JPH05263122A - Treatment of molten steel in rh degassing vessel - Google Patents

Treatment of molten steel in rh degassing vessel

Info

Publication number
JPH05263122A
JPH05263122A JP6387892A JP6387892A JPH05263122A JP H05263122 A JPH05263122 A JP H05263122A JP 6387892 A JP6387892 A JP 6387892A JP 6387892 A JP6387892 A JP 6387892A JP H05263122 A JPH05263122 A JP H05263122A
Authority
JP
Japan
Prior art keywords
molten steel
degassing
gas
tuyere
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6387892A
Other languages
Japanese (ja)
Inventor
Shohei Korogi
昌平 興梠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6387892A priority Critical patent/JPH05263122A/en
Publication of JPH05263122A publication Critical patent/JPH05263122A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To enable degassing-refining of molten steel to extremely low hydrogen concn. range by arranging a tuyere at the bottom part of a vacuum vessel in a degassing apparatus and blowing gas in a specific condition at the time of degassing- refining the molten steel in the RH type degassing apparatus. CONSTITUTION:Both immersing tubes 16 in the vacuum degassing apparatus 14 are dipped into the molten steel 12 in a ladle 10, and the molten steel 12 is circulated into the vacuum vessel 18 through this immersion tubes 16 to execute the degassing- refining of C and H2. In this case, the tuyere is arranged by approaching to the opening part of the immersion tube 16 at the bottom part of the vacuum vessel 18 and the gas is blown to promote the degassing. In the case the pressure P in the vacuum vessel 18 is <=P<=50Torr, the degassing treatment is executed in the condition of satisfying the equation I and the inequalities II, III and becoming >=30Nm<3>/sec gas adding quantity QN per one ton of the molten steel. In the case of P>50Torr, the degassing treatment is executed in the condition of the equation I and the inequality II at P=50Torr and reducing QN, and after reaching to O<=P<=50Torr, the degassing treatment is executed in the condition of increasing QN, e.g. >=30Nm<3>/sec gas adding ing quantity per one ton of the molten steel in the degassing apparatus in the range of satisfying the equation and the inequalities I, II, III.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、RH脱ガス処理装置に
より脱炭、脱水素等の脱ガスを効率良く実施するための
溶鋼処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten steel treatment method for efficiently performing degassing such as decarburization and dehydrogenation by an RH degassing treatment device.

【0002】[0002]

【従来の技術】製鋼炉 (転炉、電気炉等) にて生産され
る粗溶鋼は、目的とする組成・清浄度に応じて二次精錬
工程 (RH、DH、VOD 等) にて脱ガス (脱炭、脱水素) 処
理を行う。特に、最近では鋼材に対する要求特性が厳し
くなり、一層高度な脱ガス処理が求められている。とこ
ろが、[C] =20〜50ppm 、[H] =1〜2ppm より濃度が
低い領域では、脱ガス速度が急速に低下し、所定の時間
内に高純度の溶鋼が得られないという問題があった。
2. Description of the Related Art Crude molten steel produced in a steelmaking furnace (converter, electric furnace, etc.) is degassed in a secondary refining process (RH, DH, VOD, etc.) according to the intended composition and cleanliness. (Decarburization, dehydrogenation) Treatment is performed. In particular, recently, the required properties for steel materials have become strict, and more advanced degassing treatment is required. However, in the region where the concentration is lower than [C] = 20 to 50 ppm and [H] = 1 to 2 ppm, there is a problem that the degassing rate rapidly decreases and high-purity molten steel cannot be obtained within a predetermined time. It was

【0003】この問題点を解決するため、RH脱ガス装
置では、その真空槽内に羽口を設置して羽口より不活性
気体を溶鋼中に吹き込むことにより、低濃度領域の脱ガ
ス速度を向上させる方法が試みられている。しかしなが
ら、羽口の設計を含む操業基準は必ずしも明確ではな
く、実際に、羽口を設けて操業を行うと羽口から吹き込
んだ気体の吹き抜けによる真空槽内での地金付着が問題
となっている。
In order to solve this problem, in the RH degasser, a tuyere is installed in the vacuum chamber, and an inert gas is blown into the molten steel through the tuyere to reduce the degassing rate in the low concentration region. Ways to improve are being tried. However, the operating standard including the design of the tuyere is not always clear, and in fact, when the tuyere is installed and operated, the adhesion of metal in the vacuum tank due to the blow-through of the gas blown from the tuyere becomes a problem. There is.

【0004】また、気体を大量に真空槽内に導入するこ
とは、真空排気系の負荷を増大させ、高真空への到達時
間ならびに到達真空度を悪化させるものであり、さらに
気体吹込みによって必ずしも充分な脱ガス効果が得られ
るわけではなかった。
Introducing a large amount of gas into the vacuum chamber increases the load on the vacuum exhaust system and deteriorates the time to reach high vacuum and the degree of vacuum reached. It was not possible to obtain a sufficient degassing effect.

【0005】[0005]

【発明が解決しようとする課題】ここに、本発明の目的
は、極低濃度域でも安定して脱ガス効果の向上を図るこ
とのできる操業法、すなわちRH脱ガス槽における溶鋼
処理方法を確立することである。
The object of the present invention is to establish an operation method capable of stably improving the degassing effect even in an extremely low concentration range, that is, a method for treating molten steel in an RH degassing tank. It is to be.

【0006】[0006]

【課題を解決するための手段】本発明者らはRH脱ガス
装置の真空槽槽底に設置する羽口個数、羽口径ならびに
吹き込み気体流量の間に一定の相関がみられ、それを適
正化し、真空槽内の真空度に応じて吹き込み気体流量を
変化させることで上述の目的が達成されることを知り、
本発明を完成した。
The present inventors have found that there is a certain correlation between the number of tuyere, the tuyere diameter, and the flow rate of gas blown into the vacuum tank of the RH degassing apparatus. , Knowing that the above-mentioned object can be achieved by changing the flow rate of the blown gas according to the degree of vacuum in the vacuum chamber,
The present invention has been completed.

【0007】本発明の要旨とするところは、RH脱ガス
装置の真空槽の槽底に設けた羽口より気体を吹き込んで
脱ガスを行う溶鋼処理方法において、真空槽内圧力P
が、0≦P≦50(Torr)の場合:
The gist of the present invention is to provide a molten steel treatment method in which a gas is blown from a tuyere provided at the bottom of a vacuum tank of an RH degassing apparatus to degas, and the pressure in the vacuum tank is set to P.
Is 0 ≦ P ≦ 50 (Torr):

【0008】[0008]

【数2】 [Equation 2]

【0009】ただし、P : 真空槽内圧力 (Torr) h : 真空槽浴深さ(cm) h1 : 取鍋湯面〜真空槽底距離 (cm) ρl: 溶鋼密度 (g/cm3) ρg: ガス密度 (g/cm3) g : 重力の加速度 (cm/sec2) x : 羽口径 (cm) QN : 真空槽に吹き込むガス総量 (Ncm3/sec) N : 羽口個数 上記(1) 〜(3) 式を満たし、かつ該RH脱ガス装置での
処理溶鋼1ton 当たりの気体添加量が30Ncm3/sec・ton
以上となる条件下で脱ガス処理を行い、 真空槽内圧力P>50Torrの場合:P=50Torrにおける上
記(1) 、(2) 式の条件を満足させながら、QN を減少さ
せ、0≦P≦50(Torr)到達後、上記(1) 〜(3) 式を満た
す範囲で漸次QN を増加させ、該RH脱ガス装置での処
理溶鋼1ton 当たりの気体添加量が30Ncm3/sec・ton 以
上となる条件下で脱ガス処理を行うことを特徴とするR
H脱ガス装置における溶鋼処理方法である。
However, P: pressure in the vacuum tank (Torr) h: bath depth of the vacuum tank (cm) h 1 : ladle level to vacuum tank bottom (cm) ρ l : molten steel density (g / cm 3 ) ρ g : Gas density (g / cm 3 ) g: Acceleration of gravity (cm / sec 2 ) x: Tuyere diameter (cm) Q N : Total amount of gas blown into the vacuum chamber (Ncm 3 / sec) N: Number of tuyere above Formulas (1) to (3) are satisfied, and the amount of gas added per ton of molten steel treated in the RH degasser is 30 Ncm 3 / sec · ton.
If degassing is performed under the above conditions and the pressure in the vacuum chamber is P> 50 Torr: Q N is reduced while satisfying the conditions of the above formulas (1) and (2) at P = 50 Torr, and 0 ≦ after P ≦ 50 (Torr) reaches above (1) to (3) increase progressively Q N in a range satisfying, gas addition amount of processing molten steel per 1ton in the RH degasser is 30Ncm 3 / sec · R characterized by performing degassing treatment under the condition of ton or more
It is a method for treating molten steel in an H 2 degasser.

【0010】[0010]

【作用】次に、本発明における脱ガス処理条件を上述の
ように限定した理由について添付図面を参照しながら詳
述する。図1は本発明において使用するRH脱ガス装置
の概略図であり、取鍋10に収容された溶鋼12は取鍋上方
に設置されたRH脱ガス装置14の二本の浸漬管16、16の
一方から吸引され、他方から戻され、RH脱ガス装置内
を循環するようになっている。RH脱ガス装置14内の気
圧はPであり、羽口は図示しないが、真空槽18の底部に
浸漬管16の開口部に近接して設けられている。その他、
循環用に浸漬管16それ自体にも羽口が設けられており、
これは慣用のものであって、その吹き込み気体量も本発
明にあっては特に制限はされない。ただし、気体吹き込
み総量といった場合には、そのような浸漬管に設けた羽
口からの供給気体の量をも合計したものであり、単に気
体吹込み量といった場合は真空槽底部に設けた羽口から
の吹込み量をいう。
Next, the reason for limiting the degassing conditions in the present invention as described above will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view of an RH degassing apparatus used in the present invention. Molten steel 12 contained in a ladle 10 is provided with two immersion pipes 16 and 16 of an RH degassing apparatus 14 installed above the ladle. It is sucked from one side, returned from the other side, and circulated in the RH degassing device. The air pressure inside the RH degasser 14 is P, and the tuyere is provided at the bottom of the vacuum chamber 18 in the vicinity of the opening of the dip tube 16, although not shown. Other,
Tubing is also provided on the dip tube 16 itself for circulation,
This is a conventional one, and the amount of blown gas is not particularly limited in the present invention. However, in the case of the total amount of gas blown, the amount of gas supplied from the tuyere provided in such a dip tube is also summed up, and in the case of just the amount of gas blown, the tuyere provided at the bottom of the vacuum chamber. It is the amount blown from.

【0011】なお、図中、h は真空槽18の浴深さを示
し、h1は取鍋湯面〜真空槽底距離を示す。 (1) 真空槽内の浴深さh:1気圧は水銀柱76cmに相当す
るので、鉄柱では
In the figure, h indicates the bath depth of the vacuum tank 18, and h 1 indicates the ladle level to the vacuum tank bottom. (1) Bath depth h in the vacuum chamber: 1 atm is equivalent to 76 cm of mercury, so with iron pillars

【0012】[0012]

【数3】 [Equation 3]

【0013】となる。このため、取鍋の溶鋼表面から真
空槽槽底までの距離をh1(cm) とすると、図1に示され
る関係より、鉄柱と大気圧との釣り合いを考慮すると、
次のように前述の式(1) が導かれる。
[0013] Therefore, assuming that the distance from the molten steel surface of the ladle to the vacuum tank bottom is h 1 (cm), considering the balance between the iron column and atmospheric pressure from the relationship shown in FIG. 1,
The above equation (1) is derived as follows.

【0014】[0014]

【数4】 [Equation 4]

【0015】(2) 羽口への溶鋼の侵入:気体吹き込みに
よる脱ガス処理期間中、羽口へは溶鋼は侵入してはなら
ず、そのための条件について流体力学的検討によれば、
次式が成立する。すなわち、溶鋼の動圧+溶鋼の静圧=
ガスの動圧+ガスの静圧(:一定) との条件より、
(2) Molten Steel Penetration into Tuyere: Molten steel must not penetrate into the tuyere during the degassing process by gas blowing, and according to the hydrodynamic examination of the conditions therefor,
The following equation holds. That is, dynamic pressure of molten steel + static pressure of molten steel =
From the conditions of dynamic pressure of gas + static pressure of gas (: constant),

【0016】[0016]

【数5】 [Equation 5]

【0017】ここで、P1 =羽口出口における溶鋼静圧
=ρl・g・h、 V1 =羽口出口における溶鋼の流速=0、 P2 =羽口出口におけるガスの静圧=0 であるから、上式からは、次式が導かれる。
Where P 1 = static pressure of molten steel at the tuyere outlet = ρ l · g · h, V 1 = flow velocity of molten steel at the tuyere outlet = 0, P 2 = static pressure of gas at the tuyere outlet = 0 Therefore, the following equation is derived from the above equation.

【0018】[0018]

【数6】 [Equation 6]

【0019】であるから、(6) 式を(5) 式に代入すると
次の式が得られる。
Therefore, by substituting the equation (6) into the equation (5), the following equation is obtained.

【0020】[0020]

【数7】 [Equation 7]

【0021】この式(2)'は溶鋼が羽口に侵入するときの
平衡条件であるから、溶鋼の侵入を阻止するには、羽口
出口で吹き込み気体側の圧力が勝ることが必要なので次
の式が導かれる。
Since this equation (2) 'is an equilibrium condition when molten steel enters the tuyere, in order to prevent the molten steel from entering, it is necessary that the pressure on the gas side blown at the tuyere outlet is superior. Is derived.

【0022】[0022]

【数8】 [Equation 8]

【0023】(3) 気体の吹き抜け:次に、吹き込み気体
は真空槽の深さが余り浅いといわゆる吹き抜けを生じて
しまい、槽内に地金の付着をもたらすなどの弊害が見ら
れる。そこで、気体吹き込み量と溶鋼浴の深さとを吹き
抜けを生じない条件とする必要がある。このときの最少
気体吹込み量を規定する関係式は文献「鉄と鋼」 68(19
82) p.1964において一部引用されているように公知であ
るが、これは転炉における底吹き羽口からの気体吹込み
に関するものであって、その文献の筆者自身が云うよう
に気体と鋼浴との反応、羽口相互の干渉等によって影響
され、計算通りの結果は得られないことが示唆されてい
る。しかし今回の本発明者らの実験結果によればRH脱ガ
ス装置のような真空槽ではそのような関係式がよく当て
はまることが判明した。
(3) Gas blow-through: Next, the blow-in gas causes so-called blow-through when the depth of the vacuum chamber is too shallow, and there is an adverse effect such as adhesion of metal in the chamber. Therefore, it is necessary to set the amount of gas blown in and the depth of the molten steel bath so that blow-through does not occur. The relational expression that defines the minimum gas injection amount at this time is described in the document “Iron and Steel” 68 (19)
82) It is known as partly cited in p.1964, but this relates to the gas injection from the bottom tuyere in the converter and, as the writer himself of the document says, gas. It is suggested that the calculated results cannot be obtained, as it is influenced by the reaction with the steel bath and the mutual interference of tuyere. However, according to the experimental results of the present inventors this time, it was found that such a relational expression is well applied in a vacuum chamber such as an RH degasser.

【0024】[0024]

【数9】 [Equation 9]

【0025】以上により、羽口への溶鋼侵入ならびに羽
口からの気体の吹き抜けが避けられる羽口条件である
(1) 式ないし(3) 式が得られた。さらに、一般のRH脱
ガス装置では溶鋼環流のため、浸漬管より気体吹き込み
を行っており、その量は100 〜150 Ncm3/sec・ton 程度
である。このため、追加して導入する気体量も、上記の
2〜3割を増す30Ncm3/sec・ton 以上とした。
As described above, the tuyere conditions are such that the molten steel does not enter the tuyere and the gas does not blow through the tuyere.
Equations (1) to (3) were obtained. Further, in a general RH degassing apparatus, gas is blown from a dipping pipe due to molten steel recirculation, and the amount thereof is about 100 to 150 Ncm 3 / sec · ton. Therefore, the amount of gas to be additionally introduced is set to 30 Ncm 3 / sec · ton or more, which is an increase of 20 to 30%.

【0026】なお、羽口の本数については、単管の場合
は1本、1個のブロックにN本の羽口を集合させた集合
羽口の場合はN本とカウントする。
The number of tuyere is counted as 1 in the case of a single tube and N in the case of a collective tuyere in which N tucks are gathered in one block.

【0027】また、より望ましくは、処理溶鋼1ton 当
たり、0.02本以上の羽口を設置する方が脱ガス促進には
適切である。なぜなら、分散した吹込み方が有利である
からである。ところで、RH脱ガス装置においては、真
空槽を減圧することによって、溶鋼を真空槽内に還流さ
せる。このため、真空度が著しく低い場合には、溶鋼は
真空槽内に到達しておらず、(3) 式に示す吹き抜け条件
を考慮することは意味がない。
Further, more desirably, it is more appropriate to install 0.02 or more tuyere per ton of treated molten steel for promoting degassing. This is because the dispersed blowing method is advantageous. By the way, in the RH degassing apparatus, the molten steel is refluxed into the vacuum chamber by depressurizing the vacuum chamber. Therefore, when the degree of vacuum is extremely low, the molten steel has not reached the inside of the vacuum chamber, and it is meaningless to consider the blow-through condition shown in equation (3).

【0028】さらに、760 →50Torrまで減圧する範囲で
は、脱ガス速度は高位にあるため、いたずらに、槽底よ
り気体を添加することは真空排気系の負荷を増大させる
だけであり、処理時間の短縮には寄与しない。このた
め、P>50Torrにおいては、(1) 、(2) 式を満たす範囲
でガス添加量QN を低位に保ち、0≦P≦50Torrにおい
て漸次QN を(1) 〜(3) 式に適合する範囲で処理溶鋼1
ton 当たりの気体添加量が、30Ncm3/sec・ton 以上とな
るように増加させることが望ましい。次に、実施例によ
って本発明をさらに具体的に説明するが、ここに示す実
施例は単に例として示すものであって、これによって本
発明が何ら制限されないことは理解されよう。
Further, in the range where the pressure is reduced from 760 to 50 Torr, the degassing rate is high. Therefore, adding gas from the bottom of the tank unnecessarily only increases the load of the vacuum exhaust system, which increases the processing time. Does not contribute to shortening. Therefore, when P> 50 Torr, the gas addition amount Q N is kept low within the range where the formulas (1) and (2) are satisfied, and when 0 ≦ P ≦ 50 Torr, the Q N is gradually changed to the formulas (1) to (3). Molten steel treated within the applicable range 1
It is desirable to increase the amount of gas added per ton to 30 Ncm 3 / sec · ton or more. Next, the present invention will be described in more detail by way of examples, but it should be understood that the examples shown here are merely examples, and the present invention is not limited thereto.

【0029】[0029]

【実施例】【Example】

(実施例1)処理溶鋼量=300ton、浸漬管径=75cm、還流
用Ar=110 Ncm3/sec・ton のRH脱ガス装置の真空槽底
に、羽口径=0.1 cm、本数16本の羽口を設置した。な
お、羽口は4本で1個のブロックを形成する集合羽口で
あった。本発明の実施例として、前述の(1) 〜(3) 式を
満足する条件下で、h1=115cm、ガス種はArを用い、初
期[C] =280 〜320ppm、初期aO =500 〜700ppmの溶鋼
を脱ガス処理した(N数=8ch)。
(Example 1) Treated molten steel amount = 300 tons, immersion pipe diameter = 75 cm, reflux Ar = 110 Ncm 3 / sec · ton RH degasser vacuum chamber bottom, tuyere diameter = 0.1 cm, 16 blades I installed my mouth. Note that the tuyere was a collective tuyere that formed one block with four tuyere. As an example of the present invention, h 1 = 115 cm, the gas species is Ar, and the initial [C] = 280-320 ppm, the initial a O = 500 under the conditions that satisfy the above formulas (1) to (3). Degassing treatment of ~ 700ppm molten steel (N number = 8ch).

【0030】一方、比較例としては、RH脱ガス装置の
槽底より気体を添加しない従来の処理方法で溶鋼を処理
した例を示した(N数=10ch) 。実施例、比較例とも、2.
7 −3.5 分に50Torrに到達した。実施例では50Torr到達
までのQN =12000 Ncm3/secとし、5≦P≦50Torrでは
N =20000 Ncm3/sec、P<5TorrにてQN =35000 Nc
m3/secまで増加させた。P=5Torr到達には5.0 〜6.0
分を要した。
On the other hand, as a comparative example, an example was shown in which molten steel was treated by the conventional treatment method in which no gas was added from the bottom of the RH degasser (N number = 10 ch). Examples and comparative examples, 2.
Reached 50 Torr in 7-3.5 minutes. In the embodiment, Q N = 12000 Ncm 3 / sec until reaching 50 Torr, Q N = 20000 Ncm 3 / sec when 5 ≦ P ≦ 50 Torr, Q N = 35000 Nc when P <5 Torr
Increased to m 3 / sec. 5.0 to 6.0 to reach P = 5 Torr
It took a minute.

【0031】なお、実施例、比較例とも浸漬管からの気
体吹込量は33000Ncm3/sec であった。(1) 式よりh1=11
5cm としてhとPの関係を表1に示す。
In each of the examples and comparative examples, the amount of gas blown from the dip tube was 33000 Ncm 3 / sec. From equation (1), h 1 = 11
Table 1 shows the relationship between h and P at 5 cm.

【0032】[0032]

【表1】 [Table 1]

【0033】ここで、羽口径0.1 cm、羽口数=16個 (実
施例の条件) として羽口への溶鋼の侵入が起こらない条
件を(2) 式により検討する。(2) 式中でx=0.1 cm、N
=16個とするとhとQN の臨界値が算出される。QN
対する臨界hを表2に示す。
Here, the condition under which the molten steel does not enter the tuyere will be examined by the formula (2) with the tuyere diameter of 0.1 cm and the number of tuyere = 16 (conditions of the embodiment). (2) In the formula, x = 0.1 cm, N
= 16, the critical values of h and Q N are calculated. The critical h for Q N is shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】さらに、吹き抜けの起こらない条件を(3)
式により検討する。(3) 式にx=0.1cm 、N=16個を代
入、QN に対する臨界hを求めると次の表3に示す通り
である。
Furthermore, the condition (3) which does not cause blow through
Consider by formula. Substituting x = 0.1 cm and N = 16 into the equation (3) and determining the critical h for Q N , the results are shown in Table 3 below.

【0036】[0036]

【表3】 [Table 3]

【0037】以上の(1) 〜(3) 式の内容をまとめてグラ
フに示すと、図2の通りである。
The contents of the above equations (1) to (3) are summarized in a graph as shown in FIG.

【0038】図2の結果からも分かるように、本発明に
よれば、羽口への侵入に関する前記(2) 式については、
充分余裕があった。一方、吹き抜けに関する(3) 式に対
しては5〜50Torrとも数cm差の余裕であった。以上のよ
うな条件で脱ガス処理を行ったところ、実施例、比較例
とも、2.7 −3.5 分に50Torrに到達した。
As can be seen from the results shown in FIG. 2, according to the present invention, the above equation (2) regarding the penetration into the tuyere is as follows.
I had enough time. On the other hand, there was a margin of difference of 5 cm to 5 to 50 Torr with respect to the equation (3) regarding blow-through. When the degassing process was performed under the above conditions, both Example and Comparative Example reached 50 Torr in 2.7 to 3.5 minutes.

【0039】実施例では50Torr到達までのQN =12000
Ncm3/secとし、5≦P≦50TorrではQN =20000 Ncm3/s
ec、P<5TorrにてQN =35000 Ncm3/secまで増加させ
た。P=5Torr到達には5.0 〜6.0 分を要した。なお、
実施例、比較例とも浸漬管からの気体吹込量は33000Ncm
3/sec であった。次に、処理開始後5分おきにサンプル
を採取し、[C] の推移を測定した。実施例、比較例の平
均値を表4に示す。
In the embodiment, Q N = 12000 until reaching 50 Torr.
Ncm 3 / sec, Q N = 20000 Ncm 3 / s when 5 ≦ P ≦ 50 Torr
It was increased to Q N = 35000 Ncm 3 / sec at ec and P <5 Torr. It took 5.0 to 6.0 minutes to reach P = 5 Torr. In addition,
The amount of gas blown from the dip tube was 33000 Ncm in both Examples and Comparative Examples.
It was 3 / sec. Next, a sample was taken every 5 minutes after the start of the treatment, and the transition of [C] was measured. Table 4 shows the average values of Examples and Comparative Examples.

【0040】[0040]

【表4】 [Table 4]

【0041】実施例では、同一[C] レベルに到達する時
間が[C] ≦15ppm にて5分以上短縮された。また、25分
における到達[C] は約5ppm 低くなることが分かった。
実施例のうち、2チャージ分について30分間の処理を行
ったところ、各々3、4ppm の[C]が得られた。なお、
溶鋼中の〔H〕は、0.5 ±0.2 ppm であった。 (実施例2)本例でも、実施例1と同様に処理溶鋼量=30
0ton、浸漬管径=75cm、還流用Ar=110 Ncm3/sec・ton
のRH脱ガス装置の真空槽底に、羽口径=0.1 cm、本数
16本の羽口を設置した。なお、羽口は4本で1個のブロ
ックを形成する集合羽口であった。本発明の実施例とし
て、前述の(1) 〜(3) 式を満足する条件下で、h1=115c
m、ガス種はArを用い、初期[H] =3.0 〜5.2ppmの溶鋼
を脱ガス処理した(N数=9ch)。
In the example, the time to reach the same [C] level was shortened by 5 minutes or more at [C] ≦ 15 ppm. It was also found that the arrival [C] at 25 minutes was about 5 ppm lower.
In the examples, when the treatment for 2 charges was performed for 30 minutes, 3 and 4 ppm of [C] were obtained. In addition,
[H] in the molten steel was 0.5 ± 0.2 ppm. (Example 2) Also in this example, the amount of treated molten steel is 30 as in Example 1.
0 ton, immersion pipe diameter = 75 cm, reflux Ar = 110 Ncm 3 / sec ・ ton
At the bottom of the vacuum chamber of the RH degassing device, tuyere diameter = 0.1 cm, number
16 tuyeres were installed. Note that the tuyere was a collective tuyere that formed one block with four tuyere. As an example of the present invention, h 1 = 115c under the condition that the above-mentioned expressions (1) to (3) are satisfied.
m was used as the gas species, and Ar was used as the gas species to degas the molten steel at the initial [H] = 3.0 to 5.2 ppm (N number = 9 ch).

【0042】一方、比較例としては、RH脱ガス装置の
槽底より気体を添加しない従来の処理方法で溶鋼を処理
した例を示した(N数=10ch)(初期[H] =2.9 〜5.0ppm)
。実施例、比較例とも、2.7 −3.5 分に50Torrに到達
した。実施例では50Torr到達までのQN =12000 Ncm3/s
ecとし、5≦P≦50TorrではQN =20000 Ncm3/sec、P
<5TorrにてQN =35000 Ncm3/secまで増加させた。P
=5Torr到達には5.0 〜6.0 分を要した。
On the other hand, as a comparative example, an example was shown in which molten steel was treated by the conventional treatment method in which no gas was added from the bottom of the RH degasser (N number = 10 ch) (initial [H] = 2.9 to 5.0). ppm)
. In both Example and Comparative Example, it reached 50 Torr in 2.7-3.5 minutes. In the example, Q N until reaching 50 Torr = 12000 Ncm 3 / s
ec, and if 5 ≦ P ≦ 50 Torr, Q N = 20000 Ncm 3 / sec, P
At <5 Torr, Q N was increased to 35000 Ncm 3 / sec. P
It took 5.0 to 6.0 minutes to reach 5 Torr.

【0043】なお、実施例、比較例とも浸漬管からの気
体吹込量は33000Ncm3/sec であった。次に、処理開始後
5分おきにサンプルを採取し、[C] の推移を測定した。
実施例、比較例の平均値を表5に示す。
The amount of gas blown from the dip tube was 33000 Ncm 3 / sec in both the examples and comparative examples. Next, a sample was taken every 5 minutes after the start of the treatment, and the transition of [C] was measured.
Table 5 shows the average values of Examples and Comparative Examples.

【0044】[0044]

【表5】 [Table 5]

【0045】実施例では、[H] ≦1.0ppmを容易に得るこ
とができることが分かった。これらの結果からも分かる
ように、本発明によれば、安定して脱ガス処理が行え、
しかも到達〔C〕、〔H〕は各々6ppm 、0.5 ppm とな
り、今日最も厳しいと言われる要求をも十分に満足する
ものである。
In the examples, it was found that [H] ≦ 1.0 ppm could be easily obtained. As can be seen from these results, according to the present invention, stable degassing can be performed,
In addition, the arrivals [C] and [H] are 6 ppm and 0.5 ppm, respectively, which is sufficient to meet the most demanding requirements today.

【0046】[0046]

【発明の効果】本法の適用により、RH脱ガス装置にお
いて安定してしかも効率的に脱ガスを促進できることが
できた。
By applying this method, it is possible to promote degassing in a RH degassing apparatus stably and efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】RH脱ガス装置と各変数を示す略式説明図であ
る。
FIG. 1 is a schematic explanatory view showing an RH degassing device and each variable.

【図2】実施例の結果をまとめて示すグラフである。FIG. 2 is a graph showing a summary of the results of Examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 RH脱ガス装置の真空槽の槽底に設けた
羽口より気体を吹き込んで脱ガスを行う溶鋼処理方法に
おいて、 真空槽内圧力Pが、0≦P≦50(Torr)の場合: 【数1】 ただし、P : 真空槽内圧力 (Torr) h : 真空槽浴深さ(cm) h1 : 取鍋湯面〜真空槽底距離 (cm) ρl: 溶鋼密度 (g/cm3) ρg: ガス密度 (g/cm3) g : 重力の加速度(cm/sec2) x : 羽口径 (cm) QN : 真空槽に吹き込む気体総量 (Ncm3/sec) N : 羽口個数 上記(1) 〜(3) 式を満たし、かつ該RH脱ガス装置での
処理溶鋼1ton 当たりの気体添加量が30Ncm3/sec・ton
以上となる条件下で脱ガス処理を行い、 真空槽内圧力P>50Torrの場合:P=50Torrにおける上
記(1) 、(2) 式の条件を満足させながら、QN を減少さ
せ、0≦P≦50(Torr)到達後、上記(1) 〜(3) 式を満た
す範囲で漸次QN を増加させ、該RH脱ガス装置での処
理溶鋼1ton 当たりの気体添加量が30Ncm3/sec・ton 以
上となる条件下で脱ガス処理を行うことを特徴とするR
H脱ガス装置における溶鋼処理方法。
1. A molten steel treatment method for degassing by blowing gas from a tuyere provided at the bottom of a vacuum tank of an RH degasser, wherein the vacuum tank pressure P is 0 ≦ P ≦ 50 (Torr). Case: [Equation 1] However, P: pressure in the vacuum tank (Torr) h: vacuum tank bath depth (cm) h 1 : ladle level to vacuum tank bottom (cm) ρ l : molten steel density (g / cm 3 ) ρ g : Gas density (g / cm 3 ) g: Acceleration of gravity (cm / sec 2 ) x: Tuyere diameter (cm) Q N : Total amount of gas blown into the vacuum chamber (Ncm 3 / sec) N: Number of tuyere above (1) (3) is satisfied and the amount of gas added per 1 ton of molten steel treated in the RH degasser is 30 Ncm 3 / sec · ton.
If degassing is performed under the above conditions and the pressure in the vacuum chamber is P> 50 Torr: Q N is reduced while satisfying the conditions of the above formulas (1) and (2) at P = 50 Torr, and 0 ≦ after P ≦ 50 (Torr) reaches above (1) to (3) increase progressively Q N in a range satisfying, gas addition amount of processing molten steel per 1ton in the RH degasser is 30Ncm 3 / sec · R characterized by performing degassing treatment under the condition of ton or more
Molten steel treatment method in H 2 degasser.
JP6387892A 1992-03-19 1992-03-19 Treatment of molten steel in rh degassing vessel Withdrawn JPH05263122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6387892A JPH05263122A (en) 1992-03-19 1992-03-19 Treatment of molten steel in rh degassing vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6387892A JPH05263122A (en) 1992-03-19 1992-03-19 Treatment of molten steel in rh degassing vessel

Publications (1)

Publication Number Publication Date
JPH05263122A true JPH05263122A (en) 1993-10-12

Family

ID=13241996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6387892A Withdrawn JPH05263122A (en) 1992-03-19 1992-03-19 Treatment of molten steel in rh degassing vessel

Country Status (1)

Country Link
JP (1) JPH05263122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096639A (en) * 2013-11-15 2015-05-21 新日鐵住金株式会社 Refining method for molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096639A (en) * 2013-11-15 2015-05-21 新日鐵住金株式会社 Refining method for molten steel

Similar Documents

Publication Publication Date Title
JPH05263122A (en) Treatment of molten steel in rh degassing vessel
JPS6137912A (en) Method for vacuum-refining molten steel
WO2020183841A1 (en) Method of manufacturing titanium-containing ultra-low-carbon steel
JPH11315315A (en) Metallurgical reaction apparatus for treating molten metal under reduced pressure
KR19990049705A (en) A method of refining steel for improving hydrogen organic cracking in hydrogen-organic cracked steel
JPH05171253A (en) Method for desulfurizing molten steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP3070416B2 (en) Vacuum degassing method for molten steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JP2001064719A (en) Method for vacuum-refining molten steel
JP3252726B2 (en) Vacuum refining method for molten steel
JP2819424B2 (en) Manufacturing method of ultra-low carbon steel
JPH1161237A (en) Production of extra-low carbon steel by vacuum refining
JPH10204521A (en) Vessel for vacuum-refining molten steel
JP2023003384A (en) Denitrification treatment method of molten steel
JP3282487B2 (en) Manufacturing method of enamel steel
JP2978045B2 (en) Vacuum refining method for molten steel with high decarburization characteristics
CN115710615A (en) Method for producing high manganese steel by adopting RH furnace and high manganese steel
JPH05279728A (en) Vacuum degassing device for molten steel
JPH02209417A (en) Degassing refining method
KR20000012619U (en) Sedimentation pipe for improving refining capacity
JPH0610028A (en) Production of ultralow carbon steel
JP2000178636A (en) Production of clean steel in rh vacuum-degassing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608