JPH0610028A - Production of ultralow carbon steel - Google Patents

Production of ultralow carbon steel

Info

Publication number
JPH0610028A
JPH0610028A JP19167992A JP19167992A JPH0610028A JP H0610028 A JPH0610028 A JP H0610028A JP 19167992 A JP19167992 A JP 19167992A JP 19167992 A JP19167992 A JP 19167992A JP H0610028 A JPH0610028 A JP H0610028A
Authority
JP
Japan
Prior art keywords
molten steel
ladle
vacuum tank
steel
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19167992A
Other languages
Japanese (ja)
Inventor
Eiju Matsuno
英寿 松野
Yoshiteru Kikuchi
良輝 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19167992A priority Critical patent/JPH0610028A/en
Publication of JPH0610028A publication Critical patent/JPH0610028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To quicken the decarburizing speed and to improve production efficiency by adding a decarburizing agent so that soluble oxygen quantity becomes the specific value at the latter stage of the decarburization for which carbon content in the molten steel becomes a specific value or lower, at the time of executing the production of an ultralow carbon steel by an RH type vacuum degassing refining method. CONSTITUTION:The molten steel 5 is circulated between a ladle 4 and a vacuum vessel 1 to decarburize the molten steel 5 in the ladle 4. Then, at the latter stage of the decarburization for which the carbon content in the molten steel 5 becomes <=50ppm, the deoxidizing agent, e.g. such as Al is added through a trough 7 so that the soluble oxygen quantity in the molten steel 5 sucked up into the vacuum vessel 1 becomes in the range of 100-200ppm. Further, deoxidized product, such as Al2O3, is generated and the product is made as the nuclei in CO bubbles to promote the decarburizing reaction. By this method, the carbon content in the molten steel is reduced less than an ordinary case, and the damage to the lining refractory of the immersion tubes is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、RH式真空脱ガス精
錬法によって、極低炭素鋼を製造するための方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra low carbon steel by an RH type vacuum degassing refining method.

【0002】[0002]

【従来の技術】工業的に極低炭素鋼を製造する方法とし
て、RH式真空脱ガス精錬法が広く使用れている。この
ようなRH式真空脱ガス精錬法によって極低炭素鋼を製
造するに際し、近年、品質の高級化、および、生産性の
向上が要求されており、そのための種々の方法が提案さ
れている。
2. Description of the Related Art The RH type vacuum degassing refining method is widely used as a method for industrially producing ultra-low carbon steel. In producing ultra-low carbon steel by such an RH-type vacuum degassing refining method, in recent years, higher quality and higher productivity have been required, and various methods have been proposed for that purpose.

【0003】例えば、特公昭62-6611 号公報には、RH
式真空脱ガス精錬法によって極低炭素鋼を製造するに際
し、溶鋼精錬用真空槽の底壁に連結された、上昇管およ
び下降管からなる浸漬管の断面形状を楕円形に形成し
て、その断面積を大にし、これにより、取鍋内の溶鋼
の、真空槽との間の循環量を増大させて、鋼中の不純物
の除去速度を向上させる方法(以下、先行技術という)
が開示されている。
For example, Japanese Patent Publication No. 62-6611 discloses RH.
When manufacturing ultra-low carbon steel by the vacuum degassing refining method, the dip tube connected to the bottom wall of the molten steel refining vacuum tank is formed into an elliptical cross-sectional shape, A method of increasing the cross-sectional area, thereby increasing the circulation amount of molten steel in the ladle with the vacuum chamber, and improving the removal rate of impurities in the steel (hereinafter referred to as prior art)
Is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、先行技
術によっては、ある程度、不純物の除去速度は向上し得
ても、その大幅な向上は望めず、しかも、浸漬管の裏張
り耐火物が激しく損傷するために、処理コストの上昇を
招いていた。
However, according to the prior art, even if the removal rate of impurities can be improved to some extent, it cannot be expected to be greatly improved, and further, the refractory lining the dip tube is severely damaged. Therefore, the processing cost is increased.

【0005】従って、この発明の目的は、上述した問題
を解決し、RH式真空脱ガス精錬法によって極低炭素鋼
を製造するに際し、脱炭速度を速め、これによって、溶
鋼中の炭素含有量を従来よりも低減し、しかも、浸漬管
の裏張り耐火物を損傷させることが少なく、これらによ
って、極低炭素鋼を効率的に製造することができる方法
を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and to accelerate the decarburization rate when producing an ultra-low carbon steel by the RH type vacuum degassing refining method, whereby the carbon content in the molten steel is increased. It is an object of the present invention to provide a method capable of efficiently manufacturing an ultra-low carbon steel by reducing the above-mentioned amount compared with the conventional method and by less damaging the refractory lining of the immersion pipe.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上述した
問題を解決すべく鋭意研究を重ねた。その結果、RH式
真空脱ガス精錬法によって極低炭素鋼を製造するに際
し、溶鋼の炭素含有量が50ppm 以下になった脱炭の後期
に、溶鋼中の溶存酸素量が 100〜200ppmの範囲内になる
ように、溶鋼中に脱酸剤を添加すれば、脱炭反応が促進
されることを知見した。
[Means for Solving the Problems] The present inventors have conducted extensive studies to solve the above-mentioned problems. As a result, when manufacturing ultra-low carbon steel by the RH vacuum degassing refining method, the amount of dissolved oxygen in the molten steel is within the range of 100 to 200 ppm at the latter stage of decarburization when the carbon content of the molten steel becomes 50 ppm or less. It was found that the decarburization reaction is promoted by adding a deoxidizing agent to the molten steel so that

【0007】この発明は、上記知見に基づいてなされた
ものであって、溶鋼精錬用真空槽の底壁に、下方に向っ
て突出するように垂直に連結された上昇管および下降管
を、前記真空槽の下方に位置する取鍋内に収容された溶
鋼中に浸漬し、前記真空槽内を減圧しながら、前記上昇
管から不活性ガスを吹き込んで、前記取鍋内の溶鋼を前
記上昇管を通して前記真空槽内に吸い上げ、前記溶鋼を
前記真空槽内において脱ガスし、そして、前記真空槽内
に吸い上げた溶鋼を、前記下降管を通って前記取鍋内に
戻して、前記溶鋼を、前記取鍋と前記真空槽との間を循
環させ、かくして、前記取鍋内の溶鋼を脱炭し、極低炭
素鋼を製造する方法において、前記溶鋼の炭素含有量が
50ppm以下になった脱炭の後期に、溶鋼中の溶存酸素量
が 100〜200ppmの範囲内になるように、前記溶鋼中に脱
酸剤を添加することに特徴を有するものである。
The present invention has been made on the basis of the above-mentioned findings, and an ascending pipe and a descending pipe vertically connected to the bottom wall of a molten steel refining vacuum chamber so as to project downward are described above. It is immersed in molten steel contained in a ladle located below the vacuum tank, and while depressurizing the inside of the vacuum tank, an inert gas is blown from the rising pipe to move the molten steel in the ladle to the rising pipe. Through the vacuum tank, degass the molten steel in the vacuum tank, and the molten steel sucked in the vacuum tank is returned to the ladle through the downcomer, the molten steel, In the method of circulating between the ladle and the vacuum tank, thus decarburizing the molten steel in the ladle, to produce an ultra-low carbon steel, the carbon content of the molten steel is
It is characterized in that a deoxidizer is added to the molten steel so that the amount of dissolved oxygen in the molten steel falls within the range of 100 to 200 ppm in the latter stage of decarburization at 50 ppm or less.

【0008】[0008]

【作用】RH式真空脱ガス精錬法による脱炭反応は、溶
鋼中の炭素と酸素とが反応して生成したCO気泡によっ
て進行する。CO気泡は、不均一核生成の理論による
と、溶鋼の不均一界面、即ち、真空槽、上昇管、下降管
および取鍋の裏張り耐火物と溶鋼との接触面において生
成しやすい。
The decarburization reaction by the RH type vacuum degassing refining process proceeds by CO bubbles generated by the reaction of carbon and oxygen in the molten steel. According to the theory of heterogeneous nucleation, CO bubbles are likely to be generated at the non-uniform interface of molten steel, that is, at the contact surface between the refractory lining of the vacuum chamber, the riser pipe, the downcomer pipe and the ladle and the molten steel.

【0009】精錬が進んで、脱炭後期のように、溶鋼中
の炭素量が少なくなって、上述した炭素と酸素との反応
力が減少してくると、上述した反応を維持させるために
は、CO気泡の核生成を積極的に行わせることが必要に
なる。溶鋼中に、CO気泡の核が生成しやすい物質を存
在させる手段としては、取鍋内の溶鋼中に、直接酸化物
等を吹き込むことが考えられるが、このような方法は、
溶鋼中への酸化物の吹込み深さや効率の点から、必ずし
も効果のある方法ではない。
When the refining progresses and the amount of carbon in the molten steel decreases as in the latter stage of decarburization, and the reaction force between carbon and oxygen decreases, it is necessary to maintain the above reaction. , It is necessary to positively cause the nucleation of CO bubbles. As a means for allowing a substance in which CO bubble nuclei are easily generated to exist in the molten steel, it is conceivable to blow an oxide or the like directly into the molten steel in the ladle.
It is not necessarily an effective method from the viewpoint of the injection depth of oxide into molten steel and efficiency.

【0010】そこで、この発明においては、溶鋼の炭素
含有量が 50ppm以下になった脱炭の後期に、溶鋼中に例
えばアルミニウム(Al)のような脱酸剤を添加して、アル
ミナ( Al2O3 ) のような脱酸生成物を生じさせ、この脱
酸生成物をCO気泡の核となし、これによって、脱炭反
応を促進させるものである。上述した脱酸生成物は、溶
鋼全域にわたり分散して生成するので、脱炭反応が効率
的に促進される。
Therefore, in the present invention, a deoxidizing agent such as aluminum (Al) is added to the molten steel at the latter stage of decarburization when the carbon content of the molten steel becomes 50 ppm or less, and alumina (Al 2 This produces a deoxidation product such as O 3 ) and forms the deoxidation product as a nucleus of CO bubbles, thereby promoting the decarburization reaction. Since the above-mentioned deoxidation product is dispersed and produced over the entire molten steel, the decarburization reaction is efficiently promoted.

【0011】しかしながら、溶鋼中への脱酸剤の添加に
よって、溶鋼を完全にキルド状態にすると、溶鋼中に、
脱炭反応に寄与すべき酸素が無くなる。従って、脱炭反
応を阻害させない程度に、溶鋼中に溶存酸素を残す必要
がある。このような観点から、溶鋼中の溶存酸素量は 1
00〜200ppmの範囲内に限定すべきである。溶存酸素量
が、 100ppm 未満または200ppm超では、脱炭反応が低下
する。
However, when the molten steel is completely killed by adding a deoxidizing agent to the molten steel,
There is no oxygen that should contribute to the decarburization reaction. Therefore, it is necessary to leave dissolved oxygen in the molten steel to the extent that it does not hinder the decarburization reaction. From this point of view, the amount of dissolved oxygen in molten steel is 1
It should be limited to the range of 00 to 200 ppm. If the amount of dissolved oxygen is less than 100 ppm or more than 200 ppm, the decarburization reaction will decrease.

【0012】溶鋼中に添加する脱酸剤としては、アルミ
ニウム、チタン、、シリコン、マンガンおよびジルコニ
ウム等のうちの少なくとも1つが使用される。脱酸剤
は、真空槽内に吸い上げられた溶鋼中に添加しても、ま
たは、取鍋内の溶鋼中に添加してもよい。
As the deoxidizing agent added to the molten steel, at least one of aluminum, titanium, silicon, manganese, zirconium and the like is used. The deoxidizer may be added to the molten steel sucked up in the vacuum tank or may be added to the molten steel in the ladle.

【0013】脱酸剤の添加は、溶鋼中の炭素含有量が50
ppm 以下になった脱炭の後期に行うことが必要である。
炭素含有量が50ppm 超の溶鋼中に脱酸剤を添加すると、
炭素と酸素との反応力が、ある程度維持されている状態
で、溶存酸素の量を減らすことになり、その反応力が減
少する結果、逆に脱炭反応が低下する問題が生ずる。
The addition of the deoxidizing agent makes the carbon content in the molten steel 50%.
It is necessary to perform it in the latter stage of decarburization when it becomes below ppm.
If a deoxidizer is added to molten steel with a carbon content of more than 50 ppm,
While the reaction force between carbon and oxygen is maintained to some extent, the amount of dissolved oxygen is reduced, and as a result of the decrease in the reaction force, there arises a problem that the decarburization reaction decreases.

【0014】図1は、この発明の方法を実施するための
装置の一例を示す概略垂直断面図である。図1に示すよ
うに、溶鋼精錬用真空槽1の底壁1aには、下方に向って
突出するように垂直に、上昇管2および下降管3が連結
されている。上昇管2および下降管3の各々の下部は、
真空槽1の下方に位置する取鍋4内に収容された溶鋼5
中に浸漬されている。上昇管2には、不活性ガスの吹込
み管6が連結されている。真空槽1の一方の側壁1bに
は、真空槽1内に吸い上げられた溶鋼5中に酸化剤を添
加するための、その一端がホッパ8に接続された樋7が
設けられている。9は、真空槽1内を減圧するための、
真空ポンプに接続された導管である。
FIG. 1 is a schematic vertical sectional view showing an example of an apparatus for carrying out the method of the present invention. As shown in FIG. 1, an ascending pipe 2 and a descending pipe 3 are vertically connected to a bottom wall 1a of a molten steel refining vacuum tank 1 so as to project downward. The lower part of each of the ascending pipe 2 and the descending pipe 3 is
Molten steel 5 contained in a ladle 4 located below the vacuum tank 1.
It is immersed in. An inert gas blowing pipe 6 is connected to the rising pipe 2. On one side wall 1b of the vacuum chamber 1, there is provided a gutter 7 having one end connected to a hopper 8 for adding an oxidizing agent into the molten steel 5 sucked up in the vacuum chamber 1. 9 is for reducing the pressure in the vacuum chamber 1,
A conduit connected to a vacuum pump.

【0015】真空槽1内を減圧しながら、上昇管2に連
結された吹込み管6を通して、不活性ガスを吹き込ん
で、取鍋4内の溶鋼5を、上昇管2を通して真空槽1内
に吸い上げ、そして、真空槽1内に吸い上げた溶鋼5
を、下降管3を通って取鍋4内に戻して、溶鋼5を、取
鍋4と真空槽1との間を循環させ、取鍋4内の溶鋼5を
脱炭する。溶鋼5の炭素含有量が50ppm 以下になった脱
炭の後期に、真空槽1内に吸い上げられた溶鋼5中に、
脱酸剤を樋7によって、溶鋼中の溶存酸素量が 100〜20
0ppmの範囲内になるように添加する。その結果、上述し
たように、添加された脱酸剤によって、脱酸生成物が生
じ、この脱酸生成物がCO気泡の核となって、脱炭反応
が促進される。
While decompressing the inside of the vacuum chamber 1, an inert gas is blown through the blow pipe 6 connected to the rising pipe 2 to move the molten steel 5 in the ladle 4 into the vacuum chamber 1 through the rising pipe 2. Molten steel 5 sucked up and sucked into the vacuum chamber 1
Is returned to the inside of the ladle 4 through the downcomer pipe 3, the molten steel 5 is circulated between the ladle 4 and the vacuum tank 1, and the molten steel 5 in the ladle 4 is decarburized. In the latter stage of decarburization when the carbon content of the molten steel 5 became 50 ppm or less, in the molten steel 5 sucked up in the vacuum tank 1,
The amount of dissolved oxygen in the molten steel is 100 to 20 by using the deoxidizer with the gutter 7.
Add it so that it is within the range of 0 ppm. As a result, as described above, the added deoxidizing agent produces a deoxidizing product, and this deoxidizing product serves as a nucleus of CO bubbles to accelerate the decarburization reaction.

【0016】[0016]

【実施例】次に、この発明を、実施例により比較例と対
比しながら更に詳述する。図1に示した、溶鋼処理能力
250tのRH式真空脱ガス精錬装置を使用し、下記表1に
示す化学成分組成の溶鋼を脱炭した。
EXAMPLES Next, the present invention will be described in more detail by way of examples in comparison with comparative examples. Molten steel processing capacity shown in Fig. 1
A 250 ton RH type vacuum degassing and refining device was used to decarburize molten steel having the chemical composition shown in Table 1 below.

【0017】真空槽1内を1torr以下にまで減圧し、上
昇管2に連結された吹込み管6を通して、アルゴンガス
を2000Nl/minの量で吹き込んで、取鍋4内の溶鋼5を、
上昇管2を通して真空槽1内に吸い上げ、そして、真空
槽1内に吸い上げた溶鋼5を、下降管3を通って取鍋4
内に戻して、溶鋼5を、取鍋4と真空槽1との間を循環
させ、取鍋4内の溶鋼5を脱炭した。
The pressure in the vacuum chamber 1 was reduced to 1 torr or less, and argon gas was blown at a rate of 2000 Nl / min through a blowing pipe 6 connected to the rising pipe 2 to melt the molten steel 5 in the ladle 4.
The molten steel 5 sucked up into the vacuum tank 1 through the rising pipe 2 and the molten steel 5 sucked up into the vacuum tank 1 through the descending pipe 3 is ladle 4
After returning to the inside, the molten steel 5 was circulated between the ladle 4 and the vacuum chamber 1 to decarburize the molten steel 5 in the ladle 4.

【0018】溶鋼の炭素含有量が50ppm 以下になった脱
炭の後期に、真空槽1内に吸い上げられた溶鋼5中に、
樋7より、脱酸剤としてのアルミニウム粉を、溶鋼中の
溶存酸素量が 100〜200ppmの範囲内になるように添加し
た。
In the latter stage of decarburization when the carbon content of the molten steel becomes 50 ppm or less, in the molten steel 5 sucked up in the vacuum chamber 1,
Aluminum powder as a deoxidizer was added from the gutter 7 so that the amount of dissolved oxygen in the molten steel was in the range of 100 to 200 ppm.

【0019】図2は、このようにして、アルミニウム粉
を添加したときの、溶鋼中の溶存酸素量と脱炭速度との
関係を示すグラフである。図2において、横軸は溶鋼中
の溶存酸素量を示し、縦軸は脱炭速度を示す。
FIG. 2 is a graph showing the relationship between the amount of dissolved oxygen in molten steel and the decarburization rate when aluminum powder is added in this manner. In FIG. 2, the horizontal axis represents the amount of dissolved oxygen in molten steel, and the vertical axis represents the decarburization rate.

【0020】脱炭反応は、溶鋼中の炭素量が約50ppm の
領域を、下記(1) 式によって評価した。 d〔C〕/dt=−Kc〔C〕────(1) 但し、C :溶鋼中の炭素量、 Kc:脱炭速度定数、 t :時間。
The decarburization reaction was evaluated by the following formula (1) in the region where the carbon content in the molten steel was about 50 ppm. d [C] / dt = -Kc [C] --- (1) However, C: carbon amount in molten steel, Kc: decarburization rate constant, t: time.

【0021】図2から、溶鋼中の溶存酸素量が 100〜20
0ppmの範囲内のときに、脱炭反応が極めて速くなること
が明らかである。なお、図2において、斜線で示した範
囲は、脱酸剤を添加しない従来の例である。
From FIG. 2, the amount of dissolved oxygen in the molten steel is 100 to 20.
It is clear that the decarburization reaction becomes extremely fast in the range of 0 ppm. In FIG. 2, the shaded area is a conventional example in which no deoxidizer is added.

【0022】[0022]

【発明の効果】以上述べたように、この発明の方法によ
れば、RH式真空脱ガス精錬法によって極低炭素鋼を製
造するに際し、脱炭速度が著しく速められ、これによっ
て、溶鋼中の炭素含有量を従来よりも低減し、極低炭素
鋼を効率的に製造することができる、工業上有用な効果
がもたらされる。
As described above, according to the method of the present invention, the decarburization rate is remarkably increased in the production of the ultra-low carbon steel by the RH type vacuum degassing refining method. The carbon content can be reduced as compared with the conventional one, and an extremely low carbon steel can be efficiently produced, which brings about an industrially useful effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の方法を実施するための装置の一例を
示す概略垂直断面図である。
FIG. 1 is a schematic vertical sectional view showing an example of an apparatus for carrying out the method of the present invention.

【図2】この発明の方法によって溶鋼を脱炭したとき
の、溶鋼中の溶存酸素量と脱炭速度との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the amount of dissolved oxygen in molten steel and the decarburizing rate when decarburizing molten steel by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 真空槽、 2 上昇管、 3 下降管、 4 取鍋、 5 溶鋼、 6 ガス吹込み管、 7 樋、 8 ホッパ、 9 導管。 1 vacuum tank, 2 riser pipe, 3 downcomer pipe, 4 ladle, 5 molten steel, 6 gas injection pipe, 7 gutter, 8 hopper, 9 conduits.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼精錬用真空槽の底壁に、下方に向っ
て突出するように垂直に連結された上昇管および下降管
を、前記真空槽の下方に位置する取鍋内に収容された溶
鋼中に浸漬し、前記真空槽内を減圧しながら、前記上昇
管から不活性ガスを吹き込んで、前記取鍋内の溶鋼を前
記上昇管を通して前記真空槽内に吸い上げ、前記溶鋼を
前記真空槽内において脱ガスし、そして、前記真空槽内
に吸い上げた溶鋼を、前記下降管を通って前記取鍋内に
戻して、前記溶鋼を、前記取鍋と前記真空槽との間を循
環させ、かくして、前記取鍋内の溶鋼を脱炭し、極低炭
素鋼を製造する方法において、 前記溶鋼の炭素含有量が 50ppm以下になった脱炭の後期
に、溶鋼中の溶存酸素量が 100〜200ppmの範囲内になる
ように、前記溶鋼中に脱酸剤を添加することを特徴とす
る、極低炭素鋼の製造方法。
1. An ascending pipe and a descending pipe vertically connected to a bottom wall of a molten steel refining vacuum tank so as to project downward are housed in a ladle located below the vacuum tank. Immersing in molten steel, while depressurizing the inside of the vacuum tank, blowing an inert gas from the rising pipe, sucking the molten steel in the ladle into the vacuum tank through the rising pipe, the molten steel in the vacuum tank Degassed inside, and the molten steel sucked into the vacuum tank, returned to the ladle through the downcomer pipe, the molten steel is circulated between the ladle and the vacuum tank, Thus, in the method of decarburizing the molten steel in the ladle, to produce an ultra-low carbon steel, in the latter stage of decarburization when the carbon content of the molten steel becomes 50 ppm or less, the amount of dissolved oxygen in the molten steel is 100 ~ It is a special feature to add a deoxidizer to the molten steel so that it falls within the range of 200 ppm. To method for producing a ultra-low carbon steel.
【請求項2】 前記脱酸剤として、アルミニウム、チタ
ン、シリコン、マンガン、カルシウムおよびジルコニウ
ムのうちの少なくとも1つを使用する、請求項1に記載
の方法。
2. The method according to claim 1, wherein at least one of aluminum, titanium, silicon, manganese, calcium and zirconium is used as the deoxidizer.
JP19167992A 1992-06-25 1992-06-25 Production of ultralow carbon steel Pending JPH0610028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19167992A JPH0610028A (en) 1992-06-25 1992-06-25 Production of ultralow carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19167992A JPH0610028A (en) 1992-06-25 1992-06-25 Production of ultralow carbon steel

Publications (1)

Publication Number Publication Date
JPH0610028A true JPH0610028A (en) 1994-01-18

Family

ID=16278657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19167992A Pending JPH0610028A (en) 1992-06-25 1992-06-25 Production of ultralow carbon steel

Country Status (1)

Country Link
JP (1) JPH0610028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277611B1 (en) * 2011-09-28 2013-06-21 현대제철 주식회사 Rh refining method for manufacturing ultra-low-carbon steel
KR20220033821A (en) * 2020-09-10 2022-03-17 주식회사 포스코 Apparatus and method for processing molten material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277611B1 (en) * 2011-09-28 2013-06-21 현대제철 주식회사 Rh refining method for manufacturing ultra-low-carbon steel
KR20220033821A (en) * 2020-09-10 2022-03-17 주식회사 포스코 Apparatus and method for processing molten material

Similar Documents

Publication Publication Date Title
JPH01188619A (en) Method for rh vacuum degasification
JPH0610028A (en) Production of ultralow carbon steel
JP2018066031A (en) Manufacturing method of high cleanliness steel
JPH01127624A (en) Method and apparatus for refining molten metal by ultrasonic wave
JP2020012158A (en) Method of smelling steel into high cleaned steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP2767674B2 (en) Refining method of high purity stainless steel
JPH0610029A (en) Production of ultralow carbon steel
JPH05214430A (en) Method for vacuum-refining molten steel
JP7035871B2 (en) Melting method of high-clean steel
JP3252726B2 (en) Vacuum refining method for molten steel
JPH1161237A (en) Production of extra-low carbon steel by vacuum refining
JPH0610027A (en) Vacuum degassing refining method for molten metal
JP2978045B2 (en) Vacuum refining method for molten steel with high decarburization characteristics
JP3070416B2 (en) Vacuum degassing method for molten steel
JPH06299227A (en) Production of extra low carbon steel by rh type degassing apparatus
JP2020012142A (en) Method for smelting steel into highly cleaned steel
JPH0649528A (en) Vacuum decarburization refining method of extra-low carbon steel
JP2001098316A (en) Production of highly clean extra low carbon steel
JPH0741835A (en) Method for vacuum-refining molten steel by gas injection
CN116751933A (en) Method for removing inclusion in RH refining process
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JPH05320739A (en) Vacuum refining method
JPH06212244A (en) Method for smelting extra low nitrogen steel
KR20000012619U (en) Sedimentation pipe for improving refining capacity