WO2020090862A1 - ハンドル角制御装置 - Google Patents

ハンドル角制御装置 Download PDF

Info

Publication number
WO2020090862A1
WO2020090862A1 PCT/JP2019/042503 JP2019042503W WO2020090862A1 WO 2020090862 A1 WO2020090862 A1 WO 2020090862A1 JP 2019042503 W JP2019042503 W JP 2019042503W WO 2020090862 A1 WO2020090862 A1 WO 2020090862A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
angular velocity
steering wheel
steering
motor
Prior art date
Application number
PCT/JP2019/042503
Other languages
English (en)
French (fr)
Inventor
豊織 吉田
宏臣 荒金
正行 船山
岡村 信行
内田 朗忍
和樹 嘉屋
Original Assignee
東京計器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京計器株式会社 filed Critical 東京計器株式会社
Priority to KR1020217006474A priority Critical patent/KR20210082155A/ko
Priority to JP2020553965A priority patent/JPWO2020090862A1/ja
Priority to CN201980071099.5A priority patent/CN112930297B/zh
Publication of WO2020090862A1 publication Critical patent/WO2020090862A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear

Definitions

  • the embodiment of the present invention relates to a technique for controlling a steering wheel angle of a vehicle.
  • Target vehicles to be subjected to such automatic steering include those equipped with a mechanism corresponding to the automatic steering and those for a manual vehicle equipped only with a mechanism that does not correspond to the automatic steering and manually operates the steering wheel. ..
  • the steering handle for rotating the input shaft that inputs the rotational force as the steering torque to the steering system and performing the manual steering can be removed from the input shaft. Therefore, a steering drive device that drives the input shaft to rotate at a predetermined steering wheel angle is incorporated between the input shaft and the steering handle, and by controlling this steering drive device, it is possible to make a manual vehicle compatible with automatic steering. Becomes
  • a vehicle guidance system including a drive assembly that generates torque around a drive shaft that is coaxial with a steering wheel that drives the drive mechanism and directly drives the steering assembly in response to a steering control signal (for example, Patent Document 1). reference).
  • the steering angle control for controlling the steering angle of the work vehicle so as to position the work vehicle on the target traveling route, and the steering wheel angle based on this steering angle are transmitted to the input shaft.
  • Steering angle control for controlling the steering drive device as described above.
  • the angular velocity of the steering wheel angle is trapezoidally controlled so that the measured steering wheel angle coincides with the steering wheel angle as a target value.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a steering wheel angle control device capable of reducing the occurrence of control for correcting overshoot and undershoot of the steering wheel angle. To do.
  • the steering wheel angle control device of the present embodiment includes a motor that drives an input shaft that gives a declination angle to wheels of a vehicle and inputs a steering wheel angle that is a rotation angle to a steering system of the vehicle,
  • a measurement angle acquisition unit that acquires the measurement angle detected by the sensor, a deviation angle between the target angle and the measurement angle, a predetermined angle in the reverse direction from the displacement direction of the input shaft with respect to the target angle.
  • a first determination unit that determines whether or not the target angle is close to the attenuation threshold or more, and a deviation angle is proportional to the deviation angle when the deviation angle is close to or below the attenuation threshold.
  • a velocity control section for controlling the angular velocity of the motor based on the attenuation control law for attenuating the velocity.
  • FIG. 1 is a schematic side view showing the configuration of the agricultural tractor according to the embodiment.
  • FIG. 2 is a block diagram showing the hardware configuration of the automatic steering system according to the embodiment.
  • the vehicle to be steered by the automatic steering system is a working vehicle, and specifically, the agricultural tractor 1 as shown in FIG.
  • the tractor 1 is a four-wheel vehicle including a vehicle body 10, two front wheels 11 and two rear wheels 12, but any vehicle that can be steered may be used. Further, the tractor 1 includes a seat 13 for a driver to sit on, a link mechanism 14 for connecting and connecting a work machine (not shown), a steering column 15, a steering handle 16, a steering drive device 17, pedals 18 including an accelerator, a brake, and the like.
  • a roof portion 19 is provided.
  • a steering system for steering the tractor 1 by giving a deflection angle to the front wheels 11 in the steering column 15 is provided, and an input shaft for inputting the steering wheel angle by the steering handle 16 or the steering drive device 17 to the steering system.
  • 151 is built in, and a steering angle based on the rotation of the input shaft 151 is given to the front wheels 11.
  • the steering drive device 17 is a device that is not provided with a configuration for performing automatic steering control and is attached later to automatically steer the tractor 1 that is premised on manual steering.
  • the upper end of the input shaft 151 of the steering system is fitted below.
  • the roof portion 19 is a substantially flat plate member placed as a whole on four support frames provided at different positions in the front, rear, left, and right of the vehicle body 10.
  • a sensor 21 including at least a GNSS (Global Navigation Satellite System) and a gyro sensor is provided on the upper surface of the roof portion 19.
  • the sensors 21 may include any sensors as long as they detect at least the position of the vehicle and the orientation of the vehicle on the traveling surface.
  • An automatic steering control device 22 that controls the automatic steering of the tractor 1 is provided on one of the support frames that supports the roof portion 19 and that is located in the front.
  • the automatic steering system includes a steering drive device 17 for driving an input shaft 151 in a steering system, sensors 21, an automatic steering control device 22, and a steering wheel angle control device 23 not shown in FIG. It is composed of
  • the steering drive device 17 uses a transmission shaft 171 that transmits a driving force to the input shaft 151, a motor 172 that is a stepping motor that drives the transmission shaft 171, and a rotation angle of the transmission shaft 171, that is, a rotation angle of the input shaft 151 as a handle angle.
  • the motor 172 may be any type of motor as long as it can output a torque sufficient to rotate the input shaft 151.
  • the minimum measurement unit of the angle sensor 173 based on the resolution of the angle sensor 173 is 1 °.
  • the automatic steering control device 22 outputs the steering angle based on the detection value of the sensors 21, and the steering wheel angle control device 23 feedback controls the steering drive device 17 based on the steering angle instructed by the automatic steering control device 22.
  • the steering drive device 17 drives the transmission shaft 171 by controlling the motor 172 with the target angle being the steering wheel angle at which the rotational position detected by the angle sensor 173 becomes the desired rotational position.
  • the tractor 1 configured to be manually steered by installing the steering drive device 17, the sensors 21, the automatic steering control device 22, and the steering wheel angle control device 23 to the tractor 1 afterwards. It is possible to realize automatic steering.
  • the steering wheel angle control device 22 includes a CPU (Central Processing Unit) 31, a RAM (Random Access Memory) 32, a storage device 33, and an external I / F (Interface) 34 as hardware.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • storage device 33 a storage device
  • I / F Interface
  • the CPU 31 and the RAM 32 cooperate to execute various functions described later, and the storage device 33 stores various data used for processing executed by the various functions.
  • the external I / F 34 inputs / outputs data to / from the automatic steering control device 22, the motor 172, and the angle sensor 173 as external devices.
  • the steering wheel angle control device 23 includes a target angle calculation unit 231, a measurement angle acquisition unit 232, a measurement angle determination unit 233, and an angular velocity control unit 234 as functions.
  • the target angle calculation unit 231 calculates the steering wheel angle as the target angle based on the steering angle output by the automatic steering control device 22.
  • the measurement angle acquisition unit 232 acquires the steering wheel angle measured by the angle sensor 173 as the measurement angle.
  • the measurement angle determination unit 233 includes a first determination unit 233a and a second determination unit 233b, and is a deviation between the measurement angle acquired by the measurement angle acquisition unit 232 and the target angle calculated by the target angle calculation unit 231. For a certain deviation angle, a judgment is made by comparison with a preset value.
  • the angular velocity control unit 234 instructs the motor 172 on the angular velocity so that the deviation angle is reduced.
  • FIG. 5 is a flowchart showing the operation of the steering wheel angle control device.
  • FIG. 6 is a graph showing an angular velocity and a measurement angle in steering wheel angle control.
  • the target angle of 90 ° is calculated in advance.
  • the operation shown in FIG. 5 is assumed to be executed at every predetermined cycle.
  • the angular velocity control unit 234 controls the motor 172 by instructing the angular velocity based on the acceleration control law (S101).
  • the control based on the acceleration control law is a control that is first executed in a situation where the target angle is updated, such as when the rotation of the transmission shaft 171 is started or when the rotation direction is reversed, that is, immediately after the update of the target angle. This is the control that is executed.
  • the acceleration control law is a control law that increases the angular velocity at a constant angular acceleration from the lower limit angular velocity to the upper limit angular velocity in the section A immediately after the target angle is updated.
