JP7047606B2 - Ladle refining method for molten steel - Google Patents
Ladle refining method for molten steel Download PDFInfo
- Publication number
- JP7047606B2 JP7047606B2 JP2018106677A JP2018106677A JP7047606B2 JP 7047606 B2 JP7047606 B2 JP 7047606B2 JP 2018106677 A JP2018106677 A JP 2018106677A JP 2018106677 A JP2018106677 A JP 2018106677A JP 7047606 B2 JP7047606 B2 JP 7047606B2
- Authority
- JP
- Japan
- Prior art keywords
- ladle
- molten steel
- flux
- plug
- gas blowing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、溶鋼の取鍋精錬方法に関するものである。 The present invention relates to a method for refining a ladle of molten steel.
転炉や電気炉で一次精錬された溶鋼は、取鍋に収容される。さらに二次精錬として、取鍋内の溶鋼を対象に精錬が行われる。二次精錬後の溶鋼は、主に連続鋳造によって鋳造し、さらに熱間圧延などを経て目的の製品が製造される。二次精錬は、製品の目標品質に応じて、溶鋼の成分調整、非金属介在物の浮上分離、溶鋼の均一混合、溶鋼の加熱昇温、溶鋼中有害不純物の低減などを目的として行われる。溶鋼中の硫黄(S)濃度を低減する目的で、二次精錬として溶鋼脱硫が行われる。 The molten steel primary smelted in a converter or electric furnace is stored in a ladle. Furthermore, as secondary refining, refining is performed on the molten steel in the ladle. The molten steel after secondary refining is mainly cast by continuous casting, and then hot-rolled to produce the desired product. Secondary refining is performed for the purpose of adjusting the composition of molten steel, floating separation of non-metal inclusions, uniform mixing of molten steel, heating and heating of molten steel, reduction of harmful impurities in molten steel, etc., according to the target quality of the product. Desulfurization of molten steel is performed as secondary refining for the purpose of reducing the concentration of sulfur (S) in the molten steel.
二次精錬の方法の一つとして、取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、フラックス層に通電電極を浸漬させて通電しながら、溶鋼中にガスを吹き込んで溶鋼を攪拌する二次精錬方法が知られている。フラックス層を脱硫剤として溶鋼の脱硫処理が可能であり、また通電加熱によって溶鋼を昇温することができる。以下この方法を、通電加熱を伴う溶鋼の取鍋精錬方法と呼ぶ。 As one of the secondary refining methods, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, and the molten steel is agitated by blowing gas into the molten steel while energizing by immersing the current-carrying electrode in the flux layer. Secondary refining methods are known. The desulfurization treatment of molten steel is possible using the flux layer as a desulfurizing agent, and the temperature of the molten steel can be raised by energization heating. Hereinafter, this method is referred to as a ladle refining method for molten steel accompanied by energization heating.
通電加熱を伴う溶鋼の取鍋精錬に関し、特許文献1には、通電加熱型精錬用取鍋が開示されている。取鍋の上部を覆う蓋には、黒鉛製の3本の電極が配置され、取鍋の底部にはガス吹き込みのためのポーラスプラグが配置されている。3本の電極は、取鍋の中心付近であって、取鍋外周と同心円上に配置されている。電極の下方先端は、取鍋内の溶鋼上に浮遊するフラックス層内に浸漬され、給電装置により通電され、フラックス及び溶鋼を加熱する。2本又は3本の電極を用いる場合において、当該2本又は3本の電極すべての外周に外接する円を、ここでは「電極の外接円」と呼ぶ。
また、ポーラスプラグから溶鋼中に不活性ガスを送り込み、溶鋼を攪拌する。従来、取鍋底部に配置されるポーラスプラグは1カ所のみであったが、特許文献1に記載の発明は、ポーラスプラグが取鍋底部に複数配置され、当該複数のポーラスプラグは、取鍋底部の一方に偏在させて配置されている。複数のポーラスプラグからは、同一流量の不活性ガスが溶鋼中に吹き込まれている。
Regarding the ladle refining of molten steel accompanied by energization heating,
In addition, the inert gas is sent into the molten steel from the porous plug to stir the molten steel. Conventionally, only one porous plug is arranged at the bottom of the ladle, but in the invention described in
特許文献2には、通電加熱を伴う溶鋼の取鍋精錬に適用することのできる取鍋精錬方法であって、取鍋の底に2つの底吹き用プラグが配置され、2つの底吹き用プラグからのガス流量に差を付けて不活性ガスを吹き込む方法であって、その流量比を制御することで介在物の凝集・粗大化を抑制する技術が開示されている。特許文献2に記載の発明は、通電や通電直後を必須とはしていない。またプラグについては、直径2784~3188mmの鍋について鍋中央~プラグの位置が、680mm、900mmの位置(いずれも特許文献2の表1に記載)を記載しているが、複数の電極を用いて通電する場合であって、当該複数の電極の外接円の中心が鍋底部の中心と合致する場合、前記プラグの位置が前記電極の外接円の外部である場合が多い。 Patent Document 2 is a ladle refining method that can be applied to ladle refining of molten steel accompanied by energization heating, in which two bottom blowing plugs are arranged at the bottom of the ladle and two bottom blowing plugs are provided. It is a method of injecting an inert gas with a difference in the gas flow rate from the above, and a technique of suppressing aggregation and coarsening of inclusions by controlling the flow rate ratio is disclosed. The invention described in Patent Document 2 does not require energization or immediately after energization. Regarding the plug, for a pot having a diameter of 2784 to 3188 mm, the positions from the center of the pot to the plug are described as 680 mm and 900 mm (both are described in Table 1 of Patent Document 2), but a plurality of electrodes are used. In the case of energization, when the center of the circumscribed circle of the plurality of electrodes coincides with the center of the bottom of the pot, the position of the plug is often outside the circumscribed circle of the electrode.
特許文献3には、出鋼した溶鋼に対して1回目の精錬処理、脱ガス処理、2回目の精錬処理をこの順に行う、高清浄度鋼の製造方法が開示されている。精錬処理と脱ガス処理では2つの底吹き用プラグから不活性ガスを吹き込み、2つの底吹き用プラグからのガス流量に差を付けて不活性ガスを吹き込む。精錬処理として、通電加熱を伴う溶鋼の取鍋精錬方法が用いられている。特に1回目の精錬処理においては、脱硫処理を主な目的としている。なお特許文献3のプラグの位置は上記特許文献2と同じく、直径2784~3188mmの鍋について鍋中央~プラグの位置が、680mm、900mmの位置(いずれも特許文献3の表1に記載)を記載している。
取鍋内の溶鋼を、通電加熱を伴う溶鋼の取鍋精錬によって脱硫して極低硫鋼を製造するに際し、特許文献1~特許文献3に記載の方法を用いて脱硫処理を行うと、目標とする溶鋼の極低硫化を実現するために長時間を要し、所定の時間内には目標とする極低硫化を実現できないという問題を有していた。本願発明者らは、特許文献1~3記載の方法では添加したフラックスの溶融に時間がかかる場合があることを知見した。
When desulfurizing the molten steel in the ladle by ladle refining of the molten steel accompanied by energization heating to produce ultra-low sulfur steel, the target is to perform the desulfurization treatment using the methods described in
本発明は、取鍋内の溶鋼を、通電加熱を伴う溶鋼の取鍋精錬によって脱硫して極低硫鋼を製造するに際し、添加したフラックスの溶融を促進し、フラックスを効率的に活用することが可能な、新規かつ改良された溶鋼の取鍋精錬方法を提供することを目的とする。 The present invention is to promote the melting of the added flux and efficiently utilize the flux when desulfurizing the molten steel in the ladle by the ladle refining of the molten steel accompanied by energization heating to produce ultra-low sulfur steel. It is an object of the present invention to provide a new and improved method for ladle refining of molten steel.
即ち、本発明の要旨とするところは以下のとおりである。
(1)取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、取鍋中央部に2本又は3本の電極を前記フラックス層に浸漬させて通電する溶鋼の取鍋精錬方法において、
前記取鍋の底部にガス吹き込み用プラグを2カ所に配置し、当該ガス吹き込み用プラグそれぞれから吹き込まれるガスの流量について、ガス流量が大きい方のガス吹き込み用Bプラグのガス流量をQB、他方のガス吹き込み用Aプラグのガス流量をQA(いずれも単位はNL/min/t)とし、
平面視において、前記2本又は3本の電極すべての外周に外接する円であって最小半径rを持つ円を「電極の外接円」とし、取鍋内の溶鋼高さをH、電極の外接円の中心位置をCO、ガス吹き込み用Aプラグの中心位置をCA、ガス吹き込み用Bプラグの中心位置をCBとし、COとCA間の距離をLOA、COとCB間の距離をLOBとし、CAとCB間の距離をLABとし、CA-CO-CBがなす角度をθとし、
ガス吹き込み用Aプラグとガス吹き込み用Bプラグが下記(1)~(4)式を満足する位置に配置され、
QA、QBが以下に示す(5)~(7)式を満たすことを特徴とする、溶鋼の取鍋精錬方法。
0≦LOA≦r(ただし、L
OA
が0である場合を除く) (1)
LOB>r (2)
LAB≧0.42H (3)
0°≦θ≦90° (4)
2.33≦QB/QA (5)
QB≦4.50 (6)
0.30≦QA (7)
(2)前記フラックス層の、溶融状態に換算した厚さを100mm以上200mm以下とすることを特徴とする、上記(1)に記載の溶鋼の取鍋精錬方法。
(3)取鍋底部の半径をRとし、前記ガス吹き込み用Bプラグ中心位置は、取鍋壁面からの距離が0.1R以上であることを特徴とする、上記(1)又は(2)に記載の溶鋼の取鍋精錬方法。
(4)取鍋内の溶鋼量が130t以上であることを特徴とする、上記(1)~(3)のいずれか1つに記載の溶鋼の取鍋精錬方法。
(5)取鍋内の溶鋼量が270t以上であることを特徴とする、上記(1)~(3)のいずれか1つに記載の溶鋼の取鍋精錬方法。
That is, the gist of the present invention is as follows.
(1) In a method for refining a ladle of molten steel in which a flux layer containing CaO is formed on the surface of the molten steel in the ladle, and two or three electrodes are immersed in the flux layer in the center of the ladle to energize.
Gas blowing plugs are arranged at two places on the bottom of the pan, and the gas flow rate of the gas blown from each of the gas blowing plugs is Q B , the gas flow rate of the gas blowing B plug having the larger gas flow rate, and the other. The gas flow rate of the A plug for gas blowing is QA (both units are NL / min / t).
In a plan view, the circle circumscribed around the outer circumferences of all the two or three electrodes and having the minimum radius r is defined as the "circumscribed circle of the electrodes", the height of the molten steel in the pan is H, and that of the electrodes. The center position of the circumscribed circle is CO , the center position of the gas blowing A plug is CA, the center position of the gas blowing B plug is C B , and the distance between CO and CA is L OA , CO and C. Let L OB be the distance between B , LA B be the distance between CA and C B , and θ be the angle formed by CA- CO - CB .
The gas blowing A plug and the gas blowing B plug are arranged at positions that satisfy the following equations (1) to (4).
A method for refining a ladle of molten steel, wherein Q A and Q B satisfy the following equations (5) to (7).
0 ≤ L OA ≤ r (except when L OA is 0) (1)
L OB > r (2)
LA B ≧ 0.42H (3)
0 ° ≤ θ ≤ 90 ° (4)
2.33 ≤ Q B / Q A (5)
QB ≤ 4.50 (6)
0.30 ≤ Q A (7)
(2) The method for ladle refining of molten steel according to (1) above, wherein the thickness of the flux layer converted into a molten state is 100 mm or more and 200 mm or less.
(3) The radius of the bottom of the ladle is R, and the center position of the gas blowing B plug is 0.1R or more from the wall surface of the ladle. The described method for ladle refining of molten steel.
(4) The method for refining a ladle of molten steel according to any one of (1) to (3) above, wherein the amount of molten steel in the ladle is 130 tons or more.
(5) The method for refining a ladle of molten steel according to any one of (1) to (3) above, wherein the amount of molten steel in the ladle is 270 tons or more.
本発明は、取鍋内の溶鋼を、通電加熱を伴う溶鋼の取鍋精錬によって脱硫して極低硫鋼を製造するに際し、取鍋の底部にガス吹き込み用プラグを2カ所に配置し、適正なガス吹き込み位置から適正量のガスを吹き込むことで、通電中のフラックスの滓化(溶融)を促進することができ、フラックスの利用効率を高められる。 In the present invention, when the molten steel in the ladle is desulfurized by the ladle refining of the molten steel accompanied by energization heating to produce ultra-low sulfur steel, gas blowing plugs are arranged at two places on the bottom of the ladle, which is appropriate. By blowing an appropriate amount of gas from a suitable gas blowing position, it is possible to promote the slagging (melting) of the flux during energization, and the efficiency of flux utilization can be improved.
図1に示すように、本発明の溶鋼の取鍋精錬方法において、取鍋1内における溶鋼5の表面にCaOを含むフラックス層6を形成し、取鍋中央部に2本又は3本の電極3をフラックス層6に浸漬させて通電することにより、溶鋼脱硫を行う。通電加熱については、通常行われている方法を用いることができる。即ち、取鍋上部に配置した電極3の下方先端をフラックス層6内に浸漬し、電極3に通電することにより、フラックス及び溶鋼を加熱する。図1(A)に示すように、取鍋1の平面視において、2本又は3本の電極3すべての外周に外接する円を、前述のように「電極の外接円4」と呼ぶ。電極3が3本の場合(図1(A)参照)は、電極の外接円4が一つに定まる。電極3が2本の場合は、半径が最小となるものを電極の外接円4とする。そのため、電極の外接円4の半径rを「電極の外接円の最小半径」と表現している。
上記のように、電極3を取鍋中央部に配置するのは、これにより取鍋内の溶鋼をまんべんなく加熱できるからである。ここで「取鍋中央部」とは、2本または3本の電極の外接円の中心が、取鍋底部(半径R)の中央から0.1×R以下の範囲にあることを意味している。
また本発明では、図1(B)に示すように、取鍋1の底部にガス吹き込み用プラグ2を2カ所に配置し、当該ガス吹き込み用プラグ2それぞれから不活性ガスを溶鋼中に吹き込むことにより、取鍋内溶鋼の攪拌を行う。
As shown in FIG. 1, in the method for refining a ladle of molten steel of the present invention, a
As described above, the
Further, in the present invention, as shown in FIG. 1 (B), the gas blowing plugs 2 are arranged at two places on the bottom of the
取鍋精錬においては、取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、当該フラックス層を溶融させ、溶鋼中の含有Sがフラックス中成分と反応してフラックス層中に移動することにより、脱硫反応が進行する。脱硫反応は、溶鋼とフラックス層との界面で進行する。取鍋内溶鋼全体の脱硫を速やかに進行するためには、取鍋内平面方向の全域においてフラックス層を十分に溶解することが重要である。
本発明では特に、電極をフラックス層に浸漬して通電加熱を行うものであり、電極近傍に位置するフラックスが優先的に高温に加熱されて溶融フラックスとなる。電極から離れた場所に存在する(例えば取鍋内壁近傍に存在する)フラックスは、比較的低温のままとなり、取鍋内平面方向にフラックスの温度差が発生する。取鍋精錬の精錬目的を達成するには、フラックスは溶融していることが好ましいため、溶鋼表面のフラックスは広範囲(取鍋内平面方向の全域を含む)で溶融していることが好ましい。電極近傍と電極から離れた位置との間のフラックスの入れ替わりが少ない限り、広範囲のフラックスの溶融を担保するには一定の時間が必要となるため、精錬処理時間の延長が必要となり、精錬処理時間の一部である精錬反応を進めるための時間は限られる。
In the ladle refining, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, the flux layer is melted, and the S contained in the molten steel reacts with the components in the flux and moves into the flux layer. , The desulfurization reaction proceeds. The desulfurization reaction proceeds at the interface between the molten steel and the flux layer. In order to rapidly desulfurize the entire molten steel in the ladle, it is important to sufficiently dissolve the flux layer in the entire area in the plane direction of the ladle.
In the present invention, in particular, the electrode is immersed in the flux layer to perform energization heating, and the flux located in the vicinity of the electrode is preferentially heated to a high temperature to become a molten flux. The flux existing at a place away from the electrode (for example, near the inner wall of the ladle) remains relatively low temperature, and a temperature difference of the flux occurs in the plane direction inside the ladle. In order to achieve the refining purpose of the ladle refining, it is preferable that the flux is melted. Therefore, it is preferable that the flux on the surface of the molten steel is melted in a wide range (including the entire area in the plane direction in the ladle). As long as the flux exchange between the vicinity of the electrode and the position away from the electrode is small, it takes a certain amount of time to secure the melting of the flux over a wide range, so it is necessary to extend the refining processing time, and the refining processing time. The time to proceed with the refining reaction that is part of is limited.
フラックスを迅速に溶融させる方法として、取鍋底部のガス吹き込み用プラグ2から吹き込む攪拌ガスの導入位置および流量を制御することによって、取鍋表面のフラックス層6のうち、通電加熱しているエリア、または通電加熱された通電直後のエリア、はいずれもフラックスが他の領域に比べて高温であるが、当該高温フラックスと他の領域の低温フラックスの混合置換を促進させることで溶鋼表面のフラックス全体を溶融させることに、本発明者らは注目した。
As a method of quickly melting the flux, the area of the
電極近傍で通電加熱されたフラックスを溶鋼表面全体に行きわたらせることで、より高速な滓化および精錬反応を実現するとの作用効果を得るためには、取鍋底部に配置するガス吹き込み用プラグを少なくとも2箇所に設ける。そして、平面視におけるガス吹き込み用プラグの配置位置において、2か所のうちの一つは電極直下近傍に配置し、他方は電極から離れた周縁に設けること、およびそれぞれのガス吹き込み用プラグからのガス流量を制御することが必要である。具体的には、平面視において、ガス流量が大きい方のガス吹き込み用Bプラグ2Bを電極の外接円4の外側に配置し、ガス流量が小さい側のガス吹き込み用Aプラグ2Aを電極の外接円4の内部に配置する。即ち、図1(A)に示すように、電極の外接円4の半径をr、電極の外接円の中心位置をCO、ガス吹き込み用Aプラグの中心位置をCA、ガス吹き込み用Bプラグの中心位置をCBとし、COとCA間の距離をLOA、COとCB間の距離をLOBとし、ガス吹き込み用Aプラグ2Aとガス吹き込み用Bプラグ2B配置位置が下記(1)、(2)式を満足する位置とする。
0≦LOA≦r (1)
LOB>r (2)
ガス吹き込み用Aプラグ2Aとガス吹き込み用Bプラグ2B間の距離は、両プラグからのガス気泡の浮上領域が合体しないように、ガス吹き込み用Aプラグ2Aとガス吹き込み用Bプラグ2B間の距離をLABとし、取鍋内の溶鋼高さをHとし、下記(3)式を満足する位置とする。
LAB≧0.42H (3)
また、電極の外接円4の中心位置をCO、CA-CO-CBがなす角度をθとし、下記(3)式を満足する位置とする。なお、CA-CO-CBがなす角度としては、180°以下の角度と、その反対側に180°を超える角度があるが、そのうち、180°以下の角度をここでいう角度θとする。
0°≦θ≦90° (4)
In order to obtain the effect of realizing faster slagging and refining reaction by spreading the flux heated by energization near the electrode over the entire surface of the molten steel, the gas blowing plug placed at the bottom of the ladle is used. Provide at least two places. Then, in the arrangement position of the gas blowing plug in the plan view, one of the two places is arranged in the vicinity directly under the electrode, and the other is provided on the peripheral edge away from the electrode, and from each gas blowing plug. It is necessary to control the gas flow rate. Specifically, in a plan view, the gas blowing B plug 2B having the larger gas flow rate is arranged outside the circumscribed
0 ≤ L OA ≤ r (1)
L OB > r (2)
The distance between the gas blowing A plug 2A and the gas blowing B plug 2B is the distance between the gas blowing A plug 2A and the gas blowing B plug 2B so that the floating regions of the gas bubbles from both plugs do not merge. L AB , the height of the molten steel in the ladle is H, and the position satisfies the following equation (3).
