JP2017071074A - Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate - Google Patents

Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate Download PDF

Info

Publication number
JP2017071074A
JP2017071074A JP2015197650A JP2015197650A JP2017071074A JP 2017071074 A JP2017071074 A JP 2017071074A JP 2015197650 A JP2015197650 A JP 2015197650A JP 2015197650 A JP2015197650 A JP 2015197650A JP 2017071074 A JP2017071074 A JP 2017071074A
Authority
JP
Japan
Prior art keywords
single crystal
crystal substrate
processed
condensing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015197650A
Other languages
Japanese (ja)
Inventor
鈴木 秀樹
Hideki Suzuki
秀樹 鈴木
信裕 篠塚
Nobuhiro Shinozuka
信裕 篠塚
利香 松尾
Rika Matsuo
利香 松尾
順一 池野
Junichi Ikeno
順一 池野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd, Saitama University NUC filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2015197650A priority Critical patent/JP2017071074A/en
Publication of JP2017071074A publication Critical patent/JP2017071074A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an internal processing layer formation single crystal substrate for obtaining, from a single crystal substrate, one with smaller dimensions than those of the single crystal substrate, and a method for manufacturing the single crystal substrate.SOLUTION: A method for manufacturing an internal processing layer formation single crystal substrate is provided with: a first process of arranging laser condensation means for condensing a laser beam in a non-contact manner on a surface 20t to be irradiated of a processing object single crystal substrate 10; and a second process of forming a processing layer 21 with reduced breaking strength around a slotting object part 24 by changing a condensation position of the laser beam in a peripheral direction of the slotting object part 24 of the processing object single crystal substrate 10 while condensing the laser beam into the processing object single crystal substrate 10 by the laser condensation means.SELECTED DRAWING: Figure 2

Description

本発明は、単結晶基板の表面から単結晶基板内部にレーザ光を集光することで、単結晶基板内部に加工層を形成した内部加工層形成単結晶基板の製造方法、および、単結晶基板の製造方法に関する。   The present invention relates to a method for producing an internally processed layer-forming single crystal substrate in which a processed layer is formed inside a single crystal substrate by condensing laser light from the surface of the single crystal substrate into the single crystal substrate, and the single crystal substrate It relates to the manufacturing method.

従来、単結晶のシリコン(Si)ウエハに代表される半導体ウエハを製造する場合には、石英るつぼ内に溶融されたシリコン融液から凝固した円柱形のインゴットを適切な長さのブロックに切断して、その周縁部を目標の直径になるよう研削し、その後、ブロック化されたインゴットをワイヤソーによりウエハ形にスライスして半導体ウエハを製造するようにしている。   Conventionally, when manufacturing a semiconductor wafer typified by a single crystal silicon (Si) wafer, a cylindrical ingot solidified from a silicon melt melted in a quartz crucible is cut into blocks of an appropriate length. Then, the peripheral edge is ground to a target diameter, and then the block-shaped ingot is sliced into a wafer shape with a wire saw to manufacture a semiconductor wafer.

このようにして製造された半導体ウエハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片化が図られることにより、厚さが約750μmから100μm以下、例えば75μmや50μm程度に調整される。   The semiconductor wafer thus manufactured is subjected to various processes such as formation of a circuit pattern in the previous process in order and used for the subsequent process, and the back surface is back-ground processed in the subsequent process to achieve thinning. Accordingly, the thickness is adjusted to about 750 μm to 100 μm or less, for example, about 75 μm or 50 μm.

従来における半導体ウエハは、以上のように製造され、インゴットがワイヤソーにより切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となるので、厚さ0.1mm以下の薄い半導体ウエハを製造することが非常に困難であり、製品率も向上しないという問題がある。   A conventional semiconductor wafer is manufactured as described above, and an ingot is cut by a wire saw, and a cutting allowance larger than the thickness of the wire saw is required for cutting, so a thin semiconductor wafer having a thickness of 0.1 mm or less It is very difficult to manufacture the product, and the product rate is not improved.

一方、集光レンズでレーザ光の集光点をインゴット(ウエハ)の内部に合わせ、そのレーザ光でインゴットを相対的に走査することにより、インゴットの内部に多光子吸収による面状の改質層(加工層)を形成し、この改質層を剥離面としてインゴットの一部を基板として剥離することが開示されている(例えば、特許文献1参照)。   On the other hand, the focusing point of the laser beam is adjusted to the inside of the ingot (wafer) with the condenser lens, and the ingot is relatively scanned with the laser beam, so that a planar modified layer by multiphoton absorption is inside the ingot. It is disclosed that a (processed layer) is formed, and a part of the ingot is peeled off using the modified layer as a peeling surface (see, for example, Patent Document 1).

なお、この明細書中においては、別記する場合を除いてウエハのことを適宜に基板と称する。   In this specification, a wafer is appropriately referred to as a substrate unless otherwise specified.

特開2011−167718号公報JP2011-167718A

ところで、単結晶基板の寸法が使用予定の寸法よりも大きい場合、この単結晶基板を小さい寸法にして再利用することができれば効率的である。   By the way, when the size of the single crystal substrate is larger than the size to be used, it is efficient if the single crystal substrate can be reused with a small size.

本発明は、上記課題に鑑み、単結晶基板からそれよりも小さい寸法の単結晶基板を得ることを可能にする内部加工層形成単結晶基板の製造方法、および、単結晶基板の製造方法を提供することを課題とする。   In view of the above-mentioned problems, the present invention provides a method for manufacturing an internally processed layer-forming single crystal substrate and a method for manufacturing a single crystal substrate, which make it possible to obtain a single crystal substrate having a smaller dimension from a single crystal substrate. The task is to do.

上記課題を解決するための本発明の一態様によれば、レーザ光を集光するレーザ集光手段を、加工対象単結晶基板の被照射面上に非接触に配置する第1工程と、前記レーザ集光手段により前記加工対象単結晶基板内部にレーザ光を集光しつつ、レーザ光の集光位置を前記加工対象単結晶基板のくり抜き対象部の周囲方向に変化させることで、破断強度が低下した加工層を前記くり抜き対象部の周囲に形成する第2工程と、を備えた内部加工層形成単結晶基板の製造方法が提供される。   According to one aspect of the present invention for solving the above-described problem, a first step of disposing laser condensing means for condensing laser light in a non-contact manner on an irradiated surface of a processing target single crystal substrate; While condensing laser light inside the single crystal substrate to be processed by the laser condensing means, the breaking strength is changed by changing the condensing position of the laser light in the peripheral direction of the cut target portion of the single crystal substrate to be processed. And a second step of forming a lowered processed layer around the cut-out target portion.

本発明の別の態様によれば、レーザ光を集光するレーザ集光手段を、加工対象単結晶基板の被照射面上に非接触に配置する第1工程と、前記レーザ集光手段により前記加工対象単結晶基板内部にレーザ光を集光しつつ、レーザ光の集光位置を前記加工対象単結晶基板のくり抜き対象部の周囲方向に変化させることで、破断強度が低下した加工層を前記くり抜き対象部の周囲に形成する第2工程と、前記加工層から破断させて前記くり抜き対象部をくり抜く第3工程と、を備えたことを特徴とする単結晶基板の製造方法が提供される。   According to another aspect of the present invention, a first step of disposing laser condensing means for condensing laser light in a non-contact manner on an irradiated surface of a processing target single crystal substrate, and the laser condensing means While condensing the laser beam inside the single crystal substrate to be processed, changing the laser beam condensing position in the peripheral direction of the cut target portion of the single crystal substrate to be processed, the processed layer having reduced fracture strength There is provided a method for producing a single crystal substrate, comprising: a second step of forming around a hollow target portion; and a third step of breaking the hollow target portion by breaking the processed layer.

本発明によれば、単結晶基板からそれよりも小さい寸法の単結晶基板を得ることを可能にする内部加工層形成単結晶基板の製造方法、および、単結晶基板の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing an internally processed layer-forming single crystal substrate and a method for manufacturing a single crystal substrate, which makes it possible to obtain a single crystal substrate having a smaller dimension from the single crystal substrate. it can.

本発明の一実施形態で内部加工層形成単結晶基板を製造することを説明する模式的な側面図である。It is a typical side view explaining manufacturing an internal processing layer formation single crystal substrate by one embodiment of the present invention. (a)から(c)は、本発明の一実施形態で内部加工層形成単結晶基板を製造するプロセスを説明する模式的な側面図である。(A)-(c) is a typical side view explaining the process which manufactures an internal-working layer formation single crystal substrate by one Embodiment of this invention. (a)および(b)は、それぞれ、本発明の一実施形態で内部加工層が形成されていくことを示す模式的な側面断面図である。(A) And (b) is a typical sectional side view which shows that an internal process layer is formed in one Embodiment of this invention, respectively. 本発明の一実施形態に係る内部加工層形成単結晶基板から単結晶基板をくり抜くことを説明する模式的な斜視図である。It is a typical perspective view explaining hollowing out a single crystal substrate from an internal processing layer formation single crystal substrate concerning one embodiment of the present invention. 本発明の一実施形態に係る内部加工層形成単結晶基板から単結晶基板をくり抜くことの変形例を説明する模式的な斜視図である。It is a typical perspective view explaining the modification of hollowing out a single crystal substrate from the internal-working layer formation single crystal substrate which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内部加工層形成単結晶基板から単結晶基板をくり抜くことの変形例を説明する模式的な斜視図である。It is a typical perspective view explaining the modification of hollowing out a single crystal substrate from the internal-working layer formation single crystal substrate which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内部加工層形成単結晶基板から単結晶基板をくり抜くことの変形例を説明する模式的な斜視図である。It is a typical perspective view explaining the modification of hollowing out a single crystal substrate from the internal-working layer formation single crystal substrate which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内部加工層形成単結晶基板の変形例で、複数の単結晶基板を得るための加工状態を示す模式的な平面図である。FIG. 6 is a schematic plan view showing a processing state for obtaining a plurality of single crystal substrates in a modified example of the internal processing layer forming single crystal substrate according to one embodiment of the present invention. 実験例の加工条件1で得られた内部加工層形成単結晶部材の断面を示す写真図である。It is a photograph figure which shows the cross section of the internal processing layer formation single crystal member obtained on the process conditions 1 of the experiment example. 実験例の加工条件4で得られた内部加工層形成単結晶部材の断面を示す写真図である。It is a photograph figure which shows the cross section of the internal processing layer formation single crystal member obtained on the process conditions 4 of the experiment example. 実験例の加工条件3と同じ条件でレーザ光を照射し、くり抜いて得られたウエハを示す平面図である。It is a top view which shows the wafer obtained by irradiating a laser beam on the same conditions as the process conditions 3 of an experiment example, and cutting out.

以下、添付図面を参照して、本発明の実施の形態について説明する。以下の説明では、すでに説明したものと同一または類似の構成要素には同一または類似の符号を付し、その詳細な説明を適宜省略している。また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の実施の形態は、用紙を逸脱しない範囲内で種々変更して実施できる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, the same or similar components as those already described are denoted by the same or similar reference numerals, and detailed description thereof is omitted as appropriate. The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not something specific. The embodiment of the present invention can be implemented with various modifications without departing from the paper.

図1は、本発明の一実施形態(以下、本実施形態という)で内部加工層形成単結晶基板を製造することを説明する模式的な側面図である。図2(a)から(c)は、本実施形態で内部加工層形成単結晶基板を製造するプロセスを説明する模式定な側面図である。図3(a)および(b)は、それぞれ、本実施形態で内部加工層が形成されていくことを示す模式的な側面断面図である。図4は、本実施形態に係る内部加工層形成単結晶基板から単結晶基板をくり抜くことを説明する模式的な斜視図である。図5は、本実施形態に係る内部加工層形成単結晶基板から単結晶基板をくり抜くことの変形例を説明する模式的な斜視図である。図6は、本実施形態に係る内部加工層形成単結晶基板から単結晶基板をくり抜くことの変形例を説明する模式的な斜視図である。図7は、本実施形態に係る内部加工層形成単結晶基板から単結晶基板をくり抜くことの変形例を説明する模式的な斜視図である。図8は、本実施形態に係る内部加工層形成単結晶基板の変形例で、複数の単結晶基板を得るための加工状態を示す模式的な平面図である。図9は、実験例の加工条件1で得られた内部加工層形成単結晶部材の断面を示す写真図である。図10は、実験例の加工条件4で得られた内部加工層形成単結晶部材の断面を示す写真図である。   FIG. 1 is a schematic side view for explaining the production of an internally processed layer-formed single crystal substrate according to an embodiment of the present invention (hereinafter referred to as this embodiment). FIGS. 2A to 2C are schematic side views for explaining a process for manufacturing an internal processed layer-formed single crystal substrate in the present embodiment. FIGS. 3A and 3B are schematic side cross-sectional views showing that the internal processing layer is formed in the present embodiment. FIG. 4 is a schematic perspective view for explaining the hollowing out of the single crystal substrate from the internally processed layer-forming single crystal substrate according to the present embodiment. FIG. 5 is a schematic perspective view illustrating a modified example of hollowing out the single crystal substrate from the single-crystal substrate with the internal processing layer according to the present embodiment. FIG. 6 is a schematic perspective view for explaining a modified example of hollowing out the single crystal substrate from the single-crystal substrate with internal processing layer according to the present embodiment. FIG. 7 is a schematic perspective view illustrating a modified example of hollowing out the single crystal substrate from the single crystal substrate with the inner processed layer according to the present embodiment. FIG. 8 is a schematic plan view showing a processing state for obtaining a plurality of single crystal substrates, which is a modification of the internal crystal layer forming single crystal substrate according to the present embodiment. FIG. 9 is a photographic view showing a cross section of the internally processed layer-forming single crystal member obtained under processing condition 1 of the experimental example. FIG. 10 is a photographic diagram showing a cross section of the internally processed layer-forming single crystal member obtained under processing condition 4 of the experimental example.

図1〜図5に示すように、本実施形態に係る内部加工層形成単結晶基板20は、パルス状のレーザ光Bを加工対象単結晶基板10の被照射面20tから照射し単結晶基板内部で集光することで、この被照射面20tから離間しかつこの被照射面20tから基板の厚さ方向に円筒状(図4参照)またはテーパ状(円錐台状。図5参照)に広がる加工層21と、その加工層21の周囲外側および周囲内側に隣接する非加工部22とを有する。この非加工部22は、加工層21の内側であるくり抜き対象部24を有する。   As shown in FIG. 1 to FIG. 5, the internal crystallized layer forming single crystal substrate 20 according to the present embodiment irradiates the pulsed laser beam B from the irradiated surface 20 t of the single crystal substrate 10 to be processed, and the inside of the single crystal substrate. By condensing in this manner, the processing is separated from the irradiated surface 20t and spreads from the irradiated surface 20t in the thickness direction of the substrate in a cylindrical shape (see FIG. 4) or a tapered shape (conical frustum shape, see FIG. 5). It has the layer 21 and the non-processed part 22 adjacent to the outer periphery of the process layer 21, and the periphery inner side. The non-processed portion 22 has a cutout target portion 24 that is inside the processed layer 21.

加工層21には、レーザ光Bの集光によって形成された加工痕21cが加工層21に、一定の間隔で規則的に配列されている。   In the processing layer 21, processing marks 21 c formed by condensing the laser beam B are regularly arranged in the processing layer 21 at regular intervals.

本実施形態では、以下のようにして内部加工層形成単結晶基板20を製造する。レーザ集光手段としては、例えば図1に示すレーザ加工装置12mを配置する。このレーザ加工装置12mは、レーザ発振器、集光器を順次備え、またXYステージおよび回転ステージを備えている。また、集光器は複数のレンズが組み合わされた組レンズとなっており、集光性が高くされている。   In the present embodiment, the internally processed layer-formed single crystal substrate 20 is manufactured as follows. As the laser condensing means, for example, a laser processing apparatus 12m shown in FIG. 1 is arranged. This laser processing apparatus 12m is sequentially provided with a laser oscillator and a condenser, and further includes an XY stage and a rotary stage. Further, the condenser is a combined lens in which a plurality of lenses are combined, and the light condensing performance is enhanced.

ここで、Z方向は、レーザ加工装置12mにおけるレーザ光の集光方向であり、かつ、加工対象単結晶基板10の厚み方向となっている。そしてX方向はZ方向に直交する方向であり、加工対象単結晶基板10の半径方向となる。また加工対象単結晶基板10は、例えば円盤状のシリコンウエハである。加工対象単結晶基板10を保持する基板ホルダーは回転可能であり、加工対象単結晶基板10をその中心軸まわりに一定の回転速度で回転差あせることが可能となっている。   Here, the Z direction is the laser beam condensing direction in the laser processing apparatus 12 m and the thickness direction of the single crystal substrate 10 to be processed. The X direction is a direction orthogonal to the Z direction and is the radial direction of the processing target single crystal substrate 10. The processing target single crystal substrate 10 is, for example, a disk-shaped silicon wafer. The substrate holder that holds the single crystal substrate 10 to be processed can be rotated, and the single crystal substrate 10 to be processed can be rotated around the central axis at a constant rotation speed.

XYステージで移動させるものは加工単結晶基板10であるが、レーザ光の照射側を移動させることも可能である。   What is moved on the XY stage is the processed single crystal substrate 10, but it is also possible to move the laser light irradiation side.

(内部加工層単結晶基板の製造方法)
内部加工層単結晶基板20を製造するには、図1に示すように、レーザ加工装置12mを、加工対象単結晶基板10の被照射面上に非接触に配置する工程を行う(第1工程)。なお、本明細書で加工対象単結晶基板とは、3次元形状の立体的な単結晶部材のうちの基板状部分も含む概念である。
(Method for manufacturing single-crystal substrate with internal processing layer)
In order to manufacture the inner processed layer single crystal substrate 20, as shown in FIG. 1, a step of disposing the laser processing apparatus 12m on the irradiated surface of the processing target single crystal substrate 10 is performed (first step). ). Note that the single crystal substrate to be processed in this specification is a concept including a substrate portion of a three-dimensional three-dimensional single crystal member.