  • the lower limit angular velocity and the upper limit angular velocity are respectively set to the lower limit and the upper limit of the angular velocity range in which the transmission shaft 171 can rotate without causing a torque shortage with respect to the load applied to the rotation of the transmission shaft 171.
  • the angular velocity control unit 234 determines whether or not the current angular velocity has reached the upper limit angular velocity (S102).
  • this maintenance control law is a control law for maintaining the angular velocity at the upper limit angular velocity in the section B immediately after the section A in which the control based on the acceleration control law is performed.
  • the first determination unit 233a determines whether the deviation angle is less than or equal to the attenuation threshold value (S104).
  • the damping threshold value is a separation angle from a preset target angle, and is separated by a predetermined angle on the side opposite to the displacement direction of the transmission shaft 171 (input shaft 151) with respect to the target angle. Is set to the angle.
  • the first determination unit 233a is in the state of being controlled by the maintenance control law, and the attenuation value in which the absolute value of the current deviation angle is set to a positive value while the measured angle does not reach or pass the target angle. It is determined whether it is less than or equal to the threshold.
  • the second determination unit 233b determines whether the deviation angle is within the allowable deviation range (S105).
  • the allowable deviation range is set by a first threshold value and a second threshold value that are two separation angles that are separated by an equivalent angle in the displacement direction and the opposite direction with respect to the target angle.
  • the absolute values of the first threshold value and the second threshold value are set to values smaller than the absolute value of the attenuation threshold value.
  • each of the two deviation angles in the allowable deviation range is set to 1 ° based on the minimum measurement unit by the resolution of the angle sensor 173.
  • the second determination unit 233b determines that the current deviation angle is close to the target angle below the first threshold set on the displacement direction side with respect to the target angle, or the target angle.
  • the deviation angle is determined to be within the permissible deviation range when the deviation angle approaches the target angle below a second threshold set on the side opposite to the displacement direction.
  • the angular velocity control unit 234 controls the motor 172 by instructing the angular velocity based on the damping control method (S106).
  • S106 the damping control method
  • an angular velocity
  • a deviation angle
  • k is, for example, 10 [1 / s] in a section C immediately after a section B in which control based on the maintenance control law is performed.
  • the angular velocity control unit 234 sets the angular velocity to zero (S107), and ends the control of the motor 172 for the current target angle.
  • step S104 If the deviation angle is not equal to or less than the damping threshold value in step S104 (S104, NO), the angular velocity control unit 234 controls the motor 172 to the angular velocity according to the maintenance control law (S103).
  • step S102 when the current angular velocity has not reached the upper limit angular velocity (S102, NO), the angular velocity control unit 234 controls the motor 172 by instructing the angular velocity based on the acceleration control law (S101).
  • the angular velocity is accelerated by a predetermined angular acceleration from the lower limit angular velocity to the upper limit angular velocity that can reliably rotate the transmission shaft 171. It is possible to suppress continuous flight.
  • the damping control law it is possible to reduce the occurrence of correction control that corrects overshoot and undershoot. Furthermore, if the deviation angle is within the allowable deviation range, even if the deviation angle is not zero, it is considered that the target angle has been reached, and the control of the motor 172 for the current target angle is stopped, whereby an overshoot or undershoot occurs. It is possible to more reliably reduce the occurrence of correction control that corrects the. Further, by reducing the occurrence of the correction control, it is possible to reduce the power consumption related to the control of the steering wheel angle, suppress the wear of the components, and extend the life of the steering wheel angle control device 23. Further, the motor 172, which is a stepping motor, can be used. Step out can be suppressed.
  • the steering wheel angle control device 23 controls the rotation of the input shaft 151 via the transmission shaft 171 by controlling the steering drive device 17 mounted on the work vehicle 1 later.
  • the steering drive device 17 may directly drive the input shaft 151.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

車両の車輪に偏角を与えて車両の操舵系に回転角度であるハンドル角を入力する入力軸を駆動するモータと、入力軸のハンドル角を測定角度として検出する角度センサとを備える操舵駆動装置に対して、測定角度が目標角度に追従するようにモータを制御するハンドル角制御装置23であって、角度センサにより検出された測定角度を取得する測定角度取得部232と、目標角度と測定角度との偏差角度が、目標角度に対して入力軸の変位方向から逆方向に所定の角度を有する減衰閾値以下に、目標角度に近接しているか否かを判定する第1判定部233aと、偏差角度が減衰閾値以下に近接している場合、偏差角度に比例して角速度を減衰させる減衰制御則に基づいてモータの角速度を制御する角速度制御部234とを備えた。

Description

ハンドル角制御装置
 本発明の実施形態は、車両のハンドル角を制御する技術に関する。
 従来、農作業の効率化を目的として、トラクタや田植機などの農作業用車両を指定した走行経路に追従させる自動操舵技術が知られている。このような自動操舵がなされる対象車両には、自動操舵に対応した機構が装備されたものと、自動操舵に対応せず手動でハンドル操作を行う機構のみが装備された手動用車両とがある。
 手動用車両は、操舵系に操舵トルクとしての回転力を入力する入力軸を回転させて手動操舵するためのステアリングハンドルが入力軸から取り外し可能となっている。そこで、入力軸とステアリングハンドルとの間に入力軸を所定のハンドル角に回転駆動させる操舵駆動装置を組み込み、この操舵駆動装置を制御することによって、手動用車両を自動操舵に対応させることが可能となる。
 このような、手動用車両を操舵駆動装置により制御する技術として、位置指示信号を受信する受信機と、位置指示信号に基づいて操舵制御信号を生成する操舵制御装置と、ステアリングシャフト及びこれを回転させるステアリングホイールと同軸である駆動軸周りにトルクを生成して、操舵制御信号に応答して操舵アセンブリを直接駆動する駆動アセンブリとを含む車両案内システム、が知られている(例えば、特許文献1参照)。
国際公開2010/139013号
 上述したような、作業車両の自動操舵は、目標とする走行経路上に作業車両を位置付けるように作業車両の操舵角を制御する操舵角制御と、この操舵角に基づくハンドル角が入力軸に伝達されるように操舵駆動装置を制御するハンドル角制御とを含む。このハンドル角制御においては、測定されたハンドル角と目標値としてのハンドル角を一致させるようにハンドル角の角速度が台形制御される。
 しかしながら、単にハンドル角の角速度を台形制御した場合、ハンドル角のオーバーシュートやアンダーシュートが頻発し、これらを修正するための制御が生じてしまう、という問題がある。このような制御が生じると、作業車両の自動操舵において、作業車両の蛇行が生じて走行経路に対する追従性が低下する。
 本発明は、上述した問題点を解決するためになされたものであり、ハンドル角のオーバーシュートやアンダーシュートを修正する制御の発生を低減することができるハンドル角制御装置を提供することを目的とする。
 上述した課題を解決するため、本実施形態のハンドル角制御装置は、車両の車輪に偏角を与えて該車両の操舵系に回転角度であるハンドル角を入力する入力軸を駆動するモータと、該入力軸のハンドル角を測定角度として検出する角度センサとを備える操舵駆動装置に対して、前記測定角度が目標角度に追従するように前記モータを制御するハンドル角制御装置であって、前記角度センサにより検出された前記測定角度を取得する測定角度取得部と、前記目標角度と前記測定角度との偏差角度が、前記目標角度に対して前記入力軸の変位方向から逆方向に所定の角度を有する減衰閾値以上以下に、前記目標角度に近接しているか否かを判定する第1判定部と、前記偏差角度が前記減衰閾値以下に近接している場合、前記偏差角度に比例して角速度を減衰させる減衰制御則に基づいて前記モータの角速度を制御する角速度制御部とを備える。
 本発明によれば、ハンドル角のオーバーシュートやアンダーシュートを修正する制御の発生を低減することができる。
実施形態に係る農用トラクタの構成を示す概略側面図である。 実施形態に係る自動操舵システムのハードウェア構成を示すブロック図である。 ハンドル角制御装置のハードウェア構成を示すブロック図である。 ハンドル角制御装置の機能構成を示すブロック図である。 ハンドル角制御装置の動作を示すフローチャートである。 ハンドル角制御における角速度及び測定角度を示すグラフである。
 以下、図面を参照しながら、本発明の実施形態について説明する。
(対象車両及び自動操舵システムの構成)
 まず、本実施形態に係る自動操舵システムとこの自動操舵システムにより自動操舵される対象車両について説明する。図1は、実施形態に係る農業用トラクタの構成を示す概略側面図である。図2は、実施形態に係る自動操舵システムのハードウェア構成を示すブロック図である。
 本実施形態に係る自動操舵システムの操舵対象としての車両は、作業車であり、具体的には、図1に示すような農業用のトラクタ1とする。このトラクタ1は、車体10と、2つの前輪11と2つの後輪12とを備える四輪車両とするが、操舵可能な車両であればどのような車両であっても良い。また、トラクタ1は、運転者が座るための座席13、図示しない作業機を連結接続するリンク機構14、ステアリングコラム15、ステアリングハンドル16、操舵駆動装置17、アクセル、ブレーキ等を含むペダル類18、屋根部19を備える。
 ステアリングコラム15内には前輪11に操舵角としての偏角を与えてトラクタ1を操舵する操舵系が備えられ、ステアリングハンドル16または操舵駆動装置17によるハンドル角を操舵系に入力するための入力軸151が内蔵され、この入力軸151の回転に基づく操舵角が前輪11に与えられる。操舵駆動装置17は、自動操舵制御をするための構成が備えられていない、手動操舵を前提としたトラクタ1を自動操舵するために後付けされる装置であり、上方においては、ステアリングハンドル16が取り付けられるとともに、下方において、操舵系の入力軸151の上端部が嵌合される。屋根部19は、車体10において前後左右に異なる位置に設けられた4つの支持フレーム上に載置される全体として略平板上の部材である。
 屋根部19の上面には、少なくともGNSS(Global Navigation Satellite System)とジャイロセンサとを含むセンサ類21が設けられる。このセンサ類21は、少なくとも車両の位置と走行面上の車両の方位とを検出するものであれば、いかなるセンサを含むものであっても良い。また、屋根部19を支持する支持フレームのうち、前方に位置する1つの支持フレームには、トラクタ1の自動操舵を制御する自動操舵制御装置22が設けられる。
 自動操舵システムは、図2に示すように、操舵系における入力軸151を駆動する操舵駆動装置17と、センサ類21と、自動操舵制御装置22と、図1に図示されないハンドル角制御装置23とにより構成される。
 操舵駆動装置17は、入力軸151に駆動力を伝達する伝達軸171、伝達軸171を駆動するステッピングモータであるモータ172、伝達軸171の回転角度、即ち入力軸151の回転角度をハンドル角として検知するロータリエンコーダである角度センサ173を備える。なお、モータ172は、入力軸151を回転させるのに十分なトルクを出力可能であるモータであれば、どのような種類のモータであっても良い。また、本実施形態において、角度センサ173の分解能による角度センサ173の最小測定単位は1°とする。
 自動操舵制御装置22は、センサ類21による検出値に基づいて操舵角を出力し、ハンドル角制御装置23は、自動操舵制御装置22により指示された操舵角に基づいて操舵駆動装置17をフィードバック制御する。ここで、操舵駆動装置17は、角度センサ173により検知された回転位置が所望の回転位置となるハンドル角を目標角度としたモータ172の制御により伝達軸171を駆動させる。
 このように、トラクタ1に対して、操舵駆動装置17、センサ類21、自動操舵制御装置22及びハンドル角制御装置23を後付けで設置することによって、手動操舵されるように構成されたトラクタ1において自動操舵を実現することが可能となる。
(ハンドル角制御装置の構成)
 ハンドル角制御装置のハードウェア構成及び機能構成について説明する。図3、図4は、それぞれ、ハンドル角制御装置のハードウェア構成、機能構成を示すブロック図である。
 ハンドル角制御装置22は、ハードウェアとして、図3に示すように、CPU(Central Processing Unit)31、RAM(Random Access Memory)32、記憶装置33、外部I/F(Interface)34を備える。
 CPU31及びRAM32は協働して後述する各種機能を実行し、記憶装置33は各種機能により実行される処理に用いられる各種データを記憶する。外部I/F34は、外部装置としての自動操舵制御装置22、モータ172、角度センサ173とのデータの入出力を行う。
 また、ハンドル角制御装置23は、機能として、図4に示すように、目標角度算出部231、測定角度取得部232、測定角度判定部233、角速度制御部234を備える。
 目標角度算出部231は、自動操舵制御装置22により出力された操舵角に基づいて、目標角度としてのハンドル角を算出する。測定角度取得部232は、角度センサ173により測定されたハンドル角を測定角度として取得する。測定角度判定部233は、第1判定部233a及び第2判定部233bを有し、測定角度取得部232により取得された測定角度と、目標角度算出部231により算出された目標角度との偏差である偏差角度に対して、予め設定された値との比較による判定を行う。角速度制御部234は、偏差角度が低減するようにモータ172に対して角速度を指示する。
(ハンドル角制御装置の動作)
 ハンドル角制御装置の動作について説明する。図5は、ハンドル角制御装置の動作を示すフローチャートである。図6は、ハンドル角制御における角速度及び測定角度を示すグラフである。なお、図5に示すフローチャートにおいては、90°の目標角度が予め算出されているものとする。また、図5に示す動作は、所定の周期毎に実行されるものとする。
 図5に示すように、まず、角速度制御部234は、加速制御則に基づく角速度を指示することによりモータ172を制御する(S101)。この加速制御則に基づく制御は、伝達軸171の回転開始時、回転方向の反転時のように、目標角度が更新される状況において最初に実行される制御であり、即ち目標角度の更新直後に実行される制御である。
 加速制御則は、図6に示すように、目標角度の更新直後の区間Aにおいて、下限角速度から上限角速度まで、一定の角加速度で角速度を上昇させる制御則である。下限角速度、上限角速度は、それぞれ、伝達軸171の回転に掛かる負荷に対するトルク不足が発生せず、伝達軸171を回転可能な角速度の範囲の下限、上限に設定される。
 次に、角速度制御部234は、現行の角速度が上限角速度に到達したか否かを判定する(S102)。
 現行の角速度が上限角速度に到達した場合(S102,YES)、角速度制御部234は、維持制御則による角速度にモータ172を制御する(S103)。この維持制御則は、図6に示すように、加速制御則に基づく制御がなされる区間Aの直後にある区間Bにおいて、角速度を上限角速度に維持する制御則である。
 次に、第1判定部233aは、偏差角度が減衰閾値以下であるか否かを判定する(S104)。図6に示すように、減衰閾値は、予め設定された目標角度との離隔角度であり、目標角度に対して伝達軸171(入力軸151)の変位方向とは逆側に所定の角度だけ離隔する角度に設定される。ここで、第1判定部233aは、維持制御則による制御中であり、且つ測定角度が目標角度に対して到達または通過しない状態において、現行の偏差角度の絶対値が正値に設定された減衰閾値以下であるかを判定する。
 偏差角度が減衰閾値以下である場合(S104,YES)、第2判定部233bは、偏差角度が許容偏差範囲内であるか否かを判定する(S105)。図6に示すように、許容偏差範囲は、目標角度に対して、変位方向及びその逆方向に同等の角度だけ離隔する2つの離隔角度である第1閾値及び第2閾値により設定され、これらの第1閾値及び第2閾値の絶対値は減衰閾値の絶対値より小さい値に設定される。また、許容偏差範囲における2つの偏差角度は、それぞれ、角度センサ173の分解能による最小測定単位に基づいて、1°に設定される。このような許容偏差範囲による判定において、第2判定部233bは、現行の偏差角度が、目標角度に対して変位方向側に設定された第1閾値以下に目標角度に近接する場合、または、目標角度に対して変位方向とは逆側に設定された第2閾値以下に目標角度に近接する場合に偏差角度が許容偏差範囲内であると判定する。
 偏差角度が許容偏差範囲内ではない場合(S105,NO)、角速度制御部234は、減減衰制御則に基づく角速度を指示することによりモータ172を制御する(S106)。減衰制御則は、図6に示すように、維持制御則に基づく制御がなされる区間Bの直後にある区間Cにおいて、ωを角速度、θを偏差角度、kを例えば10[1/s]に設定される減衰係数として、ω=-k・θの式に基づく角速度ωによりモータ172を制御する。
 一方、偏差角度が許容偏差範囲内である場合(S105,YES)、角速度制御部234は、角速度をゼロとし(S107)、現行の目標角度に対するモータ172の制御を終了する。
 また、ステップS104において、偏差角度が減衰閾値以下ではない場合(S104,NO)、角速度制御部234は、維持制御則による角速度にモータ172を制御する(S103)。
 また、ステップS102において、現行の角速度が上限角速度に到達していない場合(S102,NO)、角速度制御部234は、加速制御則に基づく角速度を指示することによりモータ172を制御する(S101)。
 上述したモータ172の制御において、加速制御則による制御によれば、伝達軸171を確実に回転させることができる下限角速度から上限角速度まで所定の角加速度により角速度が加速されることにより、角速度の不連続な飛びを抑制することができる。
 また、減衰制御則により角速度を減衰させることによって、オーバーシュートやアンダーシュートを修正する修正制御の発生を低減することができる。更に、偏差角度が許容偏差範囲内にあれば、偏差角度がゼロでなくとも目標角度に到達したと見做して現行の目標角度に対するモータ172の制御を停止することによって、オーバーシュートやアンダーシュートを修正する修正制御の発生をより確実に低減することができる。また、修正制御の発生の低減によって、ハンドル角の制御に係る消費電力を低減でき、部品摩耗を抑制してハンドル角制御装置23の寿命を延ばすことができ、また、ステッピングモータであるモータ172の脱調を抑制することができる。
 なお、本実施形態においては、ハンドル角制御装置23が、作業車両1に後付けされた操舵駆動装置17を制御することにより伝達軸171を介して入力軸151の回転を制御するものとしたが、操舵駆動装置17は入力軸151を直接に駆動するものであっても良い。
 本発明の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
23 ハンドル角制御装置
232 測定角度取得部
233a 第1判定部
233b 第2判定部
234 角速度制御部

Claims (7)

  1.  車両の車輪に偏角を与えて該車両の操舵系に回転角度であるハンドル角を入力する入力軸を駆動するモータと、該入力軸のハンドル角を測定角度として検出する角度センサとを備える操舵駆動装置に対して、前記測定角度が目標角度に追従するように前記モータを制御するハンドル角制御装置であって、
     前記角度センサにより検出された前記測定角度を取得する測定角度取得部と、
     前記目標角度と前記測定角度との偏差角度が、前記目標角度に対して前記入力軸の変位方向から逆方向に所定の角度を有する減衰閾値以下に、前記目標角度に近接しているか否かを判定する第1判定部と、
     前記偏差角度が前記減衰閾値以下に近接している場合、前記偏差角度に比例して角速度を減衰させる減衰制御則に基づいて前記モータの角速度を制御する角速度制御部と
     を備えるハンドル角制御装置。
  2.  前記偏差角度が、2つの閾値により設定されて前記目標角度を含む許容偏差範囲であって、前記2つの閾値のそれぞれが前記減衰閾値より前記目標角度に近接する前記許容偏差範囲内にあるか否かを判定する第2判定部を更に備え、
     前記角速度制御部は、前記偏差角度が前記許容偏差範囲内にあると判定された場合、前記モータの角速度をゼロに低減させることを特徴とする請求項1に記載のハンドル角制御装置。
  3.  前記2つの閾値のそれぞれの前記目標角度からの離隔角度は、前記角度センサの測定角度の検出に係る分解能における最小単位であることを特徴とする請求項2に記載のハンドル角制御装置。
  4.  前記角速度制御部は、前記目標角度の更新直後において、下限値として予め設定された下限角速度から、上限値として予め設定された上限角速度まで、一定の角加速度により角速度を加速させる加速制御則に基づいて前記モータの角速度を制御することを特徴とする請求項1~請求項3のいずれか1項に記載のハンドル角制御装置。
  5.  前記下限角速度及び前記上限角速度は、前記入力軸を駆動可能なトルクを前記モータが出力可能な角速度に設定されることを特徴とする請求項4に記載のハンドル角制御装置。
  6.  前記角速度制御部は、前記加速制御則により角速度が前記上限角速度に達した後、該上限角速度に角速度を維持する維持制御則に基づいて前記モータの角速度を制御することを特徴とする請求項4または請求項5に記載のハンドル角制御装置。
  7.  前記第1判定部は、前記維持制御則に基づいて前記モータの角速度の制御がなされている状態において、前記偏差角度が前記減衰閾値以下に前記目標角度に近接しているか否かを判定することを特徴とする請求項6に記載のハンドル角制御装置。
PCT/JP2019/042503 2018-10-30 2019-10-30 ハンドル角制御装置 WO2020090862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217006474A KR20210082155A (ko) 2018-10-30 2019-10-30 핸들각 제어 장치
JP2020553965A JPWO2020090862A1 (ja) 2018-10-30 2019-10-30 ハンドル角制御装置
CN201980071099.5A CN112930297B (zh) 2018-10-30 2019-10-30 方向盘角度控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203758 2018-10-30
JP2018203758 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090862A1 true WO2020090862A1 (ja) 2020-05-07

Family

ID=70462063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042503 WO2020090862A1 (ja) 2018-10-30 2019-10-30 ハンドル角制御装置

Country Status (4)

Country Link
JP (1) JPWO2020090862A1 (ja)
KR (1) KR20210082155A (ja)
CN (1) CN112930297B (ja)
WO (1) WO2020090862A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112140868A (zh) * 2020-10-13 2020-12-29 武汉鲸鱼座机器人技术有限公司 一种满足自动驾驶冗余要求的底盘架构与控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771644A (zh) * 2022-05-11 2022-07-22 一汽解放汽车有限公司 主动转向控制方法、装置、计算机设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011004A (ja) * 2003-06-18 2005-01-13 Yaskawa Electric Corp 電動機の位置決め制御装置
JP2006184994A (ja) * 2004-12-27 2006-07-13 Hitachi High-Technologies Corp ステージの位置決め方法およびその位置決め装置
US20120130593A1 (en) * 2009-06-02 2012-05-24 Topcon Precision Agriculture Pty Ltd Vehicle guidance system
JP2017003467A (ja) * 2015-06-11 2017-01-05 株式会社リコー 回転検知装置、回転駆動装置、画像形成装置及び回転検知方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180704B2 (ja) * 1997-02-24 2001-06-25 トヨタ自動車株式会社 ステアリング装置
JP6213033B2 (ja) * 2013-08-09 2017-10-18 株式会社デンソー モータ制御装置
JP5915680B2 (ja) * 2014-03-20 2016-05-11 トヨタ自動車株式会社 操舵制御装置
JP6528786B2 (ja) * 2017-01-13 2019-06-12 トヨタ自動車株式会社 車両の運転支援装置
JP6489135B2 (ja) * 2017-01-13 2019-03-27 トヨタ自動車株式会社 車両の運転支援装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011004A (ja) * 2003-06-18 2005-01-13 Yaskawa Electric Corp 電動機の位置決め制御装置
JP2006184994A (ja) * 2004-12-27 2006-07-13 Hitachi High-Technologies Corp ステージの位置決め方法およびその位置決め装置
US20120130593A1 (en) * 2009-06-02 2012-05-24 Topcon Precision Agriculture Pty Ltd Vehicle guidance system
JP2017003467A (ja) * 2015-06-11 2017-01-05 株式会社リコー 回転検知装置、回転駆動装置、画像形成装置及び回転検知方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112140868A (zh) * 2020-10-13 2020-12-29 武汉鲸鱼座机器人技术有限公司 一种满足自动驾驶冗余要求的底盘架构与控制方法

Also Published As

Publication number Publication date
CN112930297A (zh) 2021-06-08
KR20210082155A (ko) 2021-07-02
JPWO2020090862A1 (ja) 2021-09-16
CN112930297B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US6886656B2 (en) Electric power steering apparatus
US10689025B2 (en) Steering device and method of controlling a steering device
US10813271B2 (en) Work vehicle
JPH0577751A (ja) 車両用ステアリング制御装置
WO2019189097A1 (ja) ステアリングシステムおよびこれを備えた車両
WO2020090862A1 (ja) ハンドル角制御装置
JP6898428B2 (ja) 車両
CN111591341B (zh) 电动助力转向装置
JP5338968B2 (ja) 操舵制御装置
JP5380860B2 (ja) 車線維持支援装置及び車線維持支援方法
US10625777B2 (en) Attitude control system
US11303240B2 (en) Traveling control device
JP6990079B2 (ja) ステアリングシステム
WO2019189096A1 (ja) ステアリングシステムおよびこれを備えた車両
JP7268990B2 (ja) 車両の自動操舵制御装置
JP2005263392A (ja) フォークリフト
WO2020090864A1 (ja) ハンドル角制御装置
US20210016826A1 (en) Steer by wire drift compensation
JP4817234B2 (ja) 産業車両の操舵制御装置
JP6997568B2 (ja) ステアリングシステム
JP6999517B2 (ja) 走行制御装置
JP2020010436A (ja) 走行制御装置
JP2011073541A (ja) 電動パワーステアリング装置
JP2006256549A (ja) 車両の制御装置及び制御方法
JP2007308037A (ja) 産業車両の操舵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879977

Country of ref document: EP

Kind code of ref document: A1