JPS6027726B2 - Method for refining molten steel using a ladle - Google Patents

Method for refining molten steel using a ladle

Info

Publication number
JPS6027726B2
JPS6027726B2 JP55048271A JP4827180A JPS6027726B2 JP S6027726 B2 JPS6027726 B2 JP S6027726B2 JP 55048271 A JP55048271 A JP 55048271A JP 4827180 A JP4827180 A JP 4827180A JP S6027726 B2 JPS6027726 B2 JP S6027726B2
Authority
JP
Japan
Prior art keywords
molten steel
ladle
slag
gas
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55048271A
Other languages
Japanese (ja)
Other versions
JPS56146817A (en
Inventor
喜代美 田口
正之 半明
勝 石川
治良 田辺
健三 山田
務 碓井
芳雄 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP55048271A priority Critical patent/JPS6027726B2/en
Publication of JPS56146817A publication Critical patent/JPS56146817A/en
Publication of JPS6027726B2 publication Critical patent/JPS6027726B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、リンP、硫黄S、水素日、酸素○等の含有
量を少なくすることができ、しかも、成分調整能の高い
、取鍋による溶鋼の精錬方法に関するものである。 従来、低P鋼を得るための手段として、転炉吹銭式が知
られている。 転炉吹鎌法としては、通常吹錬法、ソフトブロー法、ダ
ブルスラグ法、および2回出鋼法が知られているが、こ
れらの方法では、溶鋼中のPの含有量を、それぞれ、1
50,100,80および70(肌)程度にしか下げる
ことができない。このように、溶鋼のP含有量を下げら
れない理由は、次の通りである。即ち、転炉吹銭は、主
に脱炭処理時間に支配され、その処理時間が短いから、
低P鋼を得るための十分な脱P処理時間をとることがで
きない。また、脱Pのためのスラグボリューム(量)を
多くすると、スラグ噴出等の危険性があり、作業性に問
題があることから、脱Pのためのスラグボリュームには
制限がある。従って、転炉吹鏡においては、溶鋼のP含
有量を下げることができなかった。一方、低Pであって
、さらに、低Sの鋼を得るためには、パウダーインジヱ
クション法のように取鋼による熔鋼の精錬を、また低P
であって、さらに低H、および0にして成分調整が確実
に行なえた鋼を得るために取鍋による真空処理、たとえ
ばRH脱ガス処理等の溶鋼の精錬(処理)を行なわなけ
ればならない。 従って、このような取鍋精錬によってP,S,日,0等
の含有量が少ない鋼を得ようとすると、取鍋における熔
鋼の温度低下を考慮して、製鋼炉の出鋼温度を上げなけ
ればならない(たとえば1740〜176000程度)
。 この結果、製鋼炉において、Pの含有量が下がらず、耐
火物の溶損量が多くなり、歩解が低下するという問題が
生じる。そこでこの発明は、上述のような問題を解消し
た、取鍋における溶鋼の精錬方法を堤供すべくなされた
もので、{ィ} 製鋼炉で精錬された溶鋼を、密閉用蓋
を有し、かつその内部にガス吹込可能にした取鍋に移注
し、‘o} ついで前記取鍋内溶鋼上のスラグに、加熱
電極の先端部を浸潰して、前記取鍋内溶鋼を加熱し、し
一 ついで前記取鍋内溶鋼に酸化精錬用フラックスを添
加し、片 ついで前記取鍋内溶鋼中にその上方から浸潰
したランスから、蝿梓用ガスの吹込みを行なうことによ
って、酸化性ガス雰囲気下で、前記取鋼内溶鋼および前
記溶鋼と前記港鋼上のスラグとを濃伴し、的 ついで前
記取鍋内溶鋼上のスラグを除去し、N ついで前記敬鍋
内溶鋼を真空処理し、【トー ついで前記取鍋内熔鋼に
還元精錬用フラックスを添加し、併 ついで前記溶鋼中
に前記ランスから、不活性ガスの吹込みを行なうことに
よって、不活性ガス雰囲気下で、前記取鍋内溶鋼および
前記港鋼と前記溶鋼上のスラグとを燈辞し、および、必
要に応じて、‘ィ}〜的工程についで、H′ 前記取鋼
内溶鋼に還元精錬用フラックスを添加し、【トー′ つ
いで前記溶鋼中に前記ランスから、不活性ガスの吹込み
を行なうことによって、不活性ガス雰囲気下で、前記取
鍋内溶鋼および前記溶鋼と前記溶鋼上のスラグとを燈拝
し、併′ ついで前記取鍋内溶鋼上のスラグを除去し、
伽′ ついで前記取鍋内顔鋼を真空処理することに特徴
を有する。 なお、加熱電極浸簿用スラグは、製鋼炉スラグを適用し
てもよいし、新たに合成造蟹剤を用いてもよい。 加熱電極による加熱には、電弧加熱、および抵抗加熱が
あり、このように、加熱を行なうことの利点としては、
製鋼炉の出鋼温度が下げられることである。即ち、第1
図に製鋼炉(転炉)の耐火物溶損係数と、その出鋼温度
との関係を示す図、および第2図に製鋼炉(転炉)にお
いて得られた素鋼の〔P〕(Pの濃度)とその出鋼温度
との関係を示す図からわかるように(両図において、曲
線aは通常吹鎌法によるもの、曲線bはダフルスラグ吹
鉄法によるものを示す)、出鋼温度が低いほど、耐火物
の港損係数が低くなり、また、〔P〕が低くなり(従っ
て取鍋における精錬に有利となる)、さらに歩留がよく
なる。また、加熱のみが行なわれる(即ち、触錬処理と
加熱処理とが分離している)ことの利点として、取鍋内
溶鋼面変動が少ない(溶鋼および溶鋼とスラグとの精錬
による礎梓が行なわれていないから)から、加熱が安定
に行なえ、しかも、電極棒の長寿命化が図れることが挙
げられる。なお、周知のように、加熱電極による加熱を
行なう際に、取鍋内溶鋼中にその上方から浸潰したラン
スから、加熱促進のためのガス(日,S等の不純物が鋼
中に入らないガス、例えば、02,Ar、ガス等)を、
溶鋼中に吹込んで、溶鋼を鷹拝して加熱電極による加熱
効率を向上させる(その吹込量は、鋼ITon当り0.
4N〆/min以上州夕/min未満が好ましい。その
理由は、0.4そ/min未満では加熱に時間がかかっ
て加熱効率の点からは実用的でなくなるからであり、一
方、山〆/min以上では溶鋼飛散によって地金が電極
に付着して電極寿命が短くなるからである。)。また、
加熱電極は、加熱終了後、上昇させて、その先端部を取
鍋内スラグから離間させる。酸化性雰囲気下で行なう蝿
梓(精錬)のためのガスは、日,S等の不純物が鋼中に
入らないガス、例えば〜,02ガス等が使用でき、また
、不活性ガス雰囲気下で行なう擬拝(精錬)のためのガ
スは、Ar等の不活性ガスが使用でき、これらのガス流
量は、精錬効率が下らないようにするという点からは鋼
ITon当り州そ/min以上であることが好ましく、
ガス吹込みにより溶鋼面が上昇しすぎて、いわゆる取鍋
内のフリーボードを大きくしなければならず実用的でな
くなるという点からは、鋼ITon当り20Nそ/mi
n以下であることが好ましい。 なお、このように大きなガス吹込量は、溶鋼の上方から
溶鋼内に浸薄するランス構造によってはじめて得ること
ができるものである。ランスからの溶鋼中へのガスの噴
出態様は、水平に対して上下方向にそれぞれ1yの範囲
内であることが好ましい。これはランスから噴出したガ
スがまず、水平に広がり、ついで、垂直に上昇するため
熔鋼中に頃込まれたガスがきわめて有効に蝿拝に利用さ
れ、高い損耗効率が得られるからである。また、そのた
めのランスのガス流通路の形状は、縦断面からみて、鷹
拝態様を示す第3図イに示すようなランス1の先端部2
箇所に噴出孔laが位置する、T字2孔型のもの、およ
び同第3図口に示すようなランス1′の先端部1箇所に
噴出孔1′aが位置する、L字1孔型のものが好ましい
。この様なランス使用によって図示されるように溶鋼を
取鍋の側壁からその中心に向けて流動させることが出釆
るため、スラグと溶鋼の鷹拝混合が鋼裕表面に対して均
一にかつ鋼格深く行なわれ、電極加熱後に添加した精錬
用フラツクスは、ランスからのガス滋拝による溶鋼との
接触混合で容易に蓬化し、従って蓬化のための電極加熱
は必要でなくなる。また、短時間で溝化したフラツクス
(スラグ)は引き続いて溶鋼と激しく接触混合するため
スラグーメタル反応が迅速に進行し高い精錬館が得られ
る。第4図イおよび口は、この発明を実施するための取
鍋の一例を示す断面図であり、第4図イは加熱電極によ
る加熱態様を示し、第4図口はランスによる精錬態様を
示している。 図示されるように、2は取鋼本体、2aは取鍋蓋、3は
溶鋼、4は加熱電極浸濃時のスラグ、4′は精錬用フラ
ツクスを添加した後のスラグであり、取鍋蓋2aには、
取鍋内雰囲気調整用ガスの供V給管5および取鍋内への
添加物のホッパー6が取付けられており、さらに取鍋蓋
2aには、昇降自在な加熱電極7およびガス吹込用のラ
ンス8が貫通している。9は、取鍋本体2の上端と取鍋
蓋2aの下端との閥に介在させた、耐熱性、気密性、お
よび可塑性に優れたシール材(たとえばカオール)であ
る。 なお図中矢印は、ランス8からのガス吹込による溶鋼3
の流れを示している。ついでこの発明の実施例について
説明する。 溶鋼温度1640qoで精錬を終了した250Ton転
炉からの溶鋼を、第4図イ、口に示す構造の25mon
取鍋に出鋼(移注)した。その際、転炉スラグの取鋼へ
の流入を防止し、かつ出鋼終了時に、Ca046%、S
i0279%、AI2Q4%、および不純物1%を含有
する合成造律剤(フラックス)を溶鋼に添加して、取鍋
スラグ(加熱電極浸簿用スラグを生成した。次いで取鍋
本体に取鍋蓋を装着し、電弧加熱用の加熱電極の先端部
を取鍋スラグに浸潰して通電を開始し、同時にT字2孔
型のランスを溶鋼中に浸潰して0.州で/minのAr
ガスを溶鋼中に吹込開始することによって、溶鋼を損拝
して159ぴ0の温度の溶鋼を通電およびガス吹込開始
から18分間で1650qoの温度にまで加熱した。前
記通電開始から15分経過した時点で加熱電極をスラグ
から引上げ、添加物ホッパーから、メタケィ酸ソーダを
5Ton添加し、同時にランスのArガス吹込量を洲で
/minにし、かつ取鍋内に敬鍋内雰囲気調整用ガスの
供給管から空気を0.州で/min供給して取鍋内を酸
化性雰囲気にした状態で8分間精錬(ガス吹込)を行な
った。次いで取鋼スラグを排律(除去)し、周知の真空
処理としてRH脱ガ*ス処理を、取鍋内溶鋼に対して行
ない、合金鉄を溶鋼中に添加して脱酸した後、生石灰1
.5Ton、およびCa048%、SiQ49%、Aそ
2033%、不純物1%の合成造律剤750kgを、取
鍋内溶鋼上に添加した。次いでランスから2.0N淋/
minのArガスを取鍋内溶鋼中に吹込開始し、同時に
取鍋内に取鍋内雰囲気調整用ガスの供給管から0.州で
/minのArガスを供給して取鍋内を不活性ガス雰囲
気にした状態で20分間精錬(ガス吹込)を行なった。 その結果、第1表に示す通り、P,S,日、および、T
The present invention relates to a method for refining molten steel using a ladle, which can reduce the content of phosphorus P, sulfur S, hydrogen, oxygen, etc., and has a high ability to adjust the components. Conventionally, a converter blowing method has been known as a means for obtaining low P steel. As the converter blow sickle method, the normal blowing method, soft blow method, double slug method, and double tapping method are known, but in these methods, the P content in the molten steel is 1
It can only be lowered to about 50, 100, 80 and 70 (skin). The reason why the P content of molten steel cannot be lowered in this way is as follows. In other words, converter fusen is mainly controlled by decarburization processing time, and since the processing time is short,
It is not possible to take enough time for deP treatment to obtain low P steel. In addition, if the slag volume (amount) for dephosphorization is increased, there is a risk of slag blowing out, etc., and there are problems with workability, so there is a limit to the slag volume for dephosphorization. Therefore, in the converter blowing mirror, it was not possible to lower the P content of the molten steel. On the other hand, in order to obtain steel with low P and also low S, it is necessary to refining molten steel by taking steel as in the powder injection method, and also to obtain low P steel.
Therefore, in order to obtain steel whose composition can be reliably adjusted by reducing the H content to 0, it is necessary to refine (process) the molten steel, such as vacuum treatment using a ladle, for example, RH degassing treatment. Therefore, when trying to obtain steel with a low content of P, S, 0, etc. through ladle refining, the tapping temperature of the steelmaking furnace must be increased, taking into account the temperature drop of the molten steel in the ladle. Must be (for example, around 1740-176000)
. As a result, in the steelmaking furnace, a problem occurs in that the P content does not decrease, the amount of erosion of the refractory increases, and the yield decreases. Therefore, this invention was made to provide a method for refining molten steel in a ladle that solves the above-mentioned problems. Then, the tip of the heating electrode is immersed in the slag on the molten steel in the ladle to heat the molten steel in the ladle. Next, an oxidizing refining flux is added to the molten steel in the ladle, and then a refining gas is blown into the molten steel in the ladle from above through a lance, so that the molten steel is heated in an oxidizing gas atmosphere. Then, the molten steel in the ladle, the molten steel, and the slag on the port steel are concentrated, the slag on the molten steel in the ladle is removed, and the molten steel in the ladle is vacuum-treated. Next, a flux for reduction refining is added to the molten steel in the ladle, and then an inert gas is blown into the molten steel from the lance, so that the molten steel in the ladle is heated under an inert gas atmosphere. Then, the port steel and the slag on the molten steel are ignited, and if necessary, following the step ``H'', a flux for reduction refining is added to the molten steel in the steel taking process, Next, by blowing an inert gas into the molten steel from the lance, the molten steel in the ladle, the molten steel, and the slag on the molten steel are mixed together in an inert gas atmosphere. removing slag on the molten steel in the ladle;
佽′ The feature is that the face steel inside the ladle is then subjected to vacuum treatment. As the slag for dipping the heating electrode, steelmaking furnace slag may be used, or a synthetic crab-forming agent may be used. There are two types of heating using heating electrodes: electric arc heating and resistance heating.The advantages of heating in this way are:
This means that the tapping temperature of the steelmaking furnace can be lowered. That is, the first
Figure 2 shows the relationship between the refractory corrosion coefficient of a steelmaking furnace (converter) and its tapping temperature, and Figure 2 shows the [P] (P) of raw steel obtained in a steelmaking furnace (converter). As can be seen from the diagrams showing the relationship between the concentration of steel (concentration of The lower the value, the lower the port loss coefficient of the refractory, and the lower [P] (therefore, it is advantageous for refining in a ladle), further improving the yield. Another advantage of only heating being performed (that is, the catalytic treatment and heat treatment are separated) is that there is less variation in the surface of the molten steel in the ladle. (because the electrode rod is not heated), heating can be performed stably and the life of the electrode rod can be extended. As is well known, when heating is performed using a heating electrode, a lance that is immersed in the molten steel in the ladle from above prevents gas (such as impurities such as sulfur and sulfur) from entering the steel to promote heating. gas (e.g., 02, Ar, gas, etc.),
It is injected into the molten steel to improve the heating efficiency of the heating electrode by blowing into the molten steel (the amount of injection is 0.00000000000000 yen per ton of steel
It is preferable that the speed is 4N/min or more and less than 4N/min. The reason for this is that if the heating rate is less than 0.4 so/min, it will take a long time to heat, making it impractical in terms of heating efficiency.On the other hand, if the heating rate is more than 0.4 so/min, the base metal will adhere to the electrode due to molten steel scattering. This is because the life of the electrode will be shortened. ). Also,
After heating, the heating electrode is raised to separate its tip from the slag in the ladle. The gas for refining carried out under an oxidizing atmosphere can be a gas that does not introduce impurities such as S, S, etc. into the steel, such as ~02 gas, and it can also be carried out under an inert gas atmosphere. An inert gas such as Ar can be used as the gas for worship (refining), and the flow rate of these gases should be at least 100 ton/min to prevent the refining efficiency from decreasing. Preferably,
The molten steel surface rises too much due to gas injection, and the so-called free board in the ladle must be made large, making it impractical.
It is preferably n or less. Note that such a large amount of gas blown can only be obtained by a lance structure in which the lance is immersed into the molten steel from above. The manner in which the gas is ejected from the lance into the molten steel is preferably within a range of 1y in the vertical direction with respect to the horizontal direction. This is because the gas ejected from the lance first spreads horizontally and then rises vertically, so the gas trapped in the molten steel is used extremely effectively for attack, resulting in high wear efficiency. Further, the shape of the gas flow passage of the lance for this purpose is as shown in FIG.
The T-shaped two-hole type with the nozzle la located at one location, and the L-shaped one-hole type with the nozzle 1'a located at one location at the tip of the lance 1' as shown in the opening of Figure 3. Preferably. By using such a lance, it is possible to flow the molten steel from the side wall of the ladle toward the center of the ladle, as shown in the figure, so that the slag and molten steel are mixed uniformly on the steel surface and The refining flux added after the electrode heating is easily converted into molten steel by contact mixing with the molten steel by the gas supplied from the lance, and electrode heating for oxidation is therefore not necessary. In addition, the flux (slag) that has become grooved in a short time continues to come into contact with the molten steel and mix vigorously, so that the slag-metal reaction progresses quickly and a high quality smelter is obtained. 4A and 4B are cross-sectional views showing an example of a ladle for carrying out the present invention, FIG. 4A shows a heating mode using a heating electrode, and FIG. 4B shows a refining mode using a lance. ing. As shown in the figure, 2 is the ladle main body, 2a is the ladle lid, 3 is the molten steel, 4 is the slag at the time of immersion in the heating electrode, 4' is the slag after adding the refining flux, and the ladle lid is In 2a,
A V supply pipe 5 for gas for adjusting the atmosphere inside the ladle and a hopper 6 for additives into the ladle are attached, and a heating electrode 7 that can be raised and lowered and a lance for blowing gas are attached to the ladle lid 2a. 8 is passing through. Reference numeral 9 denotes a sealing material (for example, kaoru) having excellent heat resistance, airtightness, and plasticity and is interposed between the upper end of the ladle main body 2 and the lower end of the ladle lid 2a. Note that the arrow in the figure indicates molten steel 3 due to gas injection from lance 8.
It shows the flow. Next, embodiments of this invention will be described. The molten steel from the 250 ton converter, which has been refined at a molten steel temperature of 1640 qo, is transferred to a 25 ton converter with the structure shown in Figure 4 A and 4.
The steel was poured into a ladle. At that time, it is possible to prevent converter slag from flowing into the tapped steel, and at the end of tapping, Ca046%, S
A synthetic flux containing 79% of iO2, 4% of AI2Q, and 1% of impurities was added to the molten steel to produce ladle slag (slag for heating electrode immersion).Then, a ladle lid was attached to the ladle body. The tip of the heating electrode for electric arc heating is immersed in the ladle slag to start energizing, and at the same time a T-shaped two-hole lance is immersed in the molten steel to produce an Ar of 0.5 mm/min.
By starting to blow gas into the molten steel, the molten steel was heated to a temperature of 1,650 qo in 18 minutes from the start of energization and gas injection. When 15 minutes have elapsed since the start of energization, the heating electrode is pulled up from the slag, 5 tons of sodium metasilicate is added from the additive hopper, and at the same time, the amount of Ar gas blown into the lance is set to 1/min, and the inside of the ladle is filled with air. Air is supplied from the gas supply pipe for adjusting the atmosphere inside the pot. Refining (gas blowing) was performed for 8 minutes in a state where the inside of the ladle was made into an oxidizing atmosphere by supplying gas at a rate of 1/min. Next, the steel slag is discharged (removed), the molten steel in the ladle is subjected to RH degassing treatment as a well-known vacuum treatment, and after deoxidizing by adding ferroalloy to the molten steel, quicklime 1
.. 5 tons, and 750 kg of a synthetic regulating agent containing 048% Ca, 49% SiQ, 2033% A, and 1% impurities were added onto the molten steel in the ladle. Next, 2.0N Hinoki from Lance/
Ar gas of min. is started to be blown into the molten steel in the ladle, and at the same time, Ar gas of min. Refining (gas blowing) was performed for 20 minutes while supplying Ar gas at a rate of 1/min to create an inert gas atmosphere inside the ladle. As a result, as shown in Table 1, P, S, day, and T

〔0〕の極めて少ない鋼が得られた。なお、前述した【
ィー、【口}、し一、8、蛾、H′、‘トー′、併′、
および‘リ}工程により、即ち真空処理を行なう前に、
不活性ガス雰囲気下での精錬を行なったところ、前記実
施例とほぼ同じ組成の、きわめて、P,S,日、および
T,
A steel with extremely low [0] was obtained. In addition, the above-mentioned [
E, [mouth}, shiichi, 8, moth, H', 'to', combined',
and 're} process, that is, before performing vacuum treatment,
When refining was carried out under an inert gas atmosphere, it was found that the composition was almost the same as that of the above example, but P, S, day, and T,

〔0〕の少ない鋼が得られた。 以上説明したように、この発明においては、きわめて、
P,S,日,0の含有量の少ない鋼を安価かつ容易に得
られる精錬方法を得ることができる
A steel with less [0] was obtained. As explained above, in this invention, extremely
It is possible to obtain a refining method that can inexpensively and easily obtain steel with a low content of P, S, day, and 0.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は製鋼炉(転炉)の耐火物溶損係数とその出鋼温
度との関係を示す図、第2図は製鋼炉(転炉)において
得られた秦鋼の〔P〕とその出鋼温度との関係を示す図
、第3図イ、口は、取鍋内溶鋼中に浸潰したランスの断
面図、第4図イ、口は、この発明を実施するための取鍋
の一例を示す断面図である。 1,1′,8・・・ランス、2…取鍋本体、28・・・
取鍋蓋、3・・・溶鋼、4,4′・・・スラグ、5・・
・取鋼内雰囲気調整用ガスの供孫舎管、6・・・ホツパ
ー、7・・・加熱電極、9・・・シール材。 第3図 弟l図 第4図 第2図
Figure 1 shows the relationship between the corrosion coefficient of refractories in a steelmaking furnace (converter) and its tapping temperature, and Figure 2 shows the [P] of Qin steel obtained in a steelmaking furnace (converter) and its Figure 3A shows the relationship with tapping temperature; Figure 3A shows a sectional view of a lance immersed in molten steel in the ladle; It is a sectional view showing an example. 1, 1', 8... Lance, 2... Ladle body, 28...
Ladle lid, 3...molten steel, 4,4'...slag, 5...
- Gas supply pipe for adjusting the atmosphere inside the steel processing, 6... hopper, 7... heating electrode, 9... sealing material. Figure 3: Younger brother Figure 4: Figure 2

Claims (1)

【特許請求の範囲】 1 製鋼炉で精錬された溶鋼を、密閉用蓋を有し、かつ
その内部にガス吹込可能にした取鍋に移注し、 ついで
前記取鍋内溶鋼上のスラグに、加熱電極の先端部を浸漬
して、前記取鍋内溶鋼を加熱し、 ついで前記取鍋内溶
鋼に酸化精錬用フラツクスを添加し、 ついで前記取鍋
内溶鋼中にその上方から浸漬したランスから、撹拌用ガ
スの吹込みを行なうことによつて、酸化性ガス雰囲気下
で、前記取鍋内溶鋼および前記溶鋼と前記溶鋼上のスラ
グとを撹拌し、 ついで前記取鍋内溶鋼上のスラグを除
去し、 ついで前記取鍋内溶鋼を真空処理し、 ついで
前記取鍋内溶鋼に還元精錬用フラツクスを添加し、 つ
いで前記溶鋼中に前記ランスから、不活性ガスの吹込み
を行なうことによつて、不活性ガス雰囲気下で、前記取
鍋内溶鋼および前記溶鋼と前記溶鋼上のスラグとを撹拌
することを特徴とする取鍋による溶鋼の精錬方法。 2 製鋼炉で精錬された溶鋼を、密閉用蓋を有し、かつ
その内側にガス吹込可能にした取鍋に移注し、 ついで
前記取鍋内溶鋼上のスラグに、加熱電極の先端部を浸漬
して、前記取鍋内溶鋼を加熱し、 ついで前記取鍋内溶
鋼に酸化精錬用フラツクスを添加し、 ついで前記取鍋
内溶鋼中にその上方から浸漬したランスから、撹拌用ガ
スの吹込みを行なうことによつて、酸化性ガス雰囲気下
で、前記取鍋内溶鋼および前記溶鋼と前記溶鋼上と前記
溶鋼上のスラグとを撹拌し、 ついで前記取鍋内溶鋼上
のスラグを除去し、 ついで前記取鍋内溶鋼に還元精錬
用フラツクスを添加し、 ついで前記溶鋼中に前記ラン
スから、不活性ガスの吹込みを行なうことによつて、不
活性ガス雰囲気下で、前記取鍋内溶鋼および前記溶鋼と
前記溶鋼上のスラグとを撹拌し、 ついで前記取鍋内溶
鋼上のスラグを除去し、 ついで前記取鍋内溶鋼を真空
処理することを特徴とする取鍋による溶鋼の精錬方法。
[Claims] 1. Molten steel refined in a steelmaking furnace is poured into a ladle that has a sealing lid and into which gas can be blown, and then the slag above the molten steel in the ladle is poured into The tip of the heating electrode is immersed to heat the molten steel in the ladle, then an oxidation refining flux is added to the molten steel in the ladle, and then a lance is immersed into the molten steel in the ladle from above, By blowing in a stirring gas, the molten steel in the ladle and the molten steel and the slag on the molten steel are stirred in an oxidizing gas atmosphere, and then the slag on the molten steel in the ladle is removed. Then, by vacuum treating the molten steel in the ladle, adding flux for reduction refining to the molten steel in the ladle, and then blowing an inert gas into the molten steel from the lance, A method for refining molten steel using a ladle, comprising stirring the molten steel in the ladle and the molten steel and slag on the molten steel in an inert gas atmosphere. 2. Transfer the molten steel refined in the steelmaking furnace to a ladle that has a sealing lid and into which gas can be blown, and then insert the tip of the heating electrode onto the slag above the molten steel in the ladle. immersion to heat the molten steel in the ladle, then add oxidation refining flux to the molten steel in the ladle, and then blow stirring gas from a lance immersed into the molten steel in the ladle from above. by stirring the molten steel in the ladle, the molten steel, the molten steel, and the slag on the molten steel in an oxidizing gas atmosphere, and then removing the slag on the molten steel in the ladle, Next, flux for reduction refining is added to the molten steel in the ladle, and then an inert gas is blown into the molten steel from the lance, so that the molten steel in the ladle and A method for refining molten steel using a ladle, comprising: stirring the molten steel and slag on the molten steel; then removing the slag on the molten steel in the ladle; and then subjecting the molten steel in the ladle to vacuum treatment.
JP55048271A 1980-04-12 1980-04-12 Method for refining molten steel using a ladle Expired JPS6027726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55048271A JPS6027726B2 (en) 1980-04-12 1980-04-12 Method for refining molten steel using a ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55048271A JPS6027726B2 (en) 1980-04-12 1980-04-12 Method for refining molten steel using a ladle

Publications (2)

Publication Number Publication Date
JPS56146817A JPS56146817A (en) 1981-11-14
JPS6027726B2 true JPS6027726B2 (en) 1985-07-01

Family

ID=12798771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55048271A Expired JPS6027726B2 (en) 1980-04-12 1980-04-12 Method for refining molten steel using a ladle

Country Status (1)

Country Link
JP (1) JPS6027726B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177027U (en) * 1985-04-24 1986-11-05
JPS61207232U (en) * 1985-06-14 1986-12-27
JPH02134024U (en) * 1989-04-17 1990-11-07

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345769B2 (en) * 2006-04-07 2009-10-14 住友金属工業株式会社 Melting method of ultra low sulfur high clean steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223968A (en) * 1975-08-18 1977-02-23 Seiko Instr & Electronics Ltd Digital alarm watch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223968A (en) * 1975-08-18 1977-02-23 Seiko Instr & Electronics Ltd Digital alarm watch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177027U (en) * 1985-04-24 1986-11-05
JPS61207232U (en) * 1985-06-14 1986-12-27
JPH02134024U (en) * 1989-04-17 1990-11-07

Also Published As

Publication number Publication date
JPS56146817A (en) 1981-11-14

Similar Documents

Publication Publication Date Title
CN109777918A (en) A kind of external refining production method refining high-carbon-chromium bearing steel inclusion particle
US3819365A (en) Process for the treatment of molten metals
CN111705269A (en) Low-silicon steel 27NiCrMoV15-6 and smelting continuous casting production process thereof
JPS6027726B2 (en) Method for refining molten steel using a ladle
JPH0510406B2 (en)
US3860418A (en) Method of refining iron melts containing chromium
JPS6026803B2 (en) Method for refining molten steel using a ladle
JPS6037848B2 (en) Method for refining molten steel using a ladle
JPS61235506A (en) Heating up method for molten steel in ladle
JPS6037847B2 (en) Molten steel refining method
KR890003973B1 (en) Process to produce low hydrogen steel
JPS6037845B2 (en) Molten steel refining method
JPS5822318A (en) Refining process for molten steel
JPS6037846B2 (en) Molten steel refining method
RU2403290C1 (en) Rail steel melting method
RU2031131C1 (en) Method for steel making in converter
US4130419A (en) Process for the purification, modification and heating of a cast-iron melt
RU2205880C1 (en) Method of steel making
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
US2049091A (en) Manufacture of metallic alloys
RU2097434C1 (en) Method of converter steel melting
RU1786108C (en) Process for ladle treatment of metal
SU985054A1 (en) Method of producing transformer steel
SU1092189A1 (en) Method for making stainless steel
RU2164245C2 (en) Method of carbon steel making