JP6638538B2 - RH type vacuum degassing equipment - Google Patents

RH type vacuum degassing equipment Download PDF

Info

Publication number
JP6638538B2
JP6638538B2 JP2016085404A JP2016085404A JP6638538B2 JP 6638538 B2 JP6638538 B2 JP 6638538B2 JP 2016085404 A JP2016085404 A JP 2016085404A JP 2016085404 A JP2016085404 A JP 2016085404A JP 6638538 B2 JP6638538 B2 JP 6638538B2
Authority
JP
Japan
Prior art keywords
tuyere
bubbles
molten steel
gas
vacuum degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016085404A
Other languages
Japanese (ja)
Other versions
JP2017193764A (en
Inventor
秀平 笠原
秀平 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016085404A priority Critical patent/JP6638538B2/en
Publication of JP2017193764A publication Critical patent/JP2017193764A/en
Application granted granted Critical
Publication of JP6638538B2 publication Critical patent/JP6638538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、特に、脱ガス反応の速度を増加させるために用いて好適なRH式真空脱ガス処理装置に関する。   The present invention particularly relates to an RH vacuum degassing apparatus suitable for use in increasing the speed of a degassing reaction.

鋼材中の不純物元素は鋼材の強度を低下させたり、非金属介在物を生成して破壊の起点となったりするため、精錬工程では不純物元素の除去が行われる。特に、二次精錬では真空脱ガス処理装置を用いて溶鋼を減圧雰囲気下で精錬処理することにより、炭素(以下、C)、水素(以下、H)、窒素(以下、N)といったガス元素の除去を行う。真空脱ガス処理ではRH式真空脱ガス処理装置を用いた処理が広く行われている。   Impurity elements in the steel material reduce the strength of the steel material or generate non-metallic inclusions and serve as starting points for destruction. Therefore, the impurity elements are removed in the refining process. In particular, in the secondary refining, the molten steel is subjected to refining treatment in a reduced pressure atmosphere using a vacuum degassing apparatus, so that gas elements such as carbon (hereinafter, C), hydrogen (hereinafter, H), and nitrogen (hereinafter, N) can be obtained. Perform removal. In the vacuum degassing process, a process using an RH type vacuum degassing device is widely performed.

RH式真空脱ガス処理装置を用いたガス元素の除去には、雰囲気圧力の低減、溶鋼の環流量の増加、及び脱ガス反応が生じる界面積の増加が有効であることは従来知られている。そこで、雰囲気圧力を低減するために真空排気能力が強化されてきた。また、溶鋼の環流量を増加させるために環流ガス流量が増加されてきた。さらに、脱ガス反応が生じる界面積の増加については、真空槽を大型化することによって減圧雰囲気にさらされる溶鋼の表面積を増加させてきた。しかし、これらの方法は、装置の大幅な改造を伴い、現実的には困難であるため、RH式真空脱ガス処理装置では、環流ガスとして溶鋼中に吹き込まれる気泡を活用した脱ガス反応の速度向上方法が提案されている。   It is conventionally known that the removal of gas elements using an RH-type vacuum degassing apparatus is effective in reducing the atmospheric pressure, increasing the annular flow rate of molten steel, and increasing the interfacial area where degassing reaction occurs. . Therefore, the evacuation capacity has been enhanced in order to reduce the atmospheric pressure. Also, the circulating gas flow rate has been increased in order to increase the circulating flow rate of molten steel. Furthermore, regarding the increase of the interfacial area where the degassing reaction occurs, the surface area of the molten steel exposed to the reduced-pressure atmosphere has been increased by increasing the size of the vacuum chamber. However, these methods involve a substantial remodeling of the apparatus and are difficult in practice. Therefore, in the RH type vacuum degassing apparatus, the speed of the degassing reaction utilizing bubbles blown into molten steel as reflux gas is considered. Improvement methods have been proposed.

特許文献1には、環流ガスを吹き込む羽口に供給するガスの温度を200〜1200℃に加熱する溶鋼の真空脱ガス処理方法が提案されている。この方法を用いると、環流ガスの気泡が溶鋼温度まで加熱される際の膨張が抑えられ、気泡が微細化するとしている。   Patent Document 1 proposes a vacuum degassing method for molten steel in which the temperature of a gas supplied to a tuyere into which a reflux gas is blown is heated to 200 to 1200 ° C. It is stated that when this method is used, the expansion of bubbles of the reflux gas when heated to the temperature of molten steel is suppressed, and the bubbles become finer.