そして、図2(a)〜(c)に示すように、回転ステージ上に固定、配置された加工対象単結晶基板10を回転ステージの回転数で回転させつつレーザ光Bを照射することで、加工対象単結晶基板10の内部にレーザ光Bを集光しつつ、レーザ光Bの集光位置を加工対象単結晶基板10のくり抜き対象部の周囲方向に変化させることで、破断強度が低下した加工層21をくり抜き対象部の周囲に形成する工程を行う(第2工程)。この時レーザ光Bは、例えばパルス幅が1μs以下のパルスレーザ光からなり、300nm以上の波長が選択され、例えば加工対象単結晶基板10がシリコンウエハの場合は、1000nm以上の波長のYAGレーザ等が好適に使用される。   Then, as shown in FIGS. 2A to 2C, by irradiating the laser beam B while rotating the processing target single crystal substrate 10 fixed and arranged on the rotary stage at the rotational speed of the rotary stage, Breaking strength was reduced by focusing the laser beam B inside the processing target single crystal substrate 10 and changing the focusing position of the laser beam B in the peripheral direction of the cut target portion of the processing target single crystal substrate 10. A step of forming the processed layer 21 around the hollowed portion is performed (second step). At this time, the laser beam B is composed of, for example, a pulse laser beam having a pulse width of 1 μs or less, and a wavelength of 300 nm or more is selected. For example, when the processing target single crystal substrate 10 is a silicon wafer, a YAG laser having a wavelength of 1000 nm or more Are preferably used.

以下、内部加工層を形成する手順を詳細に説明する。図2(a)ではレーザ光B照射面とは反対側の加工対象単結晶基板10の裏面(底面)側から照射を開始し、レーザ光Bの集光位置を、くり抜き対象部の周囲方向に変化させつつ徐々にレーザ光斜面側(Z軸方向)へ移動させていく。このZ軸方向への移動方法は集光器Gあるいは回転ステージSの少なくとも一方を移動すればよい。加工対象単結晶基板10の裏面(底面)側への最初の集光位置は、レーザ光Bの照射により形成される加工層21が加工対象単結晶基板10の裏面(底面)の表面に亀裂やアブレーションなどのダメージを与えない位置に設定することが望ましい。これは内部加工層形成単結晶基板から単結晶基板をくり抜く際に、クラックや割れなどの不具合発生を防止するためである。   Hereinafter, the procedure for forming the internal processing layer will be described in detail. In FIG. 2A, irradiation is started from the back surface (bottom surface) side of the processing target single crystal substrate 10 on the opposite side to the laser light B irradiation surface, and the condensing position of the laser light B is set in the peripheral direction of the cutout target portion. The laser beam is gradually moved to the laser beam slope side (Z-axis direction) while changing. As a moving method in the Z-axis direction, it is sufficient to move at least one of the condenser G or the rotary stage S. The first condensing position on the back surface (bottom surface) side of the processing target single crystal substrate 10 is that the processing layer 21 formed by irradiation with the laser beam B has cracks on the surface of the back surface (bottom surface) of the processing target single crystal substrate 10. It is desirable to set it at a position that does not cause damage such as ablation. This is in order to prevent the occurrence of defects such as cracks and cracks when the single crystal substrate is cut out from the single crystal substrate having the inner processed layer.

加工痕21cを形成する間隔は、基板平面方向はレーザ光Bの発振繰り返し周波数と回転ステージの回転速度すなわち周速との関係で決定され、高さ(深さ)方向は集光位置のZ軸方向の移動量により決定される。加工層21は上記のように所定間隔にレーザ光Bを照射して、加工痕21cが連続した加工領域として形成された領域として得られる。   The interval at which the processing marks 21c are formed is determined by the relationship between the oscillation repetition frequency of the laser beam B and the rotation speed of the rotary stage, that is, the peripheral speed, in the substrate plane direction, and the height (depth) direction is the Z axis of the condensing position. It is determined by the amount of movement in the direction. The processed layer 21 is obtained as a region where the processing mark 21c is formed as a continuous processed region by irradiating the laser beam B at a predetermined interval as described above.

レーザ光Bの照射手順としては、回転ステージ上に固定、配置した加工対象単結晶部材10内部のZ軸方向の位置を決定後に、先ず同心円の外径に沿ってにレーザ光Bを少なくとも1回転照射した後、レーザ加工装置12m方向のZ軸方向に集光位置を移動してレーザ光Bを同様にて同心円の外径に沿って照射する。この時Z軸方向への集光位置の移動は、加工対象単結晶部材10の厚さ方向に対して垂直あるいはテーパ状に移動することにより、加工層21は垂直状あるいはテーパ状に形成することができる。   As the irradiation procedure of the laser beam B, after determining the position in the Z-axis direction inside the processing target single crystal member 10 fixed and arranged on the rotary stage, the laser beam B is first rotated at least once along the outer diameter of the concentric circle. After the irradiation, the condensing position is moved in the Z-axis direction of the laser processing apparatus 12m, and the laser beam B is similarly irradiated along the outer diameter of the concentric circle. At this time, the movement of the condensing position in the Z-axis direction is performed in a vertical or tapered manner with respect to the thickness direction of the single crystal member 10 to be processed, so that the processed layer 21 is formed in a vertical or tapered shape. Can do.

この一連の動作を加工対象単結晶基板10の表面近傍まで行うことにより、図2(c)、図4に示すように加工層21が得られる。この時、加工対象単結晶基板10の表面近傍とは、レーザ光Bの集光位置から表面方向にクラックが延びて表面まで加工クラックが到達することで、加工クラックによってくり抜き加工が可能となる位置であり、しかも、該表面にレーザ光Bの照射による該表面に加工痕や亀裂あるいはアブレーションなどの状態が生じない位置である。   By performing this series of operations up to the vicinity of the surface of the single crystal substrate 10 to be processed, a processed layer 21 is obtained as shown in FIGS. At this time, the vicinity of the surface of the processing target single crystal substrate 10 is a position where a crack is extended in the surface direction from the condensing position of the laser beam B and the processing crack reaches the surface, so that the processing crack can be hollowed out. Moreover, it is a position where a state such as a processing mark, a crack, or ablation does not occur on the surface due to the irradiation of the laser beam B.

加工対象単結晶基板10の内部にレーザ光Bを照射すると集光によって生じる温度上昇に伴い加工痕は集光点から加工単結晶基板10の表面方向に向かって延びることが分かっている。この温度上昇に伴う加工痕の延伸は単結晶基板10内部の加工痕が一定状態で形成されず、特に加工対象単結晶基板10の結晶方位方向に亀裂が生じてしまい、本発明の目的であるくり抜き加工において結晶方位方向への割れや破損が生じる。   It is known that when the laser beam B is irradiated inside the processing target single crystal substrate 10, the processing traces extend from the condensing point toward the surface direction of the processing single crystal substrate 10 as the temperature rises due to condensing. The stretching of the processing trace accompanying this temperature rise does not form the processing trace inside the single crystal substrate 10 in a constant state, and in particular, a crack occurs in the crystal orientation direction of the processing target single crystal substrate 10, which is an object of the present invention. Cracking or breakage in the crystal orientation direction occurs in the hollowing process.

従って、本発明おけるレーザ加工においては、上記した温度上昇を影響のない程度に抑制する必要がある。そのため、本発明では加工対象単結晶部材10の深さ方向に集光点を移動させることは好ましくない。   Therefore, in the laser processing in the present invention, it is necessary to suppress the above-described temperature rise to an extent that does not affect the laser processing. Therefore, in this invention, it is not preferable to move a condensing point to the depth direction of the single crystal member 10 to be processed.

また、必要に応じて加工対象単結晶基板10を冷却することも可能である。   In addition, the single crystal substrate 10 to be processed can be cooled as necessary.

以上説明したように、本実施形態により、加工対象単結晶基板10からそれよりも小さい寸法の単結晶基板26を得ることを可能にする内部加工層形成単結晶基板26を製造することができる。そして、くり抜き対象部24のテーパ内側の面(図2では被照射面20t)側を力Fで押圧する等を行い、内部加工層形成単結晶基板20からくり抜き対象部24をくり抜くことで単結晶基板26が得られる。なお、単結晶基板26の外周面には、必要に応じて研磨等の加工を行う。   As described above, according to the present embodiment, it is possible to manufacture the internal processing layer forming single crystal substrate 26 that makes it possible to obtain the single crystal substrate 26 having a smaller size from the processing target single crystal substrate 10. Then, the inner surface of the taper target portion 24 (the irradiated surface 20t in FIG. 2) is pressed with a force F, and the single crystal is cut out from the inner processed layer forming single crystal substrate 20. A substrate 26 is obtained. The outer peripheral surface of the single crystal substrate 26 is subjected to processing such as polishing as necessary.

従って、本実施形態では、単結晶基板の寸法が使用予定の寸法よりも大きい場合、この単結晶基板を加工対象単結晶基板10とし、加工対象単結晶基板10よりも小さい寸法の単結晶基板26を得ることで加工対象単結晶基板10を再利用することができ、資源の有効活用が図られる。   Therefore, in this embodiment, when the size of the single crystal substrate is larger than the size to be used, this single crystal substrate is used as the processing target single crystal substrate 10, and the single crystal substrate 26 having a size smaller than the processing target single crystal substrate 10. Thus, the single crystal substrate 10 to be processed can be reused, and resources can be effectively used.

レーザ光Bは、例えばパルス幅が1μs以下のパルスレーザ光からなり、900nm以上の波長、好ましくは1000nm以上の波長が選択され、YAGレーザ等が好適に使用される。   The laser beam B is composed of, for example, a pulse laser beam having a pulse width of 1 μs or less. A wavelength of 900 nm or more, preferably 1000 nm or more is selected, and a YAG laser or the like is preferably used.

なお、図3(a)および(b)では、加工層21には加工痕21cが一列に配置されているように描いているが、実際には、加工層21には複数の加工痕21cが散りばめられていてもよい。これにより、くり抜き対象部24を内部加工層形成単結晶基板20からくり抜く際の作業が更に容易になる。また、加工対象単結晶基板10の表面近傍である該表面にレーザ光Bの照射による該表面に加工痕や亀裂あるいはアブレーションなどの状態が生じないような照射となるように、本実施形態では、レーザ光Bの集光位置を、くり抜き対象部の周囲方向に変化させつつ徐々にレーザ光斜面側(Z軸方向)へ移動させている。   3A and 3B, the processing layer 21 is drawn so that the processing marks 21c are arranged in a line, but actually, the processing layer 21 has a plurality of processing marks 21c. It may be scattered. Thereby, the operation | work at the time of cutting out the hollow object part 24 from the internal process layer formation single crystal substrate 20 becomes still easier. Further, in the present embodiment, the surface near the surface of the single crystal substrate 10 to be processed is irradiated so that a state such as a processing mark, a crack, or ablation is not generated on the surface by irradiation with the laser beam B. The condensing position of the laser beam B is gradually moved to the laser beam inclined surface side (Z-axis direction) while being changed in the peripheral direction of the cut-out target portion.

また、第2工程後、あるいは第2工程中に、被照射面側または被照射面とは反対面側に、加工層21へのクラックを発生し易くする切欠28(図6、図7参照)を形成してもよい。これにより、切欠28を広げるように内部加工層形成単結晶基板20に力を加えると、切欠28を起点としてから加工層21へ応力が伝わり、基板表面にチッピングなどによる割れなどを発生させずに単結晶基板26を得ることができる。   Further, after the second step or during the second step, a notch 28 (see FIGS. 6 and 7) that facilitates the generation of cracks in the processed layer 21 on the irradiated surface side or the opposite surface side to the irradiated surface. May be formed. As a result, when a force is applied to the single-crystal substrate 20 with the inner processed layer formed so as to widen the notch 28, stress is transmitted to the processed layer 21 from the notch 28 as a starting point without causing cracks due to chipping or the like on the substrate surface. A single crystal substrate 26 can be obtained.

この場合、切欠28を加工層21に隣接する位置に形成すると、切欠28から発生したクラック30によって、加工層21の隣接する加工痕21c同士で順次クラックが発生して行き易い。   In this case, when the notch 28 is formed at a position adjacent to the processed layer 21, the crack 30 generated from the notch 28 is likely to generate a crack sequentially between the adjacent processing marks 21 c of the processed layer 21.

切欠28は、レーザ集光手段12により加工痕21cを追加形成したものであっても良いし、他の形成手段で形成してもよい。   The notch 28 may be formed by additionally forming a machining mark 21c by the laser condensing means 12, or may be formed by other forming means.

また、加工痕21cを形成する位置が被照射面20tに近くなるに従い、レーザ出力を徐々に低下させると、くり抜き対象部24を良好な形状でくり抜く上で好ましい。   Further, it is preferable that the laser output is gradually reduced as the position where the processing mark 21c is formed approaches the irradiated surface 20t in order to cut out the cutout target portion 24 with a good shape.

1枚の加工対象単結晶基板10から複数の単結晶基板26をくり抜くことも可能である(例えば4枚の単結晶基板をくり抜く例として図8参照)。この場合、目的とする単結晶基板20の寸法に応じて加工層21を形成すればよく、その方法としては集光部12を回転させてZ軸方向へ移動させる方式などが採用できる。   It is also possible to cut out a plurality of single crystal substrates 26 from one single processing target single crystal substrate 10 (for example, see FIG. 8 as an example of cutting out four single crystal substrates). In this case, the processed layer 21 may be formed according to the dimensions of the target single crystal substrate 20, and a method of rotating the condensing unit 12 in the Z-axis direction may be employed as the method.

<実験例>
回転ステージ上に加工対象単結晶部材10として直径150mm、厚さ625μmの単結晶シリコンウエハ(結晶方位(100)、鏡面)を吸着盤にて吸着固定し、加工対象単結晶基板10の同心円として直径100mmの単結晶基板26を得るために、内部加工層形成単結晶基板を作製した。なお、本実験例では、集光装置に収差補正環を備えさせ、条件1〜4において調整量を0.6mmとした。
<Experimental example>
A single crystal silicon wafer (crystal orientation (100), mirror surface) having a diameter of 150 mm and a thickness of 625 μm is sucked and fixed on a rotary stage by a suction disk as a single crystal member 10 to be processed, and the diameter of the single crystal substrate 10 to be processed is a concentric circle. In order to obtain a 100 mm single crystal substrate 26, an internally processed layer-formed single crystal substrate was produced. In this experimental example, the light collecting device was provided with an aberration correction ring, and the adjustment amount was 0.6 mm in conditions 1 to 4.

ここで、ドットピッチとは加工痕21sの円周方向のピッチのことであり回転ステージ上で加工する場合は周速と周波数との関係から任意に設定することができる。また、ラインピッチとは、図1で示したZ方向(内部加工層形成単結晶基板20の厚み方向)のピッチのことである。 Here, the dot pitch is a pitch in the circumferential direction of the machining trace 21s, and when machining on the rotary stage, it can be arbitrarily set from the relationship between the circumferential speed and the frequency. Further, the line pitch is the pitch in the Z direction (thickness direction of the internal processed layer forming single crystal substrate 20) shown in FIG.

またデフォーカス量とは、加工対象単結晶基板10の表面を基準(0)として集光位置を加工対象単結晶基板10の内部(裏面)方向への集光位置の移動量であり、マイナス表記は内部方向を表す。   The defocus amount is the amount of movement of the light condensing position in the inner (back surface) direction of the processing target single crystal substrate 10 with the front surface of the processing target single crystal substrate 10 as a reference (0), and is expressed in minus. Represents the internal direction.

本発明者は、加工層21を形成する際のレーザ光の照射条件を検討するために、加工条件1〜4の条件で、厚み625μmのシリコンウエハに、レーザ加工装置12mからレーザ光Bをデフォーカス量(μm):−156〜0 で照射して加工層21を形成した。そして、加工層21の断面を電子顕微鏡で観察し、比較的良好な断面形状であることを確認した(例えば、図9、図10参照)。   In order to study the irradiation conditions of the laser beam when forming the processed layer 21, the present inventor demultiplexes the laser beam B from the laser processing apparatus 12m onto a 625 μm thick silicon wafer under the processing conditions 1 to 4. The processed layer 21 was formed by irradiation with a focus amount (μm): −156 to 0. And the cross section of the process layer 21 was observed with the electron microscope, and it confirmed that it was a comparatively favorable cross-sectional shape (for example, refer FIG. 9, FIG. 10).

さらに本発明者は、加工条件3を用いて、厚み625μm、直径150mmのシリコンウエハに、レーザ加工装置12mからレーザ光Bを以下の条件で照射して厚さ方向の平均直径が30mm径となるように加工層21を形成した。更に、被照射面20t付近の加工痕21cの周辺にガラス切りで切欠状の加工を加え、ウエハのくり抜きを行い、図11に示すウエハを得た。   Further, the present inventor uses the processing condition 3 to irradiate a silicon wafer having a thickness of 625 μm and a diameter of 150 mm with the laser beam B from the laser processing apparatus 12 m under the following conditions so that the average diameter in the thickness direction becomes 30 mm. Thus, the processed layer 21 was formed. Further, a notch-like process was applied to the periphery of the processing mark 21c near the irradiated surface 20t by cutting a glass, and the wafer was cut out to obtain the wafer shown in FIG.

なお、この時のデフォーカス量は−136μm〜20μmであり、内部加工層の深さ方向の上限はウエハ表面から110μmの位置にあり、レーザ照射によるウエハ表面のダメージは生じなかった。   The defocus amount at this time was −136 μm to 20 μm, and the upper limit in the depth direction of the internal processing layer was 110 μm from the wafer surface, and the wafer surface was not damaged by the laser irradiation.

なお、本実施形態では、加工層21の外形や内形を円状以外(例えば四角状)とすることも可能である。   In the present embodiment, the outer shape and inner shape of the processed layer 21 may be other than a circle (for example, a square shape).

また、加工痕21cを形成する際、隣接する加工痕21c同士の間にクラックが順次発生するように形成しても良いし、遅れ破壊のように少し時間をおいてから加工痕21c同士を繋ぐクラックが発生するように形成してもよい。これにより、くり抜き対象部24を極めて容易にくり抜くことができる。   Further, when forming the processing marks 21c, the processing marks 21c may be formed so that the cracks are sequentially generated between the adjacent processing marks 21c, or the processing marks 21c are connected after a while such as delayed fracture. You may form so that a crack may generate | occur | produce. As a result, the cutout target portion 24 can be cut out very easily.

本発明により、単結晶基板からそれよりも小さい寸法の単結晶基板を得ることを可能にすることから、薄く切り出された単結晶基板は、Si基板(シリコン基板)であれば、太陽電池に応用可能であり、また、SiCなどであれば、SiC系パワーデバイスなどに応用可能であり、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野において適用可能である。   According to the present invention, it is possible to obtain a single crystal substrate having a smaller size than a single crystal substrate. Therefore, if the single crystal substrate cut out thinly is an Si substrate (silicon substrate), it can be applied to a solar cell. In addition, SiC can be applied to SiC power devices and the like, and can be applied in a wide range of fields such as the transparent electronics field, the lighting field, and the hybrid / electric vehicle field.

10 加工対象単結晶基板
12 レーザ集光手段
12m レーザ加工装置
20 内部加工層形成単結晶基板
20t 被照射面
21 加工層
21c 加工痕
24 くり抜き対象部
26 単結晶基板
28 切欠
30 クラック
B レーザ光
DESCRIPTION OF SYMBOLS 10 Processing target single crystal substrate 12 Laser condensing means 12m Laser processing apparatus 20 Internal processing layer formation single crystal substrate 20t Irradiated surface 21 Processing layer 21c Processing mark 24 Cutting target part 26 Single crystal substrate 28 Notch 30 Crack B Laser light

Claims (6)

レーザ光を集光するレーザ集光手段を、加工対象単結晶基板の被照射面上に非接触に配置する第1工程と、
前記レーザ集光手段により前記加工対象単結晶基板内部にレーザ光を集光しつつ、レーザ光の集光位置を前記加工対象単結晶基板のくり抜き対象部の周囲方向に変化させることで、破断強度が低下した加工層を前記くり抜き対象部の周囲に形成する第2工程と、
を備えたことを特徴とする内部加工層形成単結晶基板の製造方法。
A first step of disposing laser condensing means for condensing laser light in a non-contact manner on the irradiated surface of the single crystal substrate to be processed;
While condensing the laser beam inside the single crystal substrate to be processed by the laser condensing means, the breaking position is changed by changing the condensing position of the laser light in the peripheral direction of the cut target portion of the single crystal substrate to be processed. A second step of forming a processed layer having a reduced thickness around the cut-out object portion;
A method for producing an internally processed layer-forming single crystal substrate, comprising:
前記被照射面側または前記被照射面とは反対面側に、前記加工層へのクラックを発生し易くする切欠を形成することを特徴とする請求項1記載の内部加工層形成単結晶基板の製造方法。   The notch which makes it easy to generate | occur | produce the crack to the said processed layer is formed in the said irradiated surface side or the surface opposite to the said irradiated surface, The internal process layer forming single crystal substrate of Claim 1 characterized by the above-mentioned. Production method. 前記切欠を前記加工層に隣接する位置に形成することを特徴とする請求項2記載の内部加工層形成単結晶基板の製造方法。   3. The method for manufacturing an internally processed layer-forming single crystal substrate according to claim 2, wherein the notch is formed at a position adjacent to the processed layer. 前記加工層の内側面および外側面の少なくとも一方をテーパ状に形成することを特徴とする請求項1〜3のいずれか1項記載の内部加工層形成単結晶基板の製造方法。   4. The method for producing an internally processed layer-forming single crystal substrate according to claim 1, wherein at least one of an inner surface and an outer surface of the processed layer is formed in a tapered shape. レーザ光を集光するレーザ集光手段を、加工対象単結晶基板の被照射面上に非接触に配置する第1工程と、
前記レーザ集光手段により前記加工対象単結晶基板内部にレーザ光を集光しつつ、レーザ光の集光位置を前記加工対象単結晶基板のくり抜き対象部の周囲方向に変化させることで、破断強度が低下した加工層を前記くり抜き対象部の周囲に形成する第2工程と、
前記加工層から破断させて前記くり抜き対象部をくり抜く第3工程と、
を備えたことを特徴とする単結晶基板の製造方法。
A first step of disposing laser condensing means for condensing laser light in a non-contact manner on the irradiated surface of the single crystal substrate to be processed;
While condensing the laser beam inside the single crystal substrate to be processed by the laser condensing means, the breaking position is changed by changing the condensing position of the laser light in the peripheral direction of the cut target portion of the single crystal substrate to be processed. A second step of forming a processed layer having a reduced thickness around the cut-out object portion;
A third step of breaking the cut target portion by breaking the processed layer;
A method for producing a single crystal substrate, comprising:
前記第3工程を行う前に、前記被照射面側または前記被照射面とは反対面側に、前記加工層へのクラックを発生し易くする切欠を形成し、
前記第3工程では、前記切欠を広げるように力を加えることで前記クラックを発生させることを特徴とする請求項5に記載の単結晶基板の製造方法。
Before performing the third step, on the irradiated surface side or the opposite surface side to the irradiated surface, forming a notch that facilitates generation of cracks in the processed layer,
The method for manufacturing a single crystal substrate according to claim 5, wherein in the third step, the crack is generated by applying a force to widen the notch.
JP2015197650A 2015-10-05 2015-10-05 Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate Pending JP2017071074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197650A JP2017071074A (en) 2015-10-05 2015-10-05 Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197650A JP2017071074A (en) 2015-10-05 2015-10-05 Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020130745A Division JP2020189493A (en) 2020-07-31 2020-07-31 Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate

Publications (1)

Publication Number Publication Date
JP2017071074A true JP2017071074A (en) 2017-04-13

Family

ID=58538117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197650A Pending JP2017071074A (en) 2015-10-05 2015-10-05 Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate

Country Status (1)

Country Link
JP (1) JP2017071074A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090905A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
JP2020069531A (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
WO2020090894A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
WO2020129734A1 (en) * 2018-12-21 2020-06-25 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
WO2020129732A1 (en) * 2018-12-21 2020-06-25 東京エレクトロン株式会社 Substrate processing device and substrate processing method
JP2020167303A (en) * 2019-03-29 2020-10-08 東京エレクトロン株式会社 Processing device and processing method
JPWO2020213479A1 (en) * 2019-04-19 2020-10-22
WO2021172085A1 (en) * 2020-02-28 2021-09-02 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
WO2021220607A1 (en) * 2020-04-28 2021-11-04 浜松ホトニクス株式会社 Laser processing apparatus
CN114096375A (en) * 2019-07-18 2022-02-25 东京毅力科创株式会社 Processing apparatus and processing method
US11450523B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system with eccentricity detection device and substrate processing method
US11450578B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system and substrate processing method
US11752576B2 (en) 2018-03-14 2023-09-12 Tokyo Electron Limited Substrate processing system for removing peripheral portion of substrate, substrate processing method and computer readable recording medium thereof
JP7453013B2 (en) 2020-02-14 2024-03-19 株式会社ディスコ Wafer processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259846A (en) * 2003-02-25 2004-09-16 Ogura Jewel Ind Co Ltd Separation method for element formed on substrate
JP2006245043A (en) * 2005-02-28 2006-09-14 Toyoda Gosei Co Ltd Method of manufacturing group iii nitride-based compound semiconductor element, and light emitting element
JP2007142114A (en) * 2005-11-17 2007-06-07 Denso Corp Laser dicing method and laser dicing apparatus
JP2012028646A (en) * 2010-07-26 2012-02-09 Hamamatsu Photonics Kk Chip manufacturing method
WO2012016464A1 (en) * 2010-08-06 2012-02-09 武汉利德测控技术股份有限公司 Numerical control milling machine for long rail to remove postwelding nodules
JP2014161908A (en) * 2013-02-28 2014-09-08 Saitama Univ Internal-processing layer forming method, internal-processing layer forming member, and, surface three-dimensional structure member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259846A (en) * 2003-02-25 2004-09-16 Ogura Jewel Ind Co Ltd Separation method for element formed on substrate
JP2006245043A (en) * 2005-02-28 2006-09-14 Toyoda Gosei Co Ltd Method of manufacturing group iii nitride-based compound semiconductor element, and light emitting element
JP2007142114A (en) * 2005-11-17 2007-06-07 Denso Corp Laser dicing method and laser dicing apparatus
JP2012028646A (en) * 2010-07-26 2012-02-09 Hamamatsu Photonics Kk Chip manufacturing method
WO2012016464A1 (en) * 2010-08-06 2012-02-09 武汉利德测控技术股份有限公司 Numerical control milling machine for long rail to remove postwelding nodules
JP2014161908A (en) * 2013-02-28 2014-09-08 Saitama Univ Internal-processing layer forming method, internal-processing layer forming member, and, surface three-dimensional structure member

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11752576B2 (en) 2018-03-14 2023-09-12 Tokyo Electron Limited Substrate processing system for removing peripheral portion of substrate, substrate processing method and computer readable recording medium thereof
US11450578B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system and substrate processing method
US11450523B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system with eccentricity detection device and substrate processing method
US20220001494A1 (en) * 2018-10-30 2022-01-06 Hamamatsu Photonics K.K. Laser processing device and laser processing method
JP2020069531A (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
WO2020090894A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
JP2020069530A (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method
US11833611B2 (en) 2018-10-30 2023-12-05 Hamamatsu Photonics K.K. Laser machining device
CN113039035B (en) * 2018-10-30 2023-11-10 浜松光子学株式会社 Laser processing device
WO2020090905A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing device and laser processing method
CN113039035A (en) * 2018-10-30 2021-06-25 浜松光子学株式会社 Laser processing apparatus
JP7203863B2 (en) 2018-12-21 2023-01-13 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JPWO2020129732A1 (en) * 2018-12-21 2021-10-21 東京エレクトロン株式会社 Substrate processing equipment and substrate processing method
WO2020129734A1 (en) * 2018-12-21 2020-06-25 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
TWI825241B (en) * 2018-12-21 2023-12-11 日商東京威力科創股份有限公司 Substrate processing device and substrate processing method
WO2020129732A1 (en) * 2018-12-21 2020-06-25 東京エレクトロン株式会社 Substrate processing device and substrate processing method
CN113195152A (en) * 2018-12-21 2021-07-30 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
CN113165109A (en) * 2018-12-21 2021-07-23 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
JPWO2020129734A1 (en) * 2018-12-21 2021-10-21 東京エレクトロン株式会社 Substrate processing equipment and substrate processing method
JP7257218B2 (en) 2019-03-29 2023-04-13 東京エレクトロン株式会社 Processing equipment and processing method
JP2020167303A (en) * 2019-03-29 2020-10-08 東京エレクトロン株式会社 Processing device and processing method
WO2020213479A1 (en) * 2019-04-19 2020-10-22 東京エレクトロン株式会社 Processing device and processing method
JPWO2020213479A1 (en) * 2019-04-19 2020-10-22
JP7129558B2 (en) 2019-04-19 2022-09-01 東京エレクトロン株式会社 Processing equipment and processing method
CN114096375A (en) * 2019-07-18 2022-02-25 东京毅力科创株式会社 Processing apparatus and processing method
CN114096375B (en) * 2019-07-18 2024-01-09 东京毅力科创株式会社 Processing apparatus and processing method
JP7453013B2 (en) 2020-02-14 2024-03-19 株式会社ディスコ Wafer processing method
WO2021172085A1 (en) * 2020-02-28 2021-09-02 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
WO2021220607A1 (en) * 2020-04-28 2021-11-04 浜松ホトニクス株式会社 Laser processing apparatus

Similar Documents

Publication Publication Date Title
JP2017071074A (en) Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate
JP6506520B2 (en) SiC slicing method
TWI376284B (en) Laser beam manufacturing method
JP5917862B2 (en) Processing object cutting method
JP5875122B2 (en) Single crystal substrate manufacturing method and internal modified layer forming single crystal member
JP2016215231A (en) Slice device and method for brittle substrate
JP6044919B2 (en) Substrate processing method
JP6101468B2 (en) Wafer processing method
JP6818273B2 (en) Substrate processing method
JP6004339B2 (en) Internal stress layer forming single crystal member and single crystal substrate manufacturing method
JP6531885B2 (en) Internally processed layer forming single crystal member and method of manufacturing the same
JP2005057257A (en) Laser machining method and device, and machined product
JP2020035821A (en) SiC SUBSTRATE PROCESSING METHOD
JP6012185B2 (en) Manufacturing method of semiconductor device
JP5969214B2 (en) Manufacturing method of semiconductor device
JP2015074003A (en) Internal processing layer-forming single crystal member, and manufacturing method for the same
TWI687559B (en) Substrate manufacturing method
JP6779486B2 (en) Substrate processing method and substrate processing equipment
JP6202695B2 (en) Single crystal substrate manufacturing method
JP2020189493A (en) Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate
JP6851040B2 (en) Substrate processing method and substrate processing equipment
JP2018001205A (en) Drilling method and drilling device of substrate
JP6851041B2 (en) Substrate processing method and substrate processing equipment
JP7210292B2 (en) Wafer generation method
JP2024005902A (en) Chip manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602