JP2015074003A - Internal processing layer-forming single crystal member, and manufacturing method for the same - Google Patents

Internal processing layer-forming single crystal member, and manufacturing method for the same Download PDF

Info

Publication number
JP2015074003A
JP2015074003A JP2013210474A JP2013210474A JP2015074003A JP 2015074003 A JP2015074003 A JP 2015074003A JP 2013210474 A JP2013210474 A JP 2013210474A JP 2013210474 A JP2013210474 A JP 2013210474A JP 2015074003 A JP2015074003 A JP 2015074003A
Authority
JP
Japan
Prior art keywords
single crystal
crystal member
processed layer
laser beam
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013210474A
Other languages
Japanese (ja)
Inventor
鈴木 秀樹
Hideki Suzuki
秀樹 鈴木
信裕 篠塚
Nobuhiro Shinozuka
信裕 篠塚
利香 松尾
Rika Matsuo
利香 松尾
順一 池野
Junichi Ikeno
順一 池野
直樹 三木
Naoki Miki
直樹 三木
栄紀 小山
Hidenori Koyama
栄紀 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd, Saitama University NUC filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2013210474A priority Critical patent/JP2015074003A/en
Publication of JP2015074003A publication Critical patent/JP2015074003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal processing layer-forming single crystal member and a manufacturing method for the same, in which a processing time is shortened, when a relatively large and thin single crystal substrate is formed by being peeled from the processing layer formed in a single crystal member.SOLUTION: A laser beam is condensed on the inside of a single crystal member of silicon to form affected zones 21c which are arranged regularly in a scan direction S of the laser beam and an off-set direction F respectively. In so doing, at least one of a crack CS straddling the affected zones 21c adjacent to each other in the scan direction S of the laser beam and a crack CF straddling the affected zones 21c adjacent to each other in the off-set direction F of the laser beam is formed.

Description

本発明は、シリコンの単結晶部材の被照射側の表面から単結晶部材内部にレーザ光を集光することで、単結晶部材内部に加工層を形成した内部加工層形成単結晶部材およびその製造方法に関する。   The present invention relates to an internally processed layer-forming single crystal member in which a processed layer is formed inside a single crystal member by condensing laser light from the surface on the irradiated side of the single crystal member of silicon into the single crystal member, and its manufacture Regarding the method.

従来、単結晶のシリコン(Si)ウエハに代表される半導体ウエハを製造する場合には、石英るつぼ内に溶融されたシリコン融液から凝固した円柱形のインゴットを適切な長さのブロックに切断して、その周縁部を目標の直径になるよう研削し、その後、ブロック化されたインゴットをワイヤソーによりウエハ形にスライスして半導体ウエハを製造するようにしている。   Conventionally, when manufacturing a semiconductor wafer typified by a single crystal silicon (Si) wafer, a cylindrical ingot solidified from a silicon melt melted in a quartz crucible is cut into blocks of an appropriate length. Then, the peripheral edge is ground to a target diameter, and then the block-shaped ingot is sliced into a wafer shape with a wire saw to manufacture a semiconductor wafer.

このようにして製造された半導体ウエハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片化が図られることにより、厚さが約750μmから100μm以下、例えば75μmや50μm程度に調整される。   The semiconductor wafer thus manufactured is subjected to various processes such as formation of a circuit pattern in the previous process in order and used for the subsequent process, and the back surface is back-ground processed in the subsequent process to achieve thinning. Accordingly, the thickness is adjusted to about 750 μm to 100 μm or less, for example, about 75 μm or 50 μm.

従来における半導体ウエハは、以上のように製造され、インゴットがワイヤソーにより切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となるので、厚さ0.1mm以下の薄い半導体ウエハを製造することが非常に困難であり、製品率も向上しないという問題がある。   A conventional semiconductor wafer is manufactured as described above, and an ingot is cut by a wire saw, and a cutting allowance larger than the thickness of the wire saw is required for cutting, so a thin semiconductor wafer having a thickness of 0.1 mm or less It is very difficult to manufacture the product, and the product rate is not improved.

一方、集光レンズでレーザ光の集光点をインゴット(ウエハ)の内部に合わせ、そのレーザ光でインゴットを相対的に走査することにより、インゴットの内部に多光子吸収による面状の改質層(加工層)を形成し、この改質層を剥離面としてインゴットの一部を基板として剥離することが開示されている(例えば、特許文献1参照)。   On the other hand, the focusing point of the laser beam is adjusted to the inside of the ingot (wafer) with the condenser lens, and the ingot is relatively scanned with the laser beam, so that a planar modified layer by multiphoton absorption is inside the ingot. It is disclosed that a (processed layer) is formed, and a part of the ingot is peeled off using the modified layer as a peeling surface (see, for example, Patent Document 1).

なお、この明細書中においては、別記する場合を除いてウエハのことを適宜に基板と称する。   In this specification, a wafer is appropriately referred to as a substrate unless otherwise specified.

特開2011−167718号公報JP2011-167718A

しかし、単結晶部材内部に改質層を形成する場合、1つのレーザパルスで1点(1つ)の加工痕を形成している。このため、その加工間隔である加工ピッチは、加工進行方向へのステージ移動速度とパルス周波数で決まる。また、この加工ピッチと、オフセット方向(加工進行方向に直交する方向)の間隔である加工オフセットと、によって、単結晶部材内部に形成される加工痕の数(加工数)が決まる。   However, when the modified layer is formed inside the single crystal member, one laser pulse forms one (one) processing mark. Therefore, the processing pitch, which is the processing interval, is determined by the stage moving speed and the pulse frequency in the processing progress direction. Further, the number of processing marks (the number of processing) formed inside the single crystal member is determined by the processing pitch and the processing offset that is an interval in the offset direction (direction orthogonal to the processing progress direction).

従って、加工ピッチと加工オフセットとの数を低減させることで、加工時間が短縮される。   Therefore, the machining time is shortened by reducing the number of machining pitches and machining offsets.

一方、単結晶部材を形成した内部加工層から分断させて新たな単結晶部材を創成することができる。この分断方法としては、内部加工層を形成した単結晶部材を、接着剤を用いて金属板で挟持して固定した後、金属板を互いに離れる方向の力を加えることにより剥離する方法、単結晶基板の側面から応力を印加してクラックを伝搬させて剥離する方法などが例示されている。しかしながら、こうした従来の方法により加工層から単結晶部材を分断させる方法においては、単結晶部材に応力が負荷あるいは印加されることによって単結晶部材の非加工層領域に衝撃や変形などが生じ、欠陥や転移などを発生させる可能性が高い。その結果、分断され創成された単結晶部材の品質劣化につながり、実使用上の不具合が生じる。さらに、これらの分断方法が求められる内部加工層結晶部材は、内部加工層が応力を負荷あるいは印加させないと分離できない状態であることを示唆している。従って、応力を負荷あるいは印加させなくても、形成した内部加工層から単結晶部材を分断および分離可能な加工層の形成方法が求められる。   On the other hand, it is possible to create a new single crystal member by dividing the inner processed layer on which the single crystal member is formed. As this dividing method, a method in which a single crystal member in which an internal processing layer is formed is sandwiched and fixed by a metal plate using an adhesive, and then peeled by applying a force in a direction away from each other, a single crystal Examples include a method in which stress is applied from the side surface of a substrate to propagate a crack and peel off. However, in the method of dividing the single crystal member from the processed layer by such a conventional method, a stress or deformation is caused in the non-processed layer region of the single crystal member due to stress being applied to or applied to the single crystal member. And is likely to cause metastasis. As a result, the quality of the divided and created single crystal member is deteriorated, resulting in problems in actual use. Furthermore, it is suggested that the internally processed layer crystal member that requires these cutting methods cannot be separated unless the internal processed layer is loaded or applied with stress. Therefore, there is a need for a method for forming a processed layer that can divide and separate the single crystal member from the formed internal processed layer without applying or applying stress.

本発明は、上記課題に鑑み、シリコンの単結晶部材に形成した加工層から剥離させることで比較的大きくて薄いシリコンの単結晶基板を形成するにあたり、応力を負荷せずに剥離可能であり、加工時間の短縮化を図ることができる内部加工層形成単結晶部材およびその製造方法を提供することを課題とする。   In view of the above problems, the present invention is capable of peeling without applying stress when forming a relatively large and thin silicon single crystal substrate by peeling from a processed layer formed on a silicon single crystal member. It is an object of the present invention to provide an internally processed layer-forming single crystal member capable of reducing the processing time and a method for manufacturing the same.

上記課題を解決するための本発明の一態様によれば、レーザ光を集光するレーザ集光手段を介してレーザ光をシリコンの単結晶部材の被照射面から照射しつつ、前記単結晶部材と前記レーザ集光手段とを相対的に移動させることで、前記単結晶部材内部に形成された加工層と、前記加工層の両面側にそれぞれ隣接する非加工部と、を備え、前記加工層には、レーザ光の集光によって形成された変質部が、レーザ光の走査方向およびオフセット方向にそれぞれ配列され、レーザ光の走査方向に隣り合う変質部同士に跨るクラック、および、レーザ光のオフセット方向に隣り合う変質部同士に跨るクラックの少なくとも一方が形成されている内部加工層形成単結晶部材が提供される。   According to one aspect of the present invention for solving the above-described problem, the single crystal member is irradiated with laser light from the irradiated surface of the single crystal member of silicon via a laser condensing unit that condenses the laser light. And the laser condensing means are relatively moved to provide a processed layer formed inside the single crystal member, and a non-processed portion adjacent to both sides of the processed layer, and the processed layer In which the altered portions formed by condensing the laser light are arranged in the scanning direction and the offset direction of the laser light, respectively, and the cracks straddling the altered portions adjacent to each other in the scanning direction of the laser light, and the offset of the laser light Provided is an internally processed layer-forming single crystal member in which at least one of cracks straddling altered portions adjacent to each other is formed.

本発明の別の態様によれば、レーザ光を集光するレーザ集光手段を介してレーザ光をシリコンの単結晶部材の被照射面から照射しつつ、前記単結晶部材と前記レーザ集光手段とを相対的に移動させることで、前記単結晶部材内部に加工層を形成して前記単結晶部材を内部加工層形成単結晶部材とする内部加工層形成単結晶部材の製造方法であって、前記加工層を形成する際、レーザ光の集光による変質部を、レーザ光の走査方向に隣り合う変質部同士に跨るクラックおよびレーザ光のオフセット方向に隣り合う変質部同士に跨るクラックの少なくとも一方が生じるように形成していく内部加工層形成単結晶部材の製造方法が提供される。   According to another aspect of the present invention, the single crystal member and the laser condensing means are irradiated while irradiating the laser light from the irradiated surface of the single crystal member of silicon through the laser condensing means for condensing the laser light. And the relative movement of the single crystal member, forming a processed layer inside the single crystal member, and using the single crystal member as an internal processed layer forming single crystal member, At the time of forming the processed layer, at least one of the cracks straddling the deteriorated portions adjacent to each other in the laser beam scanning direction and the cracks straddling the deteriorated portions adjacent to each other in the laser beam offset direction, There is provided a method for producing an internally processed layer-forming single crystal member that is formed so as to cause the above.

本発明によれば、シリコンの単結晶部材に形成した加工層から剥離させることで比較的大きくて薄いシリコンの単結晶基板を形成するにあたり、応力を負荷せずに剥離可能であり、加工時間の短縮化を図ることができる内部加工層形成単結晶部材およびその製造方法を提供することができる。   According to the present invention, when a relatively large and thin silicon single crystal substrate is formed by peeling from a processed layer formed on a silicon single crystal member, it can be peeled without applying stress, and the processing time can be reduced. An internally processed layer-forming single crystal member that can be shortened and a method for manufacturing the same can be provided.

本発明の一実施形態で内部加工層形成単結晶部材を製造することを説明する模式的な鳥瞰図である。It is a typical bird's-eye view explaining manufacturing an internal processing layer formation single crystal member by one embodiment of the present invention. 本発明の一実施形態で内部加工層形成単結晶部材を製造することを説明する模式的な側面断面図である。It is a typical side sectional view explaining manufacture of an internal processing layer formation single crystal member by one embodiment of the present invention. 本発明の一実施形態に係る内部加工層形成単結晶部材の模式的な側面断面図である。It is a typical side sectional view of an internal processing layer formation single crystal member concerning one embodiment of the present invention. 本発明の一実施形態で、内部加工層形成単結晶部材を製造することを説明する側面図である。It is a side view explaining manufacturing an internal processing layer formation single crystal member in one embodiment of the present invention. 本発明の一実施形態に係る内部加工層形成単結晶部材を説明する模式的な平面断面図である。It is a typical plane sectional view explaining an internal processing layer formation single crystal member concerning one embodiment of the present invention. 本発明の一実施形態に係る内部加工層形成単結晶部材を説明する模式的な側面断面図である。It is a typical side sectional view explaining an internal processing layer formation single crystal member concerning one embodiment of the present invention. 実験例で、加工進行方向に沿って一列に並んだ各変質部を切断した説明図である。In an experiment example, it is explanatory drawing which cut | disconnected each alteration part located in a line along the process advancing direction. 実験例で、加工進行方向に沿って一列に並んだ各変質部を切断した光学顕微鏡写真図である。In an experiment example, it is the optical microscope photograph figure which cut | disconnected each alteration part located in a line along the process advancing direction.

