JP7067279B2 - Ladle refining method for molten steel - Google Patents

Ladle refining method for molten steel Download PDF

Info

Publication number
JP7067279B2
JP7067279B2 JP2018106649A JP2018106649A JP7067279B2 JP 7067279 B2 JP7067279 B2 JP 7067279B2 JP 2018106649 A JP2018106649 A JP 2018106649A JP 2018106649 A JP2018106649 A JP 2018106649A JP 7067279 B2 JP7067279 B2 JP 7067279B2
Authority
JP
Japan
Prior art keywords
molten steel
ladle
plug
gas blowing
center position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018106649A
Other languages
Japanese (ja)
Other versions
JP2019210503A (en
Inventor
秀平 笠原
勝弘 淵上
和道 吉田
太一 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018106649A priority Critical patent/JP7067279B2/en
Publication of JP2019210503A publication Critical patent/JP2019210503A/en
Application granted granted Critical
Publication of JP7067279B2 publication Critical patent/JP7067279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

本発明は、溶鋼の取鍋精錬方法に関するものである。 The present invention relates to a method for refining a ladle of molten steel.

転炉や電気炉で一次精錬された溶鋼は、取鍋に収容される。さらに二次精錬として、取鍋内の溶鋼を対象に精錬が行われる。二次精錬後の溶鋼は、主に連続鋳造によって鋳造し、さらに熱間圧延などを経て目的の製品が製造される。二次精錬は、製品の目標品質に応じて、溶鋼の成分調整、非金属介在物の浮上分離、溶鋼の均一混合、溶鋼の加熱昇温、溶鋼中有害不純物の低減などを目的として行われる。鋼を高清浄化するため、二次精錬として溶鋼の低酸素化が行われる。 The molten steel primary smelted in a converter or electric furnace is stored in a ladle. Furthermore, as secondary refining, refining is performed on the molten steel in the ladle. The molten steel after secondary refining is mainly cast by continuous casting, and then hot-rolled to produce the desired product. Secondary refining is performed for the purpose of adjusting the composition of molten steel, floating separation of non-metal inclusions, uniform mixing of molten steel, heating and heating of molten steel, reduction of harmful impurities in molten steel, etc., according to the target quality of the product. In order to purify the steel highly, the molten steel is reduced in oxygen as a secondary refining.

二次精錬の方法の一つとして、取鍋内の溶鋼表面にCaOを含むフラックス層を形成し、フラックス層に通電電極を浸漬させて通電しながら、溶鋼中にガスを吹き込んで溶鋼を攪拌する二次精錬方法が知られている。フラックス層を精錬剤として溶鋼の低酸素化(高清浄化)が可能であり、また通電加熱によって溶鋼を昇温することができる。以下この方法を、通電加熱を伴う溶鋼の取鍋精錬方法と呼ぶ。 As one of the secondary refining methods, a flux layer containing CaO is formed on the surface of the molten steel in the ladle, and the molten steel is agitated by blowing gas into the molten steel while energizing by immersing the current-carrying electrode in the flux layer. Secondary refining methods are known. The flux layer can be used as a refining agent to reduce oxygen (high cleaning) of the molten steel, and the temperature of the molten steel can be raised by energization heating. Hereinafter, this method is referred to as a ladle refining method for molten steel accompanied by energization heating.

通電加熱を伴う溶鋼の取鍋精錬に関し、特許文献1には、通電加熱型精錬用取鍋が開示されている。取鍋の中心付近に黒鉛製の3本の電極が配置され、取鍋の底部にはガス吹き込みのために複数のポーラスプラグが配置されている。電極の下方先端は、取鍋内の溶鋼上に浮遊するフラックス層内に浸漬され、給電装置により通電され、フラックス及び溶鋼を加熱する。ポーラスプラグから溶鋼中に不活性ガスを送り込み、溶鋼を攪拌する。 Regarding the ladle refining of molten steel accompanied by energization heating, Patent Document 1 discloses an energization heating type ladle for refining. Three graphite electrodes are arranged near the center of the ladle, and a plurality of porous plugs are arranged at the bottom of the ladle for gas blowing. The lower tip of the electrode is immersed in a flux layer floating on the molten steel in the ladle and energized by a power feeding device to heat the flux and the molten steel. Inert gas is sent into the molten steel from the porous plug to stir the molten steel.

通電加熱を伴う溶鋼の取鍋精錬において、フラックス層を形成するため、CaOを含む媒溶剤を添加する。媒溶剤のCaOをスラグに溶融させ、スラグ中のAl23やSiO2の濃度を低下させると、溶鋼中に溶解しているOと親和力の強い脱酸元素であるAlやSiの脱酸反応が活性化する。これにより、溶鋼の脱酸処理等が進行する。しかし、CaOは高融点のためスラグとの反応によるスラグ中への溶融させる必要があり、単純に攪拌を強化しても、溶融に長時間を要し、脱酸時間も長時間となる課題がある。 In ladle refining of molten steel accompanied by energization heating, a medium solvent containing CaO is added in order to form a flux layer. When CaO, a medium solvent, is melted in slag to reduce the concentration of Al 2 O 3 and SiO 2 in the slag, deoxidation of Al and Si, which are deoxidizing elements having a strong affinity with O dissolved in molten steel. The reaction is activated. As a result, the deoxidation treatment of the molten steel proceeds. However, since CaO has a high melting point, it is necessary to melt it in the slag by reacting with the slag, and even if the stirring is simply strengthened, it takes a long time to melt and the deoxidation time becomes long. be.

特許文献2には、通電加熱を伴う溶鋼の取鍋精錬方法において、微粉砕した造滓剤をランスを通じて溶鋼表面に不活性ガスで吹きつける方法が開示されている。これにより、造滓剤の滓化が著しく速く、精錬時間を短縮することができるとしている。
特許文献3には、通電加熱を伴う溶鋼の取鍋精錬方法において、浸漬ランスを介して、アークの発生が乱れない程度の量の不活性ガスで、精錬剤を溶鋼中に吹き込む方法が開示されている。これにより、従来より迅速に、かつ安定して硫黄分を極低硫領域まで低減可能であるとしている。
US Pat. As a result, the slag-making agent is slagging extremely quickly, and the refining time can be shortened.
Patent Document 3 discloses a method of injecting a refining agent into a molten steel with an inert gas in an amount that does not disturb the generation of an arc through a dipping lance in a ladle refining method for molten steel accompanied by energization heating. ing. As a result, it is possible to reduce the sulfur content to the extremely low sulfur content more quickly and stably than before.

特開2001-040411号公報Japanese Unexamined Patent Publication No. 2001-040411 特開昭62-205216号公報Japanese Unexamined Patent Publication No. 62-20216 特開2000-234119号公報Japanese Unexamined Patent Publication No. 2000-234119

通電加熱を伴う溶鋼の取鍋精錬によって溶鋼を低酸素化して高清浄度鋼を製造するに際し、特許文献1に記載の方法を用いて低酸素化処理を行うと、目標とする溶鋼の低酸素化を実現するために長時間を要し、所定の時間内には目標とする低酸素化を実現できないという問題を有していた。特許文献2、3記載の方法では、媒溶剤を相応に短時間で溶融することが可能であるが、更なる溶融時間の短縮が必要である。また、媒溶剤の溶融促進や反応性向上に、ランスを用いた媒溶剤の吹付けやインジェクションが不可欠であり、媒溶剤の破砕による微粉化やランス耐火物補修などが必要となり、コストが増加する課題もある。 When hypoxicizing molten steel by ladle refining of molten steel accompanied by energization heating to produce high-cleanliness steel, if the hypoxic treatment is performed using the method described in Patent Document 1, the target low oxygen of the molten steel is obtained. It took a long time to realize the hypoxia, and there was a problem that the target hypoxia could not be achieved within a predetermined time. In the methods described in Patent Documents 2 and 3, the medium solvent can be melted in a correspondingly short time, but it is necessary to further shorten the melting time. In addition, spraying and injection of the medium solvent using a lance is indispensable for promoting melting of the medium solvent and improving reactivity, and it is necessary to atomize the medium solvent by crushing it and repair the lance refractory, which increases the cost. There are also challenges.

本発明は、取鍋内の溶鋼を、通電加熱を伴う溶鋼の取鍋精錬によって低酸素化して高清浄度鋼を製造するに際し、添加したフラックスの溶融を促進し、低酸素化反応速度を高めることが可能な、新規かつ改良された溶鋼の取鍋精錬方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention promotes the melting of the added flux and increases the hypoxicification reaction rate when the molten steel in the ladle is reduced in oxygen by refining the ladle of the molten steel accompanied by energization heating to produce high-cleanliness steel. It is an object of the present invention to provide a new and improved ladle refining method for molten steel.

即ち、本発明の要旨とするところは以下のとおりである。
[1]取鍋内に収容された溶鋼に対して、副原料投入口からCaOを含む媒溶剤を添加して取鍋内溶鋼表面にフラックス層を形成し、取鍋中央部に2本又は3本の電極を前記フラックス層に浸漬させて通電する溶鋼の取鍋精錬方法において、
前記取鍋の底部にガス吹き込み用プラグを2カ所に配置し、それぞれガス吹き込み用Aプラグ、ガス吹き込み用Bプラグとし、ガス吹き込み用プラグそれぞれから吹き込まれるガスの流量をそれぞれ、QA、QB(いずれも単位はNL/min/t)とし、
平面視において、前記2本又は3本の電極すべての外周に外接する円であって最小半径rを持つ円を「電極の外接円」とし、電極の外接円の中心位置をCEとし、
取鍋底面の半径をR、取鍋底面の中心位置をCOとし、
ガス吹き込み用Aプラグの中心位置をCA、ガス吹き込み用Bプラグの中心位置をCB、副原料投入口の中心位置をCGとし、
OとCA間の距離をLOA、COとCB間の距離を OB とし、CA-CO-CBがなす角度をθ、CG-CB-COがなす角度をφ、CG-CO-CBがなす角度(∠GOB)をηとし、
取鍋内溶鋼浴深をH、CGとCE間の距離をLGE、COとCBを結ぶ線分とCGとの間の距離をLとして、
ガス吹き込み用Aプラグとガス吹き込み用Bプラグ、副原料投入口が下記(1)~(7)式を満足する位置に配置され、
A、QBが以下に示す(8)~(10)式を満たすことを特徴とする、溶鋼の取鍋精錬方法。
0.21H≧L (1)
45°≧φ (2)
GE>r (3)
90°≧η (4)
0.9R≧LOB>r (5)
180°≧θ≧120° (6)
0.9R≧LOA (ただし、L OA が0である場合を除く) (7)
0.3≦QB≦4.2 (8)
0.1≦QA (9)
B/QA≧1.5 (10)
[2]前記媒溶剤を前記副原料投入口から添加する時期が、通電前ならびに通電中であることを特徴とする、[1]に記載の溶鋼の取鍋精錬方法。
[3]前記媒溶剤を前記副原料投入口から添加する時期が、通電前であることを特徴とする、[1]に記載の溶鋼の取鍋精錬方法。
That is, the gist of the present invention is as follows.
[1] A flux layer is formed on the surface of the molten steel in the ladle by adding a medium solvent containing CaO to the molten steel contained in the ladle from the auxiliary material inlet, and two or three in the center of the ladle. In the method of ladle refining of molten steel in which the electrode of a book is immersed in the flux layer and energized.
Gas blowing plugs are arranged at two locations on the bottom of the ladle to form a gas blowing A plug and a gas blowing B plug, respectively, and the flow rates of the gas blown from each of the gas blowing plugs are QA and QB, respectively. (In each case, the unit is NL / min / t).
In plan view, the circle circumscribed around the outer circumferences of all the two or three electrodes and having the minimum radius r is defined as the "circumscribed circle of the electrodes ", and the center position of the circumscribed circle of the electrodes is defined as C E.
The radius of the bottom of the pan is R , and the center position of the bottom of the pan is CO.
The center position of the gas blowing A plug is CA, the center position of the gas blowing B plug is C B , and the center position of the auxiliary material input port is C G.
The distance between C O and CA is L O A , the distance between C O and C B is L O B, the angle formed by CA- CO -C B is θ, and the angle formed by C G -C B - CO is the angle formed by C G-C B-CO. Let φ, and let η be the angle ( ∠GOB ) formed by C G -CO-CB.
Let H be the depth of the molten steel bath in the ladle, L GE be the distance between C G and C E , and L be the distance between the line segment connecting C O and C B and C G.
The gas blowing A plug, gas blowing B plug, and auxiliary raw material input port are arranged at positions that satisfy the following formulas (1) to (7).
A method for refining a ladle of molten steel, wherein Q A and Q B satisfy the following equations (8) to (10).
0.21H ≧ L (1)
45 ° ≧ φ (2)
L GE > r (3)
90 ° ≧ η (4)
0.9R ≧ L OB > r (5)
180 ° ≧ θ ≧ 120 ° (6)
0.9R ≧ L OA (except when L OA is 0) (7)
0.3 ≤ Q B ≤ 4.2 (8)
0.1 ≤ Q A (9)
Q B / Q A ≧ 1.5 (10)
[2] The ladle refining method for molten steel according to [1], wherein the medium solvent is added from the auxiliary raw material input port before and during energization.
[3] The method for ladle refining of molten steel according to [1], wherein the medium solvent is added from the auxiliary raw material inlet before energization.

本発明は、取鍋内の溶鋼にフラックスを添加し、通電加熱を伴う溶鋼の取鍋精錬によって低酸素化して高清浄度鋼を製造するに際し、取鍋の底部にガス吹き込み用プラグを2カ所に配置し、副原料投入口位置とガス吹き込み位置を適正化することにより、通電中のフラックスの滓化(溶融)を促進することができ、低酸素化脱酸反応速度を高められる。 In the present invention, when flux is added to the molten steel in the ladle and oxygen is reduced by refining the ladle of the molten steel accompanied by energization heating to produce high-cleanliness steel, two gas blowing plugs are provided at the bottom of the ladle. By optimizing the position of the auxiliary raw material input port and the position of the gas blowing, it is possible to promote the stagnation (melting) of the flux during energization, and the deoxidation reaction rate for low oxygenation can be increased.

本発明の取鍋精錬における電極、ガス吹き込み用プラグ、副原料投入口の好適位置を示す平面図であり、(A)は主に各部の符号を記し、(B)は主に各部の好適配置範囲を記している。It is a top view which shows the preferable position of the electrode, the plug for gas blowing, and the auxiliary raw material input port in the ladle refining of this invention, (A) mainly shows the code of each part, (B) is mainly suitable arrangement of each part. The range is described. 本発明の取鍋精錬について説明する図であり、(A)は媒溶剤投入後ガス吹き込み開始前を示す平面図、(B)はそのB-B矢視断面図、(C)はガス吹き込み開始後を示す平面図、(D)はそのD-D矢視断面図である。It is a figure explaining the ladle refining of this invention, (A) is the plan view which shows after the medium solvent injection and before the gas blowing start, (B) is the BB arrow cross-sectional view, (C) is the gas blowing start. A plan view showing the rear, (D) is a cross-sectional view taken along the line DD. 取鍋精錬におけるガス吹き込み用プラグ、副原料投入口の位置、ガス吹き込み量が好適範囲から外れる状況示す平面図であり、(A)は副原料投入口位置、(B)(C)はAプラグ配置位置、(D)(E)はガス吹き込み量が、それぞれ好適範囲から外れる状況を示す。It is a top view which shows the situation which the plug for gas blowing in the ladle refining, the position of the auxiliary raw material input port, and the gas blowing amount are out of the preferable range, (A) is the position of the auxiliary raw material input port, (B) (C) is the A plug. The arrangement positions (D) and (E) indicate situations in which the amount of gas blown out of the preferable range.

図1~図3に基づいて本発明の説明を行う。
本発明の溶鋼の取鍋精錬方法において、取鍋1内における溶鋼5の表面にCaOを含むフラックス層6を形成し、取鍋中央部に2本又は3本の電極3をフラックス層6に浸漬させて通電することにより、溶鋼の高清浄化処理を行う。通電加熱については、通常行われている方法を用いることができる。即ち、取鍋上部に配置した電極3の下方先端をフラックス層6内に浸漬し、電極3に通電することにより、フラックス及び溶鋼を加熱する。図1に示すように、取鍋1の平面視において、2本又は3本の電極3すべての外周に外接する円を、「電極の外接円4」と呼ぶ。電極3が3本の場合(図1参照)は、電極の外接円4が一つに定まる。電極3が2本の場合は、半径が最小となるものを電極の外接円4とする。そのため、電極の外接円4の半径rを「電極の外接円の最小半径」と表現している。
The present invention will be described with reference to FIGS. 1 to 3.
In the method for refining a ladle of molten steel of the present invention, a flux layer 6 containing CaO is formed on the surface of the ladle 5 in the ladle 1, and two or three electrodes 3 are immersed in the flux layer 6 in the center of the ladle. By energizing the molten steel, the molten steel is highly cleaned. For energization heating, a commonly used method can be used. That is, the flux and molten steel are heated by immersing the lower tip of the electrode 3 arranged in the upper part of the ladle in the flux layer 6 and energizing the electrode 3. As shown in FIG. 1, in the plan view of the pan 1, the circle circumscribed around the outer circumferences of all the two or three electrodes 3 is referred to as "the circumscribed circle 4 of the electrodes". When there are three electrodes 3 (see FIG. 1), the circumscribed circle 4 of the electrodes is fixed to one. When there are two electrodes 3, the one having the smallest radius is the circumscribed circle 4 of the electrodes. Therefore, the radius r of the circumscribed circle 4 of the electrode is expressed as "the minimum radius of the circumscribed circle of the electrode".

上記のように、電極3を取鍋中央部に配置するのは、これにより取鍋内の溶鋼をまんべんなく加熱できるからである。ここで「取鍋中央部」とは、2本または3本の電極の外接円の中心(CE)が、取鍋底部(半径R)の中央(CO)から0.1×R以下の範囲にあることを意味している。通常は、電極の外接円の中心位置と取鍋底面の中心位置とを一致させる。
また本発明では、図1、図2に示すように、取鍋1の底部にガス吹き込み用プラグ2を2カ所に配置し、当該ガス吹き込み用プラグ2それぞれから不活性ガスを溶鋼中に吹き込むことにより、取鍋内溶鋼の攪拌を行う。
As described above, the electrode 3 is arranged in the center of the ladle because the molten steel in the ladle can be heated evenly. Here, the "center of the ladle" means that the center ( CE ) of the circumscribed circles of the two or three electrodes is 0.1 × R or less from the center ( CO ) of the bottom of the ladle (radius R). It means that it is in the range. Normally, the center position of the circumscribed circle of the electrode matches the center position of the bottom surface of the pan.
Further, in the present invention, as shown in FIGS. 1 and 2, gas blowing plugs 2 are arranged at two places on the bottom of the ladle 1, and the inert gas is blown into the molten steel from each of the gas blowing plugs 2. The molten steel in the ladle is agitated.

転炉などの一次精錬装置で精錬を完了した溶鋼は、取鍋に出鋼される。出鋼時には、溶鋼と共に、転炉スラグの一部も取鍋に流出し、出鋼完了後の取鍋内溶鋼表面に転炉スラグ層が形成される。転炉スラグは、CaO、SiO2、Al23、FeO、MgOなどで構成されている。出鋼時にはFe-SiやAlなどの脱酸剤を添加し、溶鋼中のフリー酸素を脱酸する。脱酸により生じたSiO2、Al23は、浮上して溶鋼表面のスラグ層に吸収される。 The molten steel that has been smelted by a primary smelting device such as a converter is put out in a ladle. At the time of steel removal, a part of the converter slag flows out to the ladle together with the molten steel, and a converter slag layer is formed on the surface of the molten steel in the ladle after the steel removal is completed. The converter slag is composed of CaO, SiO 2 , Al 2 O 3 , FeO, MgO and the like. At the time of steel ejection, a deoxidizing agent such as Fe—Si or Al is added to deoxidize the free oxygen in the molten steel. SiO 2 , Al 2 O 3 generated by deoxidation floats and is absorbed by the slag layer on the surface of the molten steel.

取鍋精錬においては、取鍋内の溶鋼表面にCaOを含む媒溶剤を添加し、電極による通電加熱で媒溶剤を溶融してフラックス層を形成するとともに、取鍋底部からのガス吹き込みで溶鋼とフラックス層とが攪拌される。フラックス層中におけるFeOなどの酸化性の強い成分は、溶鋼中に含まれる脱酸剤(Alなど)によって還元される。さらに、CaOを主成分とする媒溶剤を添加することにより、フラックス中のSiO2、Al23、FeO、MgOなどなどの含有量は、転炉スラグの濃度に比較して低減する。フラックス成分が非酸化性となった上で、フラックス中のAl23やSiO2の濃度が低下した結果として、溶鋼中に残存溶解しているO(フリー酸素)とAlやSiとが結合してフラックス中にAl23やSiO2として移行する反応が活性化される。これにより、溶鋼の高清浄度化が進行する。この反応は、溶融したフラックス層と溶鋼との界面で進行する。取鍋内溶鋼全体の高清浄化を速やかに進行するためには、副材投入口から投入した媒溶剤を迅速かつ十分に溶融することが重要である。 In ladle refining, a medium solvent containing CaO is added to the surface of the molten steel in the ladle, and the medium solvent is melted by energizing and heating with an electrode to form a flux layer, and gas is blown from the bottom of the ladle to form the molten steel. The flux layer is agitated. The highly oxidizing component such as FeO in the flux layer is reduced by the deoxidizing agent (Al or the like) contained in the molten steel. Further, by adding a medium solvent containing CaO as a main component, the content of SiO 2 , Al 2 O 3 , FeO, MgO, etc. in the flux is reduced as compared with the concentration of the converter slag. As a result of the flux component becoming non-oxidizing and the concentration of Al 2 O 3 and SiO 2 in the flux decreasing, O (free oxygen) remaining dissolved in the molten steel is combined with Al and Si. Then, the reaction that migrates as Al 2 O 3 or SiO 2 into the flux is activated. As a result, the cleanliness of the molten steel progresses. This reaction proceeds at the interface between the molten flux layer and the molten steel. In order to promptly proceed with high cleaning of the entire molten steel in the ladle, it is important to quickly and sufficiently melt the medium solvent charged from the auxiliary material charging port.

副材投入口から投入した媒溶剤は、CaOを主体としており、CaOは高融点であるため、媒溶剤を高温に加熱することではじめて溶融する。本発明では特に、電極をフラックス層に浸漬して通電加熱を行うものであり、副原料投入口から投入した媒溶剤が、電極近傍の高温領域に到達しかつそこに滞留することによって優先的に高温に加熱されて溶融フラックスとなる。電極近傍に到達していない(例えば取鍋内壁近傍に存在する)媒溶剤は、比較的低温のままとなり、迅速に溶融することができない。 The medium solvent charged from the auxiliary material charging port is mainly CaO, and since CaO has a high melting point, it melts only when the medium solvent is heated to a high temperature. In the present invention, in particular, the electrode is immersed in the flux layer to perform energization heating, and the medium solvent charged from the auxiliary material charging port reaches the high temperature region near the electrode and stays there, so that it is preferentially applied. It is heated to a high temperature and becomes a molten flux. The medium solvent that has not reached the vicinity of the electrode (for example, present in the vicinity of the inner wall of the ladle) remains at a relatively low temperature and cannot be melted quickly.

本発明は、取鍋の底部にガス吹き込み用プラグを2カ所に配置し、それぞれガス吹き込み用Aプラグ、ガス吹き込み用Bプラグとする。そして本発明では、副原料投入口から、CaO等からなる媒溶剤を溶鋼表面に投入した後、高温になる電極近傍に媒溶剤を搬送し高温領域に滞留させることで、媒溶剤の溶融を促進させる。そのために必要な媒溶剤の添加位置(副原料投入口位置)の条件を、2つのガス吹き込み用プラグの配置位置との関係で、規定することとした。そして、ガス吹き込み用Bプラグの配置位置を基準として、ガス吹き込み用Aプラグ、及び副原料投入位置の配置位置を定める。 In the present invention, the gas blowing plugs are arranged at two places on the bottom of the ladle, and the gas blowing plugs are the gas blowing A plug and the gas blowing B plug, respectively. In the present invention, after the medium solvent made of CaO or the like is charged onto the surface of the molten steel from the auxiliary raw material input port, the medium solvent is conveyed to the vicinity of the electrode where the temperature becomes high and stays in the high temperature region to promote the melting of the medium solvent. Let me. It was decided to specify the conditions for the addition position of the medium solvent (the position of the auxiliary raw material input port) necessary for that purpose in relation to the arrangement positions of the two gas blowing plugs. Then, the placement position of the gas blowing A plug and the auxiliary raw material charging position is determined with reference to the placement position of the gas blowing B plug.

ここで、図1に示すように、取鍋底面の中心位置をCO、ガス吹き込み用Aプラグの中心位置をCA、ガス吹き込み用Bプラグの中心位置をCB、副原料投入口の中心位置をCGとする。また、電極の外接円の最小半径をr、電極の外接円の中心位置をCEとし、取鍋底面の半径をR、取鍋内溶鋼浴深をHとする。また、COとCA間の距離をLOA、COとCB間の距離をLOB、CBとCG間の距離をLBGとする。さらに、CGとCE間の距離をLGE、COとCBを結ぶ線分とCGとの間の距離をLとする。CA-CO-CBがなす角度(∠AOB)をθ、CG-CB-COがなす角度(∠GBO)をφ、CG-CO-CBがなす角度(∠GOB)をηとする。ここで、CA-CO-CBがなす角度としては、180°以下の小さい角度と、その反対側に180°以上の大きい角度(両方の角度を合計すると360°となる。)が認識される。ここでは、θ、φ、ηともに、180°以下の小さい角度を意味する。 Here, as shown in FIG. 1, the center position of the bottom surface of the pan is CO , the center position of the gas blowing A plug is CA, the center position of the gas blowing B plug is C B , and the center of the auxiliary raw material inlet. Let the position be C G. Further, the minimum radius of the circumscribed circle of the electrode is r, the center position of the circumscribed circle of the electrode is CE , the radius of the bottom surface of the ladle is R, and the depth of the molten steel bath in the ladle is H. The distance between CO and CA is L OA , the distance between CO and C B is L OB , and the distance between C B and C G is L B G. Further, let L GE be the distance between C G and C E , and L be the distance between the line segment connecting C O and C B and C G. The angle formed by CA- CO -CB (∠AOB) is θ, the angle formed by C G - C B - CO is φ, and the angle formed by C G - CO -CB is (∠GOB). ) Is η. Here, as the angle formed by CA - CO - CB, a small angle of 180 ° or less and a large angle of 180 ° or more on the opposite side (the sum of both angles is 360 °) are recognized. Will be done. Here, θ, φ, and η all mean small angles of 180 ° or less.

《副原料投入口の配置位置》
取鍋底部のガス吹き込み用Bプラグ2Bからガスを吹き込むと、吹き込まれた気泡7の上昇によって溶鋼の上昇流8も形成される(図2(D)参照)。溶鋼の上昇流8が溶鋼表面に到達すると、溶鋼表面から放射状に向かう表面流を形成する。平面視において、ガス吹き込み用Bプラグ2Bの中心位置CBを中心とした放射状の流れを形成する。本発明では、Bプラグ2Bからのガス吹き込みによって形成される溶鋼流に向けて、副原料投入口10から媒溶剤を投入し、投入した媒溶剤を溶鋼流に乗せて移動させ、高温となる電極近傍に搬送する(図2(C)における広がり後の媒溶剤21領域)。そのためには、ガス吹き込み用Bプラグ2Bの中心位置CBと電極の外接円4との間の位置に、副原料投入口の中心位置CGを配置することが好適となる。以下、そのための具体的な条件について説明する。
<< Arrangement position of auxiliary raw material input port >>
When gas is blown from the gas blowing B plug 2B at the bottom of the ladle, the rising flow 8 of the molten steel is also formed by the rising of the blown bubbles 7 (see FIG. 2D). When the ascending flow 8 of the molten steel reaches the surface of the molten steel, a surface flow radiating from the surface of the molten steel is formed. In a plan view, a radial flow is formed centered on the center position C B of the gas blowing B plug 2B. In the present invention, a medium solvent is charged from the auxiliary raw material charging port 10 toward the molten steel flow formed by gas blowing from the B plug 2B, and the charged medium solvent is moved on the molten steel flow to become a high temperature electrode. It is transported to the vicinity (region of the medium solvent 21 after spreading in FIG. 2C). For that purpose, it is preferable to arrange the center position C G of the auxiliary raw material input port at the position between the center position C B of the gas blowing B plug 2B and the circumscribed circle 4 of the electrode. Hereinafter, specific conditions for that purpose will be described.

取鍋の溶鋼浴深がHである場合、取鍋底部のガス吹き込み用プラグ2から吹き込まれたガスは、溶鋼表面において、半径0.21×Hの盛り上がりを形成することが知られている。以下、この盛り上がり領域を、気泡上昇領域22と称し、図1~3に図示する。そして、取鍋中心位置COとBプラグ中心位置CBを結ぶ線分と、副原料投入口の中心位置CGとの間の距離をLとしたとき、
0.21H≧L (1)
とすれば、平面視でBプラグから電極の外接円方向に向かう溶鋼流が比較的強く、投入した副原料が高温の電極領域に移動することを知見した。Lの値が0.21Hよりも大きいと、投入した媒溶剤が電極方向に向かわず、投入した副原料を高温の電極近傍に搬送することができない(図3(A)参照)。
When the molten steel bath depth of the ladle is H, it is known that the gas blown from the gas blowing plug 2 at the bottom of the ladle forms a swelling with a radius of 0.21 × H on the surface of the ladle. Hereinafter, this raised region is referred to as a bubble rising region 22, and is shown in FIGS. 1 to 3. Then, when the distance between the line segment connecting the center position C O of the ladle and the center position C B of the B plug and the center position C G of the auxiliary raw material input port is L,
0.21H ≧ L (1)
If so, it was found that the molten steel flow from the B plug toward the circumscribed circle of the electrode is relatively strong in a plan view, and the charged auxiliary material moves to the high temperature electrode region. When the value of L is larger than 0.21H, the charged medium solvent does not direct toward the electrode, and the charged auxiliary raw material cannot be transported to the vicinity of the high temperature electrode (see FIG. 3A).

一方、副原料投入口の中心位置CG-Bプラグ中心位置CB-取鍋中心位置COがなす角度φ(∠GBO)が大きすぎると、たとえ上記(1)式を満足するとしても、Bプラグ中心位置から放射状に流れる溶鋼流は電極方向に向かわないので、投入した副原料を高温の電極近傍に搬送することができない。ここにおいて、
45°≧φ (2)
とすれば、上記(1)式を具備することとあいまって、投入した副原料が高温の電極領域に移動する。
On the other hand, if the angle φ (∠GBO) formed by the center position C G -B plug center position C B -ladle center position C O of the auxiliary material input port is too large, even if the above equation (1) is satisfied, Since the molten steel flow radiating from the center position of the B plug does not go toward the electrode, the charged auxiliary material cannot be transported to the vicinity of the high temperature electrode. put it here,
45 ° ≧ φ (2)
If so, the added auxiliary material moves to the high temperature electrode region in combination with the above equation (1).

加えて、副原料投入位置を電極近傍に設定する場合、通電設備と副原料投入設備の設置位置が干渉するため、副原料投入口の中心位置CGは、電極(2本または3本)の最小半径rの外接円よりも外側の範囲とすることが好ましい。即ち、
GE>r (3)
を満たすこととする。
ガス吹き込み用Bプラグ2Bの中心位置CBと電極の外接円4との間の位置に、副原料投入口の中心位置CGを配置することから、下記(4)式が成立することとなる。
90°≧η (4)
上記(1)式、(2)式、(3)式、(4)式を満足する領域を、図2(B)において副原料投入口の好適配置範囲15として図示した。副原料投入口の中心位置CGが副原料投入口の好適配置範囲15内にあればよい。
In addition, when the auxiliary material input position is set near the electrode, the installation position of the energization equipment and the auxiliary material input equipment interferes, so the center position C G of the auxiliary material input port is the electrode (2 or 3). It is preferable that the range is outside the circumscribed circle of the minimum radius r. That is,
L GE > r (3)
Satisfy.
Since the center position C G of the auxiliary raw material input port is arranged at the position between the center position C B of the gas blowing B plug 2B and the circumscribed circle 4 of the electrode, the following equation (4) is established. ..
90 ° ≧ η (4)
The region satisfying the above equations (1), (2), (3), and (4) is shown as a suitable arrangement range 15 of the auxiliary raw material input port in FIG. 2 (B). The center position C G of the auxiliary raw material input port may be within the suitable arrangement range 15 of the auxiliary raw material input port.

《ガス吹き込み用Bプラグの配置位置》
上記条件を実現するためには、ガス吹き込み用Bプラグを、取鍋底面の中心位置から、電極の外接円の半径rよりも遠ざけた位置に配置する(LOB>r)必要がある。電極の外接円の中心位置(CE)は取鍋底面の中心位置(CO)の近傍又は同じ位置にあるので、ガス吹き込み用Bプラグは電極の外接円の外側に配置されることとなる。Bプラグを電極の外接円の内側に配置する(LOB≦r)場合は、副原料投入口も電極外接円の内側に配置することになり、前述のように通電設備と副原料投入設備が干渉してしまう。一方、Bプラグから吹き込んだガスが気泡となって溶鋼内を上昇する際、取鍋壁面に近すぎる場合、取鍋壁に接触してしまい、気泡上昇位置が不安定となり、生成する溶鋼流が不安定になる。そのため、0.9R≧LOBも満足する位置にBプラグを配置させる必要がある。即ち、下記(5)式
0.9R≧LOB>r (5)
を満足するものとする。
<< Arrangement position of B plug for gas blowing >>
In order to realize the above condition, it is necessary to arrange the gas blowing B plug at a position farther from the center position of the bottom surface of the pan than the radius r of the circumscribed circle of the electrode ( LOB > r). Since the center position ( CE ) of the circumscribed circle of the electrode is near or at the same position as the center position ( CO ) of the bottom surface of the pan, the B plug for gas blowing is arranged outside the circumscribed circle of the electrode. .. When the B plug is placed inside the circumscribed circle of the electrode ( LOB ≤ r), the auxiliary material input port is also placed inside the circumscribed circle of the electrode, and as described above, the energization equipment and the auxiliary material input equipment are installed. It will interfere. On the other hand, when the gas blown from the B plug becomes bubbles and rises in the molten steel, if it is too close to the ladle wall, it will come into contact with the ladle wall, the bubble rising position will become unstable, and the molten steel flow generated will be generated. It becomes unstable. Therefore, it is necessary to arrange the B plug at a position where 0.9R ≧ L OB is also satisfied. That is, the following equation (5) 0.9R ≧ L OB > r (5)
Satisfy.

《ガス吹き込み用Aプラグの配置位置》
上記のように、副原料投入口から投入された媒溶剤は、Bプラグからのガス吹き込みで形成される取鍋表面の溶鋼流に乗って、高温の電極近傍に運ばれる。媒溶剤を迅速かつ効率的に溶融させるためには、電極付近に到達した媒溶剤を、できるだけ長い期間、電極付近に滞留させることが好ましい(図2(D)参照)。そこで本発明では、取鍋底部の中心からみて、AプラグをBプラグの反対側の位置に配置する。これにより、Aプラグからのガス吹き込みで形成される取鍋表面溶鋼流のうちで電極方向に向かう溶鋼流が、Bプラグによって形成される溶鋼流と衝突し、電極付近で溶鋼流を滞留させることが可能となる。具体的には、Aプラグ中心位置CA-取鍋中心位置CO-Bプラグ中心位置CBがなす角度θ(∠AOB)を120°以上とすることにより、電極付近で溶鋼流を滞留させることが可能となる。θ<120°の場合、Bプラグによって形成した溶鋼流を電極近傍でせき止める効果が少なく、媒溶剤を電極近傍に集積する効果が低い(図3(B)参照)。一方、角度θの上記定義より、θは180°以下である。即ち、
180°≧θ≧120° (6)
を満足するものとする。
<< Arrangement position of A plug for gas blowing >>
As described above, the medium solvent charged from the auxiliary raw material charging port is carried to the vicinity of the high temperature electrode by riding on the molten steel flow on the surface of the ladle formed by the gas blowing from the B plug. In order to melt the medium solvent quickly and efficiently, it is preferable to allow the medium solvent that has reached the vicinity of the electrode to stay in the vicinity of the electrode for as long as possible (see FIG. 2D). Therefore, in the present invention, the A plug is arranged at a position opposite to the B plug when viewed from the center of the bottom of the ladle. As a result, of the ladle surface molten steel flow formed by gas blowing from the A plug, the molten steel flow toward the electrode collides with the molten steel flow formed by the B plug, and the molten steel flow is retained near the electrode. Is possible. Specifically, by setting the angle θ (∠AOB) formed by the A plug center position CA A -ladle center position C O -B plug center position C B to 120 ° or more, the molten steel flow is retained near the electrode. It becomes possible. When θ <120 °, the effect of damming the molten steel flow formed by the B plug in the vicinity of the electrode is small, and the effect of accumulating the medium solvent in the vicinity of the electrode is low (see FIG. 3B). On the other hand, according to the above definition of the angle θ, θ is 180 ° or less. That is,
180 ° ≧ θ ≧ 120 ° (6)
Satisfy.

上記Bプラグと同様、ガス吹き込み用Aプラグについても、吹き込んだガスが気泡となって溶鋼内を上昇する際、取鍋壁面に近すぎる場合、取鍋壁に接触してしまい、気泡上昇位置が不安定となり、生成する溶鋼流が不安定になる(図3(C)参照)。そのため、0.9R≧LOAも満足する位置にBプラグを配置させる必要がある。即ち、
0.9R≧LOA (7)
を満足するものとする。
上記(5)式、(6)式を満足する領域を、図2(B)においてガス吹き込み用Aプラグの好適配置範囲16として図示した。Aプラグ中心位置CAがガス吹き込み用Aプラグの好適配置範囲16内にあればよい。
Similar to the above B plug, for the gas blowing A plug, when the blown gas becomes bubbles and rises in the molten steel, if it is too close to the ladle wall surface, it will come into contact with the ladle wall and the bubble rising position will be. It becomes unstable and the molten steel flow generated becomes unstable (see FIG. 3C). Therefore, it is necessary to arrange the B plug at a position where 0.9R ≧ L OA is also satisfied. That is,
0.9R ≧ L OA (7)
Satisfy.
The region satisfying the above equations (5) and (6) is shown as a suitable arrangement range 16 of the gas blowing A plug in FIG. 2 (B). The center position CA of the A plug may be within the suitable arrangement range 16 of the A plug for gas blowing.

《ガス吹き込み用プラグからのガス吹き込み量》
図2(A)(B)は、副原料投入口10から媒溶剤を投入した直後における、投入直後の媒溶剤20位置を示している。同図において、電極加熱、ガス吹き込みのいずれもまだ開始していない。次いで、図2(C)(D)に示すように、電極加熱とガス吹き込みを開始し、溶鋼表面において媒溶剤の移動がはじまる。
本発明では前述のように、副原料投入口10から溶鋼表面に投入した媒溶剤(投入直後の媒溶剤20)を、ガス吹き込み用Bプラグ2Bからのガス吹き込みに起因する表面溶鋼流に乗せて高温の電極付近に搬送する。Bプラグ2Bからのガス吹き込み量QBを0.3NL/min/t以上とすることにより、投入した媒溶剤を有効かつ迅速に高温の電極近傍に搬送することができる。一方、Bプラグからのガス吹き込み量QBが多すぎると、溶鋼表面における気泡破裂の強度が強くなり、媒溶剤を飛散させてロスさせる場合がある。そのため、Bプラグからのガス吹き込み量QBを4.2NL/min/t以下とする。即ち、下記(8)式
0.3≦QB≦4.2 (8)
を満足するものとする。
<< Amount of gas blown from the gas blowing plug >>
FIGS. 2 (A) and 2 (B) show the positions of the medium solvent 20 immediately after the medium solvent is charged from the auxiliary raw material charging port 10. In the figure, neither electrode heating nor gas blowing has started yet. Then, as shown in FIGS. 2C and 2D, electrode heating and gas blowing are started, and the transfer of the medium solvent on the surface of the molten steel begins.
In the present invention, as described above, the medium solvent (medium solvent 20 immediately after charging) charged onto the surface of the molten steel from the auxiliary material charging port 10 is placed on the surface molten steel flow caused by the gas blowing from the gas blowing B plug 2B. Transport near high temperature electrodes. By setting the gas blowing amount QB from the B plug 2B to 0.3 NL / min / t or more, the charged medium solvent can be effectively and quickly transported to the vicinity of the high temperature electrode. On the other hand, if the amount of gas blown from the B plug QB is too large, the strength of bubble burst on the surface of the molten steel becomes strong, and the medium solvent may be scattered and lost. Therefore, the amount of gas blown from the B plug QB is set to 4.2 NL / min / t or less. That is, the following equation (8) 0.3 ≤ Q B ≤ 4.2 (8)
Satisfy.

ガス吹き込み用Bプラグによる溶鋼流で搬送される媒溶剤は、ガス吹き込み用Aプラグ2Aからのガス吹き込みに起因する溶鋼表面の溶鋼流によって電極近傍にせき止める必要がある。そのため、Aプラグ2Aからのガス吹き込み量QAについては0.1NL/min/t以上とし、下記(9)式
0.1≦QA (9)
を満たすものとする。QAが0.1NL/min/t未満であると、媒溶剤を電極近傍に滞留させることができない(図3(D)参照)。
The medium solvent conveyed by the molten steel flow by the gas blowing B plug needs to be dammed near the electrode by the molten steel flow on the molten steel surface caused by the gas blowing from the gas blowing A plug 2A. Therefore, the amount of gas blown from the A plug 2A Q A should be 0.1 NL / min / t or more, and the following equation (9) 0.1 ≤ Q A (9).
Satisfy. If Q A is less than 0.1 NL / min / t, the medium solvent cannot be retained in the vicinity of the electrode (see FIG. 3 (D)).

一方、Bプラグからのガス吹き込み量QBに比較してAプラグからのガス吹き込み量QAが多すぎると、副原料投入口10から投入した媒溶剤は、高温の電極近傍に到達できず、Bプラグ位置近傍に滞留してしまう(図3(E)参照)。本発明では、QB/QAの比率を1.5以上とすることにより、投入した媒溶剤を高温の電極近傍に搬送することができる。即ち、
B/QA≧1.5 (10)
を満たすものとする。
On the other hand, if the gas blown amount QA from the A plug is too large as compared with the gas blown amount QB from the B plug, the medium solvent charged from the auxiliary raw material charging port 10 cannot reach the vicinity of the high temperature electrode. It stays near the B plug position (see FIG. 3 (E)). In the present invention, by setting the Q B / Q A ratio to 1.5 or more, the charged medium solvent can be conveyed in the vicinity of the high temperature electrode. That is,
Q B / Q A ≧ 1.5 (10)
Satisfy.

《媒溶剤の好適な添加時期》
取鍋溶鋼に投入した媒溶剤を迅速に溶融させ、溶融フラックスと溶鋼との低酸素化反応を促進するためには、できるだけ通電開始直後に媒溶剤添加が完了していると好ましい。媒溶剤添加後の通電時間を確保できるからである。そのため、通電前と通電中にCaOを添加することとすると好ましい。
<< Suitable timing for adding medium solvent >>
In order to quickly melt the medium solvent charged in the ladle molten steel and promote the hypoxic reaction between the molten flux and the molten steel, it is preferable that the addition of the medium solvent is completed immediately after the start of energization as much as possible. This is because the energization time after the addition of the medium and solvent can be secured. Therefore, it is preferable to add CaO before and during energization.

より一層迅速に媒溶剤を溶融して溶融フラックスを形成するためには、通電前に媒溶剤の添加が完了していることが有効である。 In order to melt the medium solvent more quickly to form a molten flux, it is effective that the addition of the medium solvent is completed before energization.

以下、本発明の取鍋精錬による溶鋼の脱酸方法の有効性について検証した結果を示す。
80~90トンの溶鋼を収容する取鍋において、通電加熱を伴う溶鋼の取鍋精錬を行った。取鍋1内における溶鋼5の表面にCaOを含むフラックス層6を形成し、取鍋中央部に3本の電極3をフラックス層6に浸漬させて通電することにより、溶鋼の高清浄化処理を行う。電極の外接円4の中心位置(CE)と取鍋底面の中心位置(CO)が一致している。溶鋼浴深Hは約2.3m(0.21H=0.48m)、副原料投入口の開口部の円相当直径Dは0.35m、電極の外接円4の最小半径rは0.6mである。取鍋底部には、ガス吹き込み用プラグ2として、ガス吹き込み用Aプラグ2A、ガス吹き込み用Bプラグ2Bを配置し、Aプラグ2Aからガス吹き込み量QA、Bプラグ2Bからガス吹き込み量QBでアルゴンガスを吹き込む。CA-CO-CBがなす角度θ(∠AOB)、COとCB間の距離LOBと外接円半径rとの比(LOB/r)、COとCB間の距離LOB、COとCA間の距離LOA(いずれもRとの関係)を表1に示す。また、ガス吹き込み量QA、QBを表1に示す。η(∠GOB)はいずれも90°以下である。
The following shows the results of verifying the effectiveness of the method for deoxidizing molten steel by ladle refining of the present invention.
In a ladle accommodating 80 to 90 tons of molten steel, ladle refining of molten steel accompanied by energization heating was performed. A flux layer 6 containing CaO is formed on the surface of the molten steel 5 in the ladle 1, and three electrodes 3 are immersed in the flux layer 6 in the center of the ladle to energize the ladle to perform high cleaning treatment of the molten steel. .. The center position ( CE ) of the circumscribed circle 4 of the electrode coincides with the center position ( CO ) of the bottom surface of the pan. The molten steel bath depth H is about 2.3 m (0.21 H = 0.48 m), the circle-equivalent diameter D of the opening of the auxiliary material input port is 0.35 m, and the minimum radius r of the circumscribed circle 4 of the electrode is 0.6 m. be. As the gas blowing plug 2, the gas blowing A plug 2A and the gas blowing B plug 2B are arranged at the bottom of the ladle, and the gas blowing amount QA from the A plug 2A and the gas blowing amount QB from the B plug 2B. Blow in argon gas. Angle θ (∠AOB) formed by CA- CO -CB, distance between CO and C B Ratio of L OB to circumscribed circle radius r ( LO B / r), distance between C O and C B Table 1 shows the distance L OA (relationship with R ) between L OB , CO and CA. Table 1 shows the gas injection amounts Q A and Q B. All η (∠GOB) are 90 ° or less.

媒溶剤は、容器蓋13に設けられた副原料投入口10から添加する。CG-CB-COがなす角度φ(∠GBO)、取鍋中心位置COとBプラグ中心位置CBを結ぶ線分と、副原料投入口の中心位置CGとの間の距離Lと0.21H(=0.48m)との関係(0.21H-L)、CGとCE間の距離LGEと電極外接円半径rとの比(LGE/r)を表1に示す。 The medium solvent is added from the auxiliary raw material input port 10 provided in the container lid 13. Angle φ (∠GBO) formed by C G -C B -C O , distance between the line segment connecting the center position C O of the pan and the center position C B of the B plug and the center position C G of the auxiliary material input port. Table 1 shows the relationship between L and 0.21H (= 0.48m) (0.21H-L), the distance between C G and CE , and the ratio of L GE to the radius of the circumscribed circle of the electrode (L GE / r). Shown in.

表1に示すように、LGE/r=1.1~1.8であって(3)式を満たしており、副原料投入口10は電極外接円4の外側としている。また、角度φ(∠GBO)は0°、45°、60°のいずれかである。また、距離Lは0m、0.48m(=0.21×H)、0.74m(=0.32×H)であり、表1の「0.21H-L」表示ではそれぞれ0.48m、0m、-0.25mである。φ=45°ならびにL=0.21×H(表中では0)の条件は、本発明の範囲では、投入した媒溶剤が最も電極近傍へ流れにくい条件である。 As shown in Table 1, LGE / r = 1.1 to 1.8 and satisfy the equation (3), and the auxiliary raw material input port 10 is outside the electrode circumscribed circle 4. The angle φ (∠GBO) is any of 0 °, 45 °, and 60 °. Further, the distances L are 0 m, 0.48 m (= 0.21 × H), 0.74 m (= 0.32 × H), and 0.48 m and 0.48 m in the “0.21 H−L” display in Table 1, respectively. It is 0 m and -0.25 m. The conditions of φ = 45 ° and L = 0.21 × H (0 in the table) are conditions in which the charged solvent is most difficult to flow near the electrode within the scope of the present invention.

転炉で脱炭処理を行った80~90tの溶鋼を取鍋1内に出鋼した。この時、CaO、SiO2、Al23、FeOなどからなる転炉スラグが約1t流出した。出鋼中に脱酸元素であるAlを添加した。その後、取鍋1ごと通電加熱処理を行う処理位置に移送した。通電加熱開始時における溶鋼中のAl濃度は0.01~0.10%、O濃度(全酸素濃度)は0.0045~0.0050%である。処理位置への移送後、容器蓋を取り付け、通電用の電極3(3本)を溶鋼表面上の転炉流出スラグ層中に下降した。 80 to 90 tons of molten steel that had been decarburized in a converter was taken out into the pan 1. At this time, about 1 ton of converter slag composed of CaO, SiO 2 , Al 2 O 3 , FeO and the like flowed out. Al, which is a deoxidizing element, was added to the steel withdrawal. After that, the ladle 1 was transferred to a processing position where energization heat treatment was performed. The Al concentration in the molten steel at the start of energization heating is 0.01 to 0.10%, and the O concentration (total oxygen concentration) is 0.0045 to 0.0050%. After the transfer to the processing position, the container lid was attached, and the electrodes 3 (three) for energization were lowered into the converter outflow slag layer on the surface of the molten steel.

その後、取鍋底部の2本のガス吹き込み用プラグ2からガスを導入して攪拌しながら、通電による加熱処理を開始した。媒溶剤の添加時期は、取鍋が処理位置到着の後、通電開始までの通電前および/または通電中である。通電中とは、通電開始から終了までの期間のうち前半である。さらに比較として通電を行わなかった場合や、媒溶剤を添加しなかった場合も行った。 After that, gas was introduced from the two gas blowing plugs 2 at the bottom of the ladle, and the heat treatment by energization was started while stirring. The time for adding the medium solvent is after the ladle arrives at the processing position, before energization until the start of energization, and / or during energization. Energizing is the first half of the period from the start to the end of energization. Further, as a comparison, it was also performed when no energization was performed or when no medium solvent was added.

媒溶剤の添加量は溶鋼1tあたり5kg(5kg/t)、媒溶剤の組成はCaO純分が90%であり、残りは不可避的に混入する不純物である。媒溶剤の粒度は、粒径5mm~50mmの比率が95質量%以上となる粒度とした。また、通電前と通電中に分けて添加した条件では、添加量はそれぞれ通電前:4kg/tと通電中:1kg/tである。 The amount of the medium solvent added is 5 kg (5 kg / t) per 1 ton of molten steel, the composition of the medium solvent is 90% pure CaO, and the rest are impurities that are inevitably mixed. The particle size of the medium solvent was such that the ratio of the particle size of 5 mm to 50 mm was 95% by mass or more. Further, under the condition that the addition was performed separately before energization and during energization, the addition amounts were 4 kg / t before energization and 1 kg / t during energization, respectively.

通電時間およびガス吹き込み用プラグを通じたガス攪拌時間は15分間である。 The energizing time and the gas stirring time through the gas blowing plug are 15 minutes.

通電前後で溶鋼のサンプル採取を行い、通電攪拌後の溶鋼中O濃度(全酸素濃度)を評価した。かかる評価は、比較例12の通電後の溶鋼の全酸素濃度(質量%)を1.0とし、その他の条件を指数化した。指数が、
0.96以上の場合は×、
0.84以上0.96未満の場合は△、
0.72以上0.84未満の場合は○、
0.72未満の場合は◎、と評価した。
Samples of molten steel were taken before and after energization, and the O concentration (total oxygen concentration) in the molten steel after energization stirring was evaluated. In this evaluation, the total oxygen concentration (mass%) of the molten steel after energization in Comparative Example 12 was set to 1.0, and other conditions were indexed. The index is
If it is 0.96 or more, ×,
If it is 0.84 or more and less than 0.96, △,
If it is 0.72 or more and less than 0.84, ○,
If it was less than 0.72, it was evaluated as ◎.

Figure 0007067279000001
Figure 0007067279000001

得られた結果を表1に示す。なお、表中の下線を引いたパラメータが本発明の範囲から外れていることを示す。 The results obtained are shown in Table 1. It should be noted that the underlined parameters in the table indicate that they are out of the scope of the present invention.

表1に示すように、試験条件が本発明の範囲内であれば、実施例1~9のO濃度評価は△、○、◎であった。特に、請求項2で規定したように、媒溶剤の添加時期が通電前と通電中である試験No.8のO濃度評価は○であり、試験No.1~7よりもO濃度は低くなった。さらに、請求項3で規定したように、媒溶剤の添加時期が通電前である試験No.9のO濃度評価は◎であり、試験No.1~8よりもO濃度は低くなった。 As shown in Table 1, if the test conditions were within the range of the present invention, the O concentration evaluations of Examples 1 to 9 were Δ, ◯, and ⊚. In particular, as specified in claim 2, the test No. 1 in which the medium solvent is added before and during energization. The O concentration evaluation of No. 8 was ◯, and the test No. 8 was evaluated. The O concentration was lower than 1-7. Further, as specified in claim 3, the test No. 1 in which the addition time of the medium solvent is before energization. The O concentration evaluation of 9 was ◎, and the test No. The O concentration was lower than 1-8.

一方、試験条件が本発明の範囲から外れた試験No.10~19のO濃度評価は×であった。以下はそれぞれの条件におけるO濃度が高かった理由である。
試験No.10は媒溶剤を添加しなかったためスラグ中のAl23濃度が薄まらなかった。
On the other hand, the test No. 1 whose test conditions are outside the scope of the present invention. The O concentration evaluation of 10 to 19 was x. The following are the reasons why the O concentration was high under each condition.
Test No. In No. 10, the Al 2 O 3 concentration in the slag did not dilute because no medium solvent was added.

試験No.11はθ(∠AOB)が90°であったため、Aプラグからの吹き込みによる溶鋼流で媒溶剤の流れをせき止めることができず、媒溶剤の溶融が進まない段階で電極近傍を超えた側の取鍋壁面まで、広がり後の媒溶剤21を搬送した(図3(B)参照)。
試験No.12はBプラグと取鍋壁面との距離が近すぎたため、気泡の流れが不安定となり、媒溶剤の搬送に乱れが生じた。試験No.13はAプラグと取鍋壁面の距離が近すぎたため、気泡の流れが不安定となり、Bプラグから電極へと向かう流れをせき止める効果が安定しなかった(図3(C)参照)。
試験No.14、15は副原料投入口の配置位置が、Bプラグ配置位置との関係で適正範囲から外れ、電極へ向かう溶鋼流が比較的強い領域に媒溶剤を投入することができなかった(図3(A)参照)。
Test No. In No. 11, since θ (∠AOB) was 90 °, the flow of the medium solvent could not be stopped by the molten steel flow due to the blowing from the A plug, and the side beyond the vicinity of the electrode at the stage where the medium solvent did not melt. The spread medium solvent 21 was conveyed to the wall surface of the ladle (see FIG. 3B).
Test No. In No. 12, the distance between the B plug and the wall surface of the ladle was too close, so that the flow of air bubbles became unstable and the transport of the medium solvent was disturbed. Test No. In No. 13, the distance between the A plug and the wall surface of the ladle was too close, so that the flow of air bubbles became unstable, and the effect of blocking the flow from the B plug to the electrode was not stable (see FIG. 3 (C)).
Test No. In 14 and 15, the arrangement position of the auxiliary raw material input port was out of the appropriate range in relation to the B plug arrangement position, and the medium solvent could not be charged into the region where the molten steel flow toward the electrode was relatively strong (FIG. 3). (A)).

試験No.16はBプラグからの流量が小さすぎたため、媒溶剤を搬送する溶鋼流が形成できなかった。試験No.17はAプラグからの流量が小さすぎたため、Bプラグから電極へと向かう流れで搬送される媒溶剤の溶融が進む前に、媒溶剤が電極近傍を通過する傾向が見られた(図3(D)参照)。
試験No.18はQB/QA=1であって適正範囲を外れ、BプラグとAプラグの流量が均衡しており、広がり後の媒溶剤21がBプラグの近傍に滞留してしまった(図3(E)参照)。
Test No. In No. 16, the flow rate from the B plug was too small, so that the molten steel flow for transporting the medium solvent could not be formed. Test No. In No. 17, since the flow rate from the A plug was too small, the medium solvent tended to pass in the vicinity of the electrode before the medium solvent conveyed by the flow from the B plug to the electrode proceeded to melt (FIG. 3 (FIG. 3). D) See).
Test No. In No. 18, Q B / Q A = 1, which was out of the appropriate range, the flow rates of the B plug and the A plug were in equilibrium, and the spread medium solvent 21 stayed in the vicinity of the B plug (FIG. 3). See (E)).

試験No.19は通電しない場合である。溶鋼流は適正に生成しているが、媒溶剤の溶融が進んでおらず、取鍋内の溶鋼面上での搬送が不十分であったものと推定される。 Test No. 19 is a case where the power is not supplied. It is highly probable that the molten steel flow was properly generated, but the solvent was not melted and the transport on the molten steel surface in the ladle was insufficient.

1 取鍋
2 ガス吹き込み用プラグ(プラグ)
2A ガス吹き込み用Aプラグ
2B ガス吹き込み用Bプラグ
3 電極
4 電極の外接円
5 溶鋼
6 フラックス層
7 気泡
8 上昇流
10 副原料投入口
11 溶鋼表面
12 取鍋壁面
13 容器蓋
15 副原料投入口の好適配置範囲
16 ガス吹き込み用Aプラグの好適配置範囲
20 投入直後の媒溶剤
21 広がり後の媒溶剤
22 気泡上昇領域
r 電極の外接円の最小半径
R 取鍋底面の半径
H 取鍋内溶鋼浴深
E 電極の外接円の中心位置
O 取鍋底面の中心位置
A ガス吹き込み用Aプラグの中心位置
B ガス吹き込み用Bプラグの中心位置
G 副原料投入口の中心位置
θ CA-CO-CBがなす角度(∠AOB)
φ CG-CB-COがなす角度(∠GBO)
OAOとCA間の距離
OBOとCB間の距離
BGBとCG間の距離
GEGとCE間の距離
1 Ladle 2 Gas blowing plug (plug)
2A Gas blowing A plug 2B Gas blowing B plug 3 Electrode 4 Electrode circumscribed circle 5 Molten steel 6 Flux layer 7 Bubbles 8 Upflow 10 Auxiliary material input port 11 Molten steel surface 12 Intake pot wall surface 13 Container lid 15 Auxiliary material input port Suitable placement range 16 Suitable placement range of A plug for gas injection 20 Medium solvent immediately after injection 21 Medium solvent after spreading 22 Bubble rising region r Minimum radius of circumscribed circle of electrode R Radius of bottom surface of pan H Depth of molten steel in pan C E Center position of the circumscribed circle of the electrode C O Center position of the bottom of the pan C A Center position of the A plug for gas blowing C B Center position of the B plug for gas blowing C G Center position of the auxiliary material input port θ CA- Angle formed by CO - CB ( ∠AOB )
Angle formed by φ C G -C B -CO ( ∠GBO )
Distance between L OA C O and C A Distance between L O B C O and C B Distance between L B G C B and C G Distance between L G E C G and C E

Claims (3)

取鍋内に収容された溶鋼に対して、副原料投入口からCaOを含む媒溶剤を添加して取鍋内溶鋼表面にフラックス層を形成し、取鍋中央部に2本又は3本の電極を前記フラックス層に浸漬させて通電する溶鋼の取鍋精錬方法において、
前記取鍋の底部にガス吹き込み用プラグを2カ所に配置し、それぞれガス吹き込み用Aプラグ、ガス吹き込み用Bプラグとし、ガス吹き込み用プラグそれぞれから吹き込まれるガスの流量をそれぞれ、QA、QB(いずれも単位はNL/min/t)とし、
平面視において、前記2本又は3本の電極すべての外周に外接する円であって最小半径rを持つ円を「電極の外接円」とし、電極の外接円の中心位置をCEとし、
取鍋底面の半径をR、取鍋底面の中心位置をCOとし、
ガス吹き込み用Aプラグの中心位置をCA、ガス吹き込み用Bプラグの中心位置をCB、副原料投入口の中心位置をCGとし、
OとCA間の距離をLOA、COとCB間の距離を OB とし、CA-CO-CBがなす角度をθ、CG-CB-COがなす角度をφ、CG-CO-CBがなす角度(∠GOB)をηとし、
取鍋内溶鋼浴深をH、CGとCE間の距離をLGE、COとCBを結ぶ線分とCGとの間の距離をLとして、
ガス吹き込み用Aプラグとガス吹き込み用Bプラグ、副原料投入口が下記(1)~(7)式を満足する位置に配置され、
A、QBが以下に示す(8)~(10)式を満たすことを特徴とする、溶鋼の取鍋精錬方法。
0.21H≧L (1)
45°≧φ (2)
GE>r (3)
90°≧η (4)
0.9R≧LOB>r (5)
180°≧θ≧120° (6)
0.9R≧LOA (ただし、L OA が0である場合を除く) (7)
0.3≦QB≦4.2 (8)
0.1≦QA (9)
B/QA≧1.5 (10)
A flux layer is formed on the surface of the molten steel in the ladle by adding a medium solvent containing CaO to the molten steel contained in the ladle from the auxiliary raw material inlet, and two or three electrodes are provided in the center of the ladle. In the ladle refining method for molten steel, which is energized by immersing it in the flux layer.
Gas blowing plugs are arranged at two locations on the bottom of the ladle to form a gas blowing A plug and a gas blowing B plug, respectively, and the flow rates of the gas blown from each of the gas blowing plugs are QA and QB, respectively. (In each case, the unit is NL / min / t).
In plan view, the circle circumscribed around the outer circumferences of all the two or three electrodes and having the minimum radius r is defined as the "circumscribed circle of the electrodes ", and the center position of the circumscribed circle of the electrodes is defined as C E.
The radius of the bottom of the pan is R , and the center position of the bottom of the pan is CO.
The center position of the gas blowing A plug is CA, the center position of the gas blowing B plug is C B , and the center position of the auxiliary material input port is C G.
The distance between C O and CA is L O A , the distance between C O and C B is L O B, the angle formed by CA- CO -C B is θ, and the angle formed by C G -C B - CO is the angle formed by C G-C B-CO. Let φ, and let η be the angle ( ∠GOB ) formed by C G -CO-CB.
Let H be the depth of the molten steel bath in the ladle, L GE be the distance between C G and C E , and L be the distance between the line segment connecting C O and C B and C G.
The gas blowing A plug, gas blowing B plug, and auxiliary raw material input port are arranged at positions that satisfy the following formulas (1) to (7).
A method for refining a ladle of molten steel, wherein Q A and Q B satisfy the following equations (8) to (10).
0.21H ≧ L (1)
45 ° ≧ φ (2)
L GE > r (3)
90 ° ≧ η (4)
0.9R ≧ L OB > r (5)
180 ° ≧ θ ≧ 120 ° (6)
0.9R ≧ L OA (except when L OA is 0) (7)
0.3 ≤ Q B ≤ 4.2 (8)
0.1 ≤ Q A (9)
Q B / Q A ≧ 1.5 (10)
前記媒溶剤を前記副原料投入口から添加する時期が、通電前ならびに通電中であることを特徴とする、請求項1に記載の溶鋼の取鍋精錬方法。 The ladle refining method for molten steel according to claim 1, wherein the medium solvent is added from the auxiliary raw material input port before and during energization. 前記媒溶剤を前記副原料投入口から添加する時期が、通電前であることを特徴とする、請求項1に記載の溶鋼の取鍋精錬方法。 The ladle refining method for molten steel according to claim 1, wherein the medium solvent is added from the auxiliary raw material input port before energization.
JP2018106649A 2018-06-04 2018-06-04 Ladle refining method for molten steel Active JP7067279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018106649A JP7067279B2 (en) 2018-06-04 2018-06-04 Ladle refining method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106649A JP7067279B2 (en) 2018-06-04 2018-06-04 Ladle refining method for molten steel

Publications (2)

Publication Number Publication Date
JP2019210503A JP2019210503A (en) 2019-12-12
JP7067279B2 true JP7067279B2 (en) 2022-05-16

Family

ID=68846457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106649A Active JP7067279B2 (en) 2018-06-04 2018-06-04 Ladle refining method for molten steel

Country Status (1)

Country Link
JP (1) JP7067279B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040411A (en) 1999-07-30 2001-02-13 Kawasaki Steel Corp Ladle for refining molten steel
JP2011214083A (en) 2010-03-31 2011-10-27 Kobe Steel Ltd Refining method in ladle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121611A (en) * 1986-11-08 1988-05-25 Nippon Steel Corp Method and device for stirring molten metal bath for electric arc furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040411A (en) 1999-07-30 2001-02-13 Kawasaki Steel Corp Ladle for refining molten steel
JP2011214083A (en) 2010-03-31 2011-10-27 Kobe Steel Ltd Refining method in ladle

Also Published As

Publication number Publication date
JP2019210503A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP4742740B2 (en) Method for melting low-sulfur steel
JP6028755B2 (en) Method for melting low-sulfur steel
JP5904237B2 (en) Melting method of high nitrogen steel
JP2018184645A (en) Slag outflow prevention apparatus
JP7067280B2 (en) Ladle refining method for molten steel
JP5014876B2 (en) Secondary refining method of low-sulfur steel to suppress sulfurization phenomenon in vacuum degassing process
JP7067279B2 (en) Ladle refining method for molten steel
TWI685577B (en) Smelting method of high manganese steel
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP2010116610A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP2011084811A (en) Method for producing molten pig iron
JP4360270B2 (en) Method for refining molten steel
JP6323688B2 (en) Desulfurization method for molten steel
JP7139878B2 (en) Ladle refining method for molten steel
JP6806288B2 (en) Steel manufacturing method
JP7047606B2 (en) Ladle refining method for molten steel
JP7047605B2 (en) Ladle refining method for molten steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP6414098B2 (en) Melting method of high Si high Al ultra-low carbon steel
JP7139877B2 (en) Ladle refining method for molten steel
JP7139879B2 (en) Ladle refining method for molten steel
JP5574468B2 (en) Cast iron refining method and refining apparatus
JPH01100216A (en) Ladle refining method for molten steel
JP3465801B2 (en) Method for refining molten Fe-Ni alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151