JP2018188685A - Ladle refining method of molten steel - Google Patents

Ladle refining method of molten steel Download PDF

Info

Publication number
JP2018188685A
JP2018188685A JP2017090286A JP2017090286A JP2018188685A JP 2018188685 A JP2018188685 A JP 2018188685A JP 2017090286 A JP2017090286 A JP 2017090286A JP 2017090286 A JP2017090286 A JP 2017090286A JP 2018188685 A JP2018188685 A JP 2018188685A
Authority
JP
Japan
Prior art keywords
molten steel
ladle
gas
flux
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017090286A
Other languages
Japanese (ja)
Other versions
JP6822304B2 (en
Inventor
紀史 浅原
Akifumi Asahara
紀史 浅原
和道 吉田
Kazumichi Yoshida
和道 吉田
太一 中江
Taichi Nakae
太一 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017090286A priority Critical patent/JP6822304B2/en
Publication of JP2018188685A publication Critical patent/JP2018188685A/en
Application granted granted Critical
Publication of JP6822304B2 publication Critical patent/JP6822304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel and improved ladle refining method of a molten steel capable of efficiently proceeding a refining reaction between a flux and a molten steel, when a molten steel in the ladle is desulfurized by the ladle refining of the molten steel accompanying electric heating to produce a very low sulfur steel.SOLUTION: In a ladle refining method of a molten steel in which a flux layer 4 containing CaO is formed on a surface of a molten steel 3 in a ladle 1, and an electrode is dipped in a flux layer to energize, a gas blowing plug 2 is arranged at two positions on a bottom part of the ladle 1, and, regarding a flow rate of a gas blown from each of the gas blowing plugs, when a flow rate having larger gas flow rate is assigned to Qand the other gas flow rate is assigned to Q(unit for both is NL/min/t), Qand Qsatisfy the following (1) to (3) formulas.1.74≤Q≤4.50 (1), 0.1≤Q(2), and Q/Q≥3.0 (3).SELECTED DRAWING: Figure 1

Description

本発明は、溶鋼の取鍋精錬方法に関するものである。   The present invention relates to a ladle refining method for molten steel.

転炉や電気炉で一次精錬された溶鋼は、取鍋に収容される。さらに二次精錬として、取鍋内の溶鋼を対象に精錬が行われる。二次精錬後の溶鋼は、主に連続鋳造によって鋳造し、さらに熱間圧延などを経て目的の製品が製造される。二次精錬は、製品の目標品質に応じて、溶鋼の成分調整、非金属介在物の浮上分離、溶鋼の均一混合、溶鋼の加熱昇温、溶鋼中有害不純物の低減などを目的として行われる。溶鋼中の硫黄(S)濃度を低減する目的で、二次精錬として溶鋼脱硫が行われる。   Molten steel primarily refined in a converter or electric furnace is stored in a ladle. Furthermore, as secondary refining, refining is performed on molten steel in the ladle. The molten steel after the secondary refining is cast mainly by continuous casting, and further, hot rolling or the like is performed to produce the target product. Secondary refining is performed for the purpose of adjusting the components of molten steel, flotation and separation of non-metallic inclusions, uniform mixing of molten steel, heating and heating of molten steel, and reduction of harmful impurities in molten steel according to the target quality of the product. In order to reduce the sulfur (S) concentration in the molten steel, molten steel desulfurization is performed as secondary refining.

二次精錬の方法の一つとして、取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、フラックス層に通電電極を浸漬させて通電しながら、溶鋼中にガスを吹き込んで溶鋼を攪拌する二次精錬方法が知られている。フラックス層を脱硫剤として溶鋼の脱硫処理が可能であり、また通電加熱によって溶鋼を昇温することができる。以下この方法を、通電加熱を伴う溶鋼の取鍋精錬方法と呼ぶ。   As one of the methods of secondary refining, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, and the molten steel is agitated by blowing a gas into the molten steel while immersing the current-carrying electrode in the flux layer and energizing it. Secondary refining methods are known. The molten steel can be desulfurized using the flux layer as a desulfurizing agent, and the molten steel can be heated by electric heating. Hereinafter, this method is referred to as a ladle refining method for molten steel with energization heating.

通電加熱を伴う溶鋼の取鍋精錬に関し、特許文献1には、通電加熱型精錬取鍋が開示されている。取鍋の上部を覆う蓋には、黒鉛製の3本の電極が配置され、取鍋の底部にはガス吹き込みのためのポーラスプラグが配置されている。3本の電極は、取鍋の中心付近であって、取鍋外周と同心円上に配置されている。電極の下方先端は、取鍋内の溶鋼上に浮遊するフラックス層内に浸漬され、給電装置により通電され、フラックス及び溶鋼を加熱する。また、ポーラスプラグから溶鋼中に不活性ガスを送り込み、溶鋼を攪拌する。従来、取鍋底部に配置されるポーラスプラグは1カ所のみであったが、特許文献1に記載の発明は、ポーラスプラグが取鍋底部に複数配置され、当該複数のポーラスプラグは、取鍋底部の一方に偏在させて配置されている。複数のポーラスプラグからは、同一流量の不活性ガスが溶鋼中に吹き込まれている。   Regarding the ladle refining of molten steel accompanied by electric heating, Patent Literature 1 discloses an electric heating type refining ladle. Three electrodes made of graphite are arranged on the lid covering the top of the ladle, and a porous plug for gas blowing is arranged at the bottom of the ladle. The three electrodes are arranged near the center of the ladle and concentrically with the outer circumference of the ladle. The lower tip of the electrode is immersed in a flux layer floating on the molten steel in the ladle, and is energized by a power supply device to heat the flux and molten steel. Further, an inert gas is fed into the molten steel from the porous plug, and the molten steel is agitated. Conventionally, there was only one porous plug arranged at the bottom of the ladle. However, in the invention described in Patent Document 1, a plurality of porous plugs are arranged at the bottom of the ladle, and the plurality of porous plugs are arranged at the bottom of the ladle. Are arranged unevenly on one side. An inert gas having the same flow rate is blown into the molten steel from the plurality of porous plugs.

特許文献2には、通電加熱を伴う溶鋼の取鍋精錬に適用することのできる取鍋精錬方法であって、取鍋の底に2つの底吹き用プラグが配置され、2つの底吹き用プラグからのガス流量に差を付けて不活性ガスを吹き込む方法が開示されている。同文献に記載の発明は、2つの底吹き用プラグから吹き込むガス流量の合計が0.8〜1.8NL/min/tonとなるようにガスを吹き込むこととしている。   Patent Document 2 discloses a ladle refining method that can be applied to ladle refining of molten steel with energization heating, and two bottom blowing plugs are arranged at the bottom of the ladle. Has disclosed a method of blowing an inert gas with a difference in the gas flow rate. In the invention described in this document, the gas is blown so that the total flow rate of the gas blown from the two bottom blowing plugs is 0.8 to 1.8 NL / min / ton.

特許文献3には、出鋼した溶鋼に対して1回目の精錬処理、脱ガス処理、2回目の精錬処理をこの順に行う、高清浄度鋼の製造方法が開示されている。精錬処理と脱ガス処理では2つの底吹き用プラグから不活性ガスを吹き込み、2つの底吹き用プラグからのガス流量に差を付けて不活性ガスを吹き込む。精錬処理として、通電加熱を伴う溶鋼の取鍋精錬方法が用いられている。同文献に記載の発明は、2つの底吹き用プラグから吹き込むガス流量の合計が、1回目の精錬処理と脱ガス処理(前半)では0.90〜1.25NL/min/ton、脱ガス処理(後半)と2回目の精錬処理では0.45〜0.70NL/min/tonとなるようにガスを吹き込むこととしている。   Patent Document 3 discloses a method for producing a high cleanliness steel in which a first refining process, a degassing process, and a second refining process are performed in this order on the molten steel that has been produced. In the refining process and the degassing process, the inert gas is blown from the two bottom blowing plugs, and the inert gas is blown with a difference in the gas flow rate from the two bottom blowing plugs. As a refining process, a ladle refining method for molten steel with energization heating is used. In the invention described in this document, the total gas flow rate blown from the two bottom blowing plugs is 0.90 to 1.25 NL / min / ton in the first refining treatment and degassing treatment (first half), and the degassing treatment. In the second half of the refining process, gas is blown so as to be 0.45 to 0.70 NL / min / ton.

特開2001−040411号公報Japanese Patent Laid-Open No. 2001-040411 特開2011−214083号公報JP 2011-214083 A 特開2011−214084号公報JP 2011-214084 A

取鍋内の溶鋼を、通電加熱を伴う溶鋼の取鍋精錬によって脱硫して極低硫鋼を製造するに際し、特許文献1〜特許文献3に記載の方法を用いて脱硫処理を行うと、目標とする溶鋼の極低硫化を実現するために長時間を要し、所定の時間内には目標とする極低硫化を実現できないという問題を有していた。   When producing ultra-low-sulfur steel by desulfurizing the molten steel in the ladle by ladle refining of the molten steel accompanied by electric heating, the desulfurization treatment is performed using the method described in Patent Document 1 to Patent Document 3, It takes a long time to realize ultra-low sulfidation of molten steel, and there is a problem that the target ultra-low sulfidation cannot be realized within a predetermined time.

本発明は、取鍋内の溶鋼を、通電加熱を伴う溶鋼の取鍋精錬によって脱硫して極低硫鋼を製造するに際し、フラックスと溶鋼との精錬反応を効率的に進行させることが可能な、新規かつ改良された溶鋼の取鍋精錬方法を提供することを目的とする。   The present invention is capable of efficiently proceeding a refining reaction between flux and molten steel when producing ultra-low-sulfur steel by desulfurizing molten steel in a ladle by ladle refining of molten steel accompanied by electric heating. An object of the present invention is to provide a new and improved ladle refining method for molten steel.

即ち、本発明の要旨とするところは以下のとおりである。
(1)取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、電極を前記フラックス層に浸漬させて通電する溶鋼の取鍋精錬方法において、
前記取鍋の底部にガス吹き込み用プラグを2カ所に配置し、当該ガス吹き込み用プラグそれぞれから吹き込まれるガスの流量について、ガス流量が大きい方のガス流量をQB、他方のガス流量をQA(いずれも単位はNL/min/t)とし、QA、QBが以下に示す(1)〜(3)式を満たすことを特徴とする、溶鋼の取鍋精錬方法。
1.74≦QB≦4.50 (1)
0.1≦QA (2)
B/QA≧3.0 (3)
(2)前記フラックス層の厚さを100mm以上200mm以下とすることを特徴とする、上記(1)に記載の溶鋼の取鍋精錬方法。
(3)2つのガス吹き込みプラグ中心間の距離は、取鍋底部の半径をRとして0.5R以上に離隔し、いずれのガス吹き込みプラグ中心も、取鍋壁面からの距離が0.1R以上であることを特徴とする、上記(1)又は(2)に記載の溶鋼の取鍋精錬方法。
(4)取鍋内の溶鋼量が130t以上であることを特徴とする、上記(1)〜(3)のいずれか1つに記載の溶鋼の取鍋精錬方法。
(5)取鍋内の溶鋼量が270t以上であることを特徴とする、上記(1)〜(3)のいずれか1つに記載の溶鋼の取鍋精錬方法。
That is, the gist of the present invention is as follows.
(1) In the ladle refining method for molten steel, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, and the electrode is immersed in the flux layer and energized.
Two gas injection plugs are arranged at the bottom of the ladle. Regarding the flow rate of gas injected from each of the gas injection plugs, the gas flow rate with the larger gas flow rate is Q B , and the other gas flow rate is Q A. (both units NL / min / t) and, Q a, Q B is the following (1) to (3) and satisfies the equation, ladle refining method of molten steel.
1.74 ≦ Q B ≦ 4.50 (1)
0.1 ≦ Q A (2)
Q B / Q A ≧ 3.0 (3)
(2) The ladle refining method for molten steel according to (1) above, wherein the thickness of the flux layer is 100 mm or more and 200 mm or less.
(3) The distance between the two gas blowing plug centers is 0.5R or more with the radius of the bottom of the ladle being R, and the distance from the ladle wall surface is 0.1R or more at any gas blowing plug center. The method for refining a ladle of molten steel as described in (1) or (2) above, wherein
(4) The molten steel ladle refining method according to any one of (1) to (3) above, wherein the amount of molten steel in the ladle is 130 t or more.
(5) The molten steel ladle refining method according to any one of (1) to (3) above, wherein the amount of molten steel in the ladle is 270 t or more.

本発明は、取鍋内の溶鋼を、通電加熱を伴う溶鋼の取鍋精錬によって脱硫して極低硫鋼を製造するに際し、取鍋の底部にガス吹き込み用プラグを2カ所に配置し、ガス吹き込み用プラグそれぞれから吹き込まれるガスの流量を所定の範囲内とすることにより、フラックス層の巻込みを促進させながら、取鍋内の溶鋼攪拌を促進することができ、フラックスと溶鋼の間の精錬反応を迅速に進めることができる。   In the present invention, when producing ultra-low-sulfur steel by desulfurizing molten steel in a ladle by ladle refining of molten steel with energization heating, gas blowing plugs are arranged at two locations at the bottom of the ladle, By keeping the flow rate of the gas blown from each of the blow plugs within a predetermined range, stirring of the molten steel in the ladle can be promoted while promoting the entrainment of the flux layer, and refining between the flux and the molten steel. The reaction can proceed quickly.

本発明の取鍋精錬を実施する状況を示す断面図である。It is sectional drawing which shows the condition which implements the ladle refining of this invention. 取鍋底部からの一方のガス吹き込み量が過大であるときの状況を示す断面図である。It is sectional drawing which shows a condition when one gas blowing amount from the ladle bottom part is excessive. 取鍋底部2箇所からのガス吹き込み量の比率(QB/QA)が過小であるときの状況を示す斜視断面図である。It is a perspective sectional view showing the situation when the ratio (Q B / Q A ) of the amount of gas blown from the ladle bottom two places is too small.

図1に示すように、本発明の溶鋼3の取鍋精錬方法において、取鍋1内の溶鋼表面にCaOを含むフラックス層4を形成し、電極(図示せず)をフラックス層に浸漬させて通電することにより、溶鋼脱硫を行う。通電加熱については、通常行われている方法を用いることができる。即ち、取鍋上部に配置した電極の下方先端をフラックス層内に浸漬し、電極に通電することにより、フラックス及び溶鋼を加熱する。また本発明では、取鍋1の底部にガス吹き込み用プラグ2を2カ所に配置し、当該ガス吹き込み用プラグ2それぞれから不活性ガスを溶鋼中に吹き込むことにより、取鍋内溶鋼の攪拌を行う。   As shown in FIG. 1, in the ladle refining method of the molten steel 3 of this invention, the flux layer 4 containing CaO is formed in the molten steel surface in the ladle 1, and an electrode (not shown) is immersed in the flux layer. Molten steel desulfurization is performed by energizing. As for the electric heating, a usual method can be used. That is, the flux and molten steel are heated by immersing the lower tip of the electrode disposed in the upper portion of the ladle in the flux layer and energizing the electrode. Moreover, in this invention, the plug 2 for gas blowing is arrange | positioned at two places in the bottom part of the ladle 1, and the molten steel in a ladle is stirred by blowing inactive gas in each molten steel from the said gas blowing plug 2 each. .

取鍋精錬においては、取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、当該フラックス層を溶融させ、溶鋼中の含有Sがフラックス中成分と反応してフラックス層中に移動することにより、脱硫反応が進行する。脱硫反応は、溶鋼とフラックス層との界面で進行する。取鍋内溶鋼全体の脱硫を速やかに進行するためには、フラックス層を十分に溶解すること、取鍋内の溶鋼において脱硫が進行した溶鋼と脱硫が進行していない溶鋼との入れ替わりを迅速に行うこと、溶鋼とフラックス層界面の反応界面積を増大すること、などが重要である。本発明で特に、溶鋼の取鍋精錬で脱硫処理を速やかにかつ極低硫まで脱硫を進行させるため、溶鋼とフラックス層界面の反応界面積を増大することに着目した。図1に示すように、取鍋底部のガス吹き込み用プラグ2から吹き込んだガスは気泡5となり、気泡5は取鍋内の溶鋼中を上昇するとともに、溶鋼の上昇流6を形成する。気泡を伴う溶鋼の上昇流6は、溶鋼表面に到達したところで、フラックス層の下面に沿う横行流7に転じ、その際に一部のフラックスをせん断力で溶鋼中に懸濁させる。これにより、溶鋼中にはフラックスが液滴10となって混入し、溶鋼と溶融フラックスとの接触界面積が増大する。これにより、溶鋼とフラックス間での脱硫反応が促進される。   In ladle refining, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, the flux layer is melted, and the contained S in the molten steel reacts with the components in the flux and moves into the flux layer. The desulfurization reaction proceeds. The desulfurization reaction proceeds at the interface between the molten steel and the flux layer. In order to quickly proceed with desulfurization of the entire molten steel in the ladle, it is necessary to dissolve the flux layer sufficiently, and to quickly replace the molten steel that has undergone desulfurization with the molten steel that has not undergone desulfurization in the molten steel in the ladle. What is important is to increase the reaction interface area between the molten steel and the flux layer interface. In the present invention, in particular, attention has been paid to increasing the reaction interfacial area between the molten steel and the flux layer interface in order to proceed the desulfurization process to the very low sulfur by ladle refining of the molten steel. As shown in FIG. 1, the gas blown from the gas blowing plug 2 at the bottom of the ladle becomes a bubble 5, and the bubble 5 rises in the molten steel in the ladle and forms an upward flow 6 of the molten steel. When the molten steel ascending flow 6 with bubbles reaches the molten steel surface, it turns into a transverse flow 7 along the lower surface of the flux layer, and at that time, a part of the flux is suspended in the molten steel by a shearing force. As a result, the flux enters the molten steel as droplets 10, and the contact interface area between the molten steel and the molten flux increases. Thereby, the desulfurization reaction between molten steel and a flux is accelerated | stimulated.

上記目的を達成するため、本発明においては、取鍋の底部に配置した2カ所のガス吹き込み用プラグそれぞれから吹き込まれるガスの流量について、ガス流量が大きい方(ガス吹き込み用Bプラグ2B)のガス流量をQB、他方(ガス吹き込み用Aプラグ2A)のガス流量をQA(いずれも単位はNL/min/t)とし、QA、QBが以下に示す(1)〜(3)式を満たすことを特徴とする。
1.74≦QB≦4.50 (1)
0.1≦QA (2)
B/QA≧3.0 (3)
In order to achieve the above object, in the present invention, the gas flow rate of the gas blown from each of the two gas blowing plugs arranged at the bottom of the ladle (the gas blowing B plug 2B) is larger. The flow rate is Q B , and the gas flow rate of the other (gas plug A plug 2A) is Q A (both units are NL / min / t), and Q A and Q B are the following formulas (1) to (3) It is characterized by satisfying.
1.74 ≦ Q B ≦ 4.50 (1)
0.1 ≦ Q A (2)
Q B / Q A ≧ 3.0 (3)

本発明では、2箇所のガス吹き込み用プラグ(2A、2B)からガスを吹き込むに際し、ガス流量に差を持たせる。そして、ガス流量が大きい方(ガス吹き込み用Bプラグ2B)のガス吹き込み(ガス流量=QB)によって、本発明が目的とする、溶鋼表面におけるフラックスの液滴化とフラックス液滴10の溶鋼3への懸濁を促進させる。ガス流量QBを1.74NL/min/t以上とすることにより、十分な溶鋼の上昇流6を形成し、溶鋼表面においてフラックス層を巻き込み、溶鋼と溶融フラックスとが相互に懸濁して十分な量のフラックスの液滴10が溶鋼中に混入するので、溶鋼と溶融フラックスとの接触界面積が増大し、溶鋼とフラックス間での脱硫反応が促進されることとなる(図1)。ガス流量QBが1.74NL/min/t未満の場合には、溶融フラックスが液滴状となることは発生しているものと考えられるが、その量が少ないものとみられ、目的とする精錬反応の終了時期が、QB≧1.74NL/min/tの場合に比べて遅延する。即ち、上記(1)式の左辺不等式とすることにより、脱硫反応に必要なフラックスの液滴化を十分に達成することができる。 In the present invention, when the gas is blown from the two gas blowing plugs (2A, 2B), a difference is given to the gas flow rate. Then, by the gas blowing (gas flow rate = Q B ) of the one with the larger gas flow rate (gas blowing B plug 2B), the flux droplet formation on the molten steel surface and the molten steel 3 of the flux droplet 10 are the objects of the present invention. To promote suspension. By setting the gas flow rate Q B to 1.74 NL / min / t or more, a sufficient ascending flow 6 of the molten steel is formed, the flux layer is entrained on the surface of the molten steel, and the molten steel and the molten flux are mutually suspended and sufficient. Since an amount of flux droplets 10 is mixed in the molten steel, the contact interface area between the molten steel and the molten flux increases, and the desulfurization reaction between the molten steel and the flux is promoted (FIG. 1). When the gas flow rate Q B is less than 1.74 NL / min / t, it is considered that the molten flux is in the form of droplets, but the amount is considered to be small, and the intended refining The end time of the reaction is delayed compared to the case of Q B ≧ 1.74 NL / min / t. That is, by forming the left side inequality of the above formula (1), it is possible to sufficiently achieve the droplet formation of the flux necessary for the desulfurization reaction.

ガス流量QBが4.50NL/min/tを超えると、溶鋼中へのフラックスの巻き込み頻度は飽和する一方で、図2に示すように、溶鋼表面上のフラックスが取鍋壁面12に偏在する原因となり、当該偏在箇所で未溶融のフラックス15が生成する。また、気泡を含む上昇流が溶鋼表面に到達したところで、フラックス層に覆われずに溶鋼が露出する面積が過大となるため、取鍋上方の雰囲気ガス中に不可避的に混入する酸素や窒素が溶鋼と接触することによる悪影響(復硫、窒素ピックアップ等)が生じる。そこで、本発明においては、ガス流量が大きい方のガス流量QBについて、上記(1)式の右辺不等式を規定することとした。 When the gas flow rate Q B exceeds 4.50 NL / min / t, the flux entrainment frequency in the molten steel is saturated, while the flux on the molten steel surface is unevenly distributed on the ladle wall surface 12 as shown in FIG. This causes the unmelted flux 15 to be generated at the uneven distribution location. Also, when the upward flow containing bubbles reaches the surface of the molten steel, the area where the molten steel is exposed without being covered by the flux layer becomes excessive, so oxygen and nitrogen inevitably mixed in the atmospheric gas above the ladle. Adverse effects (condensation, nitrogen pickup, etc.) due to contact with molten steel occur. Therefore, in the present invention, the right side inequality of the above equation (1) is defined for the gas flow rate Q B having the larger gas flow rate.

次に、ガス流量が小さい方のガス吹き込み用プラグ(ガス吹き込み用Aプラグ2A)のガス吹き込み(ガス流量=QA)について説明する。 Next, the gas blowing (gas flow rate = Q A ) of the gas blowing plug (gas blowing A plug 2A) having the smaller gas flow rate will be described.

プラグ1箇所(ガス吹き込み用Bプラグ2B)のみから(1)式に従う攪拌ガスを吹き込んだ場合、通電加熱によって溶融させたフラックスの巻込みによるフラックスの液滴10は生じるものの、取鍋底部に溶鋼流の淀み部が生じてしまい、溶鋼側の攪拌が不十分となる。例えば脱硫精錬の場合、(1)式に従うプラグの上方では、巻き込まれた溶融フラックスとの反応により溶鋼中の硫黄濃度が迅速に低減する(主として、溶融フラックス/溶鋼の界面近傍)。一方、取鍋底部の溶鋼は、相対的に高い硫黄濃度をもった溶鋼が滞留してしまう((1)式に従うガス吹き込み用Bプラグ2B近傍を除く)。その結果、取鍋底部の不純物濃度を目標値以下に下げるために必要な処理時間は延長してしまう。そこで、(1)式に従うプラグ(ガス吹き込み用Bプラグ2B)に加え、2箇所目のプラグ(ガス吹き込み用Aプラグ2A)を設けることで、溶鋼流の淀み部が解消され、反応進行度の異なる溶鋼を置換させることができ、反応速度を向上できる。このとき、ガス吹き込み用Aプラグ2Aから吹き込むガス流量について、プラグ1箇所あたりの攪拌ガス流量が0.10(NL/min/t)未満であると、溶鋼の攪拌効果が不十分となる。そこで、本発明では、プラグ1箇所あたりの攪拌ガスの流量は溶鋼重量あたり0.10(NL/min/t)以上と規定した。なお、ガス吹き込み用Aプラグ2Aから吹き込むガス流量の上限については、後に述べる(3)式を含めて検討すると、1.50(NL/min/t)となる。   When the stirring gas according to the formula (1) is blown from only one plug (B plug 2B for blowing gas), the flux droplet 10 is generated by entrainment of the flux melted by energization heating, but the molten steel is formed at the bottom of the ladle. The stagnation part of a flow will arise and stirring on the molten steel side will become inadequate. For example, in the case of desulfurization refining, the sulfur concentration in the molten steel is rapidly reduced (mainly in the vicinity of the molten flux / molten steel interface) due to the reaction with the entrained molten flux above the plug according to the formula (1). On the other hand, molten steel having a relatively high sulfur concentration stays in the molten steel at the bottom of the ladle (except for the vicinity of the B plug 2B for gas blowing according to the formula (1)). As a result, the processing time required to reduce the impurity concentration at the bottom of the ladle to the target value or less is extended. Therefore, in addition to the plug according to the formula (1) (gas blowing B plug 2B), by providing a second plug (gas blowing A plug 2A), the stagnation part of the molten steel flow is eliminated, and the reaction progress degree is increased. Different molten steel can be replaced, and the reaction rate can be improved. At this time, if the flow rate of the gas blown from the gas plug A plug 2A is less than 0.10 (NL / min / t), the stirring effect of the molten steel becomes insufficient. Therefore, in the present invention, the flow rate of the stirring gas per plug is defined as 0.10 (NL / min / t) or more per molten steel weight. Note that the upper limit of the gas flow rate blown from the gas blowing A plug 2A is 1.50 (NL / min / t) when considered including the expression (3) described later.

ガス吹き込み用Aプラグ2Aから吹き込むガス流量QAと、ガス吹き込み用Bプラグ2Bから吹き込むガス流量QBとの間の比(QB/QA)について説明する。ガス吹き込みに伴って生成する上昇流6は、溶鋼表面付近において放射状に流れる横行流となる。本発明のように2箇所のガス吹き込み用プラグからガスを吹き込む場合であって、2箇所のガス吹き込み用プラグから導入する攪拌ガス流量の流量比(QB/QA)が3.0未満であると、両プラグからの攪拌によって生じる横行流7の衝突が発生しやすくなる。相反する方向の溶鋼流動が溶融フラックス下で衝突すると、横行流7の流速が増加できず、横行流のせん断力による溶鋼中へのフラックス懸濁量が低下する(図3)。そこで、本発明では、上記(3)式を規定し、流量比を3.0以上とした。流量比の上限値については特に設ける必要はないが、プラグからの流量をそれぞれ(1)式の上限、(2)式の下限にした場合には45.0となる。 The ratio (Q B / Q A ) between the gas flow rate Q A blown from the gas blowing A plug 2A and the gas flow rate Q B blown from the gas blowing B plug 2B will be described. The upward flow 6 generated as the gas is blown becomes a transverse flow that flows radially in the vicinity of the molten steel surface. In the case where gas is blown from two gas blowing plugs as in the present invention, the flow rate ratio (Q B / Q A ) of the stirring gas flow rate introduced from the two gas blowing plugs is less than 3.0. If it exists, it will become easy to generate | occur | produce the collision of the transverse flow 7 which arises by the stirring from both plugs. When the flow of molten steel in the opposite direction collides with the molten flux, the flow velocity of the transverse flow 7 cannot be increased, and the amount of flux suspension in the molten steel due to the shearing force of the transverse flow decreases (FIG. 3). Therefore, in the present invention, the above equation (3) is defined, and the flow rate ratio is set to 3.0 or more. The upper limit value of the flow rate ratio is not particularly required, but is 45.0 when the flow rate from the plug is set to the upper limit of the expression (1) and the lower limit of the expression (2), respectively.

また、(1)式に従うQB、(2)式に従うQA、のプラグ以外に3箇所目のプラグを配置する場合は、QA(NL/min/t)以下のガス量QC(NL/min/t)を吹き込むプラグを配置し、後述する(3)式について、
B/(QA+QC)≧3.0
を充足させればよく、3箇所以上のプラグを配置することを本発明は妨げない。
When a third plug is disposed in addition to the plug of Q B according to the equation (1) and Q A according to the equation (2), the gas amount Q C (NL) equal to or less than Q A (NL / min / t). / Min / t) is disposed, and the expression (3) to be described later is
Q B / (Q A + Q C ) ≧ 3.0
The present invention does not prevent the arrangement of three or more plugs.

なお、ガス吹き込み用Bプラグ2Bからのガス流量QBを1.74NL/min/t以上とすることによって得られる前記脱硫精錬効率の向上効果は、フラックスが溶融状態であるときに顕著となる。フラックスが未滓化であると、固体フラックス内への不純物の移動が極めて遅く、反応速度が小さいためである。従ってフラックスの溶融状態を確保する観点から、本発明のガス吹込みは、通電中、または通電直後であることが好ましい。通電直後とは、通電終了後0分経過〜20分以内を指すものとする。20分以内であれば、通例ではフラックス層の大半または全部の溶融状態が確保できるためである。 The effect of improving the desulfurization refining efficiency obtained by setting the gas flow rate Q B from the gas blowing B plug 2B to 1.74 NL / min / t or more becomes significant when the flux is in a molten state. This is because when the flux is not yet hatched, the movement of impurities into the solid flux is extremely slow and the reaction rate is low. Therefore, from the viewpoint of ensuring the melted state of the flux, the gas blowing of the present invention is preferably during energization or immediately after energization. “Immediately after energization” refers to 0 minutes to 20 minutes after energization. This is because the melting state of most or all of the flux layer can be secured usually within 20 minutes.

溶鋼の取鍋精錬において、脱硫精錬のみならず、介在物を減らす目的の精錬を行うことがある。介在物を減らす必要があるときは、巻き込んだフラックスは精錬反応が所定のレベルに達した後に、攪拌ガスの流量を低下させて浮上処理を行えば、精錬処理時間は従来と同等レベルとなり、フラックス利用効率の向上効果が得られる。また、攪拌ガス流量を上述のように1.74(NL/min/t)以上とすることにより、フラックスの浮上処理を行う場合は精錬処理(本発明の撹拌処理とフラックスの浮上処理)全体の時間の短縮を実現することができる。   In ladle refining of molten steel, refining not only for desulfurization refining but also for the purpose of reducing inclusions may be performed. When it is necessary to reduce inclusions, if the entrained flux reaches the specified level after the refining reaction, the flow of the stirring gas is reduced and the levitating process is performed. The use efficiency can be improved. In addition, when the flow rate of the stirring gas is set to 1.74 (NL / min / t) or more as described above, the entire refining process (the stirring process and the floating process of the flux of the present invention) is performed when the flux is floated. A reduction in time can be realized.

本発明のガス吹込みは、取鍋底部に接する溶鋼の撹拌も可能となる取鍋底部に設けたプラグを用いることが好ましい。但し、浸漬ランスであっても溶融フラックスの液滴化が図れるため、浸漬ランスを用いても本発明の課題が一定のレベル解決することは可能である。   For the gas blowing of the present invention, it is preferable to use a plug provided at the bottom of the ladle that enables stirring of the molten steel in contact with the bottom of the ladle. However, since the molten flux can be formed into droplets even with the immersion lance, the problem of the present invention can be solved to a certain level even with the immersion lance.

本発明は、取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、当該フラックス層によって溶鋼の脱硫が行われる。フラックス中のCaO成分が脱硫能を有している。フラックス層中のCaO含有量が25質量%以上であれば、好適に脱硫を行うことができる。30%以上であるとより好ましい。   In the present invention, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, and the molten steel is desulfurized by the flux layer. The CaO component in the flux has a desulfurization ability. If the CaO content in the flux layer is 25% by mass or more, desulfurization can be suitably performed. More preferably, it is 30% or more.

本発明において、取鍋内の溶鋼表面に形成するフラックス層の厚さが100mm以上200mm以下であると好ましい。フラックス層の厚さが100mm未満であると、ガス吹込みによる湯面波立ちにより溶鋼湯面を覆う溶融フラックスが途切れる場合があり、溶融フラックスの液滴化領域が限定されることにつながる。このため、フラックス層の厚さは100mm以上であることが好ましい。
一方、フラックス層の厚さが200mm超では、フラックス層の厚さ方向に温度差が生じやすくなる。フラックス層表層の未滓化(未溶融)部分の発生を招く場合があり、精錬に対するフラックスの有効利用が制限され、溶融フラックスの液滴化も制限される。
そこで、本発明では、フラックス層の厚さを100mm以上200mm以内とすることが好ましい。フラックス層の厚さを100mm以上200mm以内とするためには、取鍋の寸法から算出されるフラックス容積と、想定されるフラックス組成でのフラックス密度から必要となるフラックス投入量を算出したり、投入量とフラックス厚さの相関(過去の実績)に基づいてフラックスの投入量を決定したり、フラックス厚さを測定しながら投入量を調整したり、すればよい。
In this invention, it is preferable in the thickness of the flux layer formed in the molten steel surface in a ladle being 100 mm or more and 200 mm or less. When the thickness of the flux layer is less than 100 mm, the molten flux covering the molten steel surface may be interrupted by the molten metal surface undulation caused by gas blowing, leading to a limitation of the molten flux droplet formation region. For this reason, it is preferable that the thickness of a flux layer is 100 mm or more.
On the other hand, when the thickness of the flux layer exceeds 200 mm, a temperature difference tends to occur in the thickness direction of the flux layer. In some cases, the undegraded (unmelted) portion of the surface of the flux layer may be caused, and the effective use of the flux for refining is limited, and the droplet formation of the molten flux is also limited.
Therefore, in the present invention, the thickness of the flux layer is preferably 100 mm or more and 200 mm or less. In order to set the thickness of the flux layer to 100 mm or more and 200 mm or less, calculate the required flux input amount from the flux volume calculated from the dimensions of the ladle and the flux density at the assumed flux composition, or input The amount of flux input may be determined based on the correlation between the amount and the flux thickness (past results), or the amount of input may be adjusted while measuring the flux thickness.

ここでフラックス層の厚さは、精錬処理中に測定することは困難である。このため、ここで規定するフラックス層の厚さは、精錬処理後であって、溶鋼へのガス吹込みを停止して溶鋼を静置した状態におけるフラックス層の厚さとする。このフラックス層厚さは、例えば取鍋内に鋼製棒を挿入し、その後取鍋から引き抜いた当該鋼製棒に付着したフラックス層の厚さを測定することで取得できる。なお、脱硫処理等の精錬処理が行われても、フラックス投入後のフラックス層厚さは精錬前後で実質的な変化はない。   Here, it is difficult to measure the thickness of the flux layer during the refining process. For this reason, the thickness of the flux layer defined here is the thickness of the flux layer after the refining process, in a state where the gas blowing into the molten steel is stopped and the molten steel is left still. This flux layer thickness can be obtained, for example, by inserting a steel rod into the ladle and then measuring the thickness of the flux layer attached to the steel rod pulled out from the ladle. Even if a refining process such as a desulfurization process is performed, the thickness of the flux layer after feeding the flux does not change substantially before and after the refining.

本発明で好ましくは、2つのガス吹き込み用プラグ中心間の距離は、取鍋底部の半径をRとして0.5R以上に離隔し、いずれのガス吹き込み用プラグ中心も、取鍋壁面からの距離が0.1R以上である。
本発明は、ガス吹き込み用Bプラグ2Bからのガス吹き込みに加え、ガス吹き込み用Aプラグ2Aからもガスを吹き込むことにより、取鍋底部の溶鋼流の淀み部解消を図っている。取鍋底部の半径をRとしたとき、2箇所のプラグ中心間の距離が0.5R未満であると、取鍋底部の溶鋼流の淀み部解消効果が限定的であり、本発明の効果が最大では得られない。一方、取鍋壁面とプラグ中心の間の距離が0.1R未満である場合、取鍋壁面とプラグが近接しており、吹き込んだガスの一部が壁面に接触しながら浮上してしまうため(フラックスと壁面の間をガスが吹き抜けるため)、本発明の効果が最大では得られない。そこで、本発明では、2箇所のプラグの中心間の距離は0.5R以上、取鍋壁面とプラグ中心の距離を0.1R以上が好ましいものとした。なお、取鍋の底面が正円形でない場合は、取鍋の底面と同じ面積を持つ相当円の半径をRとして採用すればよい。プラグのガス吹き出し部がプラグ本体の中心にない場合、ガス吹き出し部の中心をプラグの中心とみなしてよい。プラグ本体やプラグのガス吹き出し部が正円形でない場合、ガス吹き出し部の水平断面の重心をプラグの中心とみなしてよい。
Preferably, in the present invention, the distance between the two gas blowing plug centers is 0.5 R or more with the radius of the bottom of the ladle being R, and any of the gas blowing plug centers has a distance from the ladle wall surface. It is 0.1R or more.
In the present invention, in addition to gas blowing from the gas blowing B plug 2B, gas is blown also from the gas blowing A plug 2A, thereby eliminating the stagnation of the molten steel flow at the bottom of the ladle. When the radius of the ladle bottom is R, and the distance between the two plug centers is less than 0.5 R, the effect of eliminating the stagnation of the molten steel flow at the ladle bottom is limited, and the effect of the present invention is It cannot be obtained at maximum. On the other hand, when the distance between the ladle wall surface and the center of the plug is less than 0.1 R, the ladle wall surface and the plug are close to each other, and a part of the blown gas floats while contacting the wall surface ( Since the gas blows between the flux and the wall surface, the effect of the present invention cannot be obtained at the maximum. Therefore, in the present invention, the distance between the centers of the two plugs is preferably 0.5R or more, and the distance between the ladle wall surface and the plug center is preferably 0.1R or more. In addition, what is necessary is just to employ | adopt the radius of the equivalent circle which has the same area as the bottom face of a ladle as R, when the bottom face of a ladle is not a perfect circle. When the gas blowing portion of the plug is not at the center of the plug body, the center of the gas blowing portion may be regarded as the center of the plug. When the plug body or the gas blowing portion of the plug is not a perfect circle, the center of gravity of the horizontal section of the gas blowing portion may be regarded as the center of the plug.

本発明で好ましくは、取鍋内の溶鋼量が130t以上、さらに好ましくは取鍋内の溶鋼量が270t以上である。
溶鋼の取鍋精錬処理において、取鍋内の溶鋼量の増加とともに、精錬時間(例えば脱硫処理時間)が長くなる。従来の取鍋精錬方法と比較し、本発明の取鍋精錬方法を採用することにより、溶融フラックスの巻込み現象を生じさせつつ、取鍋底部の淀み部を解消することで精錬時間の短縮が可能となる。さらに本発明者らの知見では、取鍋内溶鋼量が130t以上、更には270t以上とすることで、精錬時間のより一層の短縮が可能となる。一般的に取鍋溶鋼量が多いほど、溶鋼トンあたりの静止湯面面積は小さくなるため、巻込み現象による界面積増加効果が有効となりやすいためと推定される。
In the present invention, the amount of molten steel in the ladle is preferably 130 t or more, more preferably the amount of molten steel in the ladle is 270 t or more.
In ladle refining treatment of molten steel, the refining time (for example, desulfurization treatment time) becomes longer as the amount of molten steel in the ladle increases. Compared to the conventional ladle refining method, by adopting the ladle refining method of the present invention, the refining time can be shortened by eliminating the stagnation part at the bottom of the ladle while causing the melting flux entrainment phenomenon. It becomes possible. Furthermore, according to the knowledge of the present inventors, the refining time can be further shortened by setting the amount of molten steel in the ladle to 130 t or more, and further to 270 t or more. In general, the larger the ladle molten steel, the smaller the static hot water surface area per ton of molten steel, and it is estimated that the effect of increasing the interfacial area due to the entrainment phenomenon tends to be effective.

以下、本発明の取鍋精錬による溶鋼の脱硫方法の有効性について検証した結果を示す。   Hereinafter, the result verified about the effectiveness of the desulfurization method of the molten steel by the ladle refining of this invention is shown.

[実施例1]
本実施例では、通電加熱型の溶鋼脱硫処理を行った。脱硫処理対象として110〜120tの粗溶鋼を取鍋に収容し、粗溶鋼の上部にフラックスを投入した。フラックスはCaOを主とし、Al23,SiO2などを含む。その後、電極をフラックスに浸漬させて通電を開始するとともに、ガス撹拌を開始した。攪拌ガスにはArガスを用い、取鍋底部に設けたガス吹き込みプラグを介して吹き込んだ。
[Example 1]
In this example, an electrically heated type molten steel desulfurization treatment was performed. As a desulfurization treatment target, 110 to 120 t of coarse molten steel was placed in a ladle, and flux was added to the top of the coarse molten steel. The flux is mainly CaO and contains Al 2 O 3 , SiO 2 and the like. Thereafter, the electrode was immersed in the flux to start energization, and gas stirring was started. Ar gas was used as the stirring gas and was blown through a gas blowing plug provided at the bottom of the ladle.

ガス吹き込みプラグは、図1に示すように取鍋底部に2箇所設置した。各水準におけるプラグ中心間の距離、および、取鍋壁面からプラグ中心までの距離のうち小さいほうの値は、取鍋底部の半径Rとの比を表1に示す数値に設定した。   Two gas blowing plugs were installed at the bottom of the ladle as shown in FIG. The smaller value of the distance between the plug centers and the distance from the ladle wall surface to the plug center at each level was set to a numerical value shown in Table 1 with the ratio to the radius R of the ladle bottom.

通電によって大半のフラックスが溶融したことを目視確認後、処理開始時点での溶鋼成分分析用サンプルを採取し、通電を行いながら底吹き攪拌を行う脱硫処理を開始した。脱硫処理中は通電を継続した。処理開始時点から15分経過後に再度溶鋼成分分析用のサンプル(処理後)を採取した。処理開始時と処理後の2つの時点で溶鋼S含有量を分析し(比較例7以外)、両者の差を脱硫量(ppm)とした。フラックスとして添加したCaO量(溶鋼トンあたり)をCaO単位量(kg/t)とし、CaO単位量当たりの脱硫量を脱硫率(ppm/(CaO量kg/t))とし、当該脱硫率に基づき、CaO使用量が削減されたか否かを評価した。   After visually confirming that most of the flux was melted by energization, a sample for molten steel component analysis at the start of the treatment was collected, and desulfurization treatment was started in which bottom blowing stirring was performed while energization was performed. Energization was continued during the desulfurization treatment. A sample (after treatment) for molten steel component analysis was taken again after 15 minutes from the start of treatment. The molten steel S content was analyzed at two times after the start of the treatment and after the treatment (except for Comparative Example 7), and the difference between the two was defined as the desulfurization amount (ppm). The amount of CaO added as flux (per ton of molten steel) is the CaO unit amount (kg / t), the desulfurization amount per CaO unit amount is the desulfurization rate (ppm / (CaO amount kg / t)), and based on the desulfurization rate It was evaluated whether or not the amount of CaO used was reduced.

下記表1に示す実施例及び比較例について、上記条件にて溶鋼の脱硫を行い、CaO単位量当たりの脱硫量(脱硫率(ppm/(CaO量kg/t)))に基づき、CaO使用量が削減されたか否かを評価した。比較例7は、通電しない例であり、所定のフラックス投入後、底吹き撹拌を開始した時点から15分後までの変化量をもって前記評価を実施した。かかる評価は、比較例5を基準(100%)として、脱硫率が基準より15%以上多くなった場合には☆、脱硫率増大が基準より10%以上15%未満の場合には◎、脱硫率増大が基準より5%以上10%未満の場合には○、脱硫率が比較例2と同等(±5%未満)あるいは悪化した場合には×と評価した。   For the examples and comparative examples shown in Table 1 below, desulfurization of molten steel was performed under the above conditions, and the amount of CaO used based on the amount of desulfurization per unit amount of CaO (desulfurization rate (ppm / (CaO amount kg / t))). It was evaluated whether or not was reduced. Comparative Example 7 is an example in which no energization was performed, and the evaluation was performed with the amount of change from the time when the bottom blowing stirring was started to 15 minutes after the predetermined flux was charged. Such evaluation is based on Comparative Example 5 (100%), when the desulfurization rate is 15% or more higher than the standard, and when the increase in the desulfurization rate is 10% or more and less than 15% from the standard, ◎, desulfurization When the rate increase was 5% or more and less than 10% from the standard, it was evaluated as ◯, and when the desulfurization rate was equal to (less than ± 5%) or worsened as Comparative Example 2, it was evaluated as x.

Figure 2018188685
Figure 2018188685

なお、処理開始時を通電終了時とし、通電終了後に上記したガス吹込みを実施しても同様な効果が得られた。   It should be noted that the same effect was obtained even when the start of treatment was set as the end of energization and the above-described gas injection was performed after the end of energization.

比較例6は比較例5よりも評価値が安定して4%改善できる条件であるが、脱硫率の改善効果が5%改善には満たないため×評価とした。これは、比較例6のQBが本発明の下限値未満であるものの溶融フラックスの液滴化の効果があるためと考えられるが、処理後の浮上処理(溶鋼中に懸濁したフラックスの浮上処理)を含めると比較例5に比べて精錬時間の延長を招くことにつながるためによる。 Comparative Example 6 is a condition where the evaluation value can be improved by 4% more stably than Comparative Example 5, but the evaluation effect is x because the effect of improving the desulfurization rate is less than 5%. This is thought to be due to the effect of forming droplets of the molten flux although Q B of Comparative Example 6 is less than the lower limit of the present invention, but the floating treatment after treatment (floating of the flux suspended in the molten steel) Including the treatment) leads to an increase in the refining time as compared with Comparative Example 5.

[実施例2]
上記実施例1の表1記載の実施例8、比較例2のガス吹込み条件、プラグ条件を用い、それぞれ「実施例A」「比較例B」とし、溶鋼量を60〜80t、130t、270tの3条件とする条件で、低硫鋼(S:15ppm以下)を溶製するに際し、溶鋼中S濃度を60ppmから15ppmに低減するのに必要とする時間(脱硫所要時間)を比較した。「実施例A条件、溶鋼量60〜80t」における平均時間を1.0(基準)とし、その他の時間は当該基準に対する比率で表示した。結果を表2に示す。脱硫所要時間比率の範囲と平均値を記載している。
[Example 2]
Using Example 8 described in Table 1 of Example 1 above and the gas blowing conditions and plug conditions of Comparative Example 2, respectively, “Example A” and “Comparative Example B” were used, and the amounts of molten steel were 60 to 80 t, 130 t, and 270 t. When the low-sulfur steel (S: 15 ppm or less) was melted under the three conditions, the time required for reducing the S concentration in the molten steel from 60 ppm to 15 ppm (desulfurization time) was compared. The average time in “Example A condition, molten steel amount 60 to 80 t” was 1.0 (reference), and other times were displayed as ratios relative to the reference. The results are shown in Table 2. The range and average value of the desulfurization time ratio are listed.

Figure 2018188685
Figure 2018188685

脱硫所要時間の平均時間の比較では、いずれの溶鋼量条件においても、実施例Aは比較例Bよりも短時間で精錬が終了しており、本発明の効果があることが判る。さらに、取鍋内溶鋼量毎に、比較例Bに対する実施例Aの改善効果を対比すると、以下のように読み取ることができる。
(1)溶鋼量60〜80t:平均時間では改善しているものの、時間範囲で比べると効果が不明瞭な場合がありえる。
(2)溶鋼量130t:平均時間では改善。時間範囲で比べても、差異が認められた。
(3)溶鋼量270t:平均時間では改善。時間範囲の比較においても明瞭に改善効果が見られた。
即ち、取鍋内溶鋼量が130t以上、更には270t以上とすることで、従来法と比較したときの精錬時間の短縮効果がより一層顕著となることが明らかとなった。
In the comparison of the average time of the desulfurization required time, it can be seen that the refining of Example A was completed in a shorter time than that of Comparative Example B under any molten steel amount condition, and the effect of the present invention was obtained. Furthermore, when the improvement effect of Example A with respect to the comparative example B is contrasted for every amount of molten steel in a ladle, it can read as follows.
(1) Molten steel amount: 60 to 80 t: Although the average time is improved, the effect may be unclear when compared with the time range.
(2) Molten steel amount 130t: Improvement in average time. Differences were observed even when compared over time.
(3) Molten steel amount 270 t: Improvement in average time. A clear improvement effect was also seen in the comparison of time ranges.
That is, it has been clarified that the effect of shortening the refining time when compared with the conventional method becomes more remarkable when the amount of molten steel in the ladle is 130 t or more, and further 270 t or more.

1 取鍋
2 ガス吹き込み用プラグ(プラグ)
2A ガス吹き込み用Aプラグ
2B ガス吹き込み用Bプラグ
3 溶鋼
4 フラックス層
5 気泡
6 上昇流
7 横行流
10 液滴
11 溶鋼表面
12 取鍋壁面
15 未溶融のフラックス
1 Ladle 2 Plug for gas injection (plug)
2A A plug for gas blowing 2B B plug for gas blowing 3 Molten steel 4 Flux layer 5 Bubbles 6 Upflow 7 Cross flow 10 Droplet 11 Molten steel surface 12 Ladle wall surface 15 Unmelted flux

Claims (5)

取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、電極を前記フラックス層に浸漬させて通電する溶鋼の取鍋精錬方法において、
前記取鍋の底部にガス吹き込み用プラグを2カ所に配置し、当該ガス吹き込み用プラグそれぞれから吹き込まれるガスの流量について、ガス流量が大きい方のガス流量をQB、他方のガス流量をQA(いずれも単位はNL/min/t)とし、QA、QBが以下に示す(1)〜(3)式を満たすことを特徴とする、溶鋼の取鍋精錬方法。
1.74≦QB≦4.50 (1)
0.1≦QA (2)
B/QA≧3.0 (3)
In the ladle refining method for molten steel, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, and the electrode is immersed in the flux layer and energized.
Two gas injection plugs are arranged at the bottom of the ladle. Regarding the flow rate of gas injected from each of the gas injection plugs, the gas flow rate with the larger gas flow rate is Q B , and the other gas flow rate is Q A. (both units NL / min / t) and, Q a, Q B is the following (1) to (3) and satisfies the equation, ladle refining method of molten steel.
1.74 ≦ Q B ≦ 4.50 (1)
0.1 ≦ Q A (2)
Q B / Q A ≧ 3.0 (3)
前記フラックス層の厚さを100mm以上200mm以下とすることを特徴とする、請求項1に記載の溶鋼の取鍋精錬方法。   The ladle refining method for molten steel according to claim 1, wherein the thickness of the flux layer is 100 mm or more and 200 mm or less. 2つのガス吹き込みプラグ中心間の距離は、取鍋底部の半径をRとして0.5R以上に離隔し、いずれのガス吹き込みプラグ中心も、取鍋壁面からの距離が0.1R以上であることを特徴とする、請求項1又は請求項2に記載の溶鋼の取鍋精錬方法。   The distance between the two gas blowing plug centers is 0.5R or more with the radius of the bottom of the ladle being R, and the distance from the ladle wall surface is 0.1R or more at any gas blowing plug center. The ladle refining method of the molten steel according to claim 1 or 2, characterized by the above. 取鍋内の溶鋼量が130t以上であることを特徴とする、請求項1〜請求項3のいずれか1項に記載の溶鋼の取鍋精錬方法。   The molten steel ladle refining method according to any one of claims 1 to 3, wherein the amount of molten steel in the ladle is 130 t or more. 取鍋内の溶鋼量が270t以上であることを特徴とする、請求項1〜請求項3のいずれか1項に記載の溶鋼の取鍋精錬方法。   The molten steel ladle refining method according to any one of claims 1 to 3, wherein the amount of molten steel in the ladle is 270 t or more.
JP2017090286A 2017-04-28 2017-04-28 Ladle refining method for molten steel Active JP6822304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017090286A JP6822304B2 (en) 2017-04-28 2017-04-28 Ladle refining method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017090286A JP6822304B2 (en) 2017-04-28 2017-04-28 Ladle refining method for molten steel

Publications (2)

Publication Number Publication Date
JP2018188685A true JP2018188685A (en) 2018-11-29
JP6822304B2 JP6822304B2 (en) 2021-01-27

Family

ID=64479406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017090286A Active JP6822304B2 (en) 2017-04-28 2017-04-28 Ladle refining method for molten steel

Country Status (1)

Country Link
JP (1) JP6822304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085075A (en) * 2019-11-28 2021-06-03 日本製鉄株式会社 Molten steel ladle refining method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157215A (en) * 1974-06-11 1975-12-19
JPH0285315A (en) * 1988-06-17 1990-03-26 Vallourec Ind Treatment of molten steel by gas jet from ladle bottom
JP2001040411A (en) * 1999-07-30 2001-02-13 Kawasaki Steel Corp Ladle for refining molten steel
JP2001303124A (en) * 2000-04-28 2001-10-31 Nkk Corp Apparatus and method for refining molten steel
JP2009191289A (en) * 2008-02-12 2009-08-27 Jfe Steel Corp Method and apparatus for desulfurizing molten steel
JP2011214083A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Refining method in ladle
JP2013142181A (en) * 2012-01-11 2013-07-22 Kobe Steel Ltd Method for producing forging steel
JP2015178646A (en) * 2014-03-19 2015-10-08 Jfeスチール株式会社 Method of forming ingot of low-sulfur steel
CN105624367A (en) * 2014-12-01 2016-06-01 鞍钢股份有限公司 Refining device and method for controlling nitrogen content of molten steel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157215A (en) * 1974-06-11 1975-12-19
JPH0285315A (en) * 1988-06-17 1990-03-26 Vallourec Ind Treatment of molten steel by gas jet from ladle bottom
JP2001040411A (en) * 1999-07-30 2001-02-13 Kawasaki Steel Corp Ladle for refining molten steel
JP2001303124A (en) * 2000-04-28 2001-10-31 Nkk Corp Apparatus and method for refining molten steel
JP2009191289A (en) * 2008-02-12 2009-08-27 Jfe Steel Corp Method and apparatus for desulfurizing molten steel
JP2011214083A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Refining method in ladle
JP2013142181A (en) * 2012-01-11 2013-07-22 Kobe Steel Ltd Method for producing forging steel
JP2015178646A (en) * 2014-03-19 2015-10-08 Jfeスチール株式会社 Method of forming ingot of low-sulfur steel
CN105624367A (en) * 2014-12-01 2016-06-01 鞍钢股份有限公司 Refining device and method for controlling nitrogen content of molten steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085075A (en) * 2019-11-28 2021-06-03 日本製鉄株式会社 Molten steel ladle refining method
JP7323802B2 (en) 2019-11-28 2023-08-09 日本製鉄株式会社 Ladle refining method for molten steel

Also Published As

Publication number Publication date
JP6822304B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP5262075B2 (en) Method for producing steel for pipes with excellent sour resistance
JP6686837B2 (en) Highly clean steel manufacturing method
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP7118599B2 (en) Ladle refining method for molten steel
JP2018188685A (en) Ladle refining method of molten steel
JP6686838B2 (en) Highly clean steel manufacturing method
JP2017166053A (en) Melting production method for high refined steel
JP2020012158A (en) Method of smelling steel into high cleaned steel
JP2019214057A (en) Continuous casting method
JP7047606B2 (en) Ladle refining method for molten steel
JP5713529B2 (en) Steel material with excellent rolling fatigue life
JP7047605B2 (en) Ladle refining method for molten steel
JP2010116610A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP2018141194A (en) Molten steel refining method
JP4839658B2 (en) Refining method of bearing steel
EP3533534A1 (en) Structure for casting, and casting method using same
JP5433941B2 (en) Melting method of high cleanliness bearing steel
JP6337681B2 (en) Vacuum refining method for molten steel
CN113490755A (en) Method for producing ultra-low carbon steel containing Ti
KR101356850B1 (en) Refining device of high purity molten steel
JP7323802B2 (en) Ladle refining method for molten steel
KR101790608B1 (en) Apparatus for controling fluid(stream) of melting steel
JP6354472B2 (en) Desulfurization treatment method for molten steel
JP6268963B2 (en) Method for refining molten steel
JP5545148B2 (en) Molten steel refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R151 Written notification of patent or utility model registration

Ref document number: 6822304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151