WO2020090663A1 - 光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置 - Google Patents

光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置 Download PDF

Info

Publication number
WO2020090663A1
WO2020090663A1 PCT/JP2019/041926 JP2019041926W WO2020090663A1 WO 2020090663 A1 WO2020090663 A1 WO 2020090663A1 JP 2019041926 W JP2019041926 W JP 2019041926W WO 2020090663 A1 WO2020090663 A1 WO 2020090663A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
light source
light
binder
phosphor
Prior art date
Application number
PCT/JP2019/041926
Other languages
English (en)
French (fr)
Inventor
裕一 一ノ瀬
豪 鎌田
青森 繁
英臣 由井
睦子 山本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020090663A1 publication Critical patent/WO2020090663A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • F21V7/26Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/20Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • F21V9/35Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material at focal points, e.g. of refractors, lenses, reflectors or arrays of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a fluorescent wheel, a light source device, a vehicle headlamp, and an optical element used in a projection device.
  • the present application claims priority based on Japanese Patent Application No. 2018-204328 filed in Japan on October 30, 2018, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes an optical device including a semiconductor laser element, a wavelength conversion member that wavelength-converts light from the semiconductor laser element, and a lens that controls light from the wavelength conversion member.
  • the wavelength conversion member described in Patent Document 1 has a plurality of phosphor particles, a plurality of hollow bodies having an outer shell that is a translucent member and a hollow region inside thereof, a plurality of phosphor particles and a plurality of hollow bodies. And a holding body for holding.
  • JP-A-2015-1709 Japanese Patent Laid-Open Publication “JP-A-2015-1709” (Published January 5, 2015)
  • the conventional technique as described above has a problem that a part of the excitation light is scattered by the hollow body in the vicinity of the surface of the phosphor layer to prevent the excitation light from entering the phosphor, thereby lowering the fluorescence emission intensity. ..
  • One aspect of the present invention is to realize improvement in fluorescence emission intensity and durability.
  • an optical element includes a phosphor layer arranged so as to face a lower layer, and the phosphor layer includes a first binder and the first binder. No. 1 binder and fluorescent particles dispersed in the first binder, and first scattering particles dispersed in the first binder.
  • the fluorescent particles are excited by excitation light emitted from a light source to emit fluorescence.
  • the first scattering particles are solid particles, and have wavelength dependence with respect to scattering, at least a part of the excitation light is transmitted through the first scattering particles, and at least a part of the fluorescence is , Are reflected by the first scattering particles.
  • FIG. 1 shows the configuration of a general optical element 10.
  • the structure in which the phosphor layer 12 is deposited on the substrate 11 is general.
  • the phosphor layer 12 is irradiated with the excitation light 14 emitted from the light source 13, and the phosphor layer 12 emits fluorescence.
  • the phosphor layer 12 is generally composed of phosphor particles and an organic binder. Although the organic binder has high adhesion, it has a low thermal conductivity. Therefore, when the fluorescent substance is made to emit light by a blue laser or the like, there is a problem that the fluorescent substance is burned by heat and a desired fluorescence emission intensity cannot be obtained. That is, it is necessary to study the temperature dependence of the luminous efficiency of the phosphor.
  • Q A ⁇ ⁇ ⁇ ⁇ (T A ⁇ 4-T B ⁇ 4)
  • Q is the amount of radiant heat
  • A is the area of the radiating part
  • is the emissivity
  • is the Stefan-Boltzmann constant
  • T A is the temperature of the radiating part
  • T B is the ambient temperature.
  • the luminous efficiency of the phosphor is affected by the temperature of the phosphor, and the luminous efficiency decreases as the temperature increases. In order to obtain stronger (brighter) fluorescence emission, it is necessary to increase the irradiation intensity of the excitation light 14, and in this case, depending on the cooling condition, the temperature rise of the phosphor layer 12 may not be sufficiently suppressed.
  • the temperature characteristic of the phosphor changes depending on the concentration of the emission center element (Ce in this embodiment).
  • Ce concentration of the YAG Ce phosphor that is generally commercially available, a concentration having a high luminous efficiency at room temperature (for example, about 1.4 to 1.5 mol%) is often used. This is because the YAG phosphor having a low Ce concentration has a high internal quantum efficiency, but since the absorptance of excitation light is low, the external quantum efficiency important as an optical element has an optimal value near a Ce concentration of 1.5 mol%. This is because When the phosphor temperature of the irradiation spot becomes higher than 250 ° C.
  • the luminous efficiency of a general YAG: Ce phosphor decreases.
  • the YAG: Ce phosphor having a low Ce concentration has a small temperature dependence of the light emission efficiency, and the light emission efficiency is reversed to that of a high concentration light emitter as compared with the low temperature.
  • the Ce concentration of the YAG: Ce phosphor in the low temperature region (50 ° C. to 100 ° C.), the higher the Ce concentration of the YAG: Ce phosphor is, the higher the luminous efficiency is, but in the high temperature region (250 ° C. to 350 ° C.), the lower the Ce concentration is, the higher the luminous efficiency is.
  • Excitation with laser light increases the excitation density and raises the temperature, so it is desirable to use an oxynitride-based or nitride-based phosphor with high heat resistance. It is more desirable that the phosphor has excellent temperature dependence of luminous efficiency.
  • the fluorescence may be other than white light such as blue, green, and red in order to use it as a light source device.
  • a phosphor that converts near-ultraviolet light into red light for example, CaAlSiN 3 : Eu 2+ can be used.
  • a phosphor that converts near-ultraviolet light into yellow light for example, Ca- ⁇ -SiAlON: Eu 2+ can be used.
  • a phosphor that converts near-ultraviolet light into green light for example, ⁇ -SiAlON: Eu 2+ or Lu 3 Al 5 O 12 : Ce 3+ (LuAG: Ce) can be used.
  • a phosphor that converts near-ultraviolet light to blue light for example (Sr, Ca, Ba, Mg ) 10 (PO 4) 6 C 12: Eu or BaMgAl 10 O 17: Eu 2+, (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ can be used.
  • the fluorescent member may be formed so as to include two types of phosphors that convert excitation light of near-ultraviolet light into yellow light and blue light. As a result, the fluorescence of the yellow light and the fluorescence of the blue light emitted from the fluorescent member are mixed to obtain pseudo white light.
  • FIG. 2 is a sectional view (xz plane) showing the configuration of the optical element according to the first embodiment of the present invention.
  • FIG. 3 is a sectional view (xz plane) showing an optical element according to a conventional technique.
  • FIG. 4 is a schematic view showing an example of the first scattering particles contained in the phosphor layer of the optical element according to the first embodiment of the present invention.
  • the optical element 30a according to the present embodiment differs from the configuration of the general optical element 10 shown in FIG. 1 in the configuration of the phosphor layer.
  • the optical element 30a includes a phosphor layer 35 arranged facing the substrate 11 which is a lower layer. Note that the phosphor layer 35 does not have to be in direct contact with the lower layer, and may be arranged so as to face the lower layer.
  • “arranged so as to face the lower layer” means an aspect in which the bottom surface 34 of the phosphor layer 35 and the upper surface 15 of the lower layer (substrate 11) are arranged so as to face each other. If the bottom surface 34 of the phosphor layer 35 and the upper surface 15 of the lower layer (substrate 11) are arranged to face each other, another member is provided between the phosphor layer 35 and the lower layer as in the second embodiment. May be provided.
  • the lower layer is preferably composed of one or more layers including the substrate 11.
  • the substrate 11 may be an aluminum substrate.
  • a highly reflective film such as silver is coated on the aluminum substrate.
  • highly reflective alumina substrates, white perfect scattering substrates, etc. may be used.
  • the material of the substrate 11 is preferably one having a high thermal conductivity such as metal, and is not particularly limited to the above-mentioned materials.
  • the phosphor layer 35 includes a first binder 31a, phosphor particles 32 dispersed in the first binder 31a, and first scattering particles 33 dispersed in the first binder 31a.
  • the first binder 31a may be a binder containing an inorganic compound or a binder containing an organic compound.
  • the inorganic compound include alumina and silica.
  • the organic compound include silicone resin and the like.
  • the ratio of the phosphor particles 32 in the phosphor layer 35 is preferably about 50 to 75% by volume with respect to the phosphor layer 35.
  • the phosphor particles 32 are excited by the excitation light 14 emitted from the light source 13 to emit fluorescence.
  • the average particle diameter D50 of the phosphor particles 32 is preferably about 5 to 50 ⁇ m, more preferably about 20 ⁇ m.
  • the phosphor particles 32 are preferably Ce-doped YAG phosphors.
  • the first scattering particles 33 are solid particles and have wavelength dependence with respect to scattering. At least a part of the excitation light 14 is transmitted through the first scattering particles 33, and at least a part of the fluorescent light is It is reflected by one scattering particle 33. Since the phosphor layer 35 includes the first scattering particles 33 having the above-described properties, the light guide of the fluorescence in the wavelength conversion layer is suppressed without hindering the excitation light 14 from entering the wavelength conversion layer. Therefore, the efficiency of taking out fluorescence can be improved.
  • the fact that the excitation light 14 is not impeded means that the excitation light 14 is incident on the phosphor layer 35, but does not directly contribute to the fluorescence emission by the phosphor particles 32, and the excitation light 14 does not go to the phosphor particles 32. It is intended to reduce the excitation light 14 reflected by a member that does not transmit the excitation light 14. Suppressing the light guide of the fluorescence in the wavelength conversion layer is intended to reduce the fluorescence totally reflected at the interface 38 and reduce the fluorescence toward the side surface of the wavelength conversion layer.
  • the interface 38 is a surface opposite to the bottom surface 34 of the phosphor layer 35, and in the preferred embodiment is an interface between air and the phosphor layer 35.
  • the optical element 30a according to the present embodiment includes the first scattering particles 33, the fluorescence that is totally reflected at the interface 38 is first scattered particles as compared with the optical element according to the related art illustrated in FIG. By scattering with 33, the fluorescence totally reflected at the interface 38 can be reduced, and the fluorescence traveling toward the side surface of the wavelength conversion layer can be reduced.
  • fluorescence extraction efficiency means "fluorescence intensity emitted from the surface on which the excitation light 14 is incident” / "excitation light intensity”, and “efficiency of excitation light incident on the phosphor", “fluorescence intensity” "Emission efficiency of the body” and “efficiency of emitted fluorescence from a surface on which excitation light is incident” are included.
  • the phosphor layer 35 includes the first scattering particles 33 formed of solid particles, the thermal conductivity can be increased as compared with the phosphor layer including hollow particles, and thus the phosphor layer 35 is formed. It can be cooled efficiently. Therefore, it is possible to prevent the phosphor layer 35 from being burned by heat, and thus it is possible to improve the durability of the optical element 30a.
  • the first scattering particles 33 are metal nanoparticles, a carrier composed of metal nanoparticles and a carrier supporting the metal nanoparticles, or particles having a structure in which at least two types of dielectrics having different refractive indices are laminated (hereinafter , And the wavelength-selective scattering particles 23) are preferable. Since the phosphor layer 35 includes the metal nanoparticles having high thermal conductivity as the first scattering particles 33, the thermal conductivity can be further increased, and thus the phosphor layer 35 can be cooled more efficiently. .. As a result, it is possible to further prevent the phosphor layer 35 from being burnt out by heat, and thus it is possible to further improve the durability of the optical element 30a.
  • the phosphor layer 35 includes the carrier in which the metal nanoparticles are localized on the carrier as the first scattering particles 33, the fluorescence extraction efficiency can be further improved. Therefore, the fluorescence emission intensity can be improved. Further, the carrier is easier to disperse in the first binder 31a than the metal nanoparticles. Since the phosphor layer 35 includes the wavelength-selective scattering particles 23 as the first scattering particles 33, the light is incident on the phosphor layer 35, but is scattered by the first scattering particles 33 to cause fluorescence emission by the phosphor particles 32. The excitation light 14 that does not directly contribute can be reduced. Therefore, the fluorescence emission intensity from the phosphor layer 35 can be improved.
  • the metal nanoparticles include silver nanoparticles and gold nanoparticles.
  • the carrier only needs to have a property of transmitting at least a part of the excitation light 14, and may have a property of reflecting at least a part of the fluorescence or a property of transmitting the fluorescence. It is preferable to have a property of reflecting at least a part of. More preferably, the metal nanoparticles of the carrier and the carrier are different.
  • the carrier include Al 2 O 3 (alumina), SiO 2 (silica), SiO 2 ⁇ Al 2 O 3 , zeolite, MgO, CaO, La 2 O 3 and the like.
  • the wavelength selective scattering particles 23 include dichroic mirror particles (photonic particles).
  • the dichroic mirror particles include a core 23a, a first dielectric layer 23b, and a second dielectric layer 23c, as shown in FIG.
  • the first dielectric layer 23b and the second dielectric layer 23c are made of different dielectrics.
  • the core 23a may be made of the same dielectric material as the dielectric material forming the first dielectric layer, or may be made of a different dielectric material. It is preferable that the wavelength-selective scattering particles 23 have a narrow switching wavelength range between transmission and reflection.
  • the particles can be transmitted by at least a part of the excitation light 14 and can reflect at least a part of the fluorescence.
  • the dichroic mirror particles include pearl pigment.
  • the proportion of the first scattering particles 33 in the phosphor layer 35 is preferably about 2 to 20% by volume with respect to the phosphor layer 35.
  • the thickness of the phosphor layer 35 is preferably 20 ⁇ m to 200 ⁇ m.
  • FIG. 5 is a sectional view (xz plane) showing the configuration of the optical element according to the second embodiment of the present invention.
  • the optical element 30b according to the present embodiment further includes a scattering layer 37 arranged between the substrate 11 which is a lower layer and the phosphor layer 35.
  • the scattering layer 37 includes the second binder 31b and the second scattering particles 36 dispersed in the second binder 31b.
  • the second scattering particles 36 have a higher refractive index than the phosphor particles 32, the first binder 31a, and the second binder 31b.
  • the scattering layer 37 including the second scattering particles 36 having a high refractive index between the substrate 11 and the phosphor layer 35, the fluorescence that is directed in the direction opposite to the extraction side is scattered and the extraction side is obtained. Can be sent to. Therefore, it is possible to suppress the loss of fluorescence due to the light guide. Further, although the light incident on the phosphor layer 35 does not directly contribute to the fluorescence emission by the phosphor particles 32, the excitation light 14 transmitted through the phosphor layer 35 is scattered by the scattering layer 37, whereby the optical path length of the excitation light is increased.
  • the fluorescence emission intensity can be increased.
  • the thickness of the phosphor layer 35 can be reduced as compared with an optical element having the same fluorescence emission intensity. That is, the amounts of the phosphor particles 32 and the first scattering particles 33 can be reduced.
  • the “take-out side” is the surface of the phosphor layer 35 that faces the contact surface between the phosphor layer 35 and the scattering layer 37 (the bottom surface 34 of the phosphor layer 35), which is opposite to the “take-out side”.
  • the “direction” is a direction toward the contact surface or the side surface of the phosphor layer 35.
  • Examples of the second scattering particles 36 include titanium oxide (TiO 2 ) and zinc oxide (ZnO). Among them, titanium oxide is preferable. Titanium oxide preferably has a rutile type crystal structure.
  • the proportion of the second scattering particles 36 in the scattering layer 37 is preferably about 10 to 75% by volume with respect to the scattering layer 37.
  • the thickness of the scattering layer 37 is preferably 20 to 50 ⁇ m.
  • the binder exemplified as the first binder 31a can be used as the second binder 31b.
  • the first binder 31a and the second binder 31b may be different binders, but are preferably the same binder.
  • reducing the interface loss means reducing the excitation light 14 and the fluorescence guided from the contact surface between the phosphor layer 35 and the scattering layer 37 to the side surface (the surface in the Z direction) of the phosphor layer 35. Then, it is intended to increase the excitation light 14 and the fluorescence guided from the contact surface to the surface of the phosphor layer facing the contact surