )) is shown in FIG. In FIG. 1, the normalized bath depth (h / D) obtained by dividing the bath depth (h) in the vacuum chamber by the inner diameter (D) of the vacuum chamber is classified in the range of 0.020 to 0.35.

図1(a)、図1(f)のように、h/D<0.025またはh/D>0.30では水平角を変化させても、均一混合時間と(G/(n・A・d))の関係は変わらなかった。これは、h/D=0.020の時は、真空槽内の浴深が浅すぎることで、真空槽内の流動が真空槽底面から受ける摩擦力によって支配されているためである。h/D=0.35の時は、真空槽内の浴深が十分に深いために、水平角によらずに、環流ガス気泡が真空槽内に分散するためである。 As shown in FIGS. 1A and 1F, when h / D <0.025 or h / D> 0.30, even when the horizontal angle is changed, the uniform mixing time (G / (n · A The relationship of n · d u )) did not change. This is because when h / D = 0.020, the bath depth in the vacuum chamber is too shallow, and the flow in the vacuum chamber is governed by the frictional force received from the bottom of the vacuum chamber. This is because when h / D = 0.35, the bath depth in the vacuum chamber is sufficiently deep so that the circulating gas bubbles are dispersed in the vacuum chamber regardless of the horizontal angle.

図1(b)〜図1(e)のようにh/Dが0.025〜0.30の時、θ=15°〜60°とすればθ<15°ならびにθ>60°に比べ、G/(n・A・d)が50以上において均一混合時間は短縮された。これは、水平角を適正な範囲で付与すると、真空槽内の気泡の分散性が向上したためである。ただし、θ=15°〜60°の範囲にあっても、G/(n・A・d)>570となると、均一混合時間は長時間化した。これは、羽口から噴出された環流ガス気泡の水中への侵入距離が伸びることと、上昇管内の旋回流の発達による遠心力で中心に気泡が引き寄せられることから、気泡が偏在していたためである。したがって、本発明は、単に羽口の水平角を適正な範囲にしたのみでは足らず、羽口数、羽口断面積および上昇管の内径に対する環流ガス流量の割合であるG/(n・A・d)の範囲を定めることによって、ようやく完成された発明である。 When h / D is 0.025 to 0.30 as shown in FIG. 1 (b) to FIG. 1 (e), if θ = 15 ° to 60 °, compared to θ <15 ° and θ> 60 °, When G / (n · A n · d u ) was 50 or more, the uniform mixing time was shortened. This is because the dispersibility of the bubbles in the vacuum chamber is improved when the horizontal angle is given within an appropriate range. However, even in the range of θ = 15 ° to 60 °, the uniform mixing time was prolonged when G / (n · A n · d u )> 570. This is because the bubbles are unevenly distributed because the penetration distance of the circulating gas bubbles ejected from the tuyere into the water is extended and the centrifugal force due to the swirling flow in the riser draws the bubbles to the center. is there. Accordingly, the present invention is not simply trivial than only the proper range of the horizontal angle of the tuyere, feathers talkative, G / (n · A n · the percentage of recirculated gas flow rate to the inner diameter of the tuyere cross-sectional area and riser The invention is finally completed by defining the range of d u ).

水モデルと溶鋼処理では液体の密度が異なる。ただし、(i)式に示す修正フルード数が同じであれば、気泡の運動は力学的に相似になる。すなわち、水モデルで得られた適正条件が溶鋼処理でも用いることができる。水モデル実験で、適正な条件における修正フルード数は0.02〜2.4である。   The liquid density differs between the water model and molten steel treatment. However, if the corrected fluid numbers shown in equation (i) are the same, the bubble motions are mechanically similar. That is, the appropriate conditions obtained with the water model can be used in the molten steel treatment. In the water model experiment, the corrected fluid number under appropriate conditions is 0.02 to 2.4.

Fr’=ρ・V /{(ρ−ρ)・ (g・d)} ・・・(i)
ρ:ガス密度(kg/m)、ρ:流体密度(kg/m)、V:気泡噴出速度(m/s)、
g:重力加速度(m/s)、d:羽口径(m)
以上の結果を鑑み、真空槽内の浴深が比較的浅い場合であっても、環流ガス流量を増加させると環流量を増加させることができる本発明は下記のとおりである。
Fr ′ = ρ g · V g / {(ρ 1 −ρ g ) · (g · d 0 )} (i)
ρ g : gas density (kg / m 3 ), ρ l : fluid density (kg / m 3 ), V g : bubble ejection speed (m / s),
g: Gravitational acceleration (m / s 2 ), d 0 : tuyere diameter (m)
In view of the above results, the present invention that can increase the ring flow rate by increasing the reflux gas flow rate even when the bath depth in the vacuum chamber is relatively shallow is as follows.

本発明は、環流型真空脱ガス処理装置で、真空槽内径(D)に対して該真空槽内の溶鋼の浴深(h)が(1)式の関係を満たす条件において、真空槽の底部に取り付けられた上昇管に設けられた環流ガス吹き込み羽口を羽口と浸漬管の中心を結ぶ直線に対して水平に15°〜60°の角度になるよう調整し、環流ガス流量を羽口数(n)、羽口断面積(An)および上昇管径(du)で除した指標(G/(n・An・du))が(2)式を満足するように調整することを特徴とする溶鋼の精錬方法。 The present invention is a recirculation type vacuum degassing apparatus, in which the bath depth (h) of the molten steel in the vacuum chamber satisfies the relationship of the formula (1) with respect to the inner diameter (D) of the vacuum chamber. Adjust the recirculation gas blowing tuyere provided in the riser attached to the tube so that it is at an angle of 15 ° to 60 ° horizontally with respect to the straight line connecting the tuyere and the center of the dip tube. (N) The index (G / (n · An · du)) divided by the tuyere cross-sectional area (An) and the rising pipe diameter (du) is adjusted so as to satisfy the expression (2). Method for refining molten steel.

0.025≦h/D≦0.30 ・・・(1)
h:真空槽内浴深(m)、D:真空槽内径(m)
50≦G/(n・A・d)≦570 ・・・(2)
G:環流ガス流量(Nm/s)、n:羽口数(−)、A:環流ガス吹き込み羽口断面積(m)、d:上昇管径(m)
0.025 ≦ h / D ≦ 0.30 (1)
h: Bath depth in the vacuum chamber (m), D: Vacuum chamber inner diameter (m)
50 ≦ G / (n · A n · d u ) ≦ 570 (2)
G: recirculation gas flow rate (Nm 3 / s), n: number of tuyere (−), A n : cross-sectional area of recirculation gas blowing tuyere (m 2 ), du : rising pipe diameter (m)

本発明により、環流型真空脱ガス処理装置の真空槽内の浴深が比較的浅い場合であっても、環流ガス流量を増加させて、環流量を増大させることができ、精錬特性を向上させることができる。ここで、精錬特性とは脱ガス性能や脱酸性能などである。   According to the present invention, even when the bath depth in the vacuum tank of the recirculation type vacuum degassing apparatus is relatively shallow, the recirculation gas flow rate can be increased to increase the recirculation flow rate, thereby improving the refining characteristics. be able to. Here, the refining characteristics include degassing performance and deoxidizing performance.

図1は、本発明で使用する環流型真空脱ガス処理装置の水モデルの均一混合時間とG/(n・A・d)の関係を示す図で、図1(a)〜図1(f)はh/Dをそれぞれ0.020、0.025、0.050、0.10、0.30、0.35としたときの図である。FIG. 1 is a diagram showing a relationship between a uniform mixing time of a water model and G / (n · A n · d u ) of the reflux type vacuum degassing apparatus used in the present invention. (F) is a figure when h / D is 0.020, 0.025, 0.050, 0.10, 0.30, and 0.35, respectively. 図2は、本発明で使用する環流型真空脱ガス処理装置の概略構成を示す図であり、図1(a)は縦断面図であり、図2(b)は図2(a)のA−A矢視図である。FIG. 2 is a diagram showing a schematic configuration of a reflux-type vacuum degassing apparatus used in the present invention, FIG. 1 (a) is a longitudinal sectional view, and FIG. 2 (b) is an A diagram in FIG. 2 (a). FIG.

本発明に係る溶鋼の精錬方法である環流型真空脱ガス処理法を使用する際の形態を説明する。   The form at the time of using the recirculation type vacuum degassing process which is the refining method of the molten steel which concerns on this invention is demonstrated.

(1)装置構成
図2は、本発明で使用する環流型真空脱ガス処理装置の概略構成を示す図であり、図2(a)は縦断面図であり、図2(b)は図2(a)のA−A矢視図である。環流型真空脱ガス処理装置は真空槽1と、真空槽1の底部に取り付けられた上昇管2と下降管3とから構成され、上昇管2には環流ガス吹き込み羽口4が設けられている。真空槽1の上部は真空排気装置5に接続されている。溶鋼の真空処理を行う時は、上昇管2と下降管3を取鍋6内の溶鋼7に浸漬する。溶鋼7の表面はスラグ8が被覆している。
(1) Apparatus Configuration FIG. 2 is a diagram showing a schematic configuration of a reflux type vacuum degassing apparatus used in the present invention, FIG. 2 (a) is a longitudinal sectional view, and FIG. 2 (b) is a diagram of FIG. It is an AA arrow line view of (a). The recirculation-type vacuum degassing apparatus is composed of a vacuum chamber 1, and a rising pipe 2 and a downfalling pipe 3 attached to the bottom of the vacuum tank 1, and the rising pipe 2 is provided with a recirculation gas blowing tuyere 4. . The upper part of the vacuum chamber 1 is connected to a vacuum exhaust device 5. When vacuum processing of molten steel is performed, the ascending pipe 2 and the descending pipe 3 are immersed in the molten steel 7 in the pan 6. The surface of the molten steel 7 is covered with slag 8.

本発明で使用する環流型真空脱ガス処理装置は上昇管に設けられている環流ガス吹き込み羽口以外は、通常の装置で使用されているものを用いればよい。ただし、真空槽の内径(D)は0.9m以上が好ましい。真空槽内径が過度に小さい場合、真空槽内での気泡の分散が十分であっても、気泡が膨張に伴って衝突合体し、吹き抜けが発生してしまい、運動エネルギーの伝達が不十分になってしまうことがあるためである。   The recirculation-type vacuum degassing apparatus used in the present invention may be the one used in a normal apparatus other than the recirculation gas blowing tuyere provided in the rising pipe. However, the inner diameter (D) of the vacuum chamber is preferably 0.9 m or more. If the inner diameter of the vacuum chamber is too small, even if the bubbles are sufficiently dispersed in the vacuum chamber, the bubbles collide with each other as they expand and blow-through occurs, resulting in insufficient transmission of kinetic energy. This is because there are cases where the

浸漬管の内径(d)は処理する溶鋼量に応じて(ii)式の範囲とすることが好ましい。浸漬管の内径が溶鋼量に比して過度に小さい場合は、浸漬管内を流れる溶鋼が浸漬管内面に生じる摩擦力によって流速が抑制され環流量が低下する。浸漬管の内径が溶鋼量に比して過度に大きい場合は、浸漬管の耐火物の冷却によって溶鋼温度の低下が生じてしまう場合があるためである。 The inner diameter (d u ) of the dip tube is preferably in the range of the formula (ii) according to the amount of molten steel to be processed. When the inner diameter of the dip tube is excessively small compared to the amount of molten steel, the flow rate is suppressed by the frictional force generated on the inner surface of the dip tube by the molten steel flowing in the dip tube, and the ring flow rate is reduced. This is because when the inner diameter of the dip tube is excessively large compared to the amount of molten steel, the molten steel temperature may be lowered by cooling the refractory in the dip tube.

0.0012・W+0.12≦d≦0.0022・W+0.27 ・・・(ii)
W:溶鋼量(t)
環流ガス吹き込み羽口の設置高さは、浸漬管の下端から浸漬管長さの1/5〜1/2の範囲とすることが好ましい。これは、羽口の設置高さが過度に低い場合は、環流ガス気泡の衝突合体の頻度が大きくなりやすいためである。また、設置高さが過度に高い場合は、溶鋼に対する環流ガス気泡の上昇の運動エネルギーの伝達効率が低下しやすいためである。
0.0012 · W + 0.12 ≦ d u ≦ 0.0022 · W + 0.27 (ii)
W: amount of molten steel (t)
The installation height of the reflux gas blowing tuyere is preferably in the range of 1/5 to 1/2 of the dip tube length from the lower end of the dip tube. This is because when the installation height of the tuyere is excessively low, the frequency of collision coalescence of the circulating gas bubbles tends to increase. Moreover, it is because the transmission efficiency of the kinetic energy of the rise of the circulating gas bubble with respect to molten steel will fall easily when installation height is too high.

環流ガス吹き込み羽口の個数(n)は8個以上24個以下が好ましい。8個より少ない場合、1孔あたりの環流ガス流量が大きくなり過ぎることで、環流ガス吹き込み羽口から噴出された気泡噴流が不安定となり、環流ガス吹き込み羽口周辺の耐火物へ向かう溶鋼流れが生成し、気泡が耐火物近傍を上昇し、気泡の分散が不十分となる場合があるためである。24個より多い場合、隣接する羽口間の距離が短くなり、隣接する羽口から噴出された気泡同士の合体が生じやすくなる場合がある。すなわち、気泡の分散が不十分となる場合があるためである。   The number (n) of the reflux gas blowing tuyere is preferably 8 or more and 24 or less. When the number is less than 8, the flow rate of the reflux gas per hole becomes too large, and the bubble jet ejected from the reflux gas blowing tuyere becomes unstable, and the molten steel flow toward the refractory around the reflux gas blowing tuyere This is because bubbles may be generated and bubbles may rise in the vicinity of the refractory, resulting in insufficient bubble dispersion. When there are more than 24, the distance between adjacent tuyere becomes short, and coalescence of bubbles ejected from the adjacent tuyere tends to occur. That is, the bubbles may not be sufficiently dispersed.

環流ガス吹き込み羽口は、環流ガス吹き込み羽口と上昇管の中心を結ぶ直線に対し、水平面上で水平角と称して円周方向に15°〜60°傾けて設ける。ただし、これ以外の羽口の形状や材質などは通常用いられる形状や材質から変更する必要はない。   The reflux gas blowing tuyere is provided with a horizontal angle of 15 ° to 60 ° in the circumferential direction on the horizontal plane with respect to a straight line connecting the reflux gas blowing tuyere and the center of the rising pipe. However, the shape and material of the tuyere other than this need not be changed from the shape and material normally used.

この水平角は、全ての環流ガス吹き込み羽口を同一の角度で揃えても良く、個別に角度を変化させても良いが、その場合も15°〜60°の範囲内であることが必要である。   This horizontal angle may be obtained by aligning all the recirculating gas blowing tuyere at the same angle or by changing the angle individually. In this case, it is necessary to be within a range of 15 ° to 60 °. is there.

環流ガス吹き込み羽口1孔あたりの断面積(A)は、1.7×10−6〜5.0×10−5であることが好ましい。1.7×10−6より小さいと、環流ガス気泡が浸漬管の中心に集まり、気泡の分散を図ることができない場合がある。5.0×10−5より大きいと、環流ガスが浸漬管の壁面に偏在してしまい、環流ガス気泡が大きくなるため、気泡の上昇に伴う運動エネルギー伝達効率が低減する場合がある。 The cross-sectional area (A n ) per hole of the recirculating gas blowing tuyere is preferably 1.7 × 10 −6 to 5.0 × 10 −5 m 2 . If it is smaller than 1.7 × 10 −6 m 2, the circulating gas bubbles may collect at the center of the dip tube and the bubbles may not be dispersed. If it is larger than 5.0 × 10 −5 m 2, the circulating gas is unevenly distributed on the wall surface of the dip tube, and the circulating gas bubbles become large, so that the kinetic energy transfer efficiency associated with the rising of the bubbles may be reduced.

環流ガス流量(G)は、本発明において、流量の増加により環流量を増加させる。環流ガス流量は、環流型真空脱ガス処理装置固有の羽口数(n)、羽口断面積(A)および上昇管径(d)に依存し、環流型真空脱ガス処理装置に応じて(2)式を満たす流量であればよい。このため、特に好ましい範囲を定める必要はない。 In the present invention, the reflux gas flow rate (G) is increased by increasing the flow rate. The reflux gas flow rate depends on the number of tuyere (n), tuyere cross-sectional area (A n ) and rising pipe diameter (d u ) specific to the reflux type vacuum degassing apparatus, and depends on the reflux type vacuum degassing apparatus. Any flow rate that satisfies equation (2) is acceptable. For this reason, it is not necessary to define a particularly preferable range.

本発明は、前述の真空槽内の溶鋼の浴深(h)が(1)式の関係を満たす条件において、環流ガス吹き込み羽口を所定の角度になるよう調整し、環流ガス流量を羽口数(n)、羽口断面積(A)および上昇管径(d)で除した指標(G/(n・A・d))が(2)式を満たす必要がある。しかし、環流量を増やすために単に環流ガス流量を増やしたとしても、環流ガス気泡が上昇管の中心に達してしまい、気泡を分散させることができずに環流量を増加させることができない。環流量を増やすためには、環流型真空脱ガス処理装置固有の羽口数(n)、羽口断面積(A)および上昇管径(d)に対する、環流型真空脱ガス処理装置固有の環流ガス流量を定める必要がある。これらの固有の値は、前述のように、環流ガス気泡の分散性や環流ガス気泡の上昇に伴う運動エネルギー伝達効率に大きく寄与する。したがって、環流ガス流量(G)は、環流型真空脱ガス処理装置固有の羽口数(n)、羽口断面積(A)および上昇管径(d)のすべてを考慮した(n・A・d)に対する環流ガス流量(G)の割合が(2)式を満たすような流量であることが必要となる。 The present invention adjusts the circulating gas blowing tuyere to a predetermined angle under the condition that the bath depth (h) of the molten steel in the vacuum chamber satisfies the relationship of the formula (1), and sets the circulating gas flow rate to the number of tuyere. The index (G / (n · A n · d u )) divided by (n), the tuyere cross-sectional area (A n ) and the rising pipe diameter (d u ) needs to satisfy the formula (2). However, even if the recirculation gas flow rate is simply increased to increase the recirculation flow rate, the recirculation gas bubbles reach the center of the riser tube, and the recirculation gas flow cannot be increased without being able to disperse the bubbles. In order to increase the recirculation flow rate, the recirculation type vacuum degassing apparatus has its own number of tuyere (n), tuyere cross-sectional area (A n ) and rising pipe diameter (d u ). It is necessary to determine the reflux gas flow rate. As described above, these inherent values greatly contribute to the dispersibility of the circulating gas bubbles and the kinetic energy transfer efficiency associated with the rising of the circulating gas bubbles. Accordingly, the reflux gas flow rate (G) takes into consideration all of the tuyere number (n), tuyere cross-sectional area (A n ) and rising pipe diameter (d u ) inherent to the reflux-type vacuum degassing apparatus (n · A). It is necessary that the flow rate of the reflux gas flow rate (G) with respect to ( n · d u ) satisfies the equation (2).

(2)処理方法
転炉出鋼後の取鍋に収容された溶鋼を環流型真空脱ガス処理装置まで移送し、本発明の溶鋼の真空処理を開始する。ただし、本発明の溶鋼の精錬方法である真空処理の前に、スラグ改質や脱硫を目的とした取鍋精錬を実施しても良い。
(2) Processing method The molten steel accommodated in the ladle after the converter steel is transferred to the reflux type vacuum degassing apparatus, and the vacuum processing of the molten steel of the present invention is started. However, ladle refining for the purpose of slag reforming and desulfurization may be performed before the vacuum treatment that is the method for refining molten steel of the present invention.

溶鋼の真空処理は、環流ガスを環流ガス吹き込み羽口から導入しながら、取鍋内の溶鋼に上昇管ならびに下降管を浸漬する。環流ガス流量は、環流ガス流量(G)を羽口数(n)、羽口断面積(A)ならびに上昇管径(d)で除した値が本発明の範囲を満足するように調整する。また、この時、修正フルード数が0.02〜2.4であることが好ましい。その後、スチームエジェクターポンプといった真空排気装置によって真空槽内を減圧することで、真空槽内に取鍋内溶鋼を吸い上げる。真空槽内の雰囲気圧力は67〜4000Paが好ましい。67Pa未満では溶鋼表面から発生する溶鋼飛散であるスプラッシュが激しくなり、溶鋼の損失が大きくなる場合がある。4000Paを超えて大きいと、気泡の膨張が不十分となり、気泡の上昇の運動エネルギーの伝達効率が低下する場合がある。 In the vacuum treatment of the molten steel, the riser pipe and the downfall pipe are immersed in the molten steel in the ladle while introducing the reflux gas from the tuyere of the reflux gas. The reflux gas flow rate is adjusted so that the value obtained by dividing the reflux gas flow rate (G) by the number of tuyere (n), the tuyere cross-sectional area (A n ), and the rising pipe diameter (d u ) satisfies the scope of the present invention. . At this time, the modified fluid number is preferably 0.02 to 2.4. Thereafter, the inside of the vacuum chamber is depressurized by a vacuum exhaust device such as a steam ejector pump, and the molten steel in the ladle is sucked into the vacuum chamber. The atmospheric pressure in the vacuum chamber is preferably 67 to 4000 Pa. If it is less than 67 Pa, the splash which is the molten steel scattering generate | occur | produced from the molten steel surface becomes intense, and the loss of molten steel may become large. If it exceeds 4000 Pa, the expansion of the bubbles may be insufficient, and the transfer efficiency of the kinetic energy for rising the bubbles may be reduced.

真空槽内を減圧した時に、装置形状と真空槽内圧から幾何学的に算出される真空槽内の浴深が、本発明の浴深(h)と真空槽内径(D)の比を満足するよう、浸漬管の浸漬深さを調整する。本発明において浴深(h)とは、静置時において、浸漬管の上端から鋼浴表面までの深さである。浴深の範囲については、真空槽の内径との関係で(1)式を満たす範囲であれば比較的浅い範囲となるため、特に好ましい範囲を規定する必要はない。   When the pressure in the vacuum chamber is reduced, the bath depth in the vacuum chamber, which is geometrically calculated from the apparatus shape and the pressure in the vacuum chamber, satisfies the ratio of the bath depth (h) and the vacuum chamber inner diameter (D) of the present invention. Adjust the immersion depth of the dip tube. In the present invention, the bath depth (h) is the depth from the upper end of the dip tube to the steel bath surface when left standing. About the range of bath depth, since it will be a comparatively shallow range if it is a range which satisfies Formula (1) in relation to the internal diameter of a vacuum chamber, it is not necessary to prescribe | regulate a especially preferable range.

真空槽内の減圧が進行すると、環流ガス吹き込み羽口から吹き込まれた環流ガス気泡の浮上に伴う上昇エネルギーが溶鋼に伝達され、上昇管内の溶鋼に上向きの流れが発達し、下降管内には下向きの流れが発達する。これにより、真空槽と取鍋内を溶鋼が循環する流れである環流が生じる。環流中に脱酸、脱ガス、成分調整、温度調整といった処理が行われる。   As the vacuum in the vacuum chamber progresses, the rising energy associated with the rising of the circulating gas bubbles blown from the circulating gas blowing tuyere is transmitted to the molten steel, and an upward flow develops in the molten steel in the rising pipe, and downwards in the downcomer pipe The flow develops. Thereby, the recirculation | flow which is a flow through which molten steel circulates in a vacuum chamber and a ladle arises. Processing such as deoxidation, degassing, component adjustment, and temperature adjustment is performed during the reflux.

溶鋼の二次精錬処理を行うにあたり、前記の装置構成の環流型真空脱ガス処理装置を用いて処理を実施している最中に、金属Cuをトレーサーとして添加し、その後にサンプル採取してCu濃度の増加挙動から均一混合時間を測定した。   In performing the secondary refining treatment of the molten steel, while performing the treatment using the reflux type vacuum degassing treatment device having the above-mentioned device configuration, the metal Cu was added as a tracer, and then a sample was taken and Cu was collected. The uniform mixing time was measured from the increasing behavior of the concentration.

溶鋼160〜300tの真空処理は以下の処理順序で行った。環流ガス吹き込み羽口(8〜16孔、1孔あたりの断面積は3.14×10−6〜2.0×10−5)に環流ガスを導入した状態で、取鍋内の溶鋼に上昇管(内径500〜700mm)ならびに下降管(内径500〜700mm)を浸漬した。浸漬後に真空槽内を、スチームエジェクターポンプを用いて67〜1300Paまで減圧した。この際、真空槽内の浴深が(1)式を満たすように、浸漬管の浸漬深さを調整した。 The vacuum processing of the molten steel 160 to 300 t was performed in the following processing order. Molten steel in the ladle with the recirculation gas introduced into the recirculation gas blowing tuyere (8 to 16 holes, cross-sectional area per hole is 3.14 × 10 −6 to 2.0 × 10 −5 m 2 ) The riser (inner diameter 500-700 mm) and the downcomer (inner diameter 500-700 mm) were immersed in After immersion, the inside of the vacuum chamber was depressurized to 67-1300 Pa using a steam ejector pump. Under the present circumstances, the immersion depth of the dip tube was adjusted so that the bath depth in a vacuum chamber might satisfy | fill Formula (1).

減圧後に溶鋼成分を規格の範囲内に調整するための合金を添加した。この合金添加と同時に金属Cuをトレーサーとして添加した。合金ならびに金属Cu添加後に、サンプルを採取し、化学分析に供することでCu濃度の経時変化を調査した。添加したCu濃度に対し、分析で得られたCu濃度から算出したCu濃度の増分が±5%以内となった時点を均一混合時間とした。均一混合時間の測定結果を表1に示す。試験は本発明の規定する処理条件を満足する試験No.1と試験No.2に加え、試験No.1のh/Dを0.020に変更した試験No.3、試験No.1のθを0°に変更した試験No.4、試験No.1のθを75°に変更した試験No.5、試験No.2のG/(n・A・d)を590に変更した試験No.6、浴深が十分に深い条件の試験No.7を実施した。 An alloy was added to adjust the molten steel components within the specified range after decompression. Simultaneously with the addition of this alloy, metallic Cu was added as a tracer. After addition of the alloy and the metal Cu, a sample was taken and subjected to chemical analysis to investigate changes in Cu concentration over time. The time when the increment of the Cu concentration calculated from the Cu concentration obtained by the analysis was within ± 5% with respect to the added Cu concentration was defined as the uniform mixing time. Table 1 shows the measurement results of the uniform mixing time. The test is a test No. 1 that satisfies the processing conditions specified by the present invention. 1 and test no. 2 and test no. Test No. 1 in which h / D of No. 1 was changed to 0.020. 3, test no. Test No. 1 in which θ of 1 was changed to 0 °. 4, test no. Test No. 1 in which θ of 1 was changed to 75 °. 5, Test No. No. 2 G / (n · A n · d u ) was changed to 590. 6. Test No. under conditions where the bath depth is sufficiently deep. 7 was carried out.

なお、本発明の指標であるG/(n・A・d)の有用性を立証するため、表1中に、「桑原達朗ら:鉄と鋼、vol.73(1987)、S176」に記載されている、公知の環流量推定式(iii)と均一混合時間と環流量の関係式(iv)を用いて推定した均一混合時間、ならびに修正フルード数も併記した。 In order to prove the usefulness of G / (n · A n · d u ), which is an index of the present invention, in Table 1, “Tatsuro Kuwahara et al .: Iron and Steel, vol. 73 (1987), S176” The known ring flow rate estimation formula (iii), the uniform mixing time estimated using the relational formula (iv) between the uniform mixing time and the ring flow rate, and the corrected fluid number are also shown.

Q=11.4・G1/3・d 4/3・{ln(P/P)}1/3 ・・・(iii)
τ=W/Q ・・・(iv)
Q:溶鋼の環流量(t/min)、d:浸漬管内径(m)、G:環流ガス流量(Nl/min)、P:真空槽内雰囲気圧力(Pa)、P:環流ガス吹き込み羽口位置の溶鋼静圧(Pa)、τ:推定均一混合時間(s)、W:溶鋼量(t)
Q = 11.4 · G 1/3 · d u 4/3 · {ln (P 1 / P 0 )} 1/3 (iii)
τ = W / Q (iv)
Q: ring flow rate of molten steel (t / min), du : inner diameter of dip tube (m), G: flow rate of reflux gas (Nl / min), P 0 : atmospheric pressure in vacuum chamber (Pa), P 1 : reflux gas Molten steel static pressure (Pa) at the blowing tuyere position, τ: Estimated uniform mixing time (s), W: Molten steel amount (t)

Figure 0006268963
Figure 0006268963

試験No.1と試験No.3を比べると、h/Dを本発明が規定する範囲を下回ると均一混合時間が長時間化したことが分かる。試験No.1と試験No.4または試験No.5を比べると、θを本発明が規定する範囲外とすると、均一混合時間が長時間化したことが分かる。試験No.2と試験No.6を比べると、G/(n・A・d)を本発明が規定する範囲を上回ると均一混合時間が長時間化したことが分かる。試験No.7では、浴深が十分に深いため、θおよびG/(n・A・d)ともに本発明の範囲外ではあっても、均一混合時間は短時間である。 Test No. 1 and test no. Comparison of 3 shows that when h / D is below the range defined by the present invention, the uniform mixing time is prolonged. Test No. 1 and test no. 4 or test no. When 5 is compared, it can be seen that when θ is outside the range defined by the present invention, the uniform mixing time is prolonged. Test No. 2 and test no. When comparing 6 with G / (n · A n · d u ) exceeding the range defined by the present invention, it can be seen that the uniform mixing time is prolonged. Test No. In No. 7, since the bath depth is sufficiently deep, even when both θ and G / (n · A n · d u ) are outside the scope of the present invention, the uniform mixing time is short.

推定均一混合時間と比べると、試験No.1、No.2の本発明例では短縮化されており、比較例の試験No.3〜No.6では推定均一混合時間よりも長時間化した。浴深が十分に深い試験No.7では推定均一混合時間とほぼ同等であった。   Compared to the estimated uniform mixing time, test no. 1, no. In the inventive example of No. 2, this is shortened. 3-No. In 6, it became longer than the estimated uniform mixing time. Test No. with sufficiently deep bath 7 was almost equal to the estimated uniform mixing time.

そのため、浴深が比較的浅い条件ではθおよびG/(n・A・d)を、本発明で規定する範囲内とすることで、均一混合時間を短時間化することができる。この時、環流量も増加する。 Therefore, when the bath depth is relatively shallow, the uniform mixing time can be shortened by setting θ and G / (n · A n · d u ) within the range defined by the present invention. At this time, the ring flow rate also increases.

本発明による溶鋼の精錬方法は環流型式真空脱ガス処理装置の形状に応じた真空槽内の浴深、水平角、環流ガス流量の適正な範囲を規定し、この範囲を満足する場合に均一混合時間を短時間化することを可能とする方法である。   The method for refining molten steel according to the present invention defines an appropriate range of bath depth, horizontal angle, and reflux gas flow rate in the vacuum chamber according to the shape of the reflux type vacuum degassing apparatus, and uniform mixing is performed when this range is satisfied. This is a method that makes it possible to shorten the time.

均一混合時間を短時間化することができれば、精錬反応の進行に伴って、環流型真空脱ガス処理装置内に生じる濃度の濃淡が軽減され、脱酸、脱ガスといった精錬反応が促進される。さらに、成分調整のために添加した合金が装置全域へ混合され均一化される時間も短くなり、処理時間が短縮される。このように均一混合時間の短縮に伴って、処理時間が全体的に短縮されるため、放熱ロスが減り、温度低下が抑制され、昇温に要するコストを削減することができる。   If the uniform mixing time can be shortened, the concentration concentration generated in the reflux vacuum degassing apparatus is reduced with the progress of the refining reaction, and the refining reaction such as deoxidation and degassing is promoted. Furthermore, the time during which the alloy added for component adjustment is mixed and homogenized throughout the apparatus is shortened, and the processing time is shortened. As described above, since the processing time is shortened as a whole with the reduction of the uniform mixing time, the heat dissipation loss is reduced, the temperature drop is suppressed, and the cost required for the temperature rise can be reduced.

従って、本発明は、溶鋼の精錬処理において有効な方法である。   Therefore, the present invention is an effective method in the refining treatment of molten steel.

Claims (1)

環流型真空脱ガス処理装置で、真空槽内径(D)に対して該真空槽内の溶鋼の浴深(h)が(1)式の関係を満たす条件において、真空槽の底部に取り付けられた上昇管に設けられた環流ガス吹き込み羽口を羽口と浸漬管の中心を結ぶ直線に対して水平に15°〜60°の角度になるよう調整し、環流ガス流量を羽口数(n)、羽口断面積(A)および上昇管径(d)で除した指標(G/(n・A・d))が(2)式を満足するように調整することを特徴とする溶鋼の精錬方法。
0.025≦h/D≦0.30 ・・・(1)
h:真空槽内浴深(m)、D:真空槽内径(m)
50≦G/(n・An・du)≦570 ・・・(2)
G:環流ガス流量(Nm/s)、n:羽口数(−)、An:環流ガス吹き込み羽口断面積(m)、du:上昇管径(m)
In the reflux type vacuum degassing apparatus, the bath depth (h) of the molten steel in the vacuum chamber was attached to the bottom of the vacuum chamber in a condition satisfying the relationship of the expression (1) with respect to the inner diameter (D) of the vacuum chamber. The recirculation gas blowing tuyere provided in the riser is adjusted so that it is at an angle of 15 ° to 60 ° horizontally with respect to the straight line connecting the tuyere and the center of the dip tube. The index (G / (n · A n · d u )) divided by the tuyere cross-sectional area (A n ) and the rising pipe diameter (d u ) is adjusted so as to satisfy the expression (2). Method for refining molten steel.
0.025 ≦ h / D ≦ 0.30 (1)
h: Bath depth in the vacuum chamber (m), D: Vacuum chamber inner diameter (m)
50 ≦ G / (n · An · du) ≦ 570 (2)
G: recirculation gas flow rate (Nm 3 / s), n: number of tuyere (−), An: cross-sectional area of recirculation gas blowing tuyere (m 2 ), du: rising pipe diameter (m)
JP2013236979A 2013-11-15 2013-11-15 Method for refining molten steel Active JP6268963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236979A JP6268963B2 (en) 2013-11-15 2013-11-15 Method for refining molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236979A JP6268963B2 (en) 2013-11-15 2013-11-15 Method for refining molten steel

Publications (2)

Publication Number Publication Date
JP2015096639A JP2015096639A (en) 2015-05-21
JP6268963B2 true JP6268963B2 (en) 2018-01-31

Family

ID=53374053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236979A Active JP6268963B2 (en) 2013-11-15 2013-11-15 Method for refining molten steel

Country Status (1)

Country Link
JP (1) JP6268963B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479317A (en) * 1987-06-29 1989-03-24 Kawasaki Steel Co Gas blowing method of reflux type degassing device
JPH02145717A (en) * 1988-11-25 1990-06-05 Kawasaki Steel Corp Circulating flow type vacuum degassing apparatus
JP2573876B2 (en) * 1989-06-29 1997-01-22 新日本製鐵株式会社 RH vacuum degassing method and apparatus
JP3103121B2 (en) * 1991-01-10 2000-10-23 川崎製鉄株式会社 RH reflux vacuum degassing method
JPH051319A (en) * 1991-02-18 1993-01-08 Sumitomo Metal Ind Ltd Vacuum treatment apparatus for steel
JPH05263122A (en) * 1992-03-19 1993-10-12 Sumitomo Metal Ind Ltd Treatment of molten steel in rh degassing vessel
JPH09241724A (en) * 1996-03-06 1997-09-16 Nkk Corp Method for melting extra-low carbon steel
JP4806863B2 (en) * 2001-06-13 2011-11-02 Jfeスチール株式会社 Method for refining molten steel in RH vacuum degassing equipment
JP5061624B2 (en) * 2007-01-31 2012-10-31 Jfeスチール株式会社 Method for estimating flow rate of molten steel in RH vacuum degassing apparatus and gas blowing method for recirculation
JP2008255421A (en) * 2007-04-05 2008-10-23 Sumitomo Metal Ind Ltd Molten steel heating method

Also Published As

Publication number Publication date
JP2015096639A (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP5365241B2 (en) Molten steel refining equipment
JP2006035272A (en) Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP6686838B2 (en) Highly clean steel manufacturing method
JP2014019886A (en) Ladle degassing method
JP6268963B2 (en) Method for refining molten steel
JP2017166053A (en) Melting production method for high refined steel
JP2007031820A (en) Vacuum-degassing treating method for molten steel
JP5061624B2 (en) Method for estimating flow rate of molten steel in RH vacuum degassing apparatus and gas blowing method for recirculation
JP6372540B2 (en) Vacuum degassing apparatus and vacuum degassing treatment method
JP5103942B2 (en) Ascending side dip tube of RH vacuum degasser
JP6848437B2 (en) Desulfurization method and desulfurization equipment for molten steel
JP2573876B2 (en) RH vacuum degassing method and apparatus
JP4036167B2 (en) Molten steel heating method and molten steel heating device
JP6358039B2 (en) Desulfurization method for molten steel
JP6337681B2 (en) Vacuum refining method for molten steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
KR102652520B1 (en) Molten steel refining method
JP6435983B2 (en) Method for refining molten steel
TWI764778B (en) The refining method of molten steel
CN105886703A (en) RH vacuum channel guide type integrated dipping tube and vacuum refining device with same
JP2018127683A (en) Method for removing nonmetallic inclusions in molten steel
JP2018188685A (en) Ladle refining method of molten steel
JP2915631B2 (en) Vacuum refining of molten steel in ladle
JP6354472B2 (en) Desulfurization treatment method for molten steel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6268963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350