LA B ≧ 0.42H (3)
Further, the center position of the circumscribed
0 ° ≤ θ ≤ 90 ° (4)
さらに、ガス流量が大きい方のガス吹き込み用Bプラグのガス流量をQB、他方のガス吹き込み用Aプラグのガス流量をQA(いずれも単位はNL/min/t)としたとき、QA、QBの範囲に好適範囲が存在する。 Further, when the gas flow rate of the gas blowing B plug having the larger gas flow rate is QB and the gas flow rate of the other gas blowing A plug is QA (both units are NL / min / t), QA . , QB has a suitable range.
まず、電極の外接円の内側に位置するガス吹き込み用Aプラグから導入する攪拌ガス流量QAが0.30(NL/min/t)未満であると、図2に示すように、フラックスに対して攪拌力を十分には与えられない。図2において、フラックス層を3つの領域に色分けしている。白色のフラックス層X領域21Xは、比較的温度が低い領域であり、不規則ハッチングしたフラックス層Z領域21Zはフラックス層X領域よりは温度が高い領域、ドットハッチングしたフラックス層Y領域21Yは、電極で加熱されて最も温度が高い領域である。また、気泡上昇領域22を図示している。具体的には、電極の外接円4の外側に位置するガス吹き込み用Bプラグ2Bでのガス吹込みによって、高温フラックス(フラックス層Y領域21Y)の流動方向が一方向に固定される傾向があり、ガス吹き込み用Bプラグ2Bとガス吹き込み用Aプラグ2Aを結ぶ直線に対して鉛直方向の流れが弱く鍋内壁の局所に高温フラックス(フラックス層Y領域21Y)が偏在する傾向となる。そのため、ガス吹き込み用Aプラグ2Aでの攪拌ガスによる高温フラックスの分散効果が得られず、取鍋壁面12に未溶融のフラックス15が付着することがある。そこで、下記(7)式を規定することとした。
0.30≦QA (7)
First, when the agitated gas flow rate QA introduced from the gas blowing A plug located inside the circumscribed circle of the electrode is less than 0.30 (NL / min / t), as shown in FIG. 2, with respect to the flux. Therefore, sufficient stirring power cannot be given. In FIG. 2, the flux layer is color-coded into three regions. The white flux
0.30 ≤ Q A (7)
次に、ガス吹き込み用Bプラグ2Bから導入する攪拌ガス流量QBが4.50(NL/min/t)を超えると、溶鋼湯面上の高温フラックスが取鍋内壁に偏在する原因となる。取鍋内壁は電極通電エリアに比べて温度が低く、図3に示すように、フラックスの未溶融・未滓化を招くため、取鍋壁面12に未溶融のフラックス15が生成することになる。そこで、下記(6)式を規定することとした。
QB≦4.50 (6)
Next, if the agitated gas flow rate QB introduced from the gas blowing B plug 2B exceeds 4.50 (NL / min / t), the high-temperature flux on the molten steel surface causes uneven distribution on the inner wall of the ladle. The temperature of the inner wall of the ladle is lower than that of the electrode energized area, and as shown in FIG. 3, the flux is unmelted and unstained, so that the
QB ≤ 4.50 (6)
さらに、攪拌ガス流量の比QB/QAが2.33未満であると、ガス吹き込み用Aプラグ2Aからの流れとガス吹き込み用Bプラグ2Bからの流れが拮抗し、高温フラックス(フラックス層Y領域21Y)の置換が十分に生じない(図4参照)。そこで、下記(4)式を規定することとした。
2.33≦QB/QA (5)
Further, when the ratio Q B / Q A of the agitated gas flow rate is less than 2.33, the flow from the gas blowing A plug 2A and the flow from the gas blowing B plug 2B antagonize each other, and the high temperature flux (flux layer Y) The substitution of the
2.33 ≤ Q B / Q A (5)
以上のように、本発明では、通電中の攪拌ガス流量を式(5)~(7)のように規定した。これにより、図5に示すように、電極付近の高温で十分に溶融したフラックスが、取鍋内の平面方向全領域に行き渡り、全領域のフラックス層6が溶融状態となり、取鍋精錬反応の促進を実現することが可能となる。
As described above, in the present invention, the flow rate of the agitated gas during energization is defined as the equations (5) to (7). As a result, as shown in FIG. 5, the flux sufficiently melted at a high temperature near the electrode spreads over the entire area in the plane direction in the ladle, and the
なお、(5)~(7)式より、QB/QAの上限値、QAの上限値、QBの下限値は自動的に定まることになる。即ち、QB/QAの上限値はQAの下限値、QBの上限値より算出して15となる。また、QAの上限値は、(5)、(6)式より、2.33×QA≦QB≦4.50、であるため、QA≦1.93となる。さらに、QBの下限値は、(5)式より、2.33×QA≦QB、であり、0.30≦QAであるため、0.699≦QBとなる。 From equations (5) to (7), the upper limit of Q B / Q A , the upper limit of Q A , and the lower limit of Q B are automatically determined. That is, the upper limit of Q B / Q A is calculated from the lower limit of Q A and the upper limit of Q B to be 15. Further, since the upper limit of Q A is 2.33 × Q A ≦ Q B ≦ 4.50 from the equations (5) and (6), Q A ≦ 1.93. Further, the lower limit of Q B is 2.33 × Q A ≦ Q B from the equation (5), and 0.30 ≦ Q A , so 0.699 ≦ Q B.
本発明は以上説明したように、溶鋼を攪拌するためのガス吹き込みは、取鍋の底部に設けたガス吹き込み用プラグからの吹き込みによって行う。2箇所のガス吹き込み用プラグ2からのガス吹き込みによって溶鋼表面のフラックスを溶鋼表面の全域にわたって移動させている。溶鋼へのガス吹き込みについては、溶鋼表面から浸漬ランスを浸漬し、浸漬ランス先端からガスを吹き込む方法も知られている。しかし、本発明においてガス吹き込みに浸漬ランスを用いると、溶鋼表面にフラックスの移動を妨げるランスが存在することとなり、本発明の効果を得ることができない。そのため、上記のように、ガス吹き込みは取鍋底部に設けたガス吹き込み用プラグを用いるものと規定している。 As described above, in the present invention, the gas blowing for stirring the molten steel is performed by blowing from the gas blowing plug provided at the bottom of the ladle. The flux on the surface of the molten steel is moved over the entire surface of the molten steel by blowing gas from the two gas blowing plugs 2. As for the gas blowing into the molten steel, a method of immersing the immersion lance from the surface of the molten steel and blowing the gas from the tip of the immersion lance is also known. However, when the immersion lance is used for injecting gas in the present invention, the lance that hinders the movement of the flux exists on the surface of the molten steel, and the effect of the present invention cannot be obtained. Therefore, as described above, it is stipulated that the gas blowing plug used at the bottom of the ladle is used for gas blowing.
本発明は、取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、当該フラックス層によって溶鋼の脱硫が行われる。フラックス中のCaO成分が脱硫能を有している。フラックス層中のCaO含有量が25質量%以上であれば、好適に脱硫を行うことができる。30%以上であるとより好ましい。 In the present invention, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, and the molten steel is desulfurized by the flux layer. The CaO component in the flux has desulfurization ability. When the CaO content in the flux layer is 25% by mass or more, desulfurization can be preferably performed. It is more preferably 30% or more.
本発明において、取鍋内の溶鋼表面に形成するフラックス層の厚さ(溶融状態に換算した厚み。以下、換算厚さとも記載する)が100mm以上200mm以下であると好ましい。フラックス層の換算厚さが100mm未満であると、フラックス層での積極的な対流が得にくく、本発明の特徴である、フラックス層内の対流促進による脱硫促進が得にくくなる。
一方、フラックスの換算厚さが200mm超では、フラックス層が対流していてもフラックス層の厚さ方向に温度差が生じやすくなり、フラックス層表層の未滓化(未溶融)部分の発生を招く可能性が考えられる。
そこで、本発明では、フラックス層の換算厚さを100mm以上200mm以内とすることが好ましい。フラックス層の換算厚さを100mm以上200mm以内とするためには、取鍋の寸法から算出されるフラックス容積と、想定されるフラックス組成でのフラックス密度から必要となるフラックス投入量を算出したり、投入量とフラックス厚さ(全部溶融前提)の相関(過去の実績)に基づいてフラックスの投入量を決定したり、フラックス厚さを測定しながら投入量を調整したり、すればよい。
In the present invention, the thickness of the flux layer formed on the surface of the molten steel in the ladle (thickness converted into a molten state; hereinafter, also referred to as converted thickness) is preferably 100 mm or more and 200 mm or less. If the converted thickness of the flux layer is less than 100 mm, it is difficult to obtain positive convection in the flux layer, and it is difficult to obtain desulfurization promotion by promoting convection in the flux layer, which is a feature of the present invention.
On the other hand, when the converted thickness of the flux exceeds 200 mm, a temperature difference is likely to occur in the thickness direction of the flux layer even if the flux layer is convected, which causes the generation of an unstained (unmelted) portion of the surface layer of the flux layer. There is a possibility.
Therefore, in the present invention, it is preferable that the converted thickness of the flux layer is 100 mm or more and 200 mm or less. In order to make the equivalent thickness of the
ここでフラックス層の厚さは、精錬処理中に測定することは困難である。このため、ここで規定するフラックス層の厚さは、精錬処理後であって、溶鋼へのガス吹込みを停止して溶鋼を静置した状態におけるフラックス層の厚さとする。このフラックス層厚さは、例えば取鍋内に鋼製棒を挿入し、その後取鍋から引き抜いた当該鋼製棒に付着したフラックス層の厚さ(溶融厚さ)を測定することで取得できる。フラックスが全部溶融している状態(未滓化フラックスが無い状態)で測定すれば、換算厚さ相当の値を測定できる。なお、脱硫処理等の精錬処理が行われても、フラックス投入後のフラックス層厚さは精錬前後で実質的な変化はない。 Here, the thickness of the flux layer is difficult to measure during the refining process. Therefore, the thickness of the flux layer specified here is the thickness of the flux layer after the refining treatment and in a state where the gas blowing into the molten steel is stopped and the molten steel is allowed to stand still. This flux layer thickness can be obtained, for example, by inserting a steel rod into a ladle and then measuring the thickness (melt thickness) of the flux layer attached to the steel rod pulled out from the ladle. If the measurement is performed in a state where all the flux is melted (a state in which there is no unpolluted flux), a value equivalent to the converted thickness can be measured. Even if refining treatment such as desulfurization treatment is performed, the thickness of the flux layer after the flux is added does not substantially change before and after refining.
本発明で好ましくは、取鍋底部の半径をRとし、ガス吹き込み用Bプラグの中心位置CBは、取鍋壁面12からの距離が0.1R以上である。取鍋壁面12とガス吹き込み用Bプラグの中心位置CBの間の距離が0.1R未満である場合、取鍋壁面とプラグが近接しており、吹き込んだガスの一部が壁面に接触しながら浮上してしまうため(フラックスと壁面の間をガスが吹き抜けるため)、上記本発明の効果が最大では得られない。そこで、本発明において、取鍋壁面とガス吹き込み用Bプラグの中心位置の距離を0.1R以上が好ましいものとした。なお、取鍋の底面が正円形でない場合は、取鍋の底面と同じ面積を持つ相当円の半径をRとして採用すればよい。また、プラグのガス吹き出し部がプラグ本体の中心にない場合、ガス吹き出し部の中心をプラグの中心とみなしてよい。プラグ本体やプラグのガス吹き出し部が正円形でない場合、ガス吹き出し部の水平断面の重心をプラグの中心とみなしてよい。
In the present invention, the radius of the bottom of the ladle is preferably R, and the center position CB of the gas blowing B plug has a distance of 0.1 R or more from the
本発明で好ましくは、取鍋内の溶鋼量を130t以上とする。さらに好ましくは270t以上とする。取鍋内の溶鋼量の増加とともに、取鍋開口面積が増大するとともに、精練に用いるフラックス量も増加するため、フラックスの溶融時間が長くなる。本発明に従うと、溶鋼面でのフラックスの循環を適切に制御し、電極近傍の高温溶融フラックスを浴面全体に循環させるとともに電極近傍に低温フラックスを供給して加熱することが可能となるため、フラックスの溶融時間の短縮が可能となる。本発明者らの知見では、取鍋内溶鋼量が130t以上、更には270t以上とすることで、従来法と比較したときのフラックス溶融時間の短縮効果がより一層顕著となるので、好ましい。 In the present invention, the amount of molten steel in the ladle is preferably 130 tons or more. More preferably, it is 270 tons or more. As the amount of molten steel in the ladle increases, the opening area of the ladle increases and the amount of flux used for refining also increases, so that the melting time of the flux becomes longer. According to the present invention, it is possible to appropriately control the circulation of the flux on the molten steel surface, circulate the high temperature molten flux in the vicinity of the electrode over the entire bath surface, and supply the low temperature flux in the vicinity of the electrode for heating. It is possible to shorten the melting time of the flux. According to the findings of the present inventors, it is preferable that the amount of molten steel in the ladle is 130 tons or more, further 270 tons or more, because the effect of shortening the flux melting time as compared with the conventional method becomes more remarkable.
以下、本発明の取鍋精錬による溶鋼の脱硫方法の有効性について検証した結果を示す。 The following shows the results of verifying the effectiveness of the desulfurization method for molten steel by ladle refining of the present invention.
[実施例1]
本実施例1では、通電加熱型の溶鋼脱硫処理を行った(図1参照)。取鍋底部の溶鋼に接触する領域は、半径Rが1.4mの円形(溶鋼表面位置では概ね半径が1.5m)である。通電加熱用の電極3を3本配置した。3本の電極3は、正三角形の頂点位置に配置されている。3本の電極3すべての外周に外接する円が電極の外接円4である。電極の外接円の中心位置COは、平面視して前記取鍋底部の中心と同じ位置であり、電極の外接円4の半径rは0.6mである。取鍋内の溶鋼高さHは、2.5mである。
[Example 1]
In Example 1, an energization heating type molten steel desulfurization treatment was performed (see FIG. 1). The region of the bottom of the ladle that comes into contact with the molten steel is a circle with a radius R of 1.4 m (the radius is approximately 1.5 m at the surface position of the molten steel). Three
攪拌ガスは、取鍋底部に設けたガス吹き込み用プラグ2、または取鍋上方より挿入した吹き込みランス(図示せず)を介して取鍋1内の溶鋼5中に吹き込んだ。ガス吹き込み用プラグ2を用いる際は、取鍋1の底部に2箇所(ガス吹き込み用Aプラグ2A、ガス吹き込み用Bプラグ2B)設置した。吹き込みランスを用いる場合、取鍋上方より2本を溶鋼中に挿入した。各ランスには4箇所のガス導入孔を水平(ランス挿入方向に対して垂直)に設けた。ランスの中心はプラグの中心と同等であるとみなし、ランス位置を決定した。また、鋼浴面からランス先端までの距離(浸漬深さ)は、鋼浴の浴深の75%に設定した。
The agitated gas was blown into the
平面視において、各水準におけるガス吹き込み用Aプラグの中心位置CA、ガス吹き込み用Bプラグの中心位置CBの位置関係については、COとCA間の距離をLOA、COとCB間の距離をLOB、CAとCB間の距離をLABとし、CA-CO-CBがなす角度をθとし、それぞれ表1に示す数値に設定した。吹き込みランスを用いる場合もガス吹き込み用プラグに準じた表現としている。 In the plan view, regarding the positional relationship between the center position CA of the gas blowing A plug and the center position C B of the gas blowing B plug at each level, the distance between CO and CA is L OA , CO and C. The distance between B was L OB , the distance between CA and C B was L AB , and the angle formed by CA- CO - CB was θ, which were set to the values shown in Table 1. Even when a blow lance is used, the expression is similar to that of a gas blow plug.
脱硫処理対象として110~120tの粗溶鋼を取鍋1に収容し、粗溶鋼の上部にフラックスを投入してフラックス層6を形成した。投入したフラックスはCaOを主とし、Al2O3,SiO2などを含む。その後、電極3をフラックス層6に浸漬させて通電を開始するとともに、ガス撹拌を開始した。フラックス投入量は、溶融フラックス換算でフラックス層6の厚さ(換算厚さ)を表中に記載した。
110 to 120 tons of crude molten steel was housed in a
フラックスの溶融状態を確認するために、フラックスを添加してから10分間の通電処理を行った後、鍋内壁から約100mm離れた3箇所にて溶融フラックス厚みの計測を行った。溶融フラックス厚みは、鉄製の細棒を溶鋼まで浸漬させ、細棒の溶鋼浸漬部が溶解した後に細棒を引き上げ、細棒に付着した溶融フラックスの長さをもとに溶融フラックス厚みを決定した。計測した3箇所の溶融フラックス厚みの平均値を算出して「平均溶融フラックス厚み」とした。なお、比較例8は、通電を行わずに10分間の攪拌処理を行った後に溶融フラックス厚みの計測を行った。 In order to confirm the molten state of the flux, the flux was applied and then energized for 10 minutes, and then the thickness of the molten flux was measured at three points about 100 mm away from the inner wall of the pot. The melt flux thickness was determined by immersing a thin iron rod in the molten steel, pulling up the thin rod after the molten steel immersion part of the thin rod had melted, and determining the thickness of the molten flux based on the length of the molten flux adhering to the thin rod. .. The average value of the measured melt flux thicknesses at the three locations was calculated and used as the "average melt flux thickness". In Comparative Example 8, the melt flux thickness was measured after stirring for 10 minutes without energization.
実施例毎に、添加したフラックスの全量が溶融したと仮定して溶融フラックス厚みを算出し、「換算全フラックス厚み」とした。上記計測した平均溶融フラックス厚みを換算全フラックス厚みで割って%表示し、溶融状態の指標(以下、溶融フラックス指標(%)と呼ぶ)とした。下記表1に示す本発明例及び比較例について、上記の溶融フラックス指標を用いて評価した。表1において、本発明範囲から外れる数値・項目に下線を付している。 For each example, the molten flux thickness was calculated on the assumption that the total amount of the added flux was melted, and used as the "converted total flux thickness". The average molten flux thickness measured above was divided by the converted total flux thickness and displayed as%, and used as an index of the molten state (hereinafter referred to as a molten flux index (%)). The examples of the present invention and comparative examples shown in Table 1 below were evaluated using the above-mentioned melt flux index. In Table 1, numerical values and items outside the scope of the present invention are underlined.
上記溶融フラックス指標が95%以上の場合に☆、90%以上の場合に◎、80%以上の場合に○、80%未満の場合を×と評価した。比較例のうち、最も溶融フラックス指標が高かったのは比較例1であり、溶融フラックス指標=80%であった。そこで、比較例1よりも溶融が促進できた条件を合格とする前提で上記の閾値(80%)を決定した。なお、溶融フラックス指標が80%未満の場合には、引き続き行った脱硫処理での効率が不十分であることを確認している。
また、本発明の実施例程度の少な目のガス流量では顕著な通電性の悪化は見られなかった。
When the melt flux index was 95% or more, it was evaluated as ☆, when it was 90% or more, it was evaluated as ⊚, when it was 80% or more, it was evaluated as ◯, and when it was less than 80%, it was evaluated as ×. Among the comparative examples, the one having the highest melt flux index was Comparative Example 1, in which the melt flux index was 80%. Therefore, the above threshold value (80%) was determined on the premise that the condition that the melting could be promoted was passed as compared with Comparative Example 1. When the melt flux index is less than 80%, it is confirmed that the efficiency of the subsequent desulfurization treatment is insufficient.
In addition, no significant deterioration in electrical conductivity was observed at a small gas flow rate as in the examples of the present invention.
なお、処理開始時を通電終了時とし、通電終了後に上記したガス吹込み条件を実施しても、フラックスの溶融状況の改善は同様な傾向が得られた。 Even if the above-mentioned gas blowing conditions were applied after the energization was completed with the start of the treatment as the end of energization, the same tendency was obtained for the improvement of the melting state of the flux.
[実施例2]
上記実施例1の表1記載の本発明例7、比較例1のガス吹込み条件、プラグ条件を用い、それぞれ「本発明例A」「比較例B」とし、溶鋼量を60~80t、130t、270tの3条件とする条件で、通電加熱型の溶鋼脱硫処理を行った。
取鍋底部の溶鋼に接触する領域は各々、半径Rが1.2、1.4、1.8mの円形(溶鋼表面位置では概ね半径が1.3、1.6、2.0m)である。通電加熱用の電極3を3本配置した。3本の電極3は、正三角形の頂点位置に配置されている。3本の電極3すべての外周に外接する円が電極の外接円4である。電極の外接円の中心位置COは、平面視して前記取鍋底部の中心と同じ位置であり、電極の外接円4の半径rは各々、0.5、0.6、0.8mである。また、取鍋内の溶鋼高さは各々、2.2、2.6、3.4mである。
[Example 2]
Using the gas blowing conditions and plug conditions of Example 7 of the present invention and Comparative Example 1 shown in Table 1 of Example 1, “Example A” and “Comparative Example B” are used, respectively, and the amount of molten steel is 60 to 80 t and 130 t. Under the three conditions of 270t, the energization heating type molten steel desulfurization treatment was performed.
The regions of the bottom of the ladle that come into contact with the molten steel are circular with radii R of 1.2, 1.4, and 1.8 m (radius is approximately 1.3, 1.6, 2.0 m at the surface position of the molten steel). .. Three
前記実施例1と同様の通電とガス吹き込み処理を行い、フラックス添加開始から10分間の通電処理を行った後、溶融フラックス厚みを計測し、平均溶融フラックス厚みを算出した。実施例1と同様に換算全フラックス厚みを算出し、溶融フラックス指標を求めた。3種類の溶鋼量それぞれにおいて、3~6回の処理を行い、溶融フラックス指標の平均値、最小値、最大値を求めた。比較例Bの溶融フラックス指標の平均値を基準値1.00とし、比較例Bの最大値と最小値、および本発明例Aの平均値、最大値、最小値、を基準値に対する割合として表2に示した。 The same energization and gas blowing treatment as in Example 1 was performed, and after performing the energization treatment for 10 minutes from the start of flux addition, the melt flux thickness was measured and the average melt flux thickness was calculated. The converted total flux thickness was calculated in the same manner as in Example 1, and the molten flux index was obtained. The treatment was performed 3 to 6 times for each of the three types of molten steel, and the average value, the minimum value, and the maximum value of the molten flux index were obtained. The average value of the molten flux index of Comparative Example B is set to the reference value 1.00, and the maximum and minimum values of Comparative Example B and the average value, maximum value, and minimum value of Example A of the present invention are shown as ratios to the reference value. Shown in 2.
溶融フラックス指標の比較では、いずれの溶鋼量条件においても、本発明例Aは比較例Bよりも溶融が進んでいることを示しており、本発明の効果があることが判る。さらに、取鍋内溶鋼量毎に、比較例Bに対する本発明例Aの改善効果を対比すると、以下のように読み取ることができる。
即ち第1に、溶鋼量60~80tでは、溶融フラックス指標の平均値では改善しているものの、ばらつき範囲で比べると効果が不明瞭な場合がありえる。第2に、溶鋼量130tは、平均値では改善している。ばらつき範囲で比べても、差異が認められる。第3に、溶鋼量270tは、平均値では改善している。ばらつき範囲の比較においても明瞭に改善効果が見られる。
以上のとおり、取鍋内溶鋼量が130t以上、更には270t以上とすることで、従来法と比較したときのフラックス溶融促進効果がより一層顕著となることが明らかとなった。
In the comparison of the molten flux index, it is shown that the melting of Example A of the present invention is more advanced than that of Comparative Example B under any of the conditions of the amount of molten steel, and it can be seen that the effect of the present invention is obtained. Furthermore, comparing the improvement effect of Example A of the present invention with respect to Comparative Example B for each amount of molten steel in the ladle, it can be read as follows.
That is, first, when the amount of molten steel is 60 to 80 tons, although the average value of the molten flux index is improved, the effect may be unclear when compared within the variation range. Secondly, the amount of molten steel 130t is improved on average. Differences can be seen even when compared within the range of variation. Thirdly, the amount of molten steel 270t is improved on average. The improvement effect can be clearly seen in the comparison of the variation range.
As described above, it has been clarified that when the amount of molten steel in the ladle is 130 tons or more and further 270 tons or more, the effect of promoting flux melting as compared with the conventional method becomes more remarkable.
1 取鍋
2 ガス吹き込み用プラグ(プラグ)
2A ガス吹き込み用Aプラグ
2B ガス吹き込み用Bプラグ
3 電極
4 電極の外接円
5 溶鋼
6 フラックス層
7 気泡
8 上昇流
9 横行流
11 溶鋼表面
12 取鍋壁面
15 未溶融のフラックス
21X フラックス層X領域
21Y フラックス層Y領域
21Z フラックス層Z領域
22 気泡上昇領域
r 電極の外接円の半径
CO 電極の外接円の中心位置
CA ガス吹き込み用Aプラグの中心位置
CB ガス吹き込み用Bプラグの中心位置
θ CA-CO-CBがなす角度
1 Ladle 2 Gas blowing plug (plug)
2A A plug for gas blowing 2B B plug for gas blowing 3
Claims (5)
前記取鍋の底部にガス吹き込み用プラグを2カ所に配置し、当該ガス吹き込み用プラグそれぞれから吹き込まれるガスの流量について、ガス流量が大きい方のガス吹き込み用Bプラグのガス流量をQB、他方のガス吹き込み用Aプラグのガス流量をQA(いずれも単位はNL/min/t)とし、
平面視において、前記2本又は3本の電極すべての外周に外接する円であって最小半径rを持つ円を「電極の外接円」とし、取鍋内の溶鋼高さをH、電極の外接円の中心位置をCO、ガス吹き込み用Aプラグの中心位置をCA、ガス吹き込み用Bプラグの中心位置をCBとし、COとCA間の距離をLOA、COとCB間の距離をLOBとし、CAとCB間の距離をLABとし、CA-CO-CBがなす角度をθとし、
ガス吹き込み用Aプラグとガス吹き込み用Bプラグが下記(1)~(4)式を満足する位置に配置され、
QA、QBが以下に示す(5)~(7)式を満たすことを特徴とする、溶鋼の取鍋精錬方法。
0≦LOA≦r (ただし、L OA が0である場合を除く) (1)
LOB>r (2)
LAB≧0.42H (3)
0°≦θ≦90° (4)
2.33≦QB/QA (5)
QB≦4.50 (6)
0.30≦QA (7) In the ladle refining method of molten steel, in which a flux layer containing CaO is formed on the surface of the molten steel in the ladle and two or three electrodes are immersed in the flux layer in the center of the ladle to energize.
Gas blowing plugs are arranged at two places on the bottom of the pan, and the gas flow rate of the gas blown from each of the gas blowing plugs is Q B , the gas flow rate of the gas blowing B plug having the larger gas flow rate, and the other. The gas flow rate of the A plug for gas blowing is QA (both units are NL / min / t).
In a plan view, the circle circumscribed around the outer circumferences of all the two or three electrodes and having the minimum radius r is defined as the "circumscribed circle of the electrodes", the height of the molten steel in the pan is H, and that of the electrodes. The center position of the circumscribed circle is CO , the center position of the gas blowing A plug is CA, the center position of the gas blowing B plug is C B , and the distance between CO and CA is L OA , CO and C. Let L OB be the distance between B , LA B be the distance between CA and C B , and θ be the angle formed by CA- CO - CB .
The gas blowing A plug and the gas blowing B plug are arranged at positions that satisfy the following equations (1) to (4).
A method for refining a ladle of molten steel, wherein Q A and Q B satisfy the following equations (5) to (7).
0 ≤ L OA ≤ r (except when L OA is 0) (1)
L OB > r (2)
LA B ≧ 0.42H (3)
0 ° ≤ θ ≤ 90 ° (4)
2.33 ≤ Q B / Q A (5)
QB ≤ 4.50 (6)
0.30 ≤ Q A (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018106677A JP7047606B2 (en) | 2018-06-04 | 2018-06-04 | Ladle refining method for molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018106677A JP7047606B2 (en) | 2018-06-04 | 2018-06-04 | Ladle refining method for molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019210506A JP2019210506A (en) | 2019-12-12 |
JP7047606B2 true JP7047606B2 (en) | 2022-04-05 |
Family
ID=68846465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018106677A Active JP7047606B2 (en) | 2018-06-04 | 2018-06-04 | Ladle refining method for molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7047606B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7323802B2 (en) * | 2019-11-28 | 2023-08-09 | 日本製鉄株式会社 | Ladle refining method for molten steel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001040411A (en) | 1999-07-30 | 2001-02-13 | Kawasaki Steel Corp | Ladle for refining molten steel |
JP2011214083A (en) | 2010-03-31 | 2011-10-27 | Kobe Steel Ltd | Refining method in ladle |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63121611A (en) * | 1986-11-08 | 1988-05-25 | Nippon Steel Corp | Method and device for stirring molten metal bath for electric arc furnace |
-
2018
- 2018-06-04 JP JP2018106677A patent/JP7047606B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001040411A (en) | 1999-07-30 | 2001-02-13 | Kawasaki Steel Corp | Ladle for refining molten steel |
JP2011214083A (en) | 2010-03-31 | 2011-10-27 | Kobe Steel Ltd | Refining method in ladle |
Also Published As
Publication number | Publication date |
---|---|
JP2019210506A (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7047605B2 (en) | Ladle refining method for molten steel | |
JP2010116611A (en) | Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat | |
JP7047606B2 (en) | Ladle refining method for molten steel | |
JP7118599B2 (en) | Ladle refining method for molten steel | |
JP5014876B2 (en) | Secondary refining method of low-sulfur steel to suppress sulfurization phenomenon in vacuum degassing process | |
EP1870182A1 (en) | Process for the casting of molten alloy | |
JP6822304B2 (en) | Ladle refining method for molten steel | |
JP4483713B2 (en) | Melting method of ultra low sulfur high clean steel | |
JP2009191289A (en) | Method and apparatus for desulfurizing molten steel | |
JP4722772B2 (en) | Manufacturing method of high cleanliness steel | |
JP7067280B2 (en) | Ladle refining method for molten steel | |
JP2010116610A (en) | Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat | |
JP7139879B2 (en) | Ladle refining method for molten steel | |
JP5713529B2 (en) | Steel material with excellent rolling fatigue life | |
JP7139876B2 (en) | Ladle refining method for molten steel | |
JP7139878B2 (en) | Ladle refining method for molten steel | |
JP7067279B2 (en) | Ladle refining method for molten steel | |
JP2010163681A (en) | Method of producing steel for high-strength steel wire excellent in fatigue characteristic | |
JP2006233254A (en) | Method for producing high cleanliness steel | |
JP7139877B2 (en) | Ladle refining method for molten steel | |
JP7323802B2 (en) | Ladle refining method for molten steel | |
JP6337681B2 (en) | Vacuum refining method for molten steel | |
CN209763742U (en) | Induction furnace with skimmer | |
JPS6027726B2 (en) | Method for refining molten steel using a ladle | |
JP6725250B2 (en) | Front powder design method and front powder manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220307 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7047606 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |