WO2020129730A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2020129730A1
WO2020129730A1 PCT/JP2019/048087 JP2019048087W WO2020129730A1 WO 2020129730 A1 WO2020129730 A1 WO 2020129730A1 JP 2019048087 W JP2019048087 W JP 2019048087W WO 2020129730 A1 WO2020129730 A1 WO 2020129730A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wafer
laser light
peripheral edge
laser
Prior art date
Application number
PCT/JP2019/048087
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 森
隼斗 田之上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2020561320A priority Critical patent/JP7287982B2/en
Publication of WO2020129730A1 publication Critical patent/WO2020129730A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a substrate processing apparatus and a substrate processing method.
  • Patent Document 1 discloses a method for manufacturing a stacked semiconductor device.
  • two or more semiconductor wafers are stacked to manufacture a stacked semiconductor device.
  • each semiconductor wafer is laminated on another semiconductor wafer and then backside ground to have a desired thickness.
  • One aspect of the present disclosure is a substrate processing apparatus for processing a substrate, comprising: a holding unit that holds the second substrate in a superposed substrate in which a first substrate and a second substrate are joined; and a holding unit that holds the second substrate.
  • a holding unit Inside of the held first substrate, an internal surface reforming unit that irradiates an internal surface laser beam along a surface direction to form an internal surface reforming layer, the holding unit and the internal surface reforming
  • pretreatment for thinning a substrate can be efficiently performed.
  • a semiconductor wafer (hereinafter, referred to as a wafer) having a plurality of devices such as electronic circuits formed on the front surface is attached to the back surface of the wafer.
  • the wafer is thinned by grinding.
  • Grinding of the back surface of the wafer is performed, for example, by rotating the wafer and the grinding wheel with the grinding wheel in contact with the back surface and further lowering the grinding wheel. In such a case, the grinding wheel is worn and needs to be replaced regularly. Further, in the grinding process, it is necessary to use grinding water and treat the waste liquid. Therefore, a conventional wafer thinning process requires running costs.
  • the peripheral edge of the wafer is chamfered, but when the back surface of the wafer is ground as described above, the peripheral edge of the wafer becomes a sharply pointed shape (so-called knife edge shape). Then, chipping may occur at the peripheral edge of the wafer and the wafer may be damaged. Therefore, so-called edge trim is performed in advance to remove the peripheral portion of the wafer before the grinding process. Then, for example, in the method disclosed in Patent Document 1, the peripheral portion of the wafer is partially ground or cut to perform this edge trim.
  • FIG. 1 is a plan view schematically showing the outline of the configuration of the wafer processing system 1.
  • a processed wafer W as a first substrate and a support wafer S as a second substrate are bonded to a superposed wafer T as a superposed substrate. Perform predetermined processing. Then, in the wafer processing system 1, the peripheral edge portion We of the processed wafer W is removed, and the processed wafer W is further thinned.
  • a surface bonded to the support wafer S is referred to as a front surface Wa
  • a surface opposite to the front surface Wa is referred to as a back surface Wb.
  • the surface bonded to the processing wafer W is referred to as the front surface Sa
  • the surface opposite to the front surface Sa is referred to as the back surface Sb.
  • the processing wafer W is, for example, a semiconductor wafer such as a silicon wafer, and has a device layer (not shown) including a plurality of devices formed on the front surface Wa. Further, an oxide film F, for example, a SiO 2 film (TEOS film) is further formed on the device layer.
  • the peripheral edge We of the processed wafer W is chamfered, and the thickness of the cross section of the peripheral edge We decreases toward the tip thereof.
  • the peripheral edge portion We is a portion to be removed in the edge trim, and is, for example, within a range of 1 mm to 5 mm in the radial direction from the outer end portion of the processed wafer W.
  • oxide film F is not shown in FIG. 2 in order to avoid the complexity of the drawing. Similarly, in other drawings used in the following description, illustration of the oxide film F may be omitted.
  • the support wafer S is a wafer that supports the processing wafer W, and is, for example, a silicon wafer.
  • An oxide film (not shown) is formed on the surface Sa of the support wafer S.
  • the support wafer S functions as a protective material that protects the device on the front surface Wa of the processing wafer W.
  • a device layer (not shown) is formed on the front surface Sa similarly to the processed wafer W.
  • a bonding region Aa where the oxide film F and the surface Sa of the supporting wafer S are bonded and an unbonded region Ab which is a region radially outside the bonding region Aa are provided at the interface between the processing wafer W and the supporting wafer S.
  • an unbonded region Ab which is a region radially outside the bonding region Aa.
  • the wafer processing system 1 has a configuration in which a loading/unloading station 2 and a processing station 3 are integrally connected.
  • the loading/unloading station 2 loads/unloads a cassette Ct capable of accommodating a plurality of overlapped wafers T with the outside, for example.
  • the processing station 3 includes various processing devices that perform predetermined processing on the overlapped wafer T.
  • the cassette loading table 10 is provided in the loading/unloading station 2.
  • a plurality of, for example, three cassettes Ct can be mounted on the cassette mounting table 10 in a line in the Y-axis direction.
  • the number of cassettes Ct mounted on the cassette mounting table 10 is not limited to this embodiment, and can be arbitrarily determined.
  • a wafer transfer device 20 is provided adjacent to the cassette mounting table 10 on the X axis negative direction side of the cassette mounting table 10.
  • the wafer transfer device 20 is configured to be movable on a transfer path 21 extending in the Y-axis direction.
  • the wafer transfer device 20 has, for example, two transfer arms 22, 22 that hold and transfer the overlapped wafer T.
  • Each transfer arm 22 is configured to be movable in the horizontal direction, the vertical direction, around the horizontal axis, and around the vertical axis.
  • the configuration of the transfer arm 22 is not limited to this embodiment, and may have any configuration.
  • the wafer transfer device 20 is configured to be able to transfer the overlapped wafer T to the cassette Ct of the cassette mounting table 10 and the transition device 30 described later.
  • the loading/unloading station 2 is provided with a transition device 30 for transferring the overlapped wafer T, adjacent to the wafer transfer device 20 on the X-axis negative direction side of the wafer transfer device 20.
  • the processing station 3 is provided with, for example, three processing blocks G1 to G3.
  • the first processing block G1, the second processing block G2, and the third processing block G3 are arranged side by side in this order from the X-axis positive direction side (the loading/unloading station 2 side) to the negative direction side.
  • the first processing block G1 is provided with an etching device 40, a cleaning device 41, and a wafer transfer device 50.
  • the etching device 40 and the cleaning device 41 are arranged in layers.
  • the number and arrangement of the etching device 40 and the cleaning device 41 are not limited to this.
  • the etching device 40 and the cleaning device 41 may extend in the X-axis direction and may be placed side by side in parallel in a plan view. Further, each of the etching device 40 and the cleaning device 41 may be laminated.
  • the etching device 40 performs an etching process on the back surface Wb of the processing wafer W ground by the processing device 80 described later.
  • a chemical solution etching solution
  • HF, HNO 3 , H 3 PO 4 , TMAH, Choline, KOH or the like is used as the chemical liquid.
  • the cleaning device 41 cleans the back surface Wb of the processed wafer W ground by the processing device 80 described later. For example, a brush is brought into contact with the back surface Wb to scrub and clean the back surface Wb. Note that a pressurized cleaning liquid may be used for cleaning the back surface Wb. Further, the cleaning device 41 may have a configuration for cleaning the back surface Sb of the support wafer S together with the back surface Wb of the processing wafer W.
  • the wafer transfer device 50 is arranged, for example, on the Y axis negative direction side with respect to the etching device 40 and the cleaning device 41.
  • the wafer transfer device 50 has, for example, two transfer arms 51, 51 for holding and transferring the overlapped wafer T.
  • Each transfer arm 51 is configured to be movable in the horizontal direction, the vertical direction, around the horizontal axis, and around the vertical axis.
  • the configuration of the transfer arm 51 is not limited to this embodiment, and may have any configuration.
  • the wafer transfer device 50 is configured to transfer the superposed wafer T to the transition device 30, the etching device 40, the cleaning device 41, and the reforming device 60 described later.
  • the second processing block G2 is provided with a reforming device 60, a peripheral edge removing device 61, and a wafer transfer device 70.
  • the reforming device 60 and the peripheral edge removing device 61 are arranged in layers. The number and arrangement of the reforming device 60 and the peripheral edge removing device 61 are not limited to this.
  • the reforming device 60 irradiates the inside of the processed wafer W with laser light to form a peripheral reforming layer, a split reforming layer, and an inner surface reforming layer.
  • the specific configuration of the reformer 60 will be described later.
  • the peripheral edge removing device 61 removes the peripheral edge portion We of the processed wafer W with the peripheral edge modified layer formed by the reforming device 60 as a starting point.
  • the specific configuration of the peripheral edge removing device 61 will be described later.
  • the wafer transfer device 70 is arranged, for example, on the Y axis positive direction side with respect to the reforming device 60 and the peripheral edge removing device 61.
  • the wafer transfer device 70 has, for example, two transfer arms 71, 71 for holding and transferring the overlapped wafer T.
  • Each transfer arm 71 is supported by an articulated arm member 72, and is configured to be movable in a horizontal direction, a vertical direction, a horizontal axis, and a vertical axis. The specific configuration of the transfer arm 71 will be described later.
  • the wafer transfer device 70 is configured to transfer the superposed wafer T to the cleaning device 41, the reforming device 60, the peripheral edge removing device 61, and the processing device 80 described later.
  • a processing device 80 is provided in the third processing block G3. Note that the number and arrangement of the processing devices 80 are not limited to this embodiment, and a plurality of processing devices 80 may be arranged arbitrarily.
  • the processing device 80 grinds the back surface Wb of the processed wafer W. Then, on the back surface Wb on which the inner surface reforming layer is formed, the inner surface reforming layer is removed and the peripheral edge reforming layer is further removed. Specifically, the processing device 80 rotates the processing wafer W and the grinding wheel, respectively, in a state where the back surface Wb of the processing wafer W held by the chuck 81 is in contact with a grinding wheel (not shown), and the back surface Wb is rotated. To grind.
  • a known grinding device (polishing device) is used as the processing device 80, and for example, the device described in JP 2010-69601 A is used.
  • the wafer processing system 1 described above is provided with the control device 90.
  • the control device 90 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the processing of the overlapped wafer T in the wafer processing system 1.
  • the program storage unit also stores a program for controlling the operation of drive systems such as the above-described various processing devices and transfer devices so as to realize substrate processing to be described later in the wafer processing system 1.
  • the program may be recorded in a computer-readable storage medium H and may be installed in the control device 90 from the storage medium H.
  • FIG. 4 is a plan view showing the outline of the configuration of the reformer 60.
  • FIG. 5 is a side view showing the outline of the configuration of the reformer 60.
  • the reforming device 60 has a chuck 100 as a holding unit that holds the superposed wafer T on its upper surface.
  • the chuck 100 sucks and holds the support wafer S in a state where the processing wafer W is on the upper side and the support wafer S is on the lower side.
  • the chuck 100 is supported by the slider table 102 via an air bearing 101.
  • a rotating mechanism 103 is provided on the lower surface side of the slider table 102.
  • the rotation mechanism 103 incorporates, for example, a motor as a drive source.
  • the chuck 100 is configured to be rotatable about a vertical axis by a rotating mechanism 103 via an air bearing 101.
  • the slider table 102 is configured to be movable along a rail 105 provided on the base 106 and extending in the Y-axis direction by a moving mechanism 104 provided on the lower surface side.
  • the drive source of the moving mechanism 104 is not particularly limited, but a linear motor is used, for example.
  • a laser head 110 is provided above the chuck 100.
  • the laser head 110 has a lens 111.
  • the lens 111 is a cylindrical member provided on the lower surface of the laser head 110, and irradiates the processing wafer W held by the chuck 100 with laser light.
  • the peripheral edge reforming portion and the inner surface reforming portion have the common laser head 110.
  • the laser head 110 further has an LCOS (Liquid Crystal on Silicon) not shown.
  • the LCOS is a spatial light modulator that modulates and outputs laser light.
  • the LCOS can control the focal position and phase of the laser light, and can adjust the shape and number (branch number) of the laser light with which the processing wafer W is irradiated.
  • the laser head 110 emits high-frequency pulsed laser light oscillated from a laser light oscillator (not shown) having a wavelength that is transparent to the processing wafer W inside the processing wafer W.
  • the light is condensed and irradiated at a predetermined position. As a result, the portion where the laser light is focused inside the processed wafer W is modified, and the peripheral modified layer, the split modified layer, and the inner surface modified layer are formed.
  • the laser head 110 is supported by the support member 120.
  • the laser head 110 is configured to be movable up and down by a lifting mechanism 130 along a rail 121 extending in the vertical direction. Further, the laser head 110 is configured to be movable in the Y-axis direction by the moving mechanism 131.
  • the elevating mechanism 130 and the moving mechanism 131 are supported by the support columns 132, respectively.
  • a macro camera 140 and a micro camera 150 are provided above the chuck 100 and on the Y axis positive direction side of the laser head 110.
  • the macro camera 140 and the micro camera 150 are integrally formed, and the macro camera 140 is arranged on the Y-axis positive direction side of the micro camera 150.
  • the macro camera 140 and the micro camera 150 are configured to be movable up and down by a lifting mechanism 160, and are further configured to be movable in the Y-axis direction by a moving mechanism 161.
  • the macro camera 140 images the outer edge of the processed wafer W (overlapping wafer T).
  • the macro camera 140 includes, for example, a coaxial lens, emits visible light, for example, red light, and further receives reflected light from an object. Note that, for example, the imaging magnification of the macro camera 140 is 2 times.
  • the micro camera 150 images the peripheral portion of the processed wafer W and the boundary between the bonded area Aa and the unbonded area Ab.
  • the micro camera 150 includes, for example, a coaxial lens, irradiates infrared light (IR light), and further receives reflected light from an object.
  • IR light infrared light
  • the imaging magnification of the micro camera 150 is 10 times, the field of view is about 1 ⁇ 5 of the macro camera 140, and the pixel size is about 1 ⁇ 5 of the macro camera 140.
  • FIG. 6 is a plan view showing the outline of the configuration of the peripheral edge removing device 61.
  • FIG. 7 is a side view showing the outline of the configuration of the peripheral edge removing device 61.
  • the peripheral edge removing device 61 has a chuck 170 for holding the overlapped wafer T on its upper surface.
  • the chuck 170 sucks and holds the support wafer S in a state where the processing wafer W is on the upper side and the support wafer S is on the lower side.
  • the chuck 170 is configured to be rotatable about a vertical axis by a rotating mechanism 171.
  • a pad 180 for holding and transferring the peripheral edge portion We of the processing wafer W is provided above the chuck 170.
  • a suction mechanism (not shown) such as a vacuum pump is connected to the pad 180, and the pad 180 sucks and holds the peripheral edge portion We on the lower surface thereof.
  • the pad 180 is provided with an elevating mechanism 181 for vertically elevating the pad 180 and a moving mechanism 182 for moving the pad 180 in the horizontal direction (X-axis direction and Y-axis direction).
  • a detection unit 190 for confirming whether or not the peripheral edge portion We has been removed from the processing wafer W is provided.
  • the detection unit 190 detects the presence or absence of the peripheral edge We in the processed wafer W held by the chuck 170 and having the peripheral edge We removed.
  • a sensor is used for the detection unit 190, for example.
  • the sensor is, for example, a line type laser displacement meter, and detects the presence or absence of the peripheral edge portion We by irradiating the peripheral edge portion of the overlapped wafer T (processed wafer W) with a laser to measure the thickness of the overlapped wafer T. ..
  • the detection method of the presence or absence of the peripheral edge portion We by the detection unit 190 is not limited to this.
  • a line camera may be used as the detection unit 190, and the presence or absence of the peripheral edge portion We may be detected by imaging the overlapped wafer T (processed wafer W).
  • a recovery unit (not shown) that recovers the peripheral edge portion We transferred by the pad 180 is provided below the chuck 170.
  • the recovery unit accommodates and recovers the peripheral edge We that is suction-held by the pad 180.
  • FIG. 8 is a vertical cross-sectional view showing the outline of the configuration of the transfer arm 71.
  • the transfer arm 71 has a disk-shaped suction plate 200 having a larger diameter than the overlapped wafer T.
  • a holding unit 210 that holds the central portion Wc of the processing wafer W is provided on the lower surface of the suction plate 200.
  • a suction pipe 211 for sucking the central portion Wc is connected to the holding portion 210, and the suction pipe 211 communicates with a suction mechanism 212 such as a vacuum pump.
  • the suction pipe 211 is provided with a pressure sensor 213 that measures suction pressure.
  • the configuration of the pressure sensor 213 is arbitrary, but for example, a diaphragm type pressure gauge is used.
  • a rotation mechanism 220 that rotates the suction plate 200 around a vertical axis is provided on the upper surface of the suction plate 200.
  • the rotation mechanism 220 is supported by the support member 221.
  • the support member 221 (rotation mechanism 220) is supported by the arm member 72.
  • FIG. 9 is a flowchart showing the main steps of wafer processing.
  • FIG. 10 is an explanatory diagram of main steps of wafer processing.
  • the processing wafer W and the supporting wafer S are bonded to each other in the bonding apparatus (not shown) outside the wafer processing system 1 to form the overlapped wafer T in advance.
  • the cassette Ct containing a plurality of overlapped wafers T shown in FIG. 10A is placed on the cassette placing table 10 of the loading/unloading station 2.
  • the overlapped wafer T in the cassette Ct is taken out by the wafer transfer device 20 and transferred to the transition device 30.
  • the wafer transfer device 50 takes out the overlapped wafer T of the transition device 30 and transfers it to the reforming device 60.
  • the peripheral reforming layer M1 and the divided reforming layer M2 are sequentially formed inside the processing wafer W (steps A1 and A2 in FIG. 9), and further in FIG. As shown in c), the inner surface modified layer M3 is formed (step A3 in FIG. 9).
  • the peripheral edge modifying layer M1 serves as a base point for removing the peripheral edge We in the edge trim.
  • the divided reformed layer M2 serves as a base point for making the removed peripheral edge portion We into small pieces.
  • the inner surface modified layer M3 serves as a base point for thinning the processed wafer W.
  • FIG. 11 is an explanatory diagram of main steps of the reforming process in the reforming device 60.
  • the chuck 100 sliding table 102
  • the superposed wafer T is loaded from the wafer transfer device 50 and held by the chuck 100.
  • the chuck 100 is moved to the macro alignment position P2 as shown in FIG. 11(b).
  • the macro alignment position P2 is a position where the macro camera 140 can capture an image of the outer edge of the processing wafer W.
  • the macro camera 140 captures an image of the outer edge of the processed wafer W in the circumferential direction of 360 degrees.
  • the captured image is output from the macro camera 140 to the control device 90.
  • the controller 90 calculates the first eccentricity amount of the center Cc of the chuck 100 and the center Cw of the processed wafer W from the image of the macro camera 140. Further, the control device 90 calculates the movement amount of the chuck 100 based on the first eccentricity amount so as to correct the Y-axis component of the first eccentricity amount.
  • the chuck 100 moves in the Y-axis direction based on the calculated movement amount, and moves the chuck 100 to the micro alignment position P3 as shown in FIG. 11(c).
  • the micro alignment position P3 is a position where the micro camera 150 can capture an image of the peripheral portion of the processing wafer W.
  • the field of view of the micro camera 150 is as small as about 1/5 of that of the macro camera 140.
  • the peripheral portion of the processing wafer W is the micro camera.
  • the micro camera 150 may not be able to capture an image because it does not enter the angle of view of 150. Therefore, the correction of the Y-axis component based on the first amount of eccentricity can also be said to be for moving the chuck 100 to the micro alignment position P3.
  • the micro camera 150 images the boundary between the bonded area Aa and the unbonded area Ab of the processed wafer W in the circumferential direction of 360 degrees.
  • the captured image is output from the micro camera 150 to the control device 90.
  • the controller 90 calculates the second eccentricity amount between the center Cc of the chuck 100 and the center Ca of the bonding area Aa from the image of the micro camera 150. Further, the controller 90 determines the position of the chuck 100 with respect to the peripheral modified layer M1 based on the second eccentricity so that the center of the bonding area Aa and the center of the chuck 100 coincide with each other.
  • the unbonded area Ab is formed before the processing wafer W and the supporting wafer S are bonded.
  • the center of the unbonded area Ab (center Ca of the bonding area Aa) and the center of the processed wafer W are formed. There is a case that it is misaligned.
  • the deviation of the unbonded region Ab is corrected.
  • the modification position P4 is a position where the laser head 110 irradiates the processing wafer W with laser light to form the peripheral modification layer M1.
  • the modified position P4 is the same as the micro alignment position P3.
  • laser light L1 (peripheral laser light L1) is emitted from the laser head 110, and the peripheral edge modifying layer M1 is formed at the boundary between the peripheral edge We and the central portion Wc of the processing wafer W. Are formed (step A1 in FIG. 9).
  • the shape and number of the laser light L1 are adjusted by the LCOS. Specifically, the laser light L1 is controlled in its focal position and phase so as to form a peripheral modified layer M1 described later, and its shape is adjusted. Further, in the present embodiment, the number of laser beams L1 is one.
  • the peripheral edge modified layer M1 formed by the laser beam L1 is stretched in the thickness direction and has a vertically long aspect ratio.
  • the lower end of the peripheral modified layer M1 is located above the target surface (dotted line in FIG. 12) of the thinned processed wafer W. That is, the distance H1 between the lower end of the peripheral modified layer M1 and the surface Wa of the processed wafer W is larger than the target thickness H2 of the thinned processed wafer W.
  • the peripheral modified layer M1 does not remain on the processed wafer W after thinning. Inside the processed wafer W, cracks C1 have propagated from the peripheral modified layer M1 and have reached the front surface Wa and the back surface Wb.
  • the peripheral modified layer M1 is formed radially inward of the outer end of the bonding area Aa.
  • the peripheral edge modifying layer M1 is formed by the laser light L1 from the laser head 110, even if the peripheral edge modifying layer M1 is formed deviating from the outer end of the bonding area Aa due to, for example, a processing error, the peripheral edge modifying layer M1 is changed. It is possible to suppress the quality layer M1 from being formed radially outward from the outer end portion of the bonding area Aa.
  • the peripheral edge modified layer M1 floats on the support wafer S after the peripheral edge We is removed. I will end up. In this respect, in the present embodiment, the state of the processed wafer W can be reliably suppressed.
  • the inventors of the present invention have diligently studied and confirmed that the peripheral edge We can be appropriately removed if the distance D between the peripheral edge modified layer M1 and the outer end of the bonding area Aa is sufficiently small.
  • the distance D is preferably within 500 ⁇ m, more preferably within 50 ⁇ m.
  • the control device 90 determines the position of the chuck 100 based on the second amount of eccentricity.
  • step A1 the chuck 100 is rotated by the rotating mechanism 103 and the chuck 100 is moved by the moving mechanism 104 so that the center of the bonding area Aa and the center of the chuck 100 coincide with each other in accordance with the determined position of the chuck 100.
  • Move in the Y-axis direction the rotation of the chuck 100 and the movement in the Y-axis direction are synchronized.
  • the laser light L1 is irradiated from the laser head 110 to the inside of the processing wafer W. That is, the peripheral edge modified layer M1 is formed while correcting the second eccentricity amount. Then, the peripheral modified layer M1 is annularly formed concentrically with the bonding area Aa. That is, the distance D between the peripheral modified layer M1 and the outer end of the bonding area Aa shown in FIG. 12 can be made constant. Therefore, in the peripheral edge removing device 61, the peripheral edge portion We can be appropriately removed with the peripheral edge modifying layer M1 as a base point.
  • the chuck 100 when the second amount of eccentricity has an X-axis component, the chuck 100 is rotated in the Y-axis direction and the chuck 100 is rotated to correct the X-axis component.
  • the second amount of eccentricity when the second amount of eccentricity does not include the X-axis component, it is sufficient to move the chuck 100 in the Y-axis direction without rotating it.
  • the laser head 110 is moved in the Y-axis direction, and laser light L2 (division laser light L2) is emitted from the laser head 110 as shown in FIGS.
  • the divided modified layer M2 is formed on the outside in the direction (step A2 in FIG. 9).
  • the laser light emitted from the laser head 110 is switched from the laser light L1 to the laser light L2 by the LCOS, and the shape and number of the laser light L2 are adjusted.
  • the laser beam L2 is controlled in its focal position and phase to adjust its shape so as to form a split modification layer M2 described later.
  • the number of laser beams L2 is one.
  • the divided modified layer M2 is also stretched in the thickness direction and has a vertically long aspect ratio.
  • the divided reformed layer M2 is formed at the same height as the peripheral reformed layer M1. Further, the crack C2 has propagated from the divided reformed layer M2 and reaches the front surface Wa and the back surface Wb.
  • the layer M2 is formed.
  • the divided reformed layers M2 of the line extending in the radial direction are formed at eight locations, but the number of divided reformed layers M2 is arbitrary. If at least the divided modified layer M2 is formed at two locations, the peripheral edge portion We can be removed.
  • the peripheral edge We is divided into a plurality of pieces by the division modified layer M2 while separating from the annular peripheral modified layer M1 as a base point. Then, the removed peripheral edge We is made into small pieces, which can be removed more easily.
  • the chuck 100 may be moved in the Y-axis direction.
  • laser light L3 (laser light L3 for inner surface) is emitted from the laser head 110 to form an inner surface modified layer M3 along the surface direction (FIG. 9).
  • Step A3 the laser light emitted from the laser head 110 is switched from the laser light L2 to the laser light L3 by the LCOS, and the shape and number of the laser light L3 are adjusted.
  • the laser beam L3 is controlled in its focal position and phase to adjust its shape so as to form an internal surface reforming layer M3 described later.
  • the number of laser beams L3 is one.
  • the black arrow shown in FIG. 17 indicates the rotation direction of the chuck 100, and the same applies to the following description.
  • the lower end of the inner surface modified layer M3 is located slightly above the target surface (dotted line in FIG. 16) of the processed wafer W after thinning. That is, the distance H3 between the lower end of the inner surface modified layer M3 and the front surface Wa of the processed wafer W is slightly larger than the target thickness H2 of the thinned processed wafer W.
  • a crack C3 propagates in the surface direction from the inner surface modified layer M3.
  • Step A3 the chuck 100 (processed wafer W) is rotated, and the laser head 110 is moved from the outer peripheral portion of the processed wafer W toward the central portion in the Y-axis direction while being moved from the laser head 110 to the inside of the processed wafer W.
  • the laser light L3 is emitted.
  • the inner surface modified layer M3 is formed in a spiral shape from the outer side to the inner side in the surface of the processing wafer W.
  • step A3 the inner surface modification layer M3 is thus formed by irradiating the processing wafer W with the laser beam L3 from the outer side to the inner side in the radial direction.
  • FIG. 18A shows a case where the inner surface modified layer M3 is formed from the inner side to the outer side as a comparative example
  • FIG. 18B shows a case where the inner surface modified layer M3 is formed from the outer side to the inner side according to the present embodiment. Indicates.
  • FIG. 18A when the inner surface modified layer M3 is first formed in the central portion of the processed wafer W, the stress R acting along with the formation of the inner surface modified layer M3 causes Staying away from the inside.
  • the stress R damages the inside of the processed wafer W, and the crack C3 does not propagate.
  • the stress R can be released to the outside of the processed wafer W. Therefore, the inside of the processed wafer W is not damaged, and the crack C3 can also propagate in the surface direction.
  • the chuck 100 may be moved in the Y-axis direction.
  • the laser head 110 may be moved to rotate the laser head 110 relative to the chuck 100.
  • the chuck 100 is moved to the loading/unloading position P1 as shown in FIG. 11(e). Then, the overlapped wafer T is unloaded by the wafer transfer device 70.
  • the overlapped wafer T is transferred to the peripheral edge removing device 61 by the wafer transfer device 70.
  • the peripheral edge removing device 61 as shown in FIG. 10D, the peripheral edge portion We of the processing wafer W is removed from the peripheral edge modified layer M1 as a base point (step A4 in FIG. 9).
  • the lifting mechanism 181 lowers the pad 180 to suck and hold the peripheral edge portion We, and then raises the pad 180 further.
  • the peripheral edge portion We held by the pad 180 is separated from the processed wafer W with the peripheral edge modified layer M1 as a base point.
  • the peripheral edge portion We is divided into small pieces based on the divided reformed layer M2.
  • the removed peripheral edge portion We is recovered from the pad 180 to a recovery unit (not shown).
  • the overlapped wafer T is transferred to the processing device 80 by the wafer transfer device 70.
  • the processing device 80 first, when transferring the overlapped wafer T from the transfer arm 71 to the chuck 81, as shown in FIG. 10E, the back surface Wb side of the processed wafer W (hereinafter , Back wafer Wb1) is separated (step A5 in FIG. 9).
  • step A5 as shown in FIG. 20A, the processing wafer W is suction-held by the suction plate 200 of the transfer arm 71, while the supporting wafer S is suction-held by the chuck 81. Then, the suction plate 200 is rotated, and the back surface wafer Wb1 is cut along the boundary of the inner surface reforming layer M3. After that, as shown in FIG. 20B, in a state where the suction plate 200 sucks and holds the back surface wafer Wb1, the suction plate 200 is lifted to separate the back surface wafer Wb1 from the processing wafer W.
  • the pressure sensor 213 measures the pressure with which the backside wafer Wb1 is sucked, whereby the presence or absence of the backside wafer Wb1 can be detected, and it can be confirmed whether or not the backside wafer Wb1 is separated from the processed wafer W.
  • the backside wafer Wb1 can be separated only by raising the suction plate 200 as shown in FIG. 20B, the rotation of the suction plate 200 shown in FIG. 20A may be omitted.
  • the separated backside wafer Wb1 is collected outside the wafer processing system 1.
  • the back surface Wb of the processed wafer W held by the chuck 81 is ground to remove the inner surface modification layer M3 and the peripheral modification layer M1 remaining on the back surface Wb (FIG. 10F).
  • Step A6 of 9 the back surface Wb is ground by rotating the processing wafer W and the grinding wheel while the back surface Wb is in contact with the grinding wheel.
  • the back surface Wb of the processed wafer W may be cleaned with the cleaning liquid using a cleaning liquid nozzle (not shown).
  • the overlapped wafer T is transferred to the cleaning device 41 by the wafer transfer device 70.
  • the back surface Wb which is the ground surface of the processed wafer W, is scrubbed and cleaned (step A7 in FIG. 9).
  • the back surface Sb of the support wafer S may be cleaned together with the back surface Wb of the processing wafer W.
  • the overlapped wafer T is transferred to the etching device 40 by the wafer transfer device 50.
  • the back surface Wb of the processed wafer W is wet-etched with a chemical solution (step A8 in FIG. 9).
  • a grinding mark may be formed on the back surface Wb ground by the processing device 80 described above. In this step A8, the grinding marks can be removed by wet etching, and the back surface Wb can be smoothed.
  • the superposed wafer T that has undergone all the processes is transferred to the transition device 30 by the wafer transfer device 50, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 20. In this way, a series of wafer processing in the wafer processing system 1 is completed.
  • step A3 the laser light L3 is moved from the outer side to the inner side in the radial direction of the processing wafer W to form the inner surface reforming layer M3 from the outer side to the inner side in the radial direction. Therefore, the stress R generated due to the formation of the inner surface modified layer M3 can be released to the outside of the processed wafer W. As a result, the inside of the processed wafer W is not damaged, and the crack C3 can be propagated in the surface direction. As described above, in this embodiment, the pretreatment for the thinning process of the processed wafer W can be efficiently performed.
  • the peripheral edge portion We is removed from the peripheral edge modified layer M1 as a base point to perform edge trim, and the back surface wafer Wb1 is separated from the internal surface modified layer M3 as a base point to process the processed wafer W.
  • the laser head 110 used for forming the peripheral modified layer M1 and the internal modified layer M3 is less likely to deteriorate with time and the consumables are reduced, so that the maintenance frequency can be reduced. Further, since it is a dry process using a laser, it is not necessary to process grinding water or waste water. Therefore, the running cost can be reduced. Therefore, the running cost can be suppressed as compared with the conventional edge trimming by grinding or thinning processing by grinding.
  • the back surface Wb is ground in step A6, but this grinding may be performed by removing the inner surface modified layer M3 and the peripheral modified layer M1, and the grinding amount is about several tens of ⁇ m. Few.
  • the grinding amount is large, for example, 700 ⁇ m or more, and the degree of wear of the grinding wheel is large. Therefore, in the present embodiment, the maintenance frequency can be reduced.
  • the peripheral edge modified layer M1, the split modified layer M2, and the internal surface modified layer M3 are formed. Can be formed. That is, even if the direction in which the modified layer is stretched and the required processing quality are different, it is possible to use one laser head 110 to select an appropriate shape of the laser beam. Since the modified layer having an arbitrary shape can be formed in this manner, the degree of freedom in forming the modified layer is improved. Further, the area occupied by the device (footprint) can be reduced, and space saving can be realized. Further, since the device configuration is simple, the device cost can be reduced. As described above, in this embodiment, the thinning process of the processed wafer W and the pre-process of the edge trim can be efficiently performed.
  • the inner surface reforming layer M3 is formed in a spiral shape from the outer side to the inner side in the radial direction of the processed wafer W. In the following description, this spiral may be called a processing line for convenience.
  • the following two intervals are included in the interval of the above-mentioned inner surface modified layer M3.
  • the first interval is the interval Q1 in the circumferential direction of the inner surface modified layer M3 on the processing line shown in FIG.
  • the second interval is the radial interval Q2 of the inner surface modified layer M3 between the adjacent processing lines shown in FIG.
  • the interval Q1 of the inner surface reforming layer M3 is set to be constant in order to perform this separation uniformly in the wafer surface. Is preferred.
  • the rotation speed of the chuck 100 is controlled. That is, when the radial position of the laser head 110 (irradiation position of the laser beam L3) is on the outer peripheral portion, the rotation speed is slowed, and when the radial position of the laser head 110 is at the central portion, the rotation speed is increased. doing. Specifically, for example, when the diameter of the processed wafer W is 300 mm, the rotation speed is 30 rpm to 60 rpm in the outer peripheral portion of the processed wafer W (for example, in the range of 120 mm to 150 mm in the radial direction).
  • the rotation speed is 500 rpm to 3000 rpm.
  • the rotation speed linearly changes from 60 rpm to 500 rpm.
  • the peripheral speed of the laser beam L3 becomes constant, and the interval Q1 can be made constant in the circumferential direction.
  • the laser head 110 may be moved instead of rotating the chuck 100.
  • the frequency of the laser beam L3 may be further controlled when adjusting the circumferential interval Q1 of the inner surface modified layer M3. That is, the frequency is increased when the radial position of the laser head 110 (the irradiation position of the laser light L3) is on the outer peripheral portion, and the frequency is decreased when the radial position of the laser head 110 is on the central portion. Even in this case, when the radial position of the laser head 110 is on the outer peripheral portion, the rotation speed is slowed, and when the radial position of the laser head 110 is on the central portion, the rotation speed is increased. However, since the frequency of the laser light L3 is adjusted as described above, the adjustment range of the rotation speed of the laser head 110 can be reduced.
  • the inner surface modification layer M3 formed in step A3 is formed in the radial direction. It is preferable to keep the interval Q2 constant.
  • the moving speed of the laser head 110 is controlled. That is, when the radial position of the laser head 110 (the irradiation position of the laser beam L3) is on the outer peripheral portion, the moving speed is slowed, and when the radial position of the laser head 110 is on the central portion, the moving speed is fast. doing. In such a case, the interval Q2 can be made constant in the radial direction.
  • the chuck 100 may be moved in addition to moving the laser head 110.
  • the laser beams L1 to L3 having different shapes are emitted by one laser head 110.
  • the laser head 110 does not carry the processed wafer T to be processed into the reforming apparatus 60. Is preferably calibrated. More specifically, it is preferable to calibrate the laser head 110 before the overlapped wafer T is held on the chuck 100. In such a case, it is not necessary to calibrate the laser head 110 during the reforming process for one processed wafer W, and the time required for switching the laser beams L1 to L3 can be shortened. As a result, the throughput of wafer processing can be improved.
  • peripheral modified layer M1 when the peripheral modified layer M1 is formed, one laser beam L1 is emitted from the laser head 110 into the inside of the processing wafer W, but a plurality of laser beams L1 may be emitted. In such a case, the time for forming the peripheral modified layer M1 can be shortened, and the throughput of wafer processing can be further improved.
  • the internal surface reforming layer M3 when the internal surface reforming layer M3 is formed, one laser beam L3 is emitted from the laser head 110 to the inside of the processing wafer W, but a plurality of laser beams L3 may be emitted. Even in such a case, the time for forming the inner surface modified layer M3 can be shortened, and the throughput of wafer processing can be further improved.
  • the laser head 110 is referred to as a first laser head 110
  • the laser head 300 is referred to as a second laser head 300.
  • the number of laser heads is not limited to this embodiment.
  • the macro camera 140 and the micro camera 150 are not shown in order to avoid complexity of the drawing.
  • the second laser head 300 is provided on the Y-axis positive direction side of the first laser head 110.
  • the configuration of the second laser head 300 is similar to that of the first laser head 110. That is, the second laser head 300 has the lens 301 and the LCOS (not shown).
  • the supporting structure of the second laser head 300 is similar to the supporting structure of the first laser head 110. That is, the second laser head 300 is supported by the support member 310, the rail 311, the elevating mechanism 320, and the moving mechanism 321.
  • the second laser head 300 is configured to be movable up and down and movable in the Y-axis direction.
  • the peripheral modified layer M1 when forming the peripheral modified layer M1, the first laser head 110 and the second laser head 300 are concentrically arranged on the outer peripheral portion of the processed wafer W as shown in FIG. Then, while rotating the processing wafer W, the laser beam L11 is emitted from the first laser head 110 and the laser beam L12 is emitted from the second laser head 300. Then, the laser light L11 forms the peripheral modified layer M11, and the laser light L12 forms the peripheral modified layer M12.
  • the peripheral edge modified layers M11 and M12 are respectively formed over a half circumference of the processed wafer W, and the peripheral edge modified layers M1 and M12 are combined to form the peripheral edge modified layer M1 in an annular shape.
  • the processed wafer W only needs to be rotated 180 degrees when forming the peripheral modified layer M1. Therefore, the time for forming the peripheral modified layer M1 can be shortened, and as a result, the throughput of wafer processing can be further improved.
  • the laser light L11 from the first laser head 110 and the laser light L12 from the second laser head 300 are irradiated to the same depth inside the processing wafer W to modify the peripheral edge.
  • the layer M11 and the peripheral modified layer M12 were formed at the same depth.
  • the laser light L11 and the laser light L12 may be irradiated to different depths to form the peripheral modified layer M11 and the modified peripheral layer M12 at different depths.
  • the first laser head 110 and the second laser head 300 are arranged concentrically on the outer peripheral portion of the processed wafer W. Then, while rotating the processing wafer W, the first laser head 110 and the second laser head 300 are moved in the Y-axis direction from the outer peripheral portion of the processing wafer W toward the central portion. That is, the first laser head 110 is moved in the Y-axis positive direction, and the second laser head 300 is moved in the Y-axis negative direction.
  • the first laser head 110 irradiates the inside of the processing wafer W with the laser light L31
  • the second laser head 300 emits the laser light into the inside of the processing wafer W.
  • the light L32 is emitted.
  • the laser light L31 forms the inner surface reforming layer M31
  • the laser light L32 forms the inner surface reforming layer M32.
  • the inner surface modified layers M31 and M32 are each formed in a spiral shape, and the inner surface modified layer M3 is formed on the entire surface of the processed wafer W.
  • the divided reformed layer M2 is formed by using the laser head 110 used in the reformer 60 to form the other peripheral reformed layer M1 and the inner surface reformed layer M3.
  • a separate laser head may be used.
  • the peripheral reforming layer M1, the divided reforming layer M2, and the inner surface reforming layer M3 may be formed using different laser heads (not shown).
  • the peripheral edge We is removed by holding the peripheral edge We with the pad 180 in the peripheral edge removing device 61, but the removing method is not limited to this.
  • the peripheral edge portion We may be removed by applying physical impact or ultrasonic waves.
  • the backside wafer Wb1 is separated from the processed wafer W when the overlapping wafer T is transferred from the transfer arm 71 of the wafer transfer device 70 to the chuck 81 of the processing device 80.
  • a separating device may be provided in the same device as the peripheral edge removing device 61, or a separating device (not shown) may be provided separately.
  • the back surface wafer Wb1 of the processing wafer W is thinned by separating it from the internal surface reforming layer M3 as a base point. And the thinning of the processed wafer W may be performed at the same time.
  • an annular peripheral modified layer M1 is formed inside the processed wafer W, and an internal surface modified layer M3 is formed along the surface direction of the processed wafer W.
  • the upper end of the peripheral modified layer M1 is made to substantially coincide with the height at which the internal modified layer M3 is formed.
  • the peripheral modified layer M1 and the internal surface modified layer M3 may be formed in any order.
  • the back surface Wb side of the processed wafer W is separated from the peripheral edge modified layer M1 and the internal surface modified layer M3 as base points.
  • the processed wafer W can be thinned by separating the back surface Wb side from the inner surface modified layer M3 as a base point.
  • the peripheral edge portion We is removed integrally with the wafer on the back surface Wb side.
  • the unbonded region Ab is formed at the interface between the processing wafer W and the supporting wafer S before bonding, but the unbonded region Ab may be formed after bonding.
  • the unbonded region Ab may be formed after bonding.
  • by irradiating the outer peripheral portion of the oxide film F with laser light after bonding it is possible to reduce the bonding strength and form the unbonded region Ab.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Laser Beam Processing (AREA)

Abstract

This substrate processing device for processing a substrate has: a holding part for holding, in a superposed substrate in which a first substrate and a second substrate are joined, the second substrate; an inner surface reforming part for emitting a laser beam for an inner surface along a surface direction to the inside of the first substrate held by the holding part so as to form an inner surface reformed layer; and a movement mechanism for relatively moving the holding part and the inner surface reforming part, wherein the inner surface reformed layer is formed by moving the laser beam for an inner surface from a radially outer side to a radially inner side in the first substrate by means of the movement mechanism.

Description

基板処理装置及び基板処理方法Substrate processing apparatus and substrate processing method
 本開示は、基板処理装置及び基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 特許文献1には、積層型半導体装置の製造方法が開示されている。この製造方法では、2以上の半導体ウェハを積層して積層型半導体装置を製造する。この際、各半導体ウェハは、他の半導体ウェハに積層された後、所望の厚みを持つように裏面研削される。 Patent Document 1 discloses a method for manufacturing a stacked semiconductor device. In this manufacturing method, two or more semiconductor wafers are stacked to manufacture a stacked semiconductor device. At this time, each semiconductor wafer is laminated on another semiconductor wafer and then backside ground to have a desired thickness.
特開2012-69736号公報JP 2012-69736 A
 本開示にかかる技術は、基板の薄化の前処理を効率よく行う。 The technology according to the present disclosure efficiently performs pretreatment for substrate thinning.
 本開示の一態様は、基板を処理する基板処理装置であって、第1の基板と第2の基板が接合された重合基板において前記第2の基板を保持する保持部と、前記保持部に保持された前記第1の基板の内部に、面方向に沿って内部面用レーザ光を照射して内部面改質層を形成する内部面改質部と、前記保持部と前記内部面改質部を相対的に移動させる移動機構と、を有し、前記移動機構によって前記内部面用レーザ光を前記第1の基板の内部において径方向外側から内側に移動させて、前記内部面改質層を形成する。 One aspect of the present disclosure is a substrate processing apparatus for processing a substrate, comprising: a holding unit that holds the second substrate in a superposed substrate in which a first substrate and a second substrate are joined; and a holding unit that holds the second substrate. Inside of the held first substrate, an internal surface reforming unit that irradiates an internal surface laser beam along a surface direction to form an internal surface reforming layer, the holding unit and the internal surface reforming A moving mechanism for relatively moving the inner surface of the first substrate by the moving mechanism to move the laser light for the inner surface from the outer side to the inner side in the radial direction inside the first substrate. To form.
 本開示によれば、基板の薄化の前処理を効率よく行うことができる。 According to the present disclosure, pretreatment for thinning a substrate can be efficiently performed.
本実施形態にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows typically the outline of a structure of the wafer processing system concerning this embodiment. 重合ウェハの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of an overlapping wafer. 重合ウェハの一部の構成の概略を示す側面図である。It is a side view which shows the outline of a part of structure of an overlapping wafer. 改質装置の構成の概略を示す平面図である。It is a top view which shows the outline of a structure of a reformer. 改質装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a reformer. 周縁除去装置の構成の概略を示す平面図である。It is a top view which shows the outline of a structure of a peripheral edge removal apparatus. 周縁除去装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a peripheral edge removal apparatus. 搬送アームの構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a transfer arm. ウェハ処理の主な工程を示すフロー図である。It is a flowchart which shows the main processes of wafer processing. ウェハ処理の主な工程の説明図である。It is explanatory drawing of the main processes of wafer processing. 改質処理の主な工程の説明図である。It is explanatory drawing of the main processes of a modification process. 処理ウェハに周縁改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that a peripheral modified layer is formed in a process wafer. 処理ウェハに周縁改質層を形成した様子を示す説明図である。It is explanatory drawing which shows a mode that the peripheral modified layer was formed in the processed wafer. 処理ウェハに分割改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that a division|segmentation modification layer is formed in a process wafer. 処理ウェハに分割改質層を形成した様子を示す説明図である。It is explanatory drawing which shows a mode that the division|segmentation modification layer was formed in the process wafer. 処理ウェハに内部面改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that an internal surface modification layer is formed in a process wafer. 処理ウェハに内部面改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that an internal surface modification layer is formed in a process wafer. 内部面改質層の形成の際に処理ウェハの内部に作用する応力を示す説明図である。It is explanatory drawing which shows the stress which acts on the inside of a process wafer at the time of formation of an internal surface modification layer. 周縁部を除去する様子を示す説明図である。It is explanatory drawing which shows a mode that a peripheral part is removed. 処理ウェハから裏面ウェハを分離する様子を示す説明図である。It is explanatory drawing which shows a mode that a back surface wafer is separated from a process wafer. 他の実施形態にかかる改質装置の構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the reforming apparatus concerning other embodiment. 他の実施形態において処理ウェハに周縁改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that a peripheral modified layer is formed in the process wafer in other embodiment. 他の実施形態において処理ウェハに内部面改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that an internal surface modification layer is formed in a process wafer in other embodiment. 他の実施形態にかかるウェハ処理の主な工程の説明図である。It is explanatory drawing of the main processes of the wafer processing concerning other embodiment.
 半導体デバイスの製造工程においては、例えば特許文献1に開示された方法のように、表面に複数の電子回路等のデバイスが形成された半導体ウェハ(以下、ウェハという)に対し、当該ウェハの裏面を研削加工して、ウェハを薄化することが行われている。 In the manufacturing process of a semiconductor device, for example, as in the method disclosed in Patent Document 1, a semiconductor wafer (hereinafter, referred to as a wafer) having a plurality of devices such as electronic circuits formed on the front surface is attached to the back surface of the wafer. The wafer is thinned by grinding.
 ウェハの裏面の研削加工は、例えば当該裏面に研削砥石を当接させた状態で、ウェハと研削砥石をそれぞれ回転させ、さらに研削砥石を下降させて行われる。かかる場合、研削砥石が摩耗し、定期的な交換が必要となる。また、研削加工においては、研削水を使用し、その廃液処理も必要となる。このため、従来のウェハの薄化処理にはランニングコストがかかる。 Grinding of the back surface of the wafer is performed, for example, by rotating the wafer and the grinding wheel with the grinding wheel in contact with the back surface and further lowering the grinding wheel. In such a case, the grinding wheel is worn and needs to be replaced regularly. Further, in the grinding process, it is necessary to use grinding water and treat the waste liquid. Therefore, a conventional wafer thinning process requires running costs.
 なお、通常、ウェハの周縁部は面取り加工がされているが、上述のようにウェハの裏面に研削処理を行うと、ウェハの周縁部が鋭く尖った形状(いわゆるナイフエッジ形状)になる。そうすると、ウェハの周縁部でチッピングが発生し、ウェハが損傷を被るおそれがある。そこで、研削処理前に予めウェハの周縁部を除去する、いわゆるエッジトリムが行われている。そして、例えば特許文献1に開示された方法では、ウェハの周縁部を部分的に研削又は切削して、このエッジトリムを行っている。 Normally, the peripheral edge of the wafer is chamfered, but when the back surface of the wafer is ground as described above, the peripheral edge of the wafer becomes a sharply pointed shape (so-called knife edge shape). Then, chipping may occur at the peripheral edge of the wafer and the wafer may be damaged. Therefore, so-called edge trim is performed in advance to remove the peripheral portion of the wafer before the grinding process. Then, for example, in the method disclosed in Patent Document 1, the peripheral portion of the wafer is partially ground or cut to perform this edge trim.
 本開示にかかる技術は、ウェハの薄化処理の前処理を効率よく行う。以下、本実施形態にかかる基板処理装置としてのウェハ処理システム、及び基板処理方法としてのウェハ処理方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 The technology according to the present disclosure efficiently performs pretreatment for wafer thinning processing. Hereinafter, a wafer processing system as a substrate processing apparatus and a wafer processing method as a substrate processing method according to the present embodiment will be described with reference to the drawings. In this specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals, and duplicate description is omitted.
 先ず、本実施形態にかかるウェハ処理システムの構成について説明する。図1は、ウェハ処理システム1の構成の概略を模式的に示す平面図である。 First, the configuration of the wafer processing system according to this embodiment will be described. FIG. 1 is a plan view schematically showing the outline of the configuration of the wafer processing system 1.
 ウェハ処理システム1では、図2及び図3に示すように第1の基板としての処理ウェハWと第2の基板としての支持ウェハSとが接合された、重合基板としての重合ウェハTに対して所定の処理を行う。そしてウェハ処理システム1では、処理ウェハWの周縁部Weを除去し、さらに当該処理ウェハWを薄化する。以下、処理ウェハWにおいて、支持ウェハSに接合された面を表面Waといい、表面Waと反対側の面を裏面Wbという。同様に、支持ウェハSにおいて、処理ウェハWに接合された面を表面Saといい、表面Saと反対側の面を裏面Sbという。 In the wafer processing system 1, as shown in FIGS. 2 and 3, a processed wafer W as a first substrate and a support wafer S as a second substrate are bonded to a superposed wafer T as a superposed substrate. Perform predetermined processing. Then, in the wafer processing system 1, the peripheral edge portion We of the processed wafer W is removed, and the processed wafer W is further thinned. Hereinafter, in the processed wafer W, a surface bonded to the support wafer S is referred to as a front surface Wa, and a surface opposite to the front surface Wa is referred to as a back surface Wb. Similarly, in the support wafer S, the surface bonded to the processing wafer W is referred to as the front surface Sa, and the surface opposite to the front surface Sa is referred to as the back surface Sb.
 処理ウェハWは、例えばシリコンウェハなどの半導体ウェハであって、表面Waに複数のデバイスを含むデバイス層(図示せず)が形成されている。また、デバイス層にはさらに酸化膜F、例えばSiO膜(TEOS膜)が形成されている。なお、処理ウェハWの周縁部Weは面取り加工がされており、周縁部Weの断面はその先端に向かって厚みが小さくなっている。また、周縁部Weはエッジトリムにおいて除去される部分であり、例えば処理ウェハWの外端部から径方向に1mm~5mmの範囲である。 The processing wafer W is, for example, a semiconductor wafer such as a silicon wafer, and has a device layer (not shown) including a plurality of devices formed on the front surface Wa. Further, an oxide film F, for example, a SiO 2 film (TEOS film) is further formed on the device layer. The peripheral edge We of the processed wafer W is chamfered, and the thickness of the cross section of the peripheral edge We decreases toward the tip thereof. The peripheral edge portion We is a portion to be removed in the edge trim, and is, for example, within a range of 1 mm to 5 mm in the radial direction from the outer end portion of the processed wafer W.
 なお、図2においては、図示の煩雑さを回避するため、酸化膜Fの図示を省略している。また、以下の説明で用いられる他の図面においても同様に、酸化膜Fの図示を省略する場合がある。 Note that the oxide film F is not shown in FIG. 2 in order to avoid the complexity of the drawing. Similarly, in other drawings used in the following description, illustration of the oxide film F may be omitted.
 支持ウェハSは、処理ウェハWを支持するウェハであって、例えばシリコンウェハである。支持ウェハSの表面Saには酸化膜(図示せず)が形成されている。また、支持ウェハSは、処理ウェハWの表面Waのデバイスを保護する保護材として機能する。なお、支持ウェハSの表面Saの複数のデバイスが形成されている場合には、処理ウェハWと同様に表面Saにデバイス層(図示せず)が形成される。 The support wafer S is a wafer that supports the processing wafer W, and is, for example, a silicon wafer. An oxide film (not shown) is formed on the surface Sa of the support wafer S. Further, the support wafer S functions as a protective material that protects the device on the front surface Wa of the processing wafer W. When a plurality of devices are formed on the front surface Sa of the support wafer S, a device layer (not shown) is formed on the front surface Sa similarly to the processed wafer W.
 ここで、処理ウェハWの周縁部Weにおいて、処理ウェハWと支持ウェハSが接合されていると、周縁部Weを適切に除去できないおそれがある。そこで、処理ウェハWと支持ウェハSの界面には、酸化膜Fと支持ウェハSの表面Saが接合された接合領域Aaと、接合領域Aaの径方向外側の領域である未接合領域Abとを形成する。このように未接合領域Abが存在することで、周縁部Weを適切に除去できる。なお、詳細は後述するが、接合領域Aaの外側端部は、除去される周縁部Weの内側端部より若干径方向外側に位置させることが好ましい。 Here, if the processing wafer W and the supporting wafer S are bonded to each other at the peripheral edge portion We of the processing wafer W, the peripheral edge portion We may not be removed properly. Therefore, at the interface between the processing wafer W and the supporting wafer S, a bonding region Aa where the oxide film F and the surface Sa of the supporting wafer S are bonded and an unbonded region Ab which is a region radially outside the bonding region Aa are provided. Form. The presence of the unbonded region Ab in this way allows the peripheral edge portion We to be appropriately removed. It should be noted that, although the details will be described later, it is preferable that the outer end of the joining region Aa is located slightly outside in the radial direction from the inner end of the peripheral edge We to be removed.
 図1に示すようにウェハ処理システム1は、搬入出ステーション2と処理ステーション3を一体に接続した構成を有している。搬入出ステーション2は、例えば外部との間で複数の重合ウェハTを収容可能なカセットCtが搬入出される。処理ステーション3は、重合ウェハTに対して所定の処理を施す各種処理装置を備えている。 As shown in FIG. 1, the wafer processing system 1 has a configuration in which a loading/unloading station 2 and a processing station 3 are integrally connected. The loading/unloading station 2 loads/unloads a cassette Ct capable of accommodating a plurality of overlapped wafers T with the outside, for example. The processing station 3 includes various processing devices that perform predetermined processing on the overlapped wafer T.
 搬入出ステーション2には、カセット載置台10が設けられている。図示の例では、カセット載置台10には、複数、例えば3つのカセットCtをY軸方向に一列に載置自在になっている。なお、カセット載置台10に載置されるカセットCtの個数は、本実施形態に限定されず、任意に決定することができる。 The cassette loading table 10 is provided in the loading/unloading station 2. In the illustrated example, a plurality of, for example, three cassettes Ct can be mounted on the cassette mounting table 10 in a line in the Y-axis direction. The number of cassettes Ct mounted on the cassette mounting table 10 is not limited to this embodiment, and can be arbitrarily determined.
 搬入出ステーション2には、カセット載置台10のX軸負方向側において、当該カセット載置台10に隣接してウェハ搬送装置20が設けられている。ウェハ搬送装置20は、Y軸方向に延伸する搬送路21上を移動自在に構成されている。また、ウェハ搬送装置20は、重合ウェハTを保持して搬送する、例えば2つの搬送アーム22、22を有している。各搬送アーム22は、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム22の構成は本実施形態に限定されず、任意の構成を取り得る。そして、ウェハ搬送装置20は、カセット載置台10のカセットCt、及び後述するトランジション装置30に対して、重合ウェハTを搬送可能に構成されている。 At the loading/unloading station 2, a wafer transfer device 20 is provided adjacent to the cassette mounting table 10 on the X axis negative direction side of the cassette mounting table 10. The wafer transfer device 20 is configured to be movable on a transfer path 21 extending in the Y-axis direction. Further, the wafer transfer device 20 has, for example, two transfer arms 22, 22 that hold and transfer the overlapped wafer T. Each transfer arm 22 is configured to be movable in the horizontal direction, the vertical direction, around the horizontal axis, and around the vertical axis. The configuration of the transfer arm 22 is not limited to this embodiment, and may have any configuration. The wafer transfer device 20 is configured to be able to transfer the overlapped wafer T to the cassette Ct of the cassette mounting table 10 and the transition device 30 described later.
 搬入出ステーション2には、ウェハ搬送装置20のX軸負方向側において、当該ウェハ搬送装置20に隣接して、重合ウェハTを受け渡すためのトランジション装置30が設けられている。 The loading/unloading station 2 is provided with a transition device 30 for transferring the overlapped wafer T, adjacent to the wafer transfer device 20 on the X-axis negative direction side of the wafer transfer device 20.
 処理ステーション3には、例えば3つの処理ブロックG1~G3が設けられている。第1の処理ブロックG1、第2の処理ブロックG2、及び第3の処理ブロックG3は、X軸正方向側(搬入出ステーション2側)から負方向側にこの順で並べて配置されている。 The processing station 3 is provided with, for example, three processing blocks G1 to G3. The first processing block G1, the second processing block G2, and the third processing block G3 are arranged side by side in this order from the X-axis positive direction side (the loading/unloading station 2 side) to the negative direction side.
 第1の処理ブロックG1には、エッチング装置40、洗浄装置41、及びウェハ搬送装置50が設けられている。エッチング装置40と洗浄装置41は、積層して配置されている。なお、エッチング装置40と洗浄装置41の数や配置はこれに限定されない。例えば、エッチング装置40と洗浄装置41はそれぞれX軸方向に延伸し、平面視において並列に並べて載置されていてもよい。さらに、これらエッチング装置40と洗浄装置41はそれぞれ、積層されていてもよい。 The first processing block G1 is provided with an etching device 40, a cleaning device 41, and a wafer transfer device 50. The etching device 40 and the cleaning device 41 are arranged in layers. The number and arrangement of the etching device 40 and the cleaning device 41 are not limited to this. For example, the etching device 40 and the cleaning device 41 may extend in the X-axis direction and may be placed side by side in parallel in a plan view. Further, each of the etching device 40 and the cleaning device 41 may be laminated.
 エッチング装置40は、後述する加工装置80で研削された処理ウェハWの裏面Wbをエッチング処理する。例えば、裏面Wbに対して薬液(エッチング液)を供給し、当該裏面Wbをウェットエッチングする。薬液には、例えばHF、HNO、HPO、TMAH、Choline、KOHなどが用いられる。 The etching device 40 performs an etching process on the back surface Wb of the processing wafer W ground by the processing device 80 described later. For example, a chemical solution (etching solution) is supplied to the back surface Wb, and the back surface Wb is wet-etched. For example, HF, HNO 3 , H 3 PO 4 , TMAH, Choline, KOH or the like is used as the chemical liquid.
 洗浄装置41は、後述する加工装置80で研削された処理ウェハWの裏面Wbを洗浄する。例えば裏面Wbにブラシを当接させて、当該裏面Wbをスクラブ洗浄する。なお、裏面Wbの洗浄には、加圧された洗浄液を用いてもよい。また、洗浄装置41は、処理ウェハWの裏面Wbと共に、支持ウェハSの裏面Sbを洗浄する構成を有していてもよい。 The cleaning device 41 cleans the back surface Wb of the processed wafer W ground by the processing device 80 described later. For example, a brush is brought into contact with the back surface Wb to scrub and clean the back surface Wb. Note that a pressurized cleaning liquid may be used for cleaning the back surface Wb. Further, the cleaning device 41 may have a configuration for cleaning the back surface Sb of the support wafer S together with the back surface Wb of the processing wafer W.
 ウェハ搬送装置50は、例えばエッチング装置40と洗浄装置41に対してY軸負方向側に配置されている。ウェハ搬送装置50は、重合ウェハTを保持して搬送する、例えば2つの搬送アーム51、51を有している。各搬送アーム51は、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム51の構成は本実施形態に限定されず、任意の構成を取り得る。そして、ウェハ搬送装置50は、トランジション装置30、エッチング装置40、洗浄装置41、及び後述する改質装置60に対して、重合ウェハTを搬送可能に構成されている。 The wafer transfer device 50 is arranged, for example, on the Y axis negative direction side with respect to the etching device 40 and the cleaning device 41. The wafer transfer device 50 has, for example, two transfer arms 51, 51 for holding and transferring the overlapped wafer T. Each transfer arm 51 is configured to be movable in the horizontal direction, the vertical direction, around the horizontal axis, and around the vertical axis. The configuration of the transfer arm 51 is not limited to this embodiment, and may have any configuration. The wafer transfer device 50 is configured to transfer the superposed wafer T to the transition device 30, the etching device 40, the cleaning device 41, and the reforming device 60 described later.
 第2の処理ブロックG2には、改質装置60、周縁除去装置61、及びウェハ搬送装置70が設けられている。改質装置60と周縁除去装置61は、積層して配置されている。なお、改質装置60と周縁除去装置61の数や配置はこれに限定されない。 The second processing block G2 is provided with a reforming device 60, a peripheral edge removing device 61, and a wafer transfer device 70. The reforming device 60 and the peripheral edge removing device 61 are arranged in layers. The number and arrangement of the reforming device 60 and the peripheral edge removing device 61 are not limited to this.
 改質装置60は、処理ウェハWの内部にレーザ光を照射し、周縁改質層、分割改質層、及び内部面改質層を形成する。改質装置60の具体的な構成は後述する。 The reforming device 60 irradiates the inside of the processed wafer W with laser light to form a peripheral reforming layer, a split reforming layer, and an inner surface reforming layer. The specific configuration of the reformer 60 will be described later.
 周縁除去装置61は、改質装置60で形成された周縁改質層を基点に、処理ウェハWの周縁部Weを除去する。周縁除去装置61の具体的な構成は後述する。 The peripheral edge removing device 61 removes the peripheral edge portion We of the processed wafer W with the peripheral edge modified layer formed by the reforming device 60 as a starting point. The specific configuration of the peripheral edge removing device 61 will be described later.
 ウェハ搬送装置70は、例えば改質装置60と周縁除去装置61に対してY軸正方向側に配置されている。ウェハ搬送装置70は、重合ウェハTを保持して搬送する、例えば2つの搬送アーム71、71を有している。各搬送アーム71は、多関節のアーム部材72に支持され、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。搬送アーム71の具体的な構成は後述する。そして、ウェハ搬送装置70は、洗浄装置41、改質装置60、周縁除去装置61、及び後述する加工装置80に対して、重合ウェハTを搬送可能に構成されている。 The wafer transfer device 70 is arranged, for example, on the Y axis positive direction side with respect to the reforming device 60 and the peripheral edge removing device 61. The wafer transfer device 70 has, for example, two transfer arms 71, 71 for holding and transferring the overlapped wafer T. Each transfer arm 71 is supported by an articulated arm member 72, and is configured to be movable in a horizontal direction, a vertical direction, a horizontal axis, and a vertical axis. The specific configuration of the transfer arm 71 will be described later. The wafer transfer device 70 is configured to transfer the superposed wafer T to the cleaning device 41, the reforming device 60, the peripheral edge removing device 61, and the processing device 80 described later.
 第3の処理ブロックG3には、加工装置80が設けられている。なお、加工装置80の数や配置は本実施形態に限定されず、複数の加工装置80が任意に配置されていてもよい。 A processing device 80 is provided in the third processing block G3. Note that the number and arrangement of the processing devices 80 are not limited to this embodiment, and a plurality of processing devices 80 may be arranged arbitrarily.
 加工装置80は、処理ウェハWの裏面Wbを研削する。そして、内部面改質層が形成された裏面Wbにおいて、当該内部面改質層を除去し、さらに周縁改質層を除去する。具体的に、加工装置80は、チャック81に保持された処理ウェハWの裏面Wbを研削砥石(図示せず)に当接させた状態で、処理ウェハWと研削砥石をそれぞれ回転させ、裏面Wbを研削する。なお、加工装置80には公知の研削装置(研磨装置)が用いられ、例えば特開2010-69601号公報に記載の装置が用いられる。 The processing device 80 grinds the back surface Wb of the processed wafer W. Then, on the back surface Wb on which the inner surface reforming layer is formed, the inner surface reforming layer is removed and the peripheral edge reforming layer is further removed. Specifically, the processing device 80 rotates the processing wafer W and the grinding wheel, respectively, in a state where the back surface Wb of the processing wafer W held by the chuck 81 is in contact with a grinding wheel (not shown), and the back surface Wb is rotated. To grind. A known grinding device (polishing device) is used as the processing device 80, and for example, the device described in JP 2010-69601 A is used.
 以上のウェハ処理システム1には、制御装置90が設けられている。制御装置90は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理システム1における重合ウェハTの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、ウェハ処理システム1における後述の基板処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御装置90にインストールされたものであってもよい。 The wafer processing system 1 described above is provided with the control device 90. The control device 90 is, for example, a computer and has a program storage unit (not shown). The program storage unit stores a program for controlling the processing of the overlapped wafer T in the wafer processing system 1. The program storage unit also stores a program for controlling the operation of drive systems such as the above-described various processing devices and transfer devices so as to realize substrate processing to be described later in the wafer processing system 1. The program may be recorded in a computer-readable storage medium H and may be installed in the control device 90 from the storage medium H.
 次に、上述した改質装置60について説明する。図4は、改質装置60の構成の概略を示す平面図である。図5は、改質装置60の構成の概略を示す側面図である。 Next, the reformer 60 described above will be described. FIG. 4 is a plan view showing the outline of the configuration of the reformer 60. FIG. 5 is a side view showing the outline of the configuration of the reformer 60.
 改質装置60は、重合ウェハTを上面で保持する、保持部としてのチャック100を有している。チャック100は、処理ウェハWが上側であって支持ウェハSが下側に配置された状態で、当該支持ウェハSを吸着保持する。チャック100は、エアベアリング101を介して、スライダテーブル102に支持されている。スライダテーブル102の下面側には、回転機構103が設けられている。回転機構103は、駆動源として例えばモータを内蔵している。チャック100は、回転機構103によってエアベアリング101を介して、鉛直軸回りに回転自在に構成されている。スライダテーブル102は、その下面側に設けられた移動機構104によって、基台106に設けられY軸方向に延伸するレール105に沿って移動可能に構成されている。なお、移動機構104の駆動源は特に限定されるものではないが、例えばリニアモータが用いられる。 The reforming device 60 has a chuck 100 as a holding unit that holds the superposed wafer T on its upper surface. The chuck 100 sucks and holds the support wafer S in a state where the processing wafer W is on the upper side and the support wafer S is on the lower side. The chuck 100 is supported by the slider table 102 via an air bearing 101. A rotating mechanism 103 is provided on the lower surface side of the slider table 102. The rotation mechanism 103 incorporates, for example, a motor as a drive source. The chuck 100 is configured to be rotatable about a vertical axis by a rotating mechanism 103 via an air bearing 101. The slider table 102 is configured to be movable along a rail 105 provided on the base 106 and extending in the Y-axis direction by a moving mechanism 104 provided on the lower surface side. The drive source of the moving mechanism 104 is not particularly limited, but a linear motor is used, for example.
 チャック100の上方には、レーザヘッド110が設けられている。レーザヘッド110は、レンズ111を有している。レンズ111は、レーザヘッド110の下面に設けられた筒状の部材であり、チャック100に保持された処理ウェハWにレーザ光を照射する。なお、本実施形態では、周縁改質部と内部面改質部が共通のレーザヘッド110を有している。 A laser head 110 is provided above the chuck 100. The laser head 110 has a lens 111. The lens 111 is a cylindrical member provided on the lower surface of the laser head 110, and irradiates the processing wafer W held by the chuck 100 with laser light. In addition, in this embodiment, the peripheral edge reforming portion and the inner surface reforming portion have the common laser head 110.
 またレーザヘッド110は、図示しないLCOS(Liquid Crystal on Silicon)をさらに有している。LCOSは、空間光変調器であって、レーザ光を変調して出力する。具体的にLCOSは、レーザ光の焦点位置や位相を制御することができ、処理ウェハWに照射されるレーザ光の形状や数(分岐数)を調整することができる。 The laser head 110 further has an LCOS (Liquid Crystal on Silicon) not shown. The LCOS is a spatial light modulator that modulates and outputs laser light. Specifically, the LCOS can control the focal position and phase of the laser light, and can adjust the shape and number (branch number) of the laser light with which the processing wafer W is irradiated.
 そしてレーザヘッド110は、レーザ光発振器(図示せず)から発振された高周波のパルス状のレーザ光であって、処理ウェハWに対して透過性を有する波長のレーザ光を、処理ウェハWの内部の所定位置に集光して照射する。これによって、処理ウェハWの内部においてレーザ光が集光した部分が改質し、周縁改質層、分割改質層、及び内部面改質層が形成される。 The laser head 110 emits high-frequency pulsed laser light oscillated from a laser light oscillator (not shown) having a wavelength that is transparent to the processing wafer W inside the processing wafer W. The light is condensed and irradiated at a predetermined position. As a result, the portion where the laser light is focused inside the processed wafer W is modified, and the peripheral modified layer, the split modified layer, and the inner surface modified layer are formed.
 レーザヘッド110は、支持部材120に支持されている。レーザヘッド110は、鉛直方向に延伸するレール121に沿って、昇降機構130により昇降自在に構成されている。またレーザヘッド110は、移動機構131によってY軸方向に移動自在に構成されている。なお、昇降機構130及び移動機構131はそれぞれ、支持柱132に支持されている。 The laser head 110 is supported by the support member 120. The laser head 110 is configured to be movable up and down by a lifting mechanism 130 along a rail 121 extending in the vertical direction. Further, the laser head 110 is configured to be movable in the Y-axis direction by the moving mechanism 131. The elevating mechanism 130 and the moving mechanism 131 are supported by the support columns 132, respectively.
 チャック100の上方であって、レーザヘッド110のY軸正方向側には、マクロカメラ140とマイクロカメラ150が設けられている。例えば、マクロカメラ140とマイクロカメラ150は一体に構成され、マクロカメラ140はマイクロカメラ150のY軸正方向側に配置されている。マクロカメラ140とマイクロカメラ150は、昇降機構160によって昇降自在に構成され、さらに移動機構161によってY軸方向に移動自在に構成されている。 A macro camera 140 and a micro camera 150 are provided above the chuck 100 and on the Y axis positive direction side of the laser head 110. For example, the macro camera 140 and the micro camera 150 are integrally formed, and the macro camera 140 is arranged on the Y-axis positive direction side of the micro camera 150. The macro camera 140 and the micro camera 150 are configured to be movable up and down by a lifting mechanism 160, and are further configured to be movable in the Y-axis direction by a moving mechanism 161.
 マクロカメラ140は、処理ウェハW(重合ウェハT)の外側端部を撮像する。マクロカメラ140は、例えば同軸レンズを備え、可視光、例えば赤色光を照射し、さらに対象物からの反射光を受光する。なお例えば、マクロカメラ140の撮像倍率は2倍である。 The macro camera 140 images the outer edge of the processed wafer W (overlapping wafer T). The macro camera 140 includes, for example, a coaxial lens, emits visible light, for example, red light, and further receives reflected light from an object. Note that, for example, the imaging magnification of the macro camera 140 is 2 times.
 マイクロカメラ150は、処理ウェハWの周縁部を撮像し、接合領域Aaと未接合領域Abの境界を撮像する。マイクロカメラ150は、例えば同軸レンズを備え、赤外光(IR光)を照射し、さらに対象物からの反射光を受光する。なお例えば、マイクロカメラ150の撮像倍率は10倍であり、視野はマクロカメラ140に対して約1/5であり、ピクセルサイズはマクロカメラ140に対して約1/5である。 The micro camera 150 images the peripheral portion of the processed wafer W and the boundary between the bonded area Aa and the unbonded area Ab. The micro camera 150 includes, for example, a coaxial lens, irradiates infrared light (IR light), and further receives reflected light from an object. Note that, for example, the imaging magnification of the micro camera 150 is 10 times, the field of view is about ⅕ of the macro camera 140, and the pixel size is about ⅕ of the macro camera 140.
 次に、上述した周縁除去装置61について説明する。図6は、周縁除去装置61の構成の概略を示す平面図である。図7は、周縁除去装置61の構成の概略を示す側面図である。 Next, the peripheral edge removing device 61 described above will be described. FIG. 6 is a plan view showing the outline of the configuration of the peripheral edge removing device 61. FIG. 7 is a side view showing the outline of the configuration of the peripheral edge removing device 61.
 周縁除去装置61は、重合ウェハTを上面で保持するチャック170を有している。チャック170は、処理ウェハWが上側であって支持ウェハSが下側に配置された状態で、当該支持ウェハSを吸着保持する。またチャック170は、回転機構171によって鉛直軸回りに回転可能に構成されている。 The peripheral edge removing device 61 has a chuck 170 for holding the overlapped wafer T on its upper surface. The chuck 170 sucks and holds the support wafer S in a state where the processing wafer W is on the upper side and the support wafer S is on the lower side. The chuck 170 is configured to be rotatable about a vertical axis by a rotating mechanism 171.
 チャック170の上方には、処理ウェハWの周縁部Weを保持して移送するパッド180が設けられている。パッド180には例えば真空ポンプなどの吸引機構(図示せず)が接続され、パッド180はその下面において周縁部Weを吸着保持する。パッド180には、パッド180を鉛直方向に昇降させる昇降機構181と、パッド180を水平方向(X軸方向及びY軸方向)に移動させる移動機構182とが設けられている。 A pad 180 for holding and transferring the peripheral edge portion We of the processing wafer W is provided above the chuck 170. A suction mechanism (not shown) such as a vacuum pump is connected to the pad 180, and the pad 180 sucks and holds the peripheral edge portion We on the lower surface thereof. The pad 180 is provided with an elevating mechanism 181 for vertically elevating the pad 180 and a moving mechanism 182 for moving the pad 180 in the horizontal direction (X-axis direction and Y-axis direction).
 チャック170の上方には、処理ウェハWから周縁部Weが除去されたか否かを確認するための検知部190が設けられている。検知部190は、チャック170に保持され、且つ周縁部Weが除去された処理ウェハWにおいて、周縁部Weの有無を検知する。検知部190には、例えばセンサが用いられる。センサは、例えばライン型のレーザ変位計であり、重合ウェハT(処理ウェハW)の周縁部にレーザを照射して当該重合ウェハTの厚みを測定することで、周縁部Weの有無を検知する。なお、検知部190による周縁部Weの有無の検知方法はこれに限定されない。例えば検知部190には、例えばラインカメラを用い、重合ウェハT(処理ウェハW)を撮像することで、周縁部Weの有無を検知してもよい。 Above the chuck 170, a detection unit 190 for confirming whether or not the peripheral edge portion We has been removed from the processing wafer W is provided. The detection unit 190 detects the presence or absence of the peripheral edge We in the processed wafer W held by the chuck 170 and having the peripheral edge We removed. A sensor is used for the detection unit 190, for example. The sensor is, for example, a line type laser displacement meter, and detects the presence or absence of the peripheral edge portion We by irradiating the peripheral edge portion of the overlapped wafer T (processed wafer W) with a laser to measure the thickness of the overlapped wafer T. .. Note that the detection method of the presence or absence of the peripheral edge portion We by the detection unit 190 is not limited to this. For example, a line camera may be used as the detection unit 190, and the presence or absence of the peripheral edge portion We may be detected by imaging the overlapped wafer T (processed wafer W).
 なお、チャック170の下方には、パッド180で移送された周縁部Weを回収する回収部(図示せず)が設けられている。回収部は、パッド180で吸着保持された周縁部Weを収容して回収する。 A recovery unit (not shown) that recovers the peripheral edge portion We transferred by the pad 180 is provided below the chuck 170. The recovery unit accommodates and recovers the peripheral edge We that is suction-held by the pad 180.
 次に、上述したウェハ搬送装置70の搬送アーム71について説明する。図8は、搬送アーム71の構成の概略を示す縦断面図である。 Next, the transfer arm 71 of the wafer transfer device 70 described above will be described. FIG. 8 is a vertical cross-sectional view showing the outline of the configuration of the transfer arm 71.
 搬送アーム71は、重合ウェハTより大きい径を有する、円板状の吸着板200を有している。吸着板200の下面には、処理ウェハWの中央部Wcを保持する保持部210が設けられている。 The transfer arm 71 has a disk-shaped suction plate 200 having a larger diameter than the overlapped wafer T. A holding unit 210 that holds the central portion Wc of the processing wafer W is provided on the lower surface of the suction plate 200.
 保持部210には中央部Wcを吸引する吸引管211が接続され、吸引管211は例えば真空ポンプなどの吸引機構212に連通している。吸引管211には、吸引圧力を測定する圧力センサ213が設けられている。圧力センサ213の構成は任意であるが、例えばダイヤフラム型の圧力計が用いられる。 A suction pipe 211 for sucking the central portion Wc is connected to the holding portion 210, and the suction pipe 211 communicates with a suction mechanism 212 such as a vacuum pump. The suction pipe 211 is provided with a pressure sensor 213 that measures suction pressure. The configuration of the pressure sensor 213 is arbitrary, but for example, a diaphragm type pressure gauge is used.
 吸着板200の上面には、当該吸着板200を鉛直軸回りに回転させる回転機構220が設けられている。回転機構220は、支持部材221に支持されている。また、支持部材221(回転機構220)は、アーム部材72に支持されている。 A rotation mechanism 220 that rotates the suction plate 200 around a vertical axis is provided on the upper surface of the suction plate 200. The rotation mechanism 220 is supported by the support member 221. The support member 221 (rotation mechanism 220) is supported by the arm member 72.
 次に、以上のように構成されたウェハ処理システム1を用いて行われるウェハ処理について説明する。図9は、ウェハ処理の主な工程を示すフロー図である。図10は、ウェハ処理の主な工程の説明図である。なお、本実施形態では、ウェハ処理システム1の外部の接合装置(図示せず)において、処理ウェハWと支持ウェハSが接合され、予め重合ウェハTが形成されている。 Next, wafer processing performed using the wafer processing system 1 configured as described above will be described. FIG. 9 is a flowchart showing the main steps of wafer processing. FIG. 10 is an explanatory diagram of main steps of wafer processing. In the present embodiment, the processing wafer W and the supporting wafer S are bonded to each other in the bonding apparatus (not shown) outside the wafer processing system 1 to form the overlapped wafer T in advance.
 先ず、図10(a)に示す重合ウェハTを複数収納したカセットCtが、搬入出ステーション2のカセット載置台10に載置される。 First, the cassette Ct containing a plurality of overlapped wafers T shown in FIG. 10A is placed on the cassette placing table 10 of the loading/unloading station 2.
 次に、ウェハ搬送装置20によりカセットCt内の重合ウェハTが取り出され、トランジション装置30に搬送される。続けて、ウェハ搬送装置50により、トランジション装置30の重合ウェハTが取り出され、改質装置60に搬送される。改質装置60では、図10(b)に示すように処理ウェハWの内部に周縁改質層M1と分割改質層M2が順次形成され(図9のステップA1、A2)、さらに図10(c)に示すように内部面改質層M3が形成される(図9のステップA3)。周縁改質層M1は、エッジトリムにおいて周縁部Weを除去の際の基点となるものである。分割改質層M2は、除去される周縁部Weを小片化するための基点となるものである。内部面改質層M3は、処理ウェハWを薄化するための基点となるものである。 Next, the overlapped wafer T in the cassette Ct is taken out by the wafer transfer device 20 and transferred to the transition device 30. Subsequently, the wafer transfer device 50 takes out the overlapped wafer T of the transition device 30 and transfers it to the reforming device 60. In the reforming apparatus 60, as shown in FIG. 10B, the peripheral reforming layer M1 and the divided reforming layer M2 are sequentially formed inside the processing wafer W (steps A1 and A2 in FIG. 9), and further in FIG. As shown in c), the inner surface modified layer M3 is formed (step A3 in FIG. 9). The peripheral edge modifying layer M1 serves as a base point for removing the peripheral edge We in the edge trim. The divided reformed layer M2 serves as a base point for making the removed peripheral edge portion We into small pieces. The inner surface modified layer M3 serves as a base point for thinning the processed wafer W.
 図11は、改質装置60における改質処理の主な工程の説明図である。先ず、図11(a)に示すようにチャック100(スライダテーブル102)を搬入出位置P1に移動させる。そして、ウェハ搬送装置50から重合ウェハTが搬入され、チャック100に保持される。 FIG. 11 is an explanatory diagram of main steps of the reforming process in the reforming device 60. First, as shown in FIG. 11A, the chuck 100 (slider table 102) is moved to the loading/unloading position P1. Then, the superposed wafer T is loaded from the wafer transfer device 50 and held by the chuck 100.
 次に、図11(b)に示すようにチャック100をマクロアライメント位置P2に移動させる。マクロアライメント位置P2は、マクロカメラ140が処理ウェハWの外側端部を撮像できる位置である。 Next, the chuck 100 is moved to the macro alignment position P2 as shown in FIG. 11(b). The macro alignment position P2 is a position where the macro camera 140 can capture an image of the outer edge of the processing wafer W.
 次に、マクロカメラ140によって、処理ウェハWの周方向360度における外側端部の画像が撮像される。撮像された画像は、マクロカメラ140から制御装置90に出力される。 Next, the macro camera 140 captures an image of the outer edge of the processed wafer W in the circumferential direction of 360 degrees. The captured image is output from the macro camera 140 to the control device 90.
 制御装置90では、マクロカメラ140の画像から、チャック100の中心Ccと処理ウェハWの中心Cwの第1の偏心量を算出する。さらに制御装置90では、第1の偏心量に基づいて、当該第1の偏心量のY軸成分を補正するように、チャック100の移動量を算出する。チャック100は、この算出された移動量に基づいてY軸方向に移動し、図11(c)に示すようにチャック100をマイクロアライメント位置P3に移動させる。マイクロアライメント位置P3は、マイクロカメラ150が処理ウェハWの周縁部を撮像できる位置である。ここで、上述したようにマイクロカメラ150の視野はマクロカメラ140に対して約1/5と小さいため、第1の偏心量のY軸成分を補正しないと、処理ウェハWの周縁部がマイクロカメラ150の画角に入らず、マイクロカメラ150で撮像できない場合がある。このため、第1の偏心量に基づくY軸成分の補正は、チャック100をマイクロアライメント位置P3に移動させるためともいえる。 The controller 90 calculates the first eccentricity amount of the center Cc of the chuck 100 and the center Cw of the processed wafer W from the image of the macro camera 140. Further, the control device 90 calculates the movement amount of the chuck 100 based on the first eccentricity amount so as to correct the Y-axis component of the first eccentricity amount. The chuck 100 moves in the Y-axis direction based on the calculated movement amount, and moves the chuck 100 to the micro alignment position P3 as shown in FIG. 11(c). The micro alignment position P3 is a position where the micro camera 150 can capture an image of the peripheral portion of the processing wafer W. Here, as described above, the field of view of the micro camera 150 is as small as about 1/5 of that of the macro camera 140. Therefore, if the Y-axis component of the first eccentricity is not corrected, the peripheral portion of the processing wafer W is the micro camera. The micro camera 150 may not be able to capture an image because it does not enter the angle of view of 150. Therefore, the correction of the Y-axis component based on the first amount of eccentricity can also be said to be for moving the chuck 100 to the micro alignment position P3.
 次に、マイクロカメラ150によって、処理ウェハWの周方向360度における接合領域Aaと未接合領域Abの境界を撮像する。撮像された画像は、マイクロカメラ150から制御装置90に出力される。 Next, the micro camera 150 images the boundary between the bonded area Aa and the unbonded area Ab of the processed wafer W in the circumferential direction of 360 degrees. The captured image is output from the micro camera 150 to the control device 90.
 制御装置90では、マイクロカメラ150の画像から、チャック100の中心Ccと接合領域Aaの中心Caの第2の偏心量を算出する。さらに制御装置90では、第2の偏心量に基づいて、接合領域Aaの中心とチャック100の中心が一致するように、周縁改質層M1に対するチャック100の位置を決定する。ここで上述したように、処理ウェハWと支持ウェハSの接合前に未接合領域Abを形成するが、この未接合領域Abの中心(接合領域Aaの中心Ca)と、処理ウェハWの中心とがずれる場合がある。この点、本実施形態のように第2の偏心量に基づいて周縁改質層M1に対するチャック100の位置を調整することで、未接合領域Abのずれが補正される。 The controller 90 calculates the second eccentricity amount between the center Cc of the chuck 100 and the center Ca of the bonding area Aa from the image of the micro camera 150. Further, the controller 90 determines the position of the chuck 100 with respect to the peripheral modified layer M1 based on the second eccentricity so that the center of the bonding area Aa and the center of the chuck 100 coincide with each other. As described above, the unbonded area Ab is formed before the processing wafer W and the supporting wafer S are bonded. The center of the unbonded area Ab (center Ca of the bonding area Aa) and the center of the processed wafer W are formed. There is a case that it is misaligned. In this regard, by adjusting the position of the chuck 100 with respect to the peripheral modified layer M1 based on the second eccentric amount as in the present embodiment, the deviation of the unbonded region Ab is corrected.
 次に、図11(d)に示すようにチャック100を、改質位置P4に移動させる。改質位置P4は、レーザヘッド110が処理ウェハWにレーザ光を照射して、周縁改質層M1を形成する位置である。なお、本実施形態では、改質位置P4はマイクロアライメント位置P3と同じである。 Next, as shown in FIG. 11D, the chuck 100 is moved to the reforming position P4. The modification position P4 is a position where the laser head 110 irradiates the processing wafer W with laser light to form the peripheral modification layer M1. In the present embodiment, the modified position P4 is the same as the micro alignment position P3.
 次に、図12及び図13に示すようにレーザヘッド110からレーザ光L1(周縁用レーザ光L1)を照射して、処理ウェハWの周縁部Weと中央部Wcの境界に周縁改質層M1を形成する(図9のステップA1)。レーザ光L1は、LCOSによって、その形状と数が調整される。具体的にレーザ光L1は、後述の周縁改質層M1を形成するように、その焦点位置と位相が制御されて形状が調整される。また本実施形態では、レーザ光L1の数は1つである。 Next, as shown in FIGS. 12 and 13, laser light L1 (peripheral laser light L1) is emitted from the laser head 110, and the peripheral edge modifying layer M1 is formed at the boundary between the peripheral edge We and the central portion Wc of the processing wafer W. Are formed (step A1 in FIG. 9). The shape and number of the laser light L1 are adjusted by the LCOS. Specifically, the laser light L1 is controlled in its focal position and phase so as to form a peripheral modified layer M1 described later, and its shape is adjusted. Further, in the present embodiment, the number of laser beams L1 is one.
 上記レーザ光L1によって形成される周縁改質層M1は、厚み方向に延伸し縦長のアスペクト比を有する。周縁改質層M1の下端は、薄化後の処理ウェハWの目標表面(図12中の点線)より上方に位置している。すなわち、周縁改質層M1の下端と処理ウェハWの表面Waとの間の距離H1は、薄化後の処理ウェハWの目標厚みH2より大きい。かかる場合、薄化後の処理ウェハWに周縁改質層M1が残らない。なお、処理ウェハWの内部には、周縁改質層M1からクラックC1が進展し、表面Waと裏面Wbに到達している。 The peripheral edge modified layer M1 formed by the laser beam L1 is stretched in the thickness direction and has a vertically long aspect ratio. The lower end of the peripheral modified layer M1 is located above the target surface (dotted line in FIG. 12) of the thinned processed wafer W. That is, the distance H1 between the lower end of the peripheral modified layer M1 and the surface Wa of the processed wafer W is larger than the target thickness H2 of the thinned processed wafer W. In such a case, the peripheral modified layer M1 does not remain on the processed wafer W after thinning. Inside the processed wafer W, cracks C1 have propagated from the peripheral modified layer M1 and have reached the front surface Wa and the back surface Wb.
 なお、周縁改質層M1は、接合領域Aaの外側端部よりも径方向内側に形成される。レーザヘッド110からのレーザ光L1によって周縁改質層M1を形成する際に、例えば加工誤差などにより周縁改質層M1が接合領域Aaの外側端部からずれて形成されたとしても、当該周縁改質層M1が接合領域Aaの外側端部から径方向外側に形成されるのを抑制できる。ここで、周縁改質層M1が接合領域Aaの外側端部から径方向外側に形成されると、周縁部Weが除去された後に支持ウェハSに対して処理ウェハWが浮いた状態になってしまう。この点、本実施形態では、かかる処理ウェハWの状態を確実に抑制することができる。 The peripheral modified layer M1 is formed radially inward of the outer end of the bonding area Aa. When the peripheral edge modifying layer M1 is formed by the laser light L1 from the laser head 110, even if the peripheral edge modifying layer M1 is formed deviating from the outer end of the bonding area Aa due to, for example, a processing error, the peripheral edge modifying layer M1 is changed. It is possible to suppress the quality layer M1 from being formed radially outward from the outer end portion of the bonding area Aa. Here, when the peripheral edge modified layer M1 is formed radially outward from the outer end of the bonding area Aa, the processed wafer W floats on the support wafer S after the peripheral edge We is removed. I will end up. In this respect, in the present embodiment, the state of the processed wafer W can be reliably suppressed.
 なお、本発明者らが鋭意検討したところ、周縁改質層M1と接合領域Aaの外側端部との距離Dが十分に小さいと周縁部Weを適切に除去できることを確認している。そして、この距離Dは500μm以内であるのが好く、さらに好ましくは50μm以内である。 The inventors of the present invention have diligently studied and confirmed that the peripheral edge We can be appropriately removed if the distance D between the peripheral edge modified layer M1 and the outer end of the bonding area Aa is sufficiently small. The distance D is preferably within 500 μm, more preferably within 50 μm.
 ここで、上述したように制御装置90では、第2の偏心量に基づいてチャック100の位置が決定されている。ステップA1では、この決定されたチャック100の位置に合わせて、接合領域Aaの中心とチャック100の中心が一致するように、回転機構103によってチャック100を回転させると共に、移動機構104によってチャック100をY軸方向に移動させる。この際、チャック100の回転とY軸方向の移動を同期させる。このように完全同期制御を行うことで、チャック100の移動を、決定された位置に誤差が少なく適切に追従させることができる。 Here, as described above, the control device 90 determines the position of the chuck 100 based on the second amount of eccentricity. In step A1, the chuck 100 is rotated by the rotating mechanism 103 and the chuck 100 is moved by the moving mechanism 104 so that the center of the bonding area Aa and the center of the chuck 100 coincide with each other in accordance with the determined position of the chuck 100. Move in the Y-axis direction. At this time, the rotation of the chuck 100 and the movement in the Y-axis direction are synchronized. By performing the complete synchronization control in this manner, the movement of the chuck 100 can be appropriately followed by the determined position with a small error.
 そして、このようにチャック100(処理ウェハW)を回転及び移動させながら、レーザヘッド110から処理ウェハWの内部にレーザ光L1を照射する。すなわち、第2の偏心量を補正しながら、周縁改質層M1を形成する。そうすると周縁改質層M1は、接合領域Aaと同心円状に環状に形成される。すなわち、図12に示す周縁改質層M1と接合領域Aaの外側端部との距離Dを一定にすることができる。このため、その後周縁除去装置61において、周縁改質層M1を基点に周縁部Weを適切に除去することができる。 Then, while rotating and moving the chuck 100 (processing wafer W) in this way, the laser light L1 is irradiated from the laser head 110 to the inside of the processing wafer W. That is, the peripheral edge modified layer M1 is formed while correcting the second eccentricity amount. Then, the peripheral modified layer M1 is annularly formed concentrically with the bonding area Aa. That is, the distance D between the peripheral modified layer M1 and the outer end of the bonding area Aa shown in FIG. 12 can be made constant. Therefore, in the peripheral edge removing device 61, the peripheral edge portion We can be appropriately removed with the peripheral edge modifying layer M1 as a base point.
 なお、本例においては、第2の偏心量がX軸成分を備える場合に、チャック100をY軸方向に移動させつつ、チャック100を回転させて、当該X軸成分を補正している。一方、第2の偏心量がX軸成分を備えない場合には、チャック100を回転させずに、Y軸方向に移動させるだけでよい。 In this example, when the second amount of eccentricity has an X-axis component, the chuck 100 is rotated in the Y-axis direction and the chuck 100 is rotated to correct the X-axis component. On the other hand, when the second amount of eccentricity does not include the X-axis component, it is sufficient to move the chuck 100 in the Y-axis direction without rotating it.
 次に、レーザヘッド110をY軸方向に移動させて、図14及び図15に示すようにレーザヘッド110からレーザ光L2(分割用レーザ光L2)を照射して、周縁改質層M1の径方向外側に分割改質層M2を形成する(図9のステップA2)。この際、LCOSによって、レーザヘッド110から照射されるレーザ光が、レーザ光L1からレーザ光L2に切り替えられ、レーザ光L2はその形状と数が調整される。具体的にレーザ光L2は、後述の分割改質層M2を形成するように、その焦点位置と位相が制御されて形状が調整される。また本実施形態では、レーザ光L2の数は1つである。 Next, the laser head 110 is moved in the Y-axis direction, and laser light L2 (division laser light L2) is emitted from the laser head 110 as shown in FIGS. The divided modified layer M2 is formed on the outside in the direction (step A2 in FIG. 9). At this time, the laser light emitted from the laser head 110 is switched from the laser light L1 to the laser light L2 by the LCOS, and the shape and number of the laser light L2 are adjusted. Specifically, the laser beam L2 is controlled in its focal position and phase to adjust its shape so as to form a split modification layer M2 described later. In addition, in the present embodiment, the number of laser beams L2 is one.
 分割改質層M2も、周縁改質層M1と同様に厚み方向に延伸し、縦長のアスペクト比を有する。なお、本実施形態においては、分割改質層M2は周縁改質層M1と同じ高さに形成される。また、分割改質層M2からクラックC2が進展し、表面Waと裏面Wbに到達している。 Similarly to the peripheral modified layer M1, the divided modified layer M2 is also stretched in the thickness direction and has a vertically long aspect ratio. In the present embodiment, the divided reformed layer M2 is formed at the same height as the peripheral reformed layer M1. Further, the crack C2 has propagated from the divided reformed layer M2 and reaches the front surface Wa and the back surface Wb.
 また、分割改質層M2及びクラックC2を径方向に数μmのピッチで複数形成することで、図15に示すように周縁改質層M1から径方向外側に延伸する、1ラインの分割改質層M2が形成される。なお、図示の例においては、径方向に延伸するラインの分割改質層M2は8箇所に形成されているが、この分割改質層M2の数は任意である。少なくとも、分割改質層M2が2箇所に形成されていれば、周縁部Weは除去できる。かかる場合、エッジトリムにおいて周縁部Weを除去する際、当該周縁部Weは、環状の周縁改質層M1を基点に分離しつつ、分割改質層M2によって複数に分割される。そうすると、除去される周縁部Weが小片化され、より容易に除去することができる。 Further, by forming a plurality of divided modified layers M2 and cracks C2 at a pitch of several μm in the radial direction, one line of the divided modified layers extending radially outward from the peripheral modified layer M1 as shown in FIG. The layer M2 is formed. In the illustrated example, the divided reformed layers M2 of the line extending in the radial direction are formed at eight locations, but the number of divided reformed layers M2 is arbitrary. If at least the divided modified layer M2 is formed at two locations, the peripheral edge portion We can be removed. In such a case, when the peripheral edge We is removed in the edge trim, the peripheral edge We is divided into a plurality of pieces by the division modified layer M2 while separating from the annular peripheral modified layer M1 as a base point. Then, the removed peripheral edge We is made into small pieces, which can be removed more easily.
 なお、本実施形態では分割改質層M2を形成するにあたり、レーザヘッド110をY軸方向に移動させたが、チャック100をY軸方向に移動させてもよい。 Although the laser head 110 is moved in the Y-axis direction in forming the divided modified layer M2 in the present embodiment, the chuck 100 may be moved in the Y-axis direction.
 次に、図16及び図17に示すようにレーザヘッド110からレーザ光L3(内部面用レーザ光L3)を照射して、面方向に沿って内部面改質層M3を形成する(図9のステップA3)。この際、LCOSによって、レーザヘッド110から照射されるレーザ光が、レーザ光L2からレーザ光L3に切り替えられ、レーザ光L3はその形状と数が調整される。具体的にレーザ光L3は、後述の内部面改質層M3を形成するように、その焦点位置と位相が制御されて形状が調整される。また本実施形態では、レーザ光L3の数は1つである。なお、図17に示す黒塗り矢印はチャック100の回転方向を示し、以下の説明においても同様である。 Next, as shown in FIGS. 16 and 17, laser light L3 (laser light L3 for inner surface) is emitted from the laser head 110 to form an inner surface modified layer M3 along the surface direction (FIG. 9). Step A3). At this time, the laser light emitted from the laser head 110 is switched from the laser light L2 to the laser light L3 by the LCOS, and the shape and number of the laser light L3 are adjusted. Specifically, the laser beam L3 is controlled in its focal position and phase to adjust its shape so as to form an internal surface reforming layer M3 described later. In addition, in the present embodiment, the number of laser beams L3 is one. The black arrow shown in FIG. 17 indicates the rotation direction of the chuck 100, and the same applies to the following description.
 内部面改質層M3の下端は、薄化後の処理ウェハWの目標表面(図16中の点線)より少し上方に位置している。すなわち、内部面改質層M3の下端と処理ウェハWの表面Waとの間の距離H3は、薄化後の処理ウェハWの目標厚みH2より少し大きい。なお、処理ウェハWの内部には、内部面改質層M3から面方向にクラックC3が進展する。 The lower end of the inner surface modified layer M3 is located slightly above the target surface (dotted line in FIG. 16) of the processed wafer W after thinning. That is, the distance H3 between the lower end of the inner surface modified layer M3 and the front surface Wa of the processed wafer W is slightly larger than the target thickness H2 of the thinned processed wafer W. In addition, inside the processed wafer W, a crack C3 propagates in the surface direction from the inner surface modified layer M3.
 ステップA3では、チャック100(処理ウェハW)を回転させると共に、レーザヘッド110を処理ウェハWの外周部から中心部に向けてY軸方向に移動させながら、レーザヘッド110から処理ウェハWの内部にレーザ光L3を照射する。そうすると、内部面改質層M3は、処理ウェハWの面内において、外側から内側に螺旋状に形成される。 In Step A3, the chuck 100 (processed wafer W) is rotated, and the laser head 110 is moved from the outer peripheral portion of the processed wafer W toward the central portion in the Y-axis direction while being moved from the laser head 110 to the inside of the processed wafer W. The laser light L3 is emitted. Then, the inner surface modified layer M3 is formed in a spiral shape from the outer side to the inner side in the surface of the processing wafer W.
 ステップA3では、このように内部面改質層M3は、処理ウェハWの径方向外側から内側にレーザ光L3を照射して形成される。この理由を図18に基づいて説明する。図18(a)は比較例として内部面改質層M3を内側から外側に形成する場合を示し、図18(b)は本実施形態として内部面改質層M3を外側から内側に形成する場合を示す。図18(a)に示すように、最初に処理ウェハWの中心部に内部面改質層M3を形成すると、当該内部面改質層M3の形成に伴い作用する応力Rが、処理ウェハWの内部から逃げられずに留まる。そうすると、応力Rにより処理ウェハWの内部が損傷し、クラックC3も進展しない。これに対して、図18(b)に示すように、最初に処理ウェハWの外周部に内部面改質層M3を形成すると、応力Rを処理ウェハWの外側に逃がすことができる。このため、処理ウェハWの内部は損傷を被らず、クラックC3も面方向に進展させることができる。 In step A3, the inner surface modification layer M3 is thus formed by irradiating the processing wafer W with the laser beam L3 from the outer side to the inner side in the radial direction. The reason for this will be described with reference to FIG. FIG. 18A shows a case where the inner surface modified layer M3 is formed from the inner side to the outer side as a comparative example, and FIG. 18B shows a case where the inner surface modified layer M3 is formed from the outer side to the inner side according to the present embodiment. Indicates. As shown in FIG. 18A, when the inner surface modified layer M3 is first formed in the central portion of the processed wafer W, the stress R acting along with the formation of the inner surface modified layer M3 causes Staying away from the inside. Then, the stress R damages the inside of the processed wafer W, and the crack C3 does not propagate. On the other hand, as shown in FIG. 18B, when the inner surface modified layer M3 is first formed on the outer peripheral portion of the processed wafer W, the stress R can be released to the outside of the processed wafer W. Therefore, the inside of the processed wafer W is not damaged, and the crack C3 can also propagate in the surface direction.
 なお、本実施形態では内部面改質層M3を形成するにあたり、レーザヘッド110をY軸方向に移動させたが、チャック100をY軸方向に移動させてもよい。また内部面改質層M3を形成するにあたり、チャック100を回転させたが、レーザヘッド110を移動させて、チャック100に対してレーザヘッド110を相対的に回転させてもよい。 Although the laser head 110 is moved in the Y-axis direction in forming the inner surface modified layer M3 in the present embodiment, the chuck 100 may be moved in the Y-axis direction. Although the chuck 100 is rotated in forming the inner surface modified layer M3, the laser head 110 may be moved to rotate the laser head 110 relative to the chuck 100.
 次に、処理ウェハWに内部面改質層M3が形成されると、図11(e)に示すようにチャック100を搬入出位置P1に移動させる。そして、ウェハ搬送装置70によって重合ウェハTが搬出される。 Next, when the inner surface modified layer M3 is formed on the processed wafer W, the chuck 100 is moved to the loading/unloading position P1 as shown in FIG. 11(e). Then, the overlapped wafer T is unloaded by the wafer transfer device 70.
 次に、重合ウェハTはウェハ搬送装置70により周縁除去装置61に搬送される。周縁除去装置61では、図10(d)に示すように周縁改質層M1を基点に、処理ウェハWの周縁部Weを除去する(図9のステップA4)。ステップA4では、図19に示すように昇降機構181によりパッド180を下降させて周縁部Weを吸着保持した後、さらにパッド180を上昇させる。そうすると、パッド180に保持された周縁部Weが、周縁改質層M1を基点に処理ウェハWから分離される。この際、分割改質層M2を基点に、周縁部Weは小片化して分離される。なお、除去された周縁部Weは、パッド180から回収部(図示せず)に回収される。 Next, the overlapped wafer T is transferred to the peripheral edge removing device 61 by the wafer transfer device 70. In the peripheral edge removing device 61, as shown in FIG. 10D, the peripheral edge portion We of the processing wafer W is removed from the peripheral edge modified layer M1 as a base point (step A4 in FIG. 9). In step A4, as shown in FIG. 19, the lifting mechanism 181 lowers the pad 180 to suck and hold the peripheral edge portion We, and then raises the pad 180 further. Then, the peripheral edge portion We held by the pad 180 is separated from the processed wafer W with the peripheral edge modified layer M1 as a base point. At this time, the peripheral edge portion We is divided into small pieces based on the divided reformed layer M2. The removed peripheral edge portion We is recovered from the pad 180 to a recovery unit (not shown).
 次に、重合ウェハTはウェハ搬送装置70により加工装置80に搬送される。加工装置80では、先ず、搬送アーム71からチャック81に重合ウェハTを受け渡す際、図10(e)に示すように内部面改質層M3を基点に、処理ウェハWの裏面Wb側(以下、裏面ウェハWb1という)を分離する(図9のステップA5)。 Next, the overlapped wafer T is transferred to the processing device 80 by the wafer transfer device 70. In the processing device 80, first, when transferring the overlapped wafer T from the transfer arm 71 to the chuck 81, as shown in FIG. 10E, the back surface Wb side of the processed wafer W (hereinafter , Back wafer Wb1) is separated (step A5 in FIG. 9).
 ステップA5では、図20(a)に示すように搬送アーム71の吸着板200で処理ウェハWを吸着保持しつつ、チャック81で支持ウェハSを吸着保持する。そして、吸着板200を回転させて、内部面改質層M3を境界に裏面ウェハWb1が縁切りされる。その後、図20(b)に示すように吸着板200が裏面ウェハWb1を吸着保持した状態で、当該吸着板200を上昇させて、処理ウェハWから裏面ウェハWb1を分離する。この際、圧力センサ213で裏面ウェハWb1を吸引する圧力を測定することで、裏面ウェハWb1の有無を検知して、処理ウェハWから裏面ウェハWb1が分離されたか否かを確認することができる。なお、図20(b)に示したように吸着板200を上昇させるだけで裏面ウェハWb1を分離できる場合、図20(a)に示した吸着板200の回転を省略してもよい。また、分離された裏面ウェハWb1は、ウェハ処理システム1の外部に回収される。 In step A5, as shown in FIG. 20A, the processing wafer W is suction-held by the suction plate 200 of the transfer arm 71, while the supporting wafer S is suction-held by the chuck 81. Then, the suction plate 200 is rotated, and the back surface wafer Wb1 is cut along the boundary of the inner surface reforming layer M3. After that, as shown in FIG. 20B, in a state where the suction plate 200 sucks and holds the back surface wafer Wb1, the suction plate 200 is lifted to separate the back surface wafer Wb1 from the processing wafer W. At this time, the pressure sensor 213 measures the pressure with which the backside wafer Wb1 is sucked, whereby the presence or absence of the backside wafer Wb1 can be detected, and it can be confirmed whether or not the backside wafer Wb1 is separated from the processed wafer W. When the backside wafer Wb1 can be separated only by raising the suction plate 200 as shown in FIG. 20B, the rotation of the suction plate 200 shown in FIG. 20A may be omitted. The separated backside wafer Wb1 is collected outside the wafer processing system 1.
 続いて、図10(f)に示すようにチャック81に保持された処理ウェハWの裏面Wbを研削し、当該裏面Wbに残る内部面改質層M3と周縁改質層M1を除去する(図9のステップA6)。ステップA6では、裏面Wbに研削砥石を当接させた状態で、処理ウェハWと研削砥石をそれぞれ回転させ、裏面Wbを研削する。なおその後、洗浄液ノズル(図示せず)を用いて、処理ウェハWの裏面Wbが洗浄液によって洗浄されてもよい。 Subsequently, as shown in FIG. 10F, the back surface Wb of the processed wafer W held by the chuck 81 is ground to remove the inner surface modification layer M3 and the peripheral modification layer M1 remaining on the back surface Wb (FIG. 10F). Step A6 of 9). In step A6, the back surface Wb is ground by rotating the processing wafer W and the grinding wheel while the back surface Wb is in contact with the grinding wheel. After that, the back surface Wb of the processed wafer W may be cleaned with the cleaning liquid using a cleaning liquid nozzle (not shown).
 次に、重合ウェハTはウェハ搬送装置70により洗浄装置41に搬送される。洗浄装置41では処理ウェハWの研削面である裏面Wbがスクラブ洗浄される(図9のステップA7)。なお、洗浄装置41では、処理ウェハWの裏面Wbと共に、支持ウェハSの裏面Sbが洗浄されてもよい。 Next, the overlapped wafer T is transferred to the cleaning device 41 by the wafer transfer device 70. In the cleaning device 41, the back surface Wb, which is the ground surface of the processed wafer W, is scrubbed and cleaned (step A7 in FIG. 9). In the cleaning device 41, the back surface Sb of the support wafer S may be cleaned together with the back surface Wb of the processing wafer W.
 次に、重合ウェハTはウェハ搬送装置50によりエッチング装置40に搬送される。エッチング装置40では処理ウェハWの裏面Wbが薬液によりウェットエッチングされる(図9のステップA8)。上述した加工装置80で研削された裏面Wbには、研削痕が形成される場合がある。本ステップA8では、ウェットエッチングすることによって研削痕を除去でき、裏面Wbを平滑化することができる。 Next, the overlapped wafer T is transferred to the etching device 40 by the wafer transfer device 50. In the etching apparatus 40, the back surface Wb of the processed wafer W is wet-etched with a chemical solution (step A8 in FIG. 9). A grinding mark may be formed on the back surface Wb ground by the processing device 80 described above. In this step A8, the grinding marks can be removed by wet etching, and the back surface Wb can be smoothed.
 その後、すべての処理が施された重合ウェハTは、ウェハ搬送装置50によりトランジション装置30に搬送され、さらにウェハ搬送装置20によりカセット載置台10のカセットCtに搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。 After that, the superposed wafer T that has undergone all the processes is transferred to the transition device 30 by the wafer transfer device 50, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 20. In this way, a series of wafer processing in the wafer processing system 1 is completed.
 以上の実施形態によれば、ステップA3において、レーザ光L3を処理ウェハWの径方向外側から内側に移動させて、内部面改質層M3を径方向外側から内側に形成している。このため、内部面改質層M3の形成に伴い発生する応力Rを、処理ウェハWの外側に逃がすことができる。そしてその結果、処理ウェハWの内部は損傷を被らず、クラックC3を面方向に進展させることができる。このように本実施形態では、処理ウェハWの薄化処理の前処理を効率よく行うことができる。 According to the above embodiment, in step A3, the laser light L3 is moved from the outer side to the inner side in the radial direction of the processing wafer W to form the inner surface reforming layer M3 from the outer side to the inner side in the radial direction. Therefore, the stress R generated due to the formation of the inner surface modified layer M3 can be released to the outside of the processed wafer W. As a result, the inside of the processed wafer W is not damaged, and the crack C3 can be propagated in the surface direction. As described above, in this embodiment, the pretreatment for the thinning process of the processed wafer W can be efficiently performed.
 また、本実施形態によれば、周縁改質層M1を基点に周縁部Weを除去してエッジトリムを行い、さらに内部面改質層M3を基点に裏面ウェハWb1を分離して処理ウェハWの薄化処理を行っている。そして、これら周縁改質層M1と内部面改質層M3の形成に用いられるレーザヘッド110は経時的に劣化しにくく、消耗品が少なくなるため、メンテナンス頻度を低減することができる。また、レーザを用いたドライプロセスであるため、研削水や廃水処理が不要となる。このため、ランニングコストを低廉化することができる。したがって、従来の研削によるエッジトリムや研削による薄化処理に比して、ランニングコストを抑えることができる。 Further, according to the present embodiment, the peripheral edge portion We is removed from the peripheral edge modified layer M1 as a base point to perform edge trim, and the back surface wafer Wb1 is separated from the internal surface modified layer M3 as a base point to process the processed wafer W. We are thinning it. The laser head 110 used for forming the peripheral modified layer M1 and the internal modified layer M3 is less likely to deteriorate with time and the consumables are reduced, so that the maintenance frequency can be reduced. Further, since it is a dry process using a laser, it is not necessary to process grinding water or waste water. Therefore, the running cost can be reduced. Therefore, the running cost can be suppressed as compared with the conventional edge trimming by grinding or thinning processing by grinding.
 なお、本実施形態では、ステップA6において裏面Wbの研削を行っているが、この研削は内部面改質層M3及び周縁改質層M1を除去すればよく、その研削量は数十μm程度と少ない。これに対して、従来のように処理ウェハWを薄化するために裏面Wbを研削する場合、その研削量は例えば700μm以上と多く、研削砥石の摩耗度合いが大きい。このため、本実施形態では、やはりメンテナンス頻度を低減することができる。 In the present embodiment, the back surface Wb is ground in step A6, but this grinding may be performed by removing the inner surface modified layer M3 and the peripheral modified layer M1, and the grinding amount is about several tens of μm. Few. On the other hand, when the back surface Wb is ground to thin the processed wafer W as in the conventional case, the grinding amount is large, for example, 700 μm or more, and the degree of wear of the grinding wheel is large. Therefore, in the present embodiment, the maintenance frequency can be reduced.
 また、本実施形態によれば、1つのレーザヘッド110を用いてレーザ光L1~L3の形状を調整することで、周縁改質層M1、分割改質層M2、及び内部面改質層M3を形成することができる。すなわち、改質層が延伸する方向や、求められる加工品質が異なる場合でも、1つのレーザヘッド110を用いてレーザ光の適切な形状を選択することができる。そして、このように任意の形状の改質層を形成することができるので、当該改質層を形成する自由度が向上する。また、装置の占有面積(フットプリント)を小さくすることができ、省スペース化を実現することができる。さらに、装置構成が単純になるので、装置コストを低廉化することも可能となる。このように本実施形態では、処理ウェハWの薄化処理とエッジトリムの前処理を効率よく行うことができる。 Further, according to the present embodiment, by adjusting the shapes of the laser beams L1 to L3 using one laser head 110, the peripheral edge modified layer M1, the split modified layer M2, and the internal surface modified layer M3 are formed. Can be formed. That is, even if the direction in which the modified layer is stretched and the required processing quality are different, it is possible to use one laser head 110 to select an appropriate shape of the laser beam. Since the modified layer having an arbitrary shape can be formed in this manner, the degree of freedom in forming the modified layer is improved. Further, the area occupied by the device (footprint) can be reduced, and space saving can be realized. Further, since the device configuration is simple, the device cost can be reduced. As described above, in this embodiment, the thinning process of the processed wafer W and the pre-process of the edge trim can be efficiently performed.
 ここで、ステップA3において内部面改質層M3を形成する際の、当該内部面改質層M3(レーザ光L3)の好ましい間隔(ピッチ)について説明する。図16及び図17に示したように内部面改質層M3は、処理ウェハWの径方向外側から内側に螺旋状に形成される。以下の説明においては、便宜上、この螺旋を加工線という場合がある。 Here, a preferable interval (pitch) of the inner surface modified layer M3 (laser light L3) when forming the inner surface modified layer M3 in step A3 will be described. As shown in FIGS. 16 and 17, the inner surface reforming layer M3 is formed in a spiral shape from the outer side to the inner side in the radial direction of the processed wafer W. In the following description, this spiral may be called a processing line for convenience.
 上述した内部面改質層M3の間隔には、次の2つの間隔が含まれる。1つ目の間隔は、図16に示す、加工線上の内部面改質層M3の周方向の間隔Q1である。2つ目の間隔は、図17に示す、隣接する加工線間の内部面改質層M3の径方向の間隔Q2である。 The following two intervals are included in the interval of the above-mentioned inner surface modified layer M3. The first interval is the interval Q1 in the circumferential direction of the inner surface modified layer M3 on the processing line shown in FIG. The second interval is the radial interval Q2 of the inner surface modified layer M3 between the adjacent processing lines shown in FIG.
 1つ目の間隔Q1について説明する。ステップA3において内部面改質層M3を形成する際、クラックC3を進展させるためには、内部面改質層M3の間隔Q1を一定にするのが好ましい。また、ステップA5において内部面改質層M3を基点に処理ウェハWを分離する際、この分離をウェハ面内で均一に行うためにも、内部面改質層M3の間隔Q1を一定にするのが好ましい。 Explain the first interval Q1. When the internal surface modified layer M3 is formed in step A3, it is preferable to keep the interval Q1 between the internal surface modified layers M3 constant in order to propagate the crack C3. Further, when the processed wafer W is separated from the inner surface reforming layer M3 as a starting point in step A5, the interval Q1 of the inner surface reforming layer M3 is set to be constant in order to perform this separation uniformly in the wafer surface. Is preferred.
 内部面改質層M3の周方向の間隔Q1を調整する際には、チャック100の回転速度を制御する。すなわち、レーザヘッド110の径方向位置(レーザ光L3の照射位置)が外周部にある場合には回転速度を遅くし、レーザヘッド110の径方向位置が中心部にある場合には回転速度を速くしている。具体的には、例えば処理ウェハWの直径が300mmの場合、処理ウェハWの外周部(例えば径方向120mm~150mmの範囲)では、回転速度は30rpm~60rpmである。一方、処理ウェハWの中心部(例えば径方向0mm(中心点)~20mmの範囲)では、回転速度は500rpm~3000rpmである。なお、処理ウェハWの径方向20mm~120mmの範囲では、回転速度は60rpm~500rpmまで直線的に変化する。かかる場合、レーザ光L3の周速が一定になり、間隔Q1を周方向に一定にすることができる。 When adjusting the circumferential interval Q1 of the inner surface modified layer M3, the rotation speed of the chuck 100 is controlled. That is, when the radial position of the laser head 110 (irradiation position of the laser beam L3) is on the outer peripheral portion, the rotation speed is slowed, and when the radial position of the laser head 110 is at the central portion, the rotation speed is increased. doing. Specifically, for example, when the diameter of the processed wafer W is 300 mm, the rotation speed is 30 rpm to 60 rpm in the outer peripheral portion of the processed wafer W (for example, in the range of 120 mm to 150 mm in the radial direction). On the other hand, in the central portion of the processed wafer W (for example, in the range of 0 mm (center point) to 20 mm in the radial direction), the rotation speed is 500 rpm to 3000 rpm. In the range of 20 mm to 120 mm in the radial direction of the processed wafer W, the rotation speed linearly changes from 60 rpm to 500 rpm. In this case, the peripheral speed of the laser beam L3 becomes constant, and the interval Q1 can be made constant in the circumferential direction.
 なお、上述したように処理ウェハWに対してレーザ光L3を回転させるには、チャック100を回転させる以外に、レーザヘッド110を移動させてもよい。 In addition, in order to rotate the laser beam L3 with respect to the processing wafer W as described above, the laser head 110 may be moved instead of rotating the chuck 100.
 また、内部面改質層M3の周方向の間隔Q1を調整する際には、さらにレーザ光L3の周波数を制御してもよい。すなわち、レーザヘッド110の径方向位置(レーザ光L3の照射位置)が外周部にある場合には周波数を大きくし、レーザヘッド110の径方向位置が中心部にある場合には周波数を小さくする。なお、この場合でも、レーザヘッド110の径方向位置が外周部にある場合には回転速度を遅くし、レーザヘッド110の径方向位置が中心部にある場合には回転速度を速くしている。但し、上述したようにレーザ光L3の周波数を調整した分、レーザヘッド110の回転速度の調整幅を小さくすることができる。 The frequency of the laser beam L3 may be further controlled when adjusting the circumferential interval Q1 of the inner surface modified layer M3. That is, the frequency is increased when the radial position of the laser head 110 (the irradiation position of the laser light L3) is on the outer peripheral portion, and the frequency is decreased when the radial position of the laser head 110 is on the central portion. Even in this case, when the radial position of the laser head 110 is on the outer peripheral portion, the rotation speed is slowed, and when the radial position of the laser head 110 is on the central portion, the rotation speed is increased. However, since the frequency of the laser light L3 is adjusted as described above, the adjustment range of the rotation speed of the laser head 110 can be reduced.
 2つ目の間隔Q2について説明する。ステップA5において内部面改質層M3を基点に処理ウェハWを分離する際、この分離をウェハ面内で均一に行うためには、ステップA3において形成される内部面改質層M3の径方向の間隔Q2を一定にするのが好ましい。 Explain the second interval Q2. When the processed wafer W is separated from the inner surface modification layer M3 in step A5 as a starting point, in order to perform this separation uniformly in the wafer surface, the inner surface modification layer M3 formed in step A3 is formed in the radial direction. It is preferable to keep the interval Q2 constant.
 内部面改質層M3の径方向の間隔Q2を調整する際には、レーザヘッド110の移動速度を制御する。すなわち、レーザヘッド110の径方向位置(レーザ光L3の照射位置)が外周部にある場合には移動速度を遅くし、レーザヘッド110の径方向位置が中心部にある場合には移動速度を速くしている。かかる場合、間隔Q2を径方向に一定にすることができる。 When adjusting the radial distance Q2 of the inner surface reforming layer M3, the moving speed of the laser head 110 is controlled. That is, when the radial position of the laser head 110 (the irradiation position of the laser beam L3) is on the outer peripheral portion, the moving speed is slowed, and when the radial position of the laser head 110 is on the central portion, the moving speed is fast. doing. In such a case, the interval Q2 can be made constant in the radial direction.
 なお、上述したように処理ウェハWに対してレーザ光L3を移動させるには、レーザヘッド110を移動させる以外に、チャック100を移動させてもよい。 In addition, in order to move the laser beam L3 with respect to the processing wafer W as described above, the chuck 100 may be moved in addition to moving the laser head 110.
 なお、以上の実施形態では、1つのレーザヘッド110によって異なる形状のレーザ光L1~L3を照射していたが、レーザヘッド110は、処理対象の重合ウェハTが改質装置60に搬入される前に較正(キャリブレーション)されるのが好ましい。より詳細には、重合ウェハTがチャック100に保持される前に、レーザヘッド110の較正をしておくのが好ましい。かかる場合、1つの処理ウェハWに対する改質処理中にレーザヘッド110の較正を行う必要がなく、レーザ光L1~L3の切り替えに要する時間を短縮することができる。その結果、ウェハ処理のスループットを向上させることができる。 In the above embodiment, the laser beams L1 to L3 having different shapes are emitted by one laser head 110. However, the laser head 110 does not carry the processed wafer T to be processed into the reforming apparatus 60. Is preferably calibrated. More specifically, it is preferable to calibrate the laser head 110 before the overlapped wafer T is held on the chuck 100. In such a case, it is not necessary to calibrate the laser head 110 during the reforming process for one processed wafer W, and the time required for switching the laser beams L1 to L3 can be shortened. As a result, the throughput of wafer processing can be improved.
 また、以上の実施形態では、周縁改質層M1を形成するに際し、レーザヘッド110から処理ウェハWの内部に1つのレーザ光L1を照射したが、複数のレーザ光L1を照射してもよい。かかる場合、周縁改質層M1を形成する時間を短縮することができ、ウェハ処理のスループットをさらに向上させることができる。同様に、内部面改質層M3を形成するに際し、レーザヘッド110から処理ウェハWの内部に1つのレーザ光L3を照射したが、複数のレーザ光L3を照射してもよい。かかる場合も、内部面改質層M3を形成する時間を短縮することができ、ウェハ処理のスループットをさらに向上させることができる。 Further, in the above embodiment, when the peripheral modified layer M1 is formed, one laser beam L1 is emitted from the laser head 110 into the inside of the processing wafer W, but a plurality of laser beams L1 may be emitted. In such a case, the time for forming the peripheral modified layer M1 can be shortened, and the throughput of wafer processing can be further improved. Similarly, when the internal surface reforming layer M3 is formed, one laser beam L3 is emitted from the laser head 110 to the inside of the processing wafer W, but a plurality of laser beams L3 may be emitted. Even in such a case, the time for forming the inner surface modified layer M3 can be shortened, and the throughput of wafer processing can be further improved.
 以上の実施形態の改質装置60には、1つのレーザヘッド110が設けられていたが、図21に示すように複数、例えば2つのレーザヘッド110、300が設けられていてもよい。本実施形態では説明の便宜上、レーザヘッド110を第1のレーザヘッド110といい、レーザヘッド300を第2のレーザヘッド300という。なお、レーザヘッドの数は本実施形態に限定されない。また、図21においては図示の煩雑さを回避するため、マクロカメラ140とマイクロカメラ150の図示を省略している。 Although one laser head 110 is provided in the reformer 60 of the above embodiment, a plurality of laser heads 110, 300, for example, may be provided as shown in FIG. In this embodiment, for convenience of description, the laser head 110 is referred to as a first laser head 110, and the laser head 300 is referred to as a second laser head 300. The number of laser heads is not limited to this embodiment. Further, in FIG. 21, the macro camera 140 and the micro camera 150 are not shown in order to avoid complexity of the drawing.
 第2のレーザヘッド300は、第1のレーザヘッド110のY軸正方向側に設けられている。第2のレーザヘッド300の構成は、第1のレーザヘッド110の構成と同様である。すなわち、第2のレーザヘッド300は、レンズ301とLCOS(図示せず)を有している。 The second laser head 300 is provided on the Y-axis positive direction side of the first laser head 110. The configuration of the second laser head 300 is similar to that of the first laser head 110. That is, the second laser head 300 has the lens 301 and the LCOS (not shown).
 第2のレーザヘッド300の支持構成も、第1のレーザヘッド110の支持構成と同様である。すなわち、第2のレーザヘッド300は、支持部材310、レール311、昇降機構320、及び移動機構321に支持されている。そして、第2のレーザヘッド300は、昇降自在かつY軸方向に移動自在に構成されている。 The supporting structure of the second laser head 300 is similar to the supporting structure of the first laser head 110. That is, the second laser head 300 is supported by the support member 310, the rail 311, the elevating mechanism 320, and the moving mechanism 321. The second laser head 300 is configured to be movable up and down and movable in the Y-axis direction.
 かかる場合、周縁改質層M1を形成する際には、図22に示すように第1のレーザヘッド110と第2のレーザヘッド300を、処理ウェハWの外周部において同心円上に配置する。そして、処理ウェハWを回転させながら、第1のレーザヘッド110からレーザ光L11を照射するとともに、第2のレーザヘッド300からレーザ光L12を照射する。そうすると、レーザ光L11によって周縁改質層M11が形成され、レーザ光L12によって周縁改質層M12が形成される。周縁改質層M11、M12はそれぞれ処理ウェハWの半周分に形成され、これら周縁改質層M11、M12を合わせて周縁改質層M1が環状に形成される。すなわち、本実施形態では、周縁改質層M1を形成するにあたり、処理ウェハWは180度回転させるだけでよい。したがって、周縁改質層M1を形成する時間を短縮することができ、その結果、ウェハ処理のスループットをさらに向上させることができる。 In such a case, when forming the peripheral modified layer M1, the first laser head 110 and the second laser head 300 are concentrically arranged on the outer peripheral portion of the processed wafer W as shown in FIG. Then, while rotating the processing wafer W, the laser beam L11 is emitted from the first laser head 110 and the laser beam L12 is emitted from the second laser head 300. Then, the laser light L11 forms the peripheral modified layer M11, and the laser light L12 forms the peripheral modified layer M12. The peripheral edge modified layers M11 and M12 are respectively formed over a half circumference of the processed wafer W, and the peripheral edge modified layers M1 and M12 are combined to form the peripheral edge modified layer M1 in an annular shape. That is, in the present embodiment, the processed wafer W only needs to be rotated 180 degrees when forming the peripheral modified layer M1. Therefore, the time for forming the peripheral modified layer M1 can be shortened, and as a result, the throughput of wafer processing can be further improved.
 なお、上記例においては、第1のレーザヘッド110からのレーザ光L11と、第2のレーザヘッド300からのレーザ光L12とを、処理ウェハWの内部において同じ深さに照射し、周縁改質層M11と周縁改質層M12を同じ深さに形成していた。この点、レーザ光L11とレーザ光L12を異なる深さに照射し、周縁改質層M11と周縁改質層M12を異なる深さに形成してもよい。 In the above example, the laser light L11 from the first laser head 110 and the laser light L12 from the second laser head 300 are irradiated to the same depth inside the processing wafer W to modify the peripheral edge. The layer M11 and the peripheral modified layer M12 were formed at the same depth. In this regard, the laser light L11 and the laser light L12 may be irradiated to different depths to form the peripheral modified layer M11 and the modified peripheral layer M12 at different depths.
 また、内部面改質層M3を形成する際には、図23に示すように第1のレーザヘッド110と第2のレーザヘッド300を、処理ウェハWの外周部において同心円上に配置する。そして、処理ウェハWを回転させると共に、第1のレーザヘッド110と第2のレーザヘッド300をそれぞれ処理ウェハWの外周部から中心部に向けてY軸方向に移動させる。すなわち、第1のレーザヘッド110をY軸正方向に移動させ、第2のレーザヘッド300をY軸負方向に移動させる。この処理ウェハWの回転及びレーザヘッド110、300の移動中、第1のレーザヘッド110から処理ウェハWの内部にレーザ光L31を照射し、第2のレーザヘッド300から処理ウェハWの内部にレーザ光L32を照射する。そうすると、レーザ光L31によって内部面改質層M31が形成され、レーザ光L32によって内部面改質層M32が形成される。内部面改質層M31、M32はそれぞれ螺旋状に形成され、処理ウェハWの全面に内部面改質層M3が形成される。このように内部面改質層M31、M32を同時に形成することにより、内部面改質層M3を形成する時間を短縮することができ、その結果、ウェハ処理のスループットをさらに向上させることができる。 Further, when forming the inner surface modified layer M3, as shown in FIG. 23, the first laser head 110 and the second laser head 300 are arranged concentrically on the outer peripheral portion of the processed wafer W. Then, while rotating the processing wafer W, the first laser head 110 and the second laser head 300 are moved in the Y-axis direction from the outer peripheral portion of the processing wafer W toward the central portion. That is, the first laser head 110 is moved in the Y-axis positive direction, and the second laser head 300 is moved in the Y-axis negative direction. During the rotation of the processing wafer W and the movement of the laser heads 110 and 300, the first laser head 110 irradiates the inside of the processing wafer W with the laser light L31, and the second laser head 300 emits the laser light into the inside of the processing wafer W. The light L32 is emitted. Then, the laser light L31 forms the inner surface reforming layer M31, and the laser light L32 forms the inner surface reforming layer M32. The inner surface modified layers M31 and M32 are each formed in a spiral shape, and the inner surface modified layer M3 is formed on the entire surface of the processed wafer W. By simultaneously forming the inner surface modified layers M31 and M32 in this manner, the time for forming the inner surface modified layer M3 can be shortened, and as a result, the throughput of wafer processing can be further improved.
 なお、以上の実施形態では、分割改質層M2の形成は、改質装置60において他の周縁改質層M1と内部面改質層M3の形成で用いられるレーザヘッド110を用いて形成したが、別途のレーザヘッド(図示せず)を用いてもよい。さらに改質装置60では、周縁改質層M1、分割改質層M2、内部面改質層M3をそれぞれ、別のレーザヘッド(図示せず)を用いて形成してもよい。 In the above-described embodiment, the divided reformed layer M2 is formed by using the laser head 110 used in the reformer 60 to form the other peripheral reformed layer M1 and the inner surface reformed layer M3. Alternatively, a separate laser head (not shown) may be used. Further, in the reforming device 60, the peripheral reforming layer M1, the divided reforming layer M2, and the inner surface reforming layer M3 may be formed using different laser heads (not shown).
 以上の実施形態では、周縁部Weの除去は、周縁除去装置61においてパッド180で周縁部Weを保持して除去していたが、除去方法はこれに限定されない。例えば、周縁部Weに対して、物理的な衝撃や超音波などを付与して除去してもよい。 In the above embodiments, the peripheral edge We is removed by holding the peripheral edge We with the pad 180 in the peripheral edge removing device 61, but the removing method is not limited to this. For example, the peripheral edge portion We may be removed by applying physical impact or ultrasonic waves.
 また以上の実施形態では、処理ウェハWからの裏面ウェハWb1の分離は、ウェハ搬送装置70の搬送アーム71から加工装置80のチャック81に重合ウェハTを受け渡す際に行っていたが、分離方法はこれに限定されない。例えば、分離装置(図示せず)を周縁除去装置61と同一装置内に設けてもよいし、分離装置(図示せず)を別途設けてもよい。 Further, in the above embodiment, the backside wafer Wb1 is separated from the processed wafer W when the overlapping wafer T is transferred from the transfer arm 71 of the wafer transfer device 70 to the chuck 81 of the processing device 80. Is not limited to this. For example, a separating device (not shown) may be provided in the same device as the peripheral edge removing device 61, or a separating device (not shown) may be provided separately.
 また、以上の実施形態では、処理ウェハWの周縁部Weを除去した後、当該処理ウェハWの裏面ウェハWb1を内部面改質層M3を基点に分離することで薄化したが、周縁部Weの除去と処理ウェハWの薄化は同時に行われてもよい。 Further, in the above embodiment, after the peripheral edge portion We of the processing wafer W is removed, the back surface wafer Wb1 of the processing wafer W is thinned by separating it from the internal surface reforming layer M3 as a base point. And the thinning of the processed wafer W may be performed at the same time.
 例えば図24(a)に示すように、処理ウェハWの内部に環状の周縁改質層M1を形成すると共に、処理ウェハWの面方向に沿って内部面改質層M3を形成する。この際、周縁改質層M1の上端を、内部面改質層M3が形成される高さと略一致させる。なお、周縁改質層M1と内部面改質層M3の形成順序は任意である。 For example, as shown in FIG. 24A, an annular peripheral modified layer M1 is formed inside the processed wafer W, and an internal surface modified layer M3 is formed along the surface direction of the processed wafer W. At this time, the upper end of the peripheral modified layer M1 is made to substantially coincide with the height at which the internal modified layer M3 is formed. The peripheral modified layer M1 and the internal surface modified layer M3 may be formed in any order.
 その後、図24(b)に示すように、周縁改質層M1と内部面改質層M3を基点に、処理ウェハWの裏面Wb側を分離する。このように、内部面改質層M3を基点として裏面Wb側を分離することにより、処理ウェハWを薄化することができる。この際、周縁部Weは裏面Wb側のウェハと一体となって除去される。 Thereafter, as shown in FIG. 24B, the back surface Wb side of the processed wafer W is separated from the peripheral edge modified layer M1 and the internal surface modified layer M3 as base points. In this way, the processed wafer W can be thinned by separating the back surface Wb side from the inner surface modified layer M3 as a base point. At this time, the peripheral edge portion We is removed integrally with the wafer on the back surface Wb side.
 かかる場合、周縁部Weの除去と処理ウェハWの薄化を同時に行うので、ウェハ処理のスループットをより向上させることができる。 In such a case, since the peripheral edge We is removed and the processed wafer W is thinned at the same time, the throughput of wafer processing can be further improved.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The above-described embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
 例えば、上記実施形態では、接合前の処理ウェハWと支持ウェハSの界面に未接合領域Abを形成したが、接合後に未接合領域Abを形成してもよい。例えば接合後、酸化膜Fの外周部にレーザ光を照射することで、接合強度を低下させ、未接合領域Abを形成することも可能である。 For example, in the above embodiment, the unbonded region Ab is formed at the interface between the processing wafer W and the supporting wafer S before bonding, but the unbonded region Ab may be formed after bonding. For example, by irradiating the outer peripheral portion of the oxide film F with laser light after bonding, it is possible to reduce the bonding strength and form the unbonded region Ab.
  1   ウェハ処理システム
  60  改質装置
  100 チャック
  104 移動機構
  110 レーザヘッド
  S   支持ウェハ
  T   重合ウェハ
  W   処理ウェハ
1 Wafer Processing System 60 Reforming Device 100 Chuck 104 Moving Mechanism 110 Laser Head S Support Wafer T Overlapping Wafer W Processed Wafer

Claims (14)

  1. 基板を処理する基板処理装置であって、
    第1の基板と第2の基板が接合された重合基板において前記第2の基板を保持する保持部と、
    前記保持部に保持された前記第1の基板の内部に、面方向に沿って内部面用レーザ光を照射して内部面改質層を形成する内部面改質部と、
    前記保持部と前記内部面改質部を相対的に移動させる移動機構と、を有し、
    前記移動機構によって前記内部面用レーザ光を前記第1の基板の内部において径方向外側から内側に移動させて、前記内部面改質層を形成する、基板処理装置。
    A substrate processing apparatus for processing a substrate, comprising:
    A holding unit for holding the second substrate in the superposed substrate in which the first substrate and the second substrate are joined,
    Inside the first substrate held by the holding unit, an internal surface reforming unit that irradiates a laser beam for an internal surface along a surface direction to form an internal surface reforming layer,
    A moving mechanism that relatively moves the holding portion and the inner surface reforming portion,
    A substrate processing apparatus wherein the moving mechanism moves the laser light for inner surface from the outer side to the inner side in the radial direction inside the first substrate to form the inner surface reforming layer.
  2. 前記保持部と前記内部面改質部を相対的に回転させる回転機構を有し、
    前記移動機構及び回転機構によって、前記内部面用レーザ光を前記第1の基板の内部において径方向外側から内側に螺旋状に移動させて、前記内部面改質層を形成し、
    前記回転機構による回転の速度は、前記内部面用レーザ光が前記第1の基板の内部の径方向外側に照射される場合に比べて内側に照射される場合の方が速い、請求項1に記載の基板処理装置。
    A rotation mechanism that relatively rotates the holding portion and the inner surface reforming portion,
    By the moving mechanism and the rotating mechanism, the inner surface laser light is spirally moved from the radially outer side to the inner side inside the first substrate to form the inner surface reforming layer,
    The speed of rotation by the rotating mechanism is higher when the laser light for the inner surface is irradiated to the inner side of the first substrate than when the laser light is irradiated to the inner side of the first substrate, in the radial direction. The substrate processing apparatus described.
  3. 前記内部面改質部は、前記第1の基板の内部の径方向外側に照射される前記内部面用レーザ光の周波数が、内側に照射される前記内部面用レーザ光の周波数よりも大きくなるように、当該内部面用レーザ光を照射する、請求項2に記載の基板処理装置。 In the internal surface reforming section, the frequency of the internal surface laser light that is irradiated to the outside in the radial direction inside the first substrate is higher than the frequency of the internal surface laser light that is irradiated to the inside. The substrate processing apparatus according to claim 2, wherein the laser light for the inner surface is irradiated as described above.
  4. 前記移動機構による前記内部面用レーザ光の移動速度は、当該内部面用レーザ光が前記第1の基板の内部の径方向外側に照射される場合に比べて内側に照射される場合の方が速い、請求項1~3のいずれか一項に記載の基板処理装置。 The moving speed of the laser light for the inner surface by the moving mechanism is higher when the laser light for the inner surface is irradiated to the inside than when the laser light for the inner surface is irradiated to the outer side in the radial direction inside the first substrate. The substrate processing apparatus according to claim 1, which is fast.
  5. 前記保持部に保持された前記第1の基板の内部に、除去対象の周縁部と中央部との境界に沿って周縁用レーザ光を照射して周縁改質層を形成する周縁改質部を有し、
    前記周縁改質部と前記内部面改質部は、共通のレーザヘッドを有し、
    前記レーザヘッドは、前記周縁用レーザ光と前記内部面用レーザ光を切り換える、請求項1~4のいずれか一項に記載の基板処理装置。
    Inside the first substrate held by the holding portion, a peripheral edge modifying portion that irradiates a peripheral edge laser beam along the boundary between the peripheral edge portion and the central portion to be removed to form a peripheral edge modifying layer is provided. Have,
    The peripheral edge modifying section and the internal surface modifying section have a common laser head,
    The substrate processing apparatus according to claim 1, wherein the laser head switches between the peripheral edge laser light and the internal surface laser light.
  6. 前記レーザヘッドを複数有する、請求項5に記載の基板処理装置。 The substrate processing apparatus according to claim 5, comprising a plurality of the laser heads.
  7. 前記レーザヘッドは、鉛直方向に昇降自在且つ水平方向に移動自在に構成されている、請求項5又は6に記載の基板処理装置。 The substrate processing apparatus according to claim 5, wherein the laser head is configured to be vertically movable and horizontally movable.
  8. 基板を処理する基板処理方法であって、
    第1の基板と第2の基板が接合された重合基板において前記第2の基板を保持部で保持することと、
    内部面改質部から前記保持部に保持された前記第1の基板の内部に、面方向に沿って内部面用レーザ光を照射して内部面改質層を形成することと、を有し、
    前記内部面改質層を形成する際、移動機構によって前記保持部と前記内部面改質部を相対的に移動させて、前記内部面用レーザ光を前記第1の基板の内部において径方向外側から内側に移動させる、基板処理方法。
    A substrate processing method for processing a substrate, comprising:
    Holding the second substrate in a holding portion in a superposed substrate in which the first substrate and the second substrate are joined,
    Irradiating the inside surface of the first substrate held by the holding portion from the inside surface reforming portion with a laser beam for the inside surface to form an inside surface reforming layer. ,
    When the inner surface reforming layer is formed, the holding unit and the inner surface reforming unit are relatively moved by a moving mechanism so that the laser light for inner surface is radially outside inside the first substrate. Substrate processing method of moving from inside to inside.
  9. 前記内部面改質層を形成する際、前記移動機構によって前記保持部と前記内部面改質部を相対的に移動させつつ、回転機構によって前記保持部と前記内部面改質部を相対的に回転させて、前記内部面用レーザ光を前記第1の基板の内部において径方向外側から内側に螺旋状に移動させ、
    前記回転機構による回転の速度は、前記内部面用レーザ光が前記第1の基板の内部の径方向外側に照射される場合に比べて内側に照射される場合の方が速い、請求項8に記載の基板処理方法。
    When forming the inner surface reforming layer, the holding mechanism and the inner surface reforming portion are relatively moved by the moving mechanism while the holding portion and the inner surface reforming portion are relatively moved by the moving mechanism. Rotating to move the laser light for the inner surface in a spiral shape from the outer side to the inner side in the radial direction inside the first substrate,
    9. The speed of rotation by the rotating mechanism is higher when the laser light for the inner surface is irradiated to the inner side of the first substrate than when the laser light is irradiated to the inner side of the first substrate, in the radial direction. The substrate processing method described.
  10. 前記内部面改質部は、前記第1の基板の内部の径方向外側に照射される前記内部面用レーザ光の周波数が、内側に照射される前記内部面用レーザ光の周波数よりも大きくなるように、当該内部面用レーザ光を照射する、請求項9に記載の基板処理方法。 In the internal surface reforming section, the frequency of the internal surface laser light that is irradiated to the outside in the radial direction inside the first substrate is higher than the frequency of the internal surface laser light that is irradiated to the inside. 10. The substrate processing method according to claim 9, wherein the inner surface laser light is irradiated as described above.
  11. 前記移動機構による前記内部面用レーザ光の移動速度は、当該内部面用レーザ光が前記第1の基板の内部の径方向外側に照射される場合に比べて内側に照射される場合の方が速い、請求項8~10のいずれか一項に記載の基板処理方法。 The moving speed of the laser light for the inner surface by the moving mechanism is higher when the laser light for the inner surface is irradiated to the inside than when the laser light for the inner surface is irradiated to the outer side in the radial direction inside the first substrate. The substrate processing method according to any one of claims 8 to 10, which is fast.
  12. 周縁改質部から前記保持部に保持された前記第1の基板の内部に、除去対象の周縁部と中央部との境界に沿って周縁用レーザ光を照射して周縁改質層を形成することを有し、
    前記周縁改質部と前記内部面改質部は、共通のレーザヘッドを有し、
    前記レーザヘッドは、前記周縁用レーザ光と前記内部面用レーザ光を切り換える、請求項8~11のいずれか一項に記載の基板処理方法。
    Inside the first substrate held by the holding portion from the peripheral edge modifying portion, a peripheral edge laser beam is irradiated along the boundary between the peripheral edge portion and the central portion to be removed to form a peripheral edge modifying layer. Have that
    The peripheral edge modifying section and the internal surface modifying section have a common laser head,
    The substrate processing method according to claim 8, wherein the laser head switches between the peripheral edge laser light and the internal surface laser light.
  13. 前記レーザヘッドは複数設けられ、
    前記周縁改質層を形成する際、複数の前記レーザヘッドは、前記第1の基板の内部に前記周縁用レーザ光を同時に照射する、請求項12に記載の基板処理方法。
    A plurality of the laser heads are provided,
    The substrate processing method according to claim 12, wherein the plurality of laser heads simultaneously irradiate the inside of the first substrate with the laser light for peripheral edge when forming the peripheral edge modifying layer.
  14. 前記レーザヘッドは複数設けられ、
    前記内部面改質層を形成する際、複数の前記レーザヘッドは、前記第1の基板の内部に前記内部面用レーザ光を同時に照射する、請求項12に記載の基板処理方法。
    A plurality of the laser heads are provided,
    The substrate processing method according to claim 12, wherein the plurality of laser heads simultaneously irradiate the inside surface of the first substrate with the laser light for inside surface when forming the inside surface modification layer.
PCT/JP2019/048087 2018-12-21 2019-12-09 Substrate processing device and substrate processing method WO2020129730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561320A JP7287982B2 (en) 2018-12-21 2019-12-09 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-240175 2018-12-21
JP2018240175 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129730A1 true WO2020129730A1 (en) 2020-06-25

Family

ID=71100833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048087 WO2020129730A1 (en) 2018-12-21 2019-12-09 Substrate processing device and substrate processing method

Country Status (3)

Country Link
JP (1) JP7287982B2 (en)
TW (1) TWI814960B (en)
WO (1) WO2020129730A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022173224A (en) * 2018-10-30 2022-11-18 浜松ホトニクス株式会社 Laser processing device and laser processing method
US11833611B2 (en) 2018-10-30 2023-12-05 Hamamatsu Photonics K.K. Laser machining device
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109341A (en) * 2010-11-16 2012-06-07 Shibuya Kogyo Co Ltd Slicing method and slicing device of semiconductor material
JP2016043401A (en) * 2014-08-26 2016-04-04 信越ポリマー株式会社 Substrate processing method and substrate
JP2016215231A (en) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 Slice device and method for brittle substrate
JP2017022283A (en) * 2015-07-13 2017-01-26 株式会社ディスコ POLYCRYSTALLINE SiC WAFER GENERATING METHOD
JP2017123400A (en) * 2016-01-07 2017-07-13 株式会社ディスコ Chuck table
JP2018049934A (en) * 2016-09-21 2018-03-29 日亜化学工業株式会社 Method for manufacturing light-emitting element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017434A (en) * 2012-07-11 2014-01-30 Disco Abrasive Syst Ltd Method for processing wafer
JP6562819B2 (en) * 2015-11-12 2019-08-21 株式会社ディスコ Method for separating SiC substrate
JP7258414B2 (en) * 2018-08-28 2023-04-17 株式会社ディスコ Optical device wafer processing method
JP7193956B2 (en) * 2018-09-03 2022-12-21 株式会社ディスコ Wafer processing method
CN113056346B (en) * 2018-10-30 2023-12-15 浜松光子学株式会社 Laser processing device and laser processing method
CN112955279B (en) * 2018-10-30 2022-09-30 浜松光子学株式会社 Laser processing apparatus
JP7460322B2 (en) * 2018-11-27 2024-04-02 株式会社ディスコ Wafer Processing Method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109341A (en) * 2010-11-16 2012-06-07 Shibuya Kogyo Co Ltd Slicing method and slicing device of semiconductor material
JP2016043401A (en) * 2014-08-26 2016-04-04 信越ポリマー株式会社 Substrate processing method and substrate
JP2016215231A (en) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 Slice device and method for brittle substrate
JP2017022283A (en) * 2015-07-13 2017-01-26 株式会社ディスコ POLYCRYSTALLINE SiC WAFER GENERATING METHOD
JP2017123400A (en) * 2016-01-07 2017-07-13 株式会社ディスコ Chuck table
JP2018049934A (en) * 2016-09-21 2018-03-29 日亜化学工業株式会社 Method for manufacturing light-emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022173224A (en) * 2018-10-30 2022-11-18 浜松ホトニクス株式会社 Laser processing device and laser processing method
JP7293475B2 (en) 2018-10-30 2023-06-19 浜松ホトニクス株式会社 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
US11833611B2 (en) 2018-10-30 2023-12-05 Hamamatsu Photonics K.K. Laser machining device
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method

Also Published As

Publication number Publication date
JP7287982B2 (en) 2023-06-06
TW202044379A (en) 2020-12-01
TWI814960B (en) 2023-09-11
JPWO2020129730A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2020129730A1 (en) Substrate processing device and substrate processing method
WO2020084909A1 (en) Substrate processing device and substrate processing method
JP7203863B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP7413468B2 (en) Substrate processing equipment and substrate processing method
JP7129558B2 (en) Processing equipment and processing method
JP7344965B2 (en) Processing equipment and processing method
JP2020136448A (en) Substrate processing apparatus and substrate processing method
JP7129549B2 (en) Processing equipment and processing method
JP2023036955A (en) Device and method for removing peripheral edge
JP7127208B2 (en) Processing equipment and processing method
JP7109590B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561320

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899536

Country of ref document: EP

Kind code of ref document: A1