特許文献2には、環流ガスを吹き込む羽口の近傍の浸漬管内周部に超音波加振子を設けたRH脱ガス装置の浸漬管が提案されている。この浸漬管を用いることによって、超音波の振動により気泡を微細化することができるとしている。   Patent Literature 2 proposes an immersion pipe of an RH degassing apparatus provided with an ultrasonic vibrator at an inner peripheral portion of an immersion pipe near a tuyere into which a reflux gas is blown. By using this immersion tube, it is described that bubbles can be miniaturized by ultrasonic vibration.

特許文献3には、精錬の各時期に応じて上昇管内の溶湯へ吹き込むガス気泡を均一とするか中央に集中するかを選択して精錬する方法が提案されている。この方法を用いると、気泡を上昇管の中央に集中させるために、高圧の環流ガスを羽口の細管を通じて吹き込むことによって、気泡が微細化されるとしている。   Patent Literature 3 proposes a method of refining by selecting whether the gas bubbles to be blown into the molten metal in the riser are uniform or concentrated at the center according to each refining time. According to this method, bubbles are miniaturized by blowing high-pressure reflux gas through a tuyere of a tuyere in order to concentrate the bubbles at the center of the riser.

特開平6−17114号公報JP-A-6-17114 特開平2−173205号公報JP-A-2-173205 特開平1−168809号公報JP-A-1-168809

しかし、特許文献1に記載の方法は、環流ガスを加熱して吹き込むために、特に羽口周辺の耐火物の溶損が促進され、耐火物の補修頻度が増加してしまうという課題がある。また、特許文献2に記載の浸漬管は、溶鋼中では超音波加振子の寿命が短く、超音波加振子の交換頻度が増加してしまうという課題がある。さらに特許文献3に記載の方法は、環流ガス気泡を浸漬管の中央に集中させるためには、ガスの圧力を高める必要があり、設備の大幅な改造が必要という課題がある。   However, the method described in Patent Literature 1 has a problem in that the recirculation gas is heated and blown, which promotes the erosion of refractory, especially around the tuyere, and increases the frequency of repair of the refractory. Further, the immersion tube described in Patent Document 2 has a problem that the life of the ultrasonic vibrator is short in molten steel, and the frequency of replacing the ultrasonic vibrator increases. Furthermore, the method described in Patent Document 3 has a problem that the pressure of the gas needs to be increased in order to concentrate the circulating gas bubbles at the center of the immersion tube, and the equipment needs to be largely remodeled.

そこで、本発明は、装置の大幅な改造を不要とし、補修や交換の頻度を抑えて環流ガスの気泡を微細化し、脱ガス反応を促進することが可能なRH式真空脱ガス処理装置を提供することを目的とする。   Therefore, the present invention provides an RH-type vacuum degassing apparatus capable of accelerating the degassing reaction by reducing the frequency of repair and replacement, minimizing the frequency of repair and replacement, and obviating the need for major remodeling of the apparatus. The purpose is to do.

上記の課題を解決するために、本発明者らは、隣接する環流ガス羽口から噴出された高速の気泡同士を衝突させ、衝突した界面を通じて気泡中に巻き込まれる溶鋼滴が気泡の表面に衝突する際に、気泡表面を乱して微細な気泡を分裂させて生成する方法を検討した。   In order to solve the above problems, the present inventors collided high-speed bubbles ejected from adjacent reflux gas tuyeres, and molten steel droplets entrained in the bubbles through the collision interface collided with the surface of the bubbles. In doing so, we studied a method of generating fine bubbles by disrupting the bubble surface and breaking them up.

環流ガスを吹き込む羽口から噴出される気泡同士が衝突し、気泡の中に溶鋼滴が巻き込まれるためには、気泡同士が衝突する直前に、気泡と気泡との間に溶鋼が存在していることが必要である。また、気泡同士の衝突角度も適正とする必要がある。   In order for the bubbles ejected from the tuyere that injects the circulating gas to collide with each other and the molten steel droplet to be caught in the bubbles, molten steel exists between the bubbles immediately before the collision between the bubbles. It is necessary. In addition, it is necessary to make the collision angle between the bubbles appropriate.

羽口を通じて上昇管内の溶鋼中に吹き込まれた気泡は、耐火物と溶鋼との濡れ性が悪いこと、溶鋼との界面張力が大きいこと、及び溶鋼温度まで急速に加熱され急激に膨張することから耐火物に接触している面積は大きくなる。そのため、隣接する羽口対の羽口出口間の直線距離(羽口出口の中心間を結ぶ直線距離)が小さい場合は、羽口を出た直後に気泡同士が合体してしまい、溶鋼滴を巻き込まない。また、羽口出口間の直線距離が大きい場合は、気泡同士が衝突しなくなってしまう。   Bubbles blown into the molten steel in the riser tube through the tuyere are due to poor wettability between the refractory and the molten steel, high interfacial tension with the molten steel, and rapid heating to the molten steel temperature and rapid expansion. The area in contact with the refractory increases. Therefore, if the linear distance between the tuyere outlets of the adjacent tuyere pairs (the linear distance connecting the centers of the tuyere outlets) is small, the bubbles coalesce immediately after leaving the tuyere, and the molten steel droplet Do not get involved. If the straight line distance between the tuyere outlets is large, the bubbles will not collide with each other.

気泡同士の衝突角度については、角度が小さい場合は、気泡同士が合体してしまい、気泡中に溶鋼滴は巻き込まれなくなる。角度が大きい場合は、気泡が耐火物壁面に接触する領域が大きくなりすぎてしまい、衝突によって生成する微細な気泡の数が少なくなってしまう。   Regarding the collision angle between the bubbles, when the angle is small, the bubbles are united and the molten steel droplet is not caught in the bubbles. When the angle is large, the area where the bubbles contact the refractory wall surface becomes too large, and the number of fine bubbles generated by the collision decreases.

このように、隣接する羽口を一対とした羽口対には、羽口出口間の直線距離と羽口の向かい合う角度とに適正な範囲が存在することが分かる。この適正な範囲について、溶鋼を用いた実験によって検討することとした。実験は以下の方法で実施した。   Thus, it can be seen that in a tuyere pair having a pair of adjacent tuyeres, there is an appropriate range for the linear distance between the tuyere outlets and the angle at which the tuyees face each other. The appropriate range was examined by experiments using molten steel. The experiment was performed by the following method.

まず、雰囲気制御が可能なチャンバー内に設置したMgOルツボ(内径0.75m、高さ2.0m)の底面から0.3mの高さに、内径0.0015mのステンレス製パイプの羽口を水平面上にArガスを横向きで噴出させるよう2本設置し、羽口出口間の直線距離および羽口間の向かい合う角度を数通りで配置した。   First, the tuyere of a stainless steel pipe with an inner diameter of 0.0015 m was placed 0.3 m above the bottom of a MgO crucible (inner diameter 0.75 m, height 2.0 m) installed in a chamber capable of controlling the atmosphere. Two pieces of Ar gas were installed on the upper side so as to eject the gas horizontally, and the straight distance between the tuyere outlets and the facing angle between the tuyeres were arranged in several ways.

ルツボ内にて溶鋼を1600度まで加熱し、合金を添加することでC濃度を0.005〜0.10質量%、Al濃度を0.020〜0.10質量%、S濃度を0.0010〜0.0020質量%、N濃度を0.0038〜0.0042質量%に調整した。成分濃度を調整した後、チャンバー内を真空排気し、Ar雰囲気のもとで133〜4000Paに圧力を制御した。圧力が安定した後、羽口にArガスを流した。Arガス流量は合計で80NL/minとした。ガスは10分間流し、溶鋼表面に浮上する気泡を撮影し、気泡径を計測した。また、ガスの吹き込み前後に採取したサンプルのN濃度を分析により定量した。   The molten steel is heated to 1600 ° C. in a crucible, and an alloy is added so that the C concentration is 0.005 to 0.10% by mass, the Al concentration is 0.020 to 0.10% by mass, and the S concentration is 0.0010%. The concentration of N was adjusted to 0.0038 to 0.0042% by mass. After adjusting the component concentration, the chamber was evacuated to a vacuum and the pressure was controlled to 133 to 4000 Pa under an Ar atmosphere. After the pressure was stabilized, Ar gas was passed through the tuyere. The Ar gas flow rate was 80 NL / min in total. The gas was flowed for 10 minutes, the bubbles floating on the surface of the molten steel were photographed, and the bubble diameter was measured. In addition, the N concentration of the samples collected before and after gas injection was quantified by analysis.

0.01m以下の気泡を微細気泡とし、全気泡数に対する微細気泡の存在比率(以下、微細気泡存在率)と隣接する羽口対の向かい合う角度との関係を図1(a)に示す。羽口出口間の直線距離が0.07m以下では、羽口対の向かい合う角度によらず、微細気泡存在率は低位であった。これは、羽口出口間の直線距離が小さく、羽口出口で膨張する気泡同士が接触してしまい、溶鋼滴を巻き込まず、微細な気泡が生成されなかったためである。   The bubbles having a diameter of 0.01 m or less are defined as fine bubbles, and the relationship between the ratio of the fine bubbles to the total number of bubbles (hereinafter referred to as the fine bubble presence ratio) and the angle at which the adjacent tuyere pairs face each other is shown in FIG. When the straight-line distance between the tuyere outlets was 0.07 m or less, the fine bubble existence rate was low regardless of the angle at which the tuyere pairs faced each other. This is because the linear distance between the tuyere outlets was small, and the bubbles expanding at the tuyere outlets came into contact with each other, so that the molten steel droplets were not involved and fine bubbles were not generated.

一方、羽口出口間の直線距離が0.08〜0.29mでは、羽口対の向かい合う角度が70〜120°において、微細気泡存在率が著しく増加した。これは、69°以下では気泡同士の衝突角度が小さく、衝突の界面で溶鋼滴を巻き込まず、微細な気泡が生成されなかったためであり、121°以上では気泡が壁面に常に接触してしまい、生成した微細気泡が大径の気泡に吸収されてしまうためである。   On the other hand, when the straight-line distance between the tuyere outlets was 0.08 to 0.29 m, the microbubble abundance significantly increased when the tuyere pairs faced each other at an angle of 70 to 120 °. This is because at 69 ° or less, the collision angle between the bubbles was small, the molten steel droplet was not involved at the interface of the collision, and fine bubbles were not generated, and at 121 ° or more, the bubbles always contacted the wall surface, This is because the generated fine bubbles are absorbed by the large-diameter bubbles.

また、羽口出口間の直線距離が0.30m以上では、羽口対の向かい合う角度によらず、微細気泡存在率は低位であった。これは、羽口出口間の直線距離が大きく、気泡同士の衝突が生じなくなったためである。   When the straight-line distance between the tuyere outlets was 0.30 m or more, the microbubble abundance ratio was low regardless of the angle at which the tuyere pairs faced each other. This is because the straight-line distance between the tuyere outlets is large, and no collision between bubbles occurs.

この時の、ガス吹き込み前のN濃度から吹き込み後のN濃度を減じた脱窒量と隣接する羽口対の向かい合う角度との関係を図1(b)に示す。微細気泡存在率が高位である羽口出口間の直線距離が0.08〜0.29mであり羽口対の向かい合う角度が70〜120°において、脱窒量も高位になった。これは、微細気泡によって脱窒反応が生じる界面積が増加したためである。   FIG. 1B shows the relationship between the denitrification amount obtained by subtracting the N concentration after the gas injection from the N concentration before the gas injection and the angle at which the adjacent tuyere pairs face each other. When the linear distance between the tuyere outlets where the fine bubble abundance ratio was high was 0.08 to 0.29 m and the angle at which the tuyere pairs faced was 70 to 120 °, the denitrification amount also became high. This is because the interface area where the denitrification reaction occurs due to the fine bubbles has increased.

図2(a)には、微細気泡存在率と羽口出口間の直線距離との関係を示す。前述のように、羽口対の向かい合う角度が70〜120°であり、羽口出口間の直線距離が0.08〜0.29mにおいて、微細気泡存在率が高位であり、羽口出口間の直線距離が0.08〜0.20mでは微細気泡存在率は特に高くなった。   FIG. 2A shows the relationship between the fine bubble existence rate and the linear distance between the tuyere outlets. As described above, the facing angle of the tuyere pair is 70 to 120 °, the linear distance between the tuyere outlets is 0.08 to 0.29 m, and the fine bubble existence rate is high, When the linear distance was 0.08 to 0.20 m, the fine bubble existence ratio was particularly high.

図2(b)には、脱窒量と羽口出口間の直線距離との関係を示す。脱窒量は、微細気泡存在率が高い羽口対の向かい合う角度が70〜120°であり羽口出口間の直線距離が0.08〜0.20mにおいて大きくなり、特に微細気泡存在率が高くなる羽口対の向かい合う角度が70〜120°であり羽口出口間の直線距離が0.08〜0.20mで特に大きくなった。   FIG. 2B shows the relationship between the amount of denitrification and the linear distance between the tuyere outlets. The amount of denitrification increases when the tuyere pair with a high microbubble abundance ratio is 70 to 120 ° and the linear distance between the tuyere outlets is 0.08 to 0.20 m. The angle at which the tuyere pairs face each other was 70 to 120 °, and the linear distance between the tuyere outlets was particularly large at 0.08 to 0.20 m.

本発明は、このような検討の結果なされたもので、その要旨は、下記のRH式真空脱ガス処理装置にある。
(1)不活性ガスを吹き込む互いに隣接する2つの羽口を1対とした羽口対の羽口出口間の直線距離が0.08〜0.29mであり、羽口間の向かい合う角度が70〜120°である羽口対が1組以上設置された浸漬管を有することを特徴とするRH式真空脱ガス処理装置。
(2)前記羽口出口間の直線距離が0.08〜0.20mであることを特徴とする上記(1)に記載のRH式真空脱ガス処理装置。
The present invention has been made as a result of such studies, and its gist lies in the following RH type vacuum degassing apparatus.
(1) The straight-line distance between the tuyere outlets of a pair of tuyere pairs adjacent to each other into which an inert gas is blown is 0.08 to 0.29 m, and the facing angle between the tuyeres is 70. An RH-type vacuum degassing apparatus comprising a dip tube provided with one or more tuyere pairs of up to 120 °.
(2) The RH type vacuum degassing apparatus according to the above (1), wherein a linear distance between the tuyere outlets is 0.08 to 0.20 m.

本発明によれば、装置の大幅な改造を不要とし、補修や交換の頻度を抑えて環流ガスの気泡を微細化し、脱ガス反応を促進することが可能なRH式真空脱ガス処理装置を提供することができる。   According to the present invention, there is provided an RH-type vacuum degassing apparatus capable of accelerating the degassing reaction by reducing the frequency of repair and replacement, minimizing bubbles of recirculation gas, and obviating the need for extensive remodeling of the apparatus. can do.

微細気泡存在率及び脱窒量と、隣接する羽口対の向かい合う角度との関係を示す図である。It is a figure which shows the relationship between the microbubble presence ratio and the amount of denitrification, and the angle which the adjacent tuyere pair faces. 微細気泡存在率及び脱窒量と、羽口出口間の直線距離との関係を示す図である。It is a figure which shows the relationship between the fine bubble existence rate and denitrification amount, and the linear distance between tuyere exits. 本発明のRH式真空脱ガス処理装置の概略構成例を示す図である。It is a figure which shows the example of a schematic structure of the RH type vacuum degassing apparatus of this invention.

以下、本発明のRH式真空脱ガス処理装置について、溶鋼の二次精錬において用いる場合を例として説明する。   Hereinafter, the RH type vacuum degassing apparatus of the present invention will be described by taking as an example a case where the apparatus is used in secondary refining of molten steel.

(1)装置構成
図3は、本発明のRH式真空脱ガス処理装置の概略構成例を示す図であり、図3(a)は図3(b)のA−A矢視図であり、図3(b)は縦断面図である。図3(b)に示すように、RH式真空脱ガス処理装置は、真空槽1と、その底部に設けられた上昇管2と下降管3とからなる。上昇管2は環流ガスを吹き込む羽口4を有する。真空槽1の上部は真空排気装置5に接続されている。溶鋼の精錬処理を行う際は、上昇管2と下降管3とを取鍋6内の溶鋼7に浸漬する。取鍋内の溶鋼7は表面をスラグ8が覆っている。
(1) Apparatus configuration FIG. 3 is a view showing a schematic configuration example of an RH type vacuum degassing apparatus of the present invention, and FIG. FIG. 3B is a longitudinal sectional view. As shown in FIG. 3 (b), the RH type vacuum degassing apparatus includes a vacuum tank 1, and an ascending pipe 2 and a descending pipe 3 provided at the bottom thereof. The riser 2 has a tuyere 4 into which a reflux gas is blown. The upper part of the vacuum chamber 1 is connected to a vacuum exhaust device 5. When performing the refining process of molten steel, the riser pipe 2 and the descender pipe 3 are immersed in the molten steel 7 in the ladle 6. Slag 8 covers the surface of molten steel 7 in the ladle.

本発明のRH式真空脱ガス処理装置は、環流ガスを吹き込む羽口以外の装置構成は全て通常のRH式真空脱ガス処理装置と同じで良い。ただし、環流ガスを吹き込む羽口は本発明の規定を満たす必要がある。すなわち、隣接する羽口対の羽口出口間の直線距離(対となる羽口の中心を結ぶ直線距離)が0.08〜0.29mであり、向かい合う角度が70〜120°である必要がある。また、前述の実験結果からわかるとおり、隣接する羽口対の羽口出口間の直線距離は0.08〜0.20mであることがより望ましい。   The RH type vacuum degassing apparatus of the present invention may be the same as a normal RH type vacuum degassing apparatus except for the tuyere for injecting the reflux gas. However, the tuyere into which the reflux gas is blown must satisfy the requirements of the present invention. That is, the linear distance between the tuyere exits of the adjacent tuyere pairs (the linear distance connecting the centers of the paired tuyere) must be 0.08 to 0.29 m, and the facing angle must be 70 to 120 °. is there. Further, as can be seen from the above experimental results, it is more desirable that the straight line distance between the tuyere exits of adjacent tuyere pairs is 0.08 to 0.20 m.

羽口の数は8〜24孔(4〜12の羽口対)とすることが望ましい。羽口の数が8孔より少ない場合、浸漬管内での環流ガスの偏在が生じやすくなり、環流量低下による混合不良を引き起こし、処理効率が低下する場合がある。一方、羽口の数が24孔より多くなると、羽口の配管内での環流ガスの圧損が大きくなり、精錬処理に必要なガス流量を吹き込めなくなる場合があり、また、隣接する羽口対からの環流ガスの影響を受ける可能性がある。   The number of tuyeres is desirably 8 to 24 holes (4 to 12 tuyere pairs). If the number of tuyeres is less than 8, the uneven distribution of the circulating gas in the immersion tube is likely to occur, causing poor mixing due to a decrease in the circulating flow rate, which may lower the processing efficiency. On the other hand, if the number of tuyeres is more than 24 holes, the pressure loss of the reflux gas in the tuyere piping will increase, and the gas flow required for the refining process may not be able to be blown. May be affected by the reflux gas.

羽口の内径は2〜7mmとすることが望ましい。羽口の内径が2mmより小さい場合、羽口配管内での環流ガスの圧損が大きくなり、精錬処理に必要なガス流量を吹き込めなくなる場合がある。羽口の内径が7mmより大きい場合、羽口への溶鋼の侵入が生じ、羽口を溶損させてしまう場合がある。   The inner diameter of the tuyere is desirably 2 to 7 mm. If the inner diameter of the tuyere is smaller than 2 mm, the pressure loss of the circulating gas in the tuyere pipe becomes large, and the gas flow required for the refining process may not be able to be blown. If the inner diameter of the tuyere is larger than 7 mm, molten steel may enter the tuyere, causing the tuyere to melt.

(2)処理方法
転炉で脱炭処理を行い、取鍋に出鋼した後、取鍋を図3(b)に示すRH式真空脱ガス処理装置へ移送し、精錬処理を開始する。なお、出鋼後の脱ガス処理前にスラグ中のFeOおよびMnOの還元や脱硫を目的とした取鍋内でのガスバブリングによる精錬を行っても良い。
浸漬管(上昇管2および下降管3)を取鍋6内の溶鋼7に浸漬すると同時に環流ガスを羽口4を通じて上昇管2内に吹き込み、さらに真空排気により真空槽1内を減圧し、真空槽1内に溶鋼7を吸引する。環流ガスは例えばArガスなどの不活性ガスを用いる。
(2) Treatment method After the decarburization treatment is performed in the converter and the steel is output to the ladle, the ladle is transferred to the RH type vacuum degassing apparatus shown in FIG. 3 (b), and the refining treatment is started. Refining by gas bubbling in a ladle for the purpose of reducing and desulfurizing FeO and MnO in the slag may be performed before degassing after tapping.
The immersion tubes (the riser tube 2 and the downcomer tube 3) are immersed in the molten steel 7 in the ladle 6, and at the same time, the reflux gas is blown into the riser tube 2 through the tuyere 4, and the inside of the vacuum tank 1 is further depressurized by evacuation. The molten steel 7 is sucked into the tank 1. As the reflux gas, for example, an inert gas such as an Ar gas is used.

環流ガスの流量は溶鋼トン当たり4.0〜14.0NL/(t・min)の範囲が望ましい。環流ガス流量が4.0NL/(t・min)未満となると、溶鋼の環流量が不十分となって精錬処理効率が低下し、環流ガス流量が14.0NL/(t・min)を超えると、環流ガスの気泡が破泡する際に溶鋼の飛散量が増加してしまう。本発明のRH式真空脱ガス処理装置を用いる場合、微細な気泡の個数を高位に保つ観点から、7.0NL/(t・min)以上となるようにすることがより望ましい。   The flow rate of the reflux gas is preferably in the range of 4.0 to 14.0 NL / (t · min) per ton of molten steel. When the recirculation gas flow rate is less than 4.0 NL / (t · min), the recirculation flow rate of the molten steel becomes insufficient and the smelting treatment efficiency decreases, and when the recirculation gas flow rate exceeds 14.0 NL / (t · min). In addition, when bubbles of the reflux gas break, the amount of scattered molten steel increases. When the RH-type vacuum degassing apparatus of the present invention is used, it is more preferable to set the number to 7.0 NL / (t · min) or more from the viewpoint of keeping the number of fine bubbles high.

真空槽内の圧力は67〜13300Paの範囲が望ましい。圧力が67Pa未満となると、真空引きするまでに多くの時間がかかり過ぎるとともに環流ガスの気泡が破泡する際に溶鋼の飛散量が増加する。一方、真空槽内の圧力が13300Paを超えて大きくなると環流量が不十分となって精錬処理効率が低下してしまう。本発明のRH式真空脱ガス処理装置を用いる場合、脱ガス反応により除去したガス元素を真空槽外へと速やかに排出するためには、脱ガス反応を生じさせている期間において67〜3990Paとすることがより望ましい。   The pressure in the vacuum chamber is desirably in the range of 67 to 13300 Pa. If the pressure is less than 67 Pa, it takes too much time to evacuate, and the amount of molten steel scattered when bubbles of the reflux gas break. On the other hand, when the pressure in the vacuum chamber exceeds 13300 Pa, the annular flow rate becomes insufficient, and the smelting process efficiency decreases. When using the RH-type vacuum degassing apparatus of the present invention, in order to quickly discharge the gas element removed by the degassing reaction to the outside of the vacuum chamber, it is required to be 67 to 3990 Pa during the period of the degassing reaction. It is more desirable to do.

本発明のRH式真空脱ガス処理装置を用いる場合でも、通常のRH式真空脱ガス処理装置と同様に、脱ガスに加えて、合金の添加による成分調整、溶鋼中に懸濁している微細な介在物の浮上除去、真空槽内の溶鋼上方に設置したランスからのO2ガス吹き付けによるAl酸化発熱を利用した昇温、脱硫フラックスの添加による脱硫、等といった精錬処理を行うことができる。 In the case of using the RH type vacuum degassing apparatus of the present invention, in addition to degassing, component adjustment by addition of an alloy, fine fine particles suspended in molten steel are performed similarly to a normal RH type vacuum degassing apparatus. Refining processes such as floating removal of inclusions, temperature rise utilizing Al oxidation heat generated by blowing O 2 gas from a lance installed above molten steel in a vacuum chamber, desulfurization by addition of a desulfurization flux, and the like can be performed.

以下、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Hereinafter, an example of the present invention will be described, but the conditions in the example are one condition example adopted to confirm the operability and effects of the present invention, and the present invention is limited to this one condition example. It is not something to be done. The present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

転炉で脱炭処理を行った後、取鍋に溶鋼300トンを出鋼した。出鋼の際、脱酸元素およびフラックスを添加し、溶鋼を取鍋ごとRH式真空脱ガス処理装置まで移送した。移送後、取鍋内の溶鋼に上昇管ならびに下降管を浸漬し、羽口から環流ガス(Arガス)を吹き込みながら、真空槽内を真空排気し、脱ガス処理を開始した。真空槽内の圧力は67〜6700Pa、環流ガス流量は2000〜3000NL/minとした。脱ガス処理は15〜25分間行い、処理開始時および処理直後のサンプルを採取し、H濃度およびN濃度の変化から、脱ガス能力を評価した。   After the decarburization treatment was performed in the converter, 300 tons of molten steel were tapped into the ladle. At the time of tapping, a deoxidizing element and a flux were added, and the molten steel was transferred to the RH-type vacuum degassing apparatus together with the ladle. After the transfer, the ascending pipe and the descending pipe were immersed in the molten steel in the ladle, and while the reflux gas (Ar gas) was being blown from the tuyere, the inside of the vacuum chamber was evacuated to start degassing. The pressure in the vacuum chamber was 67 to 6700 Pa, and the reflux gas flow rate was 2000 to 3000 NL / min. The degassing process was performed for 15 to 25 minutes, and samples were taken at the start of the process and immediately after the process, and the degassing ability was evaluated based on changes in the H concentration and the N concentration.

処理前後でのH濃度およびN濃度の変化を表1に示す。   Table 1 shows changes in H concentration and N concentration before and after the treatment.

Figure 0006638538
Figure 0006638538

本発明例のRH式真空脱ガス処理装置である試験No.1〜4では、H濃度は1.5ppm、N濃度は0.0030質量%以下まで低減することができた。一方、試験No.5では羽口対の羽口出口間の直線距離が小さく、気泡が羽口を出た直後に合体してしまい、微細な気泡が生成しなかったことにより、処理後のH濃度およびN濃度は高くなったと考えられる。試験No.6では、羽口対の羽口出口間の直線距離が大きく、気泡同士が衝突せず、微細な気泡が生成しなかったことにより、処理後のH濃度およびN濃度は高くなったと考えられる。試験No.7では、羽口対の向かい合う角度が小さく、気泡同士が衝突した際に溶鋼滴を巻き込むことなく合体し、微細な気泡が生成しなかったことにより処理後のH濃度およびN濃度は高くなったと考えられる。試験No.8では、羽口対の向かい合う角度が大きく、気泡が耐火物と接触する面積が大きくなって、微細気泡が生成しなかったことにより、処理後のH濃度およびN濃度は高くなったと考えられる。   Test No. 1 which is an RH type vacuum degassing apparatus of the present invention example In Examples 1 to 4, the H concentration was reduced to 1.5 ppm and the N concentration was reduced to 0.0030% by mass or less. On the other hand, Test No. In No. 5, the straight line distance between the tuyere outlets of the tuyere pair was small, and the bubbles merged immediately after leaving the tuyere, and fine bubbles were not generated. It is considered higher. Test No. In No. 6, it is considered that the H concentration and the N concentration after the treatment increased because the linear distance between the tuyere exits of the tuyere pair was large, the bubbles did not collide with each other, and no fine bubbles were generated. Test No. In No. 7, the angle at which the tuyere pairs face each other was small, and when the bubbles collided, they coalesced without involving the molten steel droplet, and the H concentration and the N concentration after the treatment increased because fine bubbles were not generated. Conceivable. Test No. In No. 8, it is considered that the H concentration and the N concentration after the treatment were increased because the facing angle of the tuyere pair was large, the area where the bubbles contacted the refractory became large, and no fine bubbles were generated.

1 真空槽
2 上昇管
3 下降管
4 羽口
5 真空排気装置
6 取鍋
7 溶鋼
8 スラグ
DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Rise pipe 3 Down pipe 4 Tuyere 5 Vacuum exhaust device 6 Ladle 7 Molten steel 8 Slag

Claims (2)

不活性ガスを吹き込む互いに隣接する2つの羽口を1対とした羽口対の羽口出口間の直線距離が0.08〜0.29mであり、羽口間の向かい合う角度が70〜120°である羽口対が1組以上設置された浸漬管を有することを特徴とするRH式真空脱ガス処理装置。   The straight-line distance between the tuyere outlets of two tuyere pairs adjacent to each other into which an inert gas is blown is 0.08 to 0.29 m, and the facing angle between the tuyeres is 70 to 120 °. An RH type vacuum degassing apparatus characterized by having a dip tube provided with at least one tuyere pair. 前記羽口対の羽口出口間の直線距離が0.08〜0.20mであることを特徴とする請求項1に記載のRH式真空脱ガス処理装置。   The RH type vacuum degassing apparatus according to claim 1, wherein a straight distance between the tuyere outlets of the tuyere pair is 0.08 to 0.20m.
JP2016085404A 2016-04-21 2016-04-21 RH type vacuum degassing equipment Active JP6638538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085404A JP6638538B2 (en) 2016-04-21 2016-04-21 RH type vacuum degassing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085404A JP6638538B2 (en) 2016-04-21 2016-04-21 RH type vacuum degassing equipment

Publications (2)

Publication Number Publication Date
JP2017193764A JP2017193764A (en) 2017-10-26
JP6638538B2 true JP6638538B2 (en) 2020-01-29

Family

ID=60154630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085404A Active JP6638538B2 (en) 2016-04-21 2016-04-21 RH type vacuum degassing equipment

Country Status (1)

Country Link
JP (1) JP6638538B2 (en)

Also Published As

Publication number Publication date
JP2017193764A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP5904237B2 (en) Melting method of high nitrogen steel
JP2020002425A (en) Vacuum degassing apparatus and method for refining molten steel
JP5365241B2 (en) Molten steel refining equipment
JP2010138446A (en) METHOD FOR PREVENTING NITROGEN ABSORPTION OF Cr-CONTAINING MOLTEN STEEL
JP6638538B2 (en) RH type vacuum degassing equipment
JP7265136B2 (en) Melting method of ultra-low nitrogen steel
JP7180820B1 (en) Molten steel refining method
JP4360270B2 (en) Method for refining molten steel
JP2017075399A (en) Top-blown lance, vacuum degasser and vacuum degassing treatment method
JP6281708B2 (en) Desulfurization method for molten steel
JP6358039B2 (en) Desulfurization method for molten steel
JP6372541B2 (en) Vacuum degassing apparatus and vacuum degassing treatment method
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP2007092159A (en) Method for producing extremely low carbon steel excellent in cleanliness
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
WO2022270225A1 (en) Method for refining molten steel
JP2002180124A (en) Method for refining molten metal
JP7031499B2 (en) Refining method of molten steel
JP2016040400A (en) Molten steel decompression refining method
JP6435983B2 (en) Method for refining molten steel
JP6790796B2 (en) Vacuum degassing equipment
JP4470673B2 (en) Vacuum decarburization refining method for molten steel
JP4466287B2 (en) Method of refining molten steel under reduced pressure and top blowing lance for refining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R151 Written notification of patent or utility model registration

Ref document number: 6638538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151