以下、添付図面を参照して、本発明の実施の形態について説明する。以下の説明では、すでに説明したものと同一または類似の構成要素には同一または類似の符号を付し、その詳細な説明を適宜省略している。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, the same or similar components as those already described are denoted by the same or similar reference numerals, and detailed description thereof is omitted as appropriate.

また、図面は模式的なものであり、寸法比などは現実のものとは異なることに留意すべきである。従って、具体的な寸法比などは以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   In addition, it should be noted that the drawings are schematic and the dimensional ratios and the like are different from actual ones. Therefore, specific dimensional ratios and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。   The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not something specific. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

図1は、本発明の一実施形態(以下、本実施形態という)で、レーザ集光手段により単結晶部材10の被照射面(被照射側の表面)からレーザ光を集光して内部に加工層21を形成していくことを説明する模式的な鳥瞰図である。図2は、レーザ光の照射により単結晶部材10の内部に加工層21を形成して内部加工層形成単結晶部材を形成することを説明する模式的な断面図である。図3は、本実施形態で製造された内部加工層形成単結晶部材20の断面構造を説明する模式的な側面断面図である。図4は、本実施形態で、内部加工層形成単結晶部材を製造することを説明する側面図であり、本実施形態におけるレーザ加工装置の一例の全体図も示している。図5は、本実施形態で、内部加工層形成単結晶部材を説明する模式的な平面断面図である。図6は、本実施形態で、内部加工層形成単結晶部材を説明する模式的な側面断面図である。   FIG. 1 shows an embodiment of the present invention (hereinafter referred to as the present embodiment), in which laser light is condensed from an irradiated surface (surface on the irradiated side) of a single crystal member 10 by laser focusing means. It is a typical bird's-eye view explaining explaining that the processing layer 21 is formed. FIG. 2 is a schematic cross-sectional view for explaining that the processed layer 21 is formed inside the single crystal member 10 by irradiation with laser light to form the internal processed layer forming single crystal member. FIG. 3 is a schematic side cross-sectional view for explaining the cross-sectional structure of the internally processed layer-forming single crystal member 20 manufactured in the present embodiment. FIG. 4 is a side view for explaining the production of the internally processed layer-forming single crystal member in the present embodiment, and also shows an overall view of an example of the laser processing apparatus in the present embodiment. FIG. 5 is a schematic plan cross-sectional view for explaining the internally processed layer-forming single crystal member in the present embodiment. FIG. 6 is a schematic side cross-sectional view for explaining the internally processed layer forming single crystal member in the present embodiment.

(概要説明)
本実施形態で製造する内部加工層形成単結晶部材20は、パルス状のレーザ光Bをシリコンの単結晶部材10の被照射面20tから照射し単結晶部材内部で集光することで、この被照射面20tから離間しかつこの被照射面20tと平行に延在する加工層21と、その加工層21の両面側にそれぞれ隣接する非加工層22とを有する。
(Overview)
The internally processed layer-forming single crystal member 20 manufactured in the present embodiment irradiates the pulsed laser beam B from the irradiated surface 20t of the silicon single crystal member 10 and condenses it inside the single crystal member. The processing layer 21 is spaced apart from the irradiation surface 20t and extends in parallel with the irradiated surface 20t, and the non-processing layers 22 adjacent to both surfaces of the processing layer 21 are provided.

加工層21には、レーザ光Bの集光によって形成された変質部21cが、レーザ光の走査方向Sおよびオフセット方向Fにそれぞれ規則的に配列されている。そして、本実施形態では、レーザ光の走査方向Sに隣り合う変質部同士に跨るクラックCS(図5、6参照)、および、レーザ光のオフセット方向に隣り合う変質部同士に跨るクラックCF(図5、6参照)が形成されている。これらクラックCSおよびCFはレーザ光Bにより形成された変質部21cから面状に拡がって形成されており、断面方向においては変質部21cのレーザ照射面側に形成されていて、変質部同士に跨っている。   Altered portions 21 c formed by condensing the laser beam B are regularly arranged in the processing layer 21 in the scanning direction S and the offset direction F of the laser beam, respectively. In this embodiment, the crack CS (see FIGS. 5 and 6) straddling the deteriorated portions adjacent to each other in the laser beam scanning direction S and the crack CF (see FIG. 5) straddling the deteriorated portions adjacent to each other in the laser beam offset direction. 5 and 6) are formed. These cracks CS and CF are formed so as to extend in a planar shape from the altered portion 21c formed by the laser beam B, and are formed on the laser irradiation surface side of the altered portion 21c in the cross-sectional direction, and straddle the altered portions. ing.

図6に示すように、クラックCS、クラックCFの何れであっても、各クラックは単結晶部材10の被照射面20tから略同一深さ位置に形成されている。ここで、略同一深さとは、加工層21の寸法にもよるが、深さ位置の差が3μm以下(加工層21の寸法が小さい場合には2μm以下)のことをいう。この深さ位置が3μmを超えると、剥離時応力負荷あるいは印加が必要となり、さらに剥離応力が大きくなることで単結晶部材品質劣化や、剥離面の平坦性低下をもたらす。   As shown in FIG. 6, each crack is formed at substantially the same depth position from the irradiated surface 20 t of the single crystal member 10, whether it is a crack CS or a crack CF. Here, “substantially the same depth” refers to a difference in depth position of 3 μm or less (or 2 μm or less when the dimension of the processing layer 21 is small), although it depends on the size of the processing layer 21. When this depth position exceeds 3 μm, it is necessary to apply a stress load or application at the time of peeling, and the peeling stress increases, resulting in deterioration of the quality of the single crystal member and reduction in the flatness of the peeling surface.

内部加工層形成単結晶部材20を製造して単結晶基板を得るには、レーザ集光手段として例えば集光器(組レンズ)78により、単結晶部材10の被照射面20tにレーザ光Bを照射して単結晶部材10内部にレーザ光Bを集光しつつ、集光器78と単結晶部材10とを相対的に移動させて、単結晶部材10内部に、被照射面20tと平行に延在する加工層21を形成した内部加工層形成単結晶部材20を製造する。   In order to obtain the single crystal substrate by manufacturing the inner processed layer forming single crystal member 20, the laser beam B is applied to the irradiated surface 20 t of the single crystal member 10 by, for example, a condenser (assembled lens) 78 as laser condensing means. While irradiating and condensing the laser beam B inside the single crystal member 10, the condenser 78 and the single crystal member 10 are relatively moved so that the single crystal member 10 is parallel to the irradiated surface 20 t. The inner processed layer forming single crystal member 20 in which the extended processed layer 21 is formed is manufactured.

その際、クラックCSおよびクラックCFが形成されるように変質部21cを形成していく。単結晶部材10としては、レーザ光Bを照射する被照射面20t(第1面)と、被照射面20tに平行であって被照射面20tに照射したレーザ光Bが通過する光出射面20s(第2面)と、を有する部材を用いる。   At that time, the altered portion 21c is formed so that the crack CS and the crack CF are formed. The single crystal member 10 includes an irradiated surface 20t (first surface) that irradiates laser light B, and a light emitting surface 20s that is parallel to the irradiated surface 20t and through which the laser light B irradiated to the irradiated surface 20t passes. (Second surface) is used.

(詳細説明)
以下、本実施形態をより詳細に説明する。本実施形態では、図4に示すように、レーザ加工装置は、レーザ発振器71、集光器78を順次備え、また、XYステージ80を備えている。集光器78は複数のレンズが組み合わされた組レンズとなっており、集光性能が高くされている。
(Detailed explanation)
Hereinafter, this embodiment will be described in more detail. In the present embodiment, as shown in FIG. 4, the laser processing apparatus includes a laser oscillator 71 and a condenser 78 sequentially, and also includes an XY stage 80. The concentrator 78 is a combined lens in which a plurality of lenses are combined, and has high condensing performance.

レーザ光を照射する単結晶部材10のサイズは、例えばφ300mmの厚いシリコンウエハEからなり、レーザ光Bが照射される被照射面Etが予め平坦化されていることが好ましい。   The size of the single crystal member 10 to be irradiated with the laser light is preferably made of, for example, a thick silicon wafer E having a diameter of 300 mm, and the irradiated surface Et irradiated with the laser light B is preferably planarized in advance.

レーザ光Bは、単結晶部材10の周面ではなく、上記の被照射面20tに集光器78を介して照射される。このレーザ光Bは、例えばパルス幅が1μs以下のパルスレーザ光からなり、900nm以上の波長、好ましくは1000nm以上の波長が選択され、YAGレーザ等が好適に使用される。   The laser beam B is applied to the irradiated surface 20t, not the peripheral surface of the single crystal member 10, via the condenser 78. This laser beam B is composed of, for example, a pulse laser beam having a pulse width of 1 μs or less, and a wavelength of 900 nm or more, preferably 1000 nm or more is selected, and a YAG laser or the like is preferably used.

(作用、効果)
以下、本実施形態で内部加工層形成単結晶部材10を製造することについて説明する。本実施形態では、単結晶部材10をXYステージ80上に載置し、真空チャック、静電チャックなどでこの単結晶部材10を保持する。そして、XYステージで単結晶部材10をX方向やY方向に移動させることで、レーザ集光手段(集光器78)と単結晶部材10とを、単結晶部材10の被照射面20tに平行に相対的に移動させながらレーザ光Bを照射する。この結果、図5に示すように、単結晶部材10の内部に集光したレーザ光Bによって変質部21cをレーザ光Bの走査方向Sに沿って一列に規則的に形成していく。変質部21cを一列に形成した後、XYステージ80の移動により単結晶部材10をオフセット方向Fへ移動させ、同様に変質部21cを走査方向Sへ一列に形成していく。このようにして加工層21を形成する。
(Function, effect)
Hereinafter, manufacturing the internally processed layer-forming single crystal member 10 in this embodiment will be described. In the present embodiment, the single crystal member 10 is placed on the XY stage 80, and the single crystal member 10 is held by a vacuum chuck, an electrostatic chuck, or the like. Then, by moving the single crystal member 10 in the X direction or the Y direction on the XY stage, the laser condensing means (condenser 78) and the single crystal member 10 are parallel to the irradiated surface 20t of the single crystal member 10. The laser beam B is irradiated while being relatively moved. As a result, as shown in FIG. 5, the altered portions 21 c are regularly formed in a line along the scanning direction S of the laser light B by the laser light B condensed inside the single crystal member 10. After the altered portions 21c are formed in a row, the single crystal member 10 is moved in the offset direction F by the movement of the XY stage 80, and the altered portions 21c are similarly formed in a row in the scanning direction S. In this way, the processed layer 21 is formed.

本実施形態では、この変質部21cを形成する際、レーザ光の走査方向Sに隣り合う変質部21cの間隔である加工ピッチpを1〜10μmの範囲(さらに好ましくは1.5〜3.5μm)とする。   In this embodiment, when forming the altered portion 21c, the processing pitch p, which is the interval between the altered portions 21c adjacent to each other in the laser beam scanning direction S, is in the range of 1 to 10 μm (more preferably 1.5 to 3.5 μm). ).

また、レーザ光のオフセット方向Fに隣り合う変質部21cの間隔である加工オフセットwを1〜10μmの範囲(更に好ましくは1.5〜3.5μmの範囲)とする。   Further, the processing offset w that is the interval between the altered portions 21c adjacent to each other in the offset direction F of the laser light is set to a range of 1 to 10 μm (more preferably, a range of 1.5 to 3.5 μm).

この結果、変質部21cを形成していく際、図5、図6に示すように、レーザ光の走査方向Sに隣り合う変質部21c同士を跨るクラックCSが生じ、また、レーザ光のオフセット方向Fに隣り合う変質部21c同士を跨るクラックCFが生じる。変質部21cはレーザ光Bの照射方向(例えば、レーザ光Bが上方から下方へ向けて照射される場合には上下方向)に沿って細長く形成されおり、クラックCS、CFは、変質部21cから面状に拡がっている。   As a result, when the altered portion 21c is formed, as shown in FIGS. 5 and 6, a crack CS straddling the altered portions 21c adjacent to each other in the scanning direction S of the laser beam occurs, and the offset direction of the laser beam Cracks CF straddling the altered portions 21c adjacent to F occur. The altered portion 21c is formed in an elongated shape along the irradiation direction of the laser beam B (for example, the vertical direction when the laser beam B is irradiated from above to below), and the cracks CS and CF are formed from the altered portion 21c. It spreads in a planar shape.

クラックCS、CFが更に均一に安定して形成する観点では、加工ピッチpを1.5〜3.5μmの範囲とすることが更に好ましく、また、加工オフセットwも1.5〜3.5μmの範囲とすることが更に好ましい。クラックCS、CFの形成にかかる時間を短縮するには、加工ピッチp、加工オフセットwを大きくする。   From the viewpoint of forming the cracks CS and CF more uniformly and stably, it is more preferable that the processing pitch p is in the range of 1.5 to 3.5 μm, and the processing offset w is also 1.5 to 3.5 μm. More preferably, it is within the range. In order to shorten the time required for forming the cracks CS and CF, the processing pitch p and the processing offset w are increased.

加工層21が形成された結果、加工層21を挟んでレーザ光Bの照射方向とその反対側にそれぞれ非加工層22が加工層21に隣接して存在する。形成する加工層21の寸法、密度などは、剥離し易くする観点で設定することが好ましい。   As a result of forming the processed layer 21, the non-processed layer 22 exists adjacent to the processed layer 21 on the opposite side to the irradiation direction of the laser beam B across the processed layer 21. The dimensions, density, and the like of the processed layer 21 to be formed are preferably set from the viewpoint of facilitating peeling.

本発明の内部加工層形成単結晶部材20はクラックCSおよびCFはレーザ光Bにより形成された変質部21cから面状に拡がって形成されており、断面方向においては変質部21cのレーザ照射面側に形成されていて、変質部同士に跨っているため、応力を負荷および印加せずに、加工層21と非加工層22との剥離が可能であり、上記のように加工層を露出させるだけで剥離でき、衝撃などを与えずに新たな単結晶部材を創成することができる。   In the internally processed layer forming single crystal member 20 of the present invention, the cracks CS and CF are formed so as to extend in a planar shape from the altered portion 21c formed by the laser beam B, and the laser irradiation surface side of the altered portion 21c in the cross-sectional direction. The processed layer 21 and the non-processed layer 22 can be peeled off without applying and applying stress, and only the processed layer is exposed as described above. Can be peeled off, and a new single crystal member can be created without giving an impact or the like.

このとき上記の加工痕21sおよび変質層21cによって、応力を負荷せずに分断あるいは分離可能とすることができる。本発明において、応力を負荷せずに単結晶部材を分断あるいは剥離可能とするというとは、内部加工層形成後に自ら分断あるいは剥離できる状態であり、剥離荷重は10N/cm2以下であることをいう。 At this time, the above-described processed marks 21s and the altered layer 21c can be divided or separated without applying stress. In the present invention, to make it possible to sever or peel a single crystal member without applying a stress means that it can be severed or peeled by itself after the formation of the internal processed layer, and the peel load is 10 N / cm 2 or less. Say.

また、剥離しやすくするために、剥離を行なう前に内部加工層形成単結晶部材20の側面に加工層21を露出させても良い。露出させるには、例えば、非加工層22の所定の結晶面に沿ってへき開すると、非加工層22によって加工層21が挟まれた構造のものが得られる。加工層21が既に露出している場合や、加工層21の周縁と内部加工層形成単結晶部材20の側壁との距離が十分に短い場合には、この露出をさせる作業を省略することが可能である。   Moreover, in order to make it easy to peel, you may expose the process layer 21 to the side surface of the internal processing layer formation single-crystal member 20 before peeling. For example, when the non-processed layer 22 is cleaved along a predetermined crystal plane, a structure in which the processed layer 21 is sandwiched by the non-processed layer 22 is obtained. When the processed layer 21 is already exposed, or when the distance between the peripheral edge of the processed layer 21 and the side wall of the internal processed layer forming single crystal member 20 is sufficiently short, the exposure work can be omitted. It is.

剥離後、この剥離面(加工層露出面)をラッピング加工およびポリシング加工により研磨加工する。研磨加工は例えばラッピング・ポリシング装置を利用して行うことができる。ラッピングでは研磨剤として粒径が1μmから数10μmの遊離砥粒を潤滑剤に混ぜたスラリーをラップ定盤と上記の加工層露出面との間に入れ加工する。このときの遊離砥粒としてはコロイダルシリカ、アルミナ、微粒ダイヤモンド、酸化セリウムなどが利用できる。ポリシング加工では粒径1μm以下の微細な研磨剤が使用され、研磨パッドを定盤に貼りつけて加工層露出面を研磨加工する。   After peeling, the peeled surface (processed layer exposed surface) is polished by lapping and polishing. The polishing process can be performed using, for example, a lapping / polishing apparatus. In lapping, a slurry obtained by mixing free abrasive grains having a particle size of 1 μm to several tens of μm as a polishing agent with a lubricant is placed between a lapping plate and the exposed surface of the processed layer. As the free abrasive grains at this time, colloidal silica, alumina, fine diamond, cerium oxide, or the like can be used. In the polishing process, a fine abrasive having a particle size of 1 μm or less is used, and the exposed surface of the processed layer is polished by attaching a polishing pad to a surface plate.

以上説明したように、本実施形態では、加工層21を形成していく際、レーザ光の走査方向Sに隣り合う変質部21c同士を跨るクラックCSを生じさせ、また、レーザ光のオフセット方向Fに隣り合う変質部21c同士を跨るクラックCFを生じさせている。従って、加工層21と非加工層22とを剥離させる際、クラックCS、CFから剥離させることができるので、従来に比べて大幅に剥離させやすくなっている。   As described above, in the present embodiment, when the processed layer 21 is formed, the crack CS straddling the deteriorated portions 21c adjacent to each other in the scanning direction S of the laser beam is generated, and the offset direction F of the laser beam is generated. The crack CF straddling the degenerated portions 21c adjacent to each other is generated. Therefore, when the processed layer 21 and the non-processed layer 22 are peeled off, they can be peeled off from the cracks CS and CF.

よって、レーザ光の走査方向Sに隣り合う変質部21cの加工ピッチp、および、レーザ光のオフセット方向に隣り合う変質部21cの加工オフセットwを従来に比べて大幅に広くすることができるので、変質部21cの加工密度、すなわち変質部21cの形成数を大幅に低減させることができる。従って、変質部21cの加工時間が大幅に短縮され、内部加工層形成単結晶部材20の製造効率が大きく向上する。また、剥離に必要な力も低減させることができ、応力を負荷せずに剥離することが可能となる。   Therefore, since the processing pitch p of the altered portion 21c adjacent in the scanning direction S of the laser beam and the processing offset w of the altered portion 21c adjacent in the offset direction of the laser beam can be significantly widened, The processing density of the altered portion 21c, that is, the number of formed altered portions 21c can be significantly reduced. Therefore, the processing time of the altered portion 21c is greatly shortened, and the manufacturing efficiency of the internal processed layer forming single crystal member 20 is greatly improved. Further, the force required for peeling can be reduced, and peeling can be performed without applying stress.

また、被照射面20tからのクラックCS、CFの深さ位置が、各クラックで略同一となっている。従って、非加工層22の剥離面が従来に比べて大幅に平坦となっている。   Further, the depth positions of the cracks CS and CF from the irradiated surface 20t are substantially the same for each crack. Therefore, the peeling surface of the non-processed layer 22 is significantly flat compared to the conventional case.

また、本実施形態では、クラックCSおよびクラックCFの両者を形成する例で説明したが、加工ピッチpおよび加工オフセットwの一方を広くしてクラックCSおよびクラックCFの一方のみを形成した場合であっても、そのクラックから剥離させることができ、これにより、変質部21cの加工時間を更に短縮させることができる。   In the present embodiment, an example in which both the crack CS and the crack CF are formed has been described. However, only one of the crack CS and the crack CF is formed by widening one of the processing pitch p and the processing offset w. However, it can be made to peel from the crack, and this can further shorten the processing time of the altered portion 21c.

また、本実施形態では、単結晶部材10としてシリコンウエハEを例に挙げて説明したが、単結晶部材10がインゴット状であって、加工層21を形成してレーザ光照射側の非加工部を剥がすことを順次繰り返してもよく、単結晶部材10の寸法は特に限定しない。   In the present embodiment, the silicon wafer E is described as an example of the single crystal member 10. However, the single crystal member 10 has an ingot shape, and a processed layer 21 is formed to form a non-processed portion on the laser light irradiation side. The steps may be sequentially repeated, and the dimensions of the single crystal member 10 are not particularly limited.

<実験例>
本発明者は、加工層21を形成して非加工層22を剥離させる上で、加工ピッチpおよび加工オフセットwの好ましい範囲を検討するための実験を行った。この結果、以下の実験条件のときに、加工層21の形成時間が比較的短く、しかも、剥離した非加工層22の剥離面で良好な平坦性が得られていた。
<Experimental example>
The inventor conducted an experiment for examining a preferable range of the processing pitch p and the processing offset w in forming the processed layer 21 and peeling the non-processed layer 22. As a result, under the following experimental conditions, the formation time of the processed layer 21 was relatively short, and good flatness was obtained on the peeled surface of the peeled non-worked layer 22.

光源(レーザ発振器) :ファイバーレーザ
波長 :1064nm
モード :シングルモード
集光器のレンズのNA :0.8
繰り返し周波数 :100kHz
パルス幅 :200ns
出力 :1W(1μJ/パルス)
加工速度 :300mm/sec
加工ピッチp :3μm
加工オフセット :3μm
加工手順および評価 :
1)ビームの焦点を試料ウエハ表面となるように集光器の高さ位置を調整する。
2)次に、その位置から集光器高さを試料ウエハ方向に60μm加工させ、ビーム焦点を試料ウエハ内部に移動する。
3)上記加工条件で、φ150mmウエハ内部の100mm×100mmの部分にレーザを照射した。
4)この試料を2個作成した。
5)1個の試料を使用して、レーザ照射部分の1辺をダイシングにより切り出し、加工層を露出させ、50箇所の加工層の位置の差を共焦点レーザ顕微鏡(機種名:OLS−4000 オリンパス(株)製)により測定したところ、3μm以下であった。なお、測定結果を表1に示す。表1では、ウエハのレーザ照射面側の表面を基準にした測定結果を示している。
6)残りの1試料からレーザ照射領域部分を、ダイシングにより切り出した。その切り出したウエハは、切り出した状態で応力を負荷させることなく加工層で2枚に分断、剥離することができた。
7)剥離したウエハの表面粗さを非接触三次元測定装置(PF−60 :三鷹光器(株)製)で測定した結果、表面粗さRa=0.84μmであった。
Light source (laser oscillator): Fiber laser Wavelength: 1064nm
Mode: Single mode Condenser lens NA: 0.8
Repetition frequency: 100 kHz
Pulse width: 200 ns
Output: 1W (1μJ / pulse)
Processing speed: 300 mm / sec
Processing pitch p: 3 μm
Processing offset: 3 μm
Processing procedure and evaluation:
1) Adjust the height position of the condenser so that the beam is focused on the sample wafer surface.
2) Next, the height of the collector is processed from the position toward the sample wafer by 60 μm, and the beam focus is moved into the sample wafer.
3) A laser was irradiated on a 100 mm × 100 mm portion inside a φ150 mm wafer under the above processing conditions.
4) Two samples were prepared.
5) Using one sample, cut out one side of the laser irradiated part by dicing, expose the processed layer, and determine the difference in position of the 50 processed layers using a confocal laser microscope (model name: OLS-4000 Olympus) (Measurement by Co., Ltd.) and found to be 3 μm or less. The measurement results are shown in Table 1. Table 1 shows the measurement results based on the surface of the wafer on the laser irradiation surface side.
6) The laser irradiation area portion was cut out from the remaining one sample by dicing. The cut-out wafer could be cut into two pieces and separated by the processed layer without applying stress in the cut-out state.
7) As a result of measuring the surface roughness of the peeled wafer with a non-contact three-dimensional measuring apparatus (PF-60: manufactured by Mitaka Kogyo Co., Ltd.), the surface roughness Ra = 0.84 μm.

同じ実験条件で単結晶部材10に加工層21を形成し、加工進行方向(レーザ走査方向S)に沿って一列に並んだ各変質部21cを切断した説明図を図7に、光学顕微鏡写真図を図8に、それぞれ示す。なお、図7では、簡略化のためクラックCSを省略して描いている。図8に示すように、隣り合う変質部21c同士を跨るクラックCSが、略同一深さ位置に形成されていることが確認された。   FIG. 7 shows an explanatory diagram in which the processed layer 21 is formed on the single crystal member 10 under the same experimental conditions, and the altered portions 21c arranged in a line along the processing progress direction (laser scanning direction S) are cut in FIG. Are shown in FIG. In FIG. 7, the crack CS is omitted for simplicity. As shown in FIG. 8, it was confirmed that the crack CS straddling the adjacent altered portions 21c was formed at substantially the same depth position.

また、加工ピッチpを2μm、加工オフセットwを2μmとした場合に、非加工層22の剥離面の平坦性は更に良好となっていた。   Further, when the processing pitch p was 2 μm and the processing offset w was 2 μm, the flatness of the peeled surface of the non-processed layer 22 was further improved.

本実験例により、加工ピッチpは1.5〜3.5μmの範囲、加工オフセットwは1.5〜3.5μmの範囲であることが更に好ましいことがわかった。   From this experimental example, it was found that the processing pitch p is more preferably in the range of 1.5 to 3.5 μm and the processing offset w is more preferably in the range of 1.5 to 3.5 μm.

本発明により薄い単結晶基板を効率良く形成することができることから、薄く切り出された単結晶基板は、Si基板(シリコン基板)であれば、太陽電池に応用可能であり、また、SiCなどであれば、SiC系パワーデバイスなどに応用可能であり、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野において適用可能である。   Since a thin single crystal substrate can be efficiently formed according to the present invention, the thinly cut single crystal substrate can be applied to a solar cell as long as it is a Si substrate (silicon substrate). For example, the present invention can be applied to SiC power devices and the like, and can be applied in a wide range of fields such as transparent electronics field, lighting field, and hybrid / electric vehicle field.

10 単結晶部材
20 内部加工層形成単結晶部材
20t 被照射面
21 加工層
21c 変質部
22 非加工層(非加工部)
72 ズームエキスパンダ(レーザ集光手段)
73 アパーチャ(レーザ集光手段)
78 集光器(レーザ集光手段)
B レーザ光
CF クラック
CS クラック
F オフセット方向
S 走査方向
p 加工ピッチ
w 加工オフセット
10 Single crystal member 20 Internally processed layer forming single crystal member 20t Irradiated surface 21 Processed layer 21c Altered part 22 Non-processed layer (non-processed part)
72 Zoom Expander (Laser focusing means)
73 Aperture (Laser focusing means)
78 Condenser (laser condensing means)
B Laser beam CF Crack CS Crack F Offset direction S Scanning direction p Processing pitch w Processing offset

Claims (9)

レーザ光を集光するレーザ集光手段を介してレーザ光をシリコンの単結晶部材の被照射面から照射しつつ、前記単結晶部材と前記レーザ集光手段とを相対的に移動させることで、前記単結晶部材内部に形成された加工層と、
前記加工層の両面側にそれぞれ隣接する非加工部と、
を備え、
前記加工層には、レーザ光の集光によって形成された変質部が、レーザ光の走査方向およびオフセット方向にそれぞれ配列され、
レーザ光の走査方向に隣り合う変質部同士に跨るクラック、および、レーザ光のオフセット方向に隣り合う変質部同士に跨るクラックの少なくとも一方が形成されていることを特徴とする内部加工層形成単結晶部材。
By relatively moving the single crystal member and the laser condensing means while irradiating the laser light from the irradiated surface of the single crystal member of silicon through the laser condensing means for condensing the laser light, A processed layer formed inside the single crystal member;
A non-processed part adjacent to each side of the processed layer;
With
In the processed layer, altered portions formed by condensing the laser beam are arranged in the scanning direction and the offset direction of the laser beam, respectively.
Internally processed layer forming single crystal characterized in that at least one of a crack straddling the deteriorated portions adjacent to each other in the laser beam scanning direction and a crack straddling the deteriorated portions adjacent to each other in the laser beam offset direction is formed Element.
各クラックは、前記被照射面から略同一深さ位置に形成されていることを特徴とする請求項1記載の内部加工層形成単結晶部材。   2. The internally processed layer-forming single crystal member according to claim 1, wherein each crack is formed at substantially the same depth position from the irradiated surface. レーザ光の走査方向に隣り合う変質部同士に跨るクラック、および、レーザ光のオフセット方向に隣り合う変質部同士に跨るクラックの両方が形成されていることを特徴とする請求項1または2記載の内部加工層形成単結晶部材。   The crack which straddles between the quality-change parts adjacent in the scanning direction of a laser beam, and the crack which straddles between quality-change parts adjacent in the offset direction of a laser beam are formed, The claim 1 or 2 characterized by the above-mentioned. Internally processed layer forming single crystal member. レーザ光を集光するレーザ集光手段を介してレーザ光をシリコンの単結晶部材の被照射面から照射しつつ、前記単結晶部材と前記レーザ集光手段とを相対的に移動させることで、前記単結晶部材内部に加工層を形成して前記単結晶部材を内部加工層形成単結晶部材とする内部加工層形成単結晶部材の製造方法であって、
前記加工層を形成する際、レーザ光の集光による変質部を、レーザ光の走査方向に隣り合う変質部同士に跨るクラックおよびレーザ光のオフセット方向に隣り合う変質部同士に跨るクラックの少なくとも一方が生じるように形成していくことを特徴とする内部加工層形成単結晶部材の製造方法。
By relatively moving the single crystal member and the laser condensing means while irradiating the laser light from the irradiated surface of the single crystal member of silicon through the laser condensing means for condensing the laser light, A method for producing an internally processed layer forming single crystal member, wherein a processed layer is formed inside the single crystal member and the single crystal member is used as an internally processed layer forming single crystal member,
At the time of forming the processed layer, at least one of the cracks straddling the deteriorated portions adjacent to each other in the laser beam scanning direction and the cracks straddling the deteriorated portions adjacent to each other in the laser beam offset direction, A method for producing an internally processed layer-forming single crystal member, characterized by comprising forming so
各クラックを、前記被照射面から略同一深さ位置に生じさせることを特徴とする請求項4記載の内部加工層形成単結晶部材の製造方法。   5. The method for producing an internally processed layer-forming single crystal member according to claim 4, wherein each crack is generated at substantially the same depth position from the irradiated surface. レーザ光の走査方向に隣り合う前記変質部同士の間隔である加工ピッチを1〜10μmの範囲とすることを特徴とする請求項4または5記載の内部加工層形成単結晶部材の製造方法。   6. The method for producing an internally processed layer-forming single crystal member according to claim 4, wherein a processing pitch, which is an interval between the altered portions adjacent to each other in the laser beam scanning direction, is in a range of 1 to 10 [mu] m. 前記加工ピッチを1.5〜3.5μmの範囲とすることを特徴とする請求項6記載の内部加工層形成単結晶部材の製造方法。   The method for producing an internally processed layer-forming single crystal member according to claim 6, wherein the processing pitch is in the range of 1.5 to 3.5 µm. レーザ光のオフセット方向に隣り合う前記変質部同士の間隔である加工オフセットを1〜10μmの範囲とすることを特徴とする請求項4または5記載の内部加工層形成単結晶部材の製造方法。   6. The method for producing an internally processed layer-forming single crystal member according to claim 4, wherein a processing offset which is an interval between the altered portions adjacent to each other in a laser beam offset direction is in a range of 1 to 10 [mu] m. 前記加工オフセットを1.5〜3.5μmの範囲とすることを特徴とする請求項8記載の内部加工層形成単結晶部材の製造方法。   9. The method for producing an internally processed layer-forming single crystal member according to claim 8, wherein the processing offset is in a range of 1.5 to 3.5 [mu] m.
JP2013210474A 2013-10-07 2013-10-07 Internal processing layer-forming single crystal member, and manufacturing method for the same Pending JP2015074003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013210474A JP2015074003A (en) 2013-10-07 2013-10-07 Internal processing layer-forming single crystal member, and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013210474A JP2015074003A (en) 2013-10-07 2013-10-07 Internal processing layer-forming single crystal member, and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2015074003A true JP2015074003A (en) 2015-04-20

Family

ID=52999278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210474A Pending JP2015074003A (en) 2013-10-07 2013-10-07 Internal processing layer-forming single crystal member, and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2015074003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090929A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing apparatus and laser processing method
CN112996628A (en) * 2018-10-30 2021-06-18 浜松光子学株式会社 Laser processing device and laser processing method
CN114096374A (en) * 2019-07-18 2022-02-25 东京毅力科创株式会社 Processing apparatus and processing method
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098186A1 (en) * 2009-02-25 2010-09-02 日亜化学工業株式会社 Semiconductor element manufacturing method
JP2013063454A (en) * 2011-09-16 2013-04-11 Hamamatsu Photonics Kk Laser machining method and laser machining device
JP2013141701A (en) * 2012-01-12 2013-07-22 Panasonic Corp Substrate producing method and modification layer forming device
WO2013126927A2 (en) * 2012-02-26 2013-08-29 Solexel, Inc. Systems and methods for laser splitting and device layer transfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098186A1 (en) * 2009-02-25 2010-09-02 日亜化学工業株式会社 Semiconductor element manufacturing method
JP2013063454A (en) * 2011-09-16 2013-04-11 Hamamatsu Photonics Kk Laser machining method and laser machining device
JP2013141701A (en) * 2012-01-12 2013-07-22 Panasonic Corp Substrate producing method and modification layer forming device
WO2013126927A2 (en) * 2012-02-26 2013-08-29 Solexel, Inc. Systems and methods for laser splitting and device layer transfer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090929A1 (en) * 2018-10-30 2020-05-07 浜松ホトニクス株式会社 Laser processing apparatus and laser processing method
CN112996628A (en) * 2018-10-30 2021-06-18 浜松光子学株式会社 Laser processing device and laser processing method
CN113056346A (en) * 2018-10-30 2021-06-29 浜松光子学株式会社 Laser processing device and laser processing method
US11833611B2 (en) 2018-10-30 2023-12-05 Hamamatsu Photonics K.K. Laser machining device
CN113056346B (en) * 2018-10-30 2023-12-15 浜松光子学株式会社 Laser processing device and laser processing method
JP7411566B2 (en) 2018-10-30 2024-01-11 浜松ホトニクス株式会社 Laser processing equipment and laser processing method
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method
CN114096374A (en) * 2019-07-18 2022-02-25 东京毅力科创株式会社 Processing apparatus and processing method
CN114096374B (en) * 2019-07-18 2024-04-09 东京毅力科创株式会社 Processing apparatus and processing method

Similar Documents

Publication Publication Date Title
JP5162163B2 (en) Wafer laser processing method
JP6004338B2 (en) Single crystal substrate manufacturing method and internal modified layer forming single crystal member
US11527441B2 (en) Method for producing a detachment area in a solid body
JP6899653B2 (en) Composite wafer manufacturing method using laser processing and temperature-induced stress
JP5875122B2 (en) Single crystal substrate manufacturing method and internal modified layer forming single crystal member
JP5843393B2 (en) Single crystal substrate manufacturing method, single crystal substrate, and internal modified layer forming single crystal member manufacturing method
JP6531885B2 (en) Internally processed layer forming single crystal member and method of manufacturing the same
JP2015119076A (en) Internal processing layer formation single crystal member and manufacturing method therefor
JP6032789B2 (en) Method for manufacturing single crystal processed member and method for manufacturing single crystal substrate
JP2017071074A (en) Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate
JP2011025611A (en) Method of cutting workpiece
KR101979397B1 (en) Method of dividing substrate with pattern
JP6004339B2 (en) Internal stress layer forming single crystal member and single crystal substrate manufacturing method
JP2011026177A (en) Method for cutting workpiece
JP2014019120A (en) Method of manufacturing single crystal member for forming internal processing layer
JP5946112B2 (en) Substrate processing method
JP2015074002A (en) Internal processing layer-forming single crystal member, and manufacturing method for the same
JP2015074003A (en) Internal processing layer-forming single crystal member, and manufacturing method for the same
JP5950269B2 (en) Substrate processing method and substrate
JP6265522B2 (en) Method for manufacturing surface three-dimensional structural member
JP2005294656A (en) Substrate manufacturing method and apparatus thereof
JP6712747B2 (en) Method for manufacturing single crystal member with internal processing layer formed
JP6712746B2 (en) Internal processing layer forming single crystal member and manufacturing method thereof
JP6202695B2 (en) Single crystal substrate manufacturing method
JP6202696B2 (en) Single crystal substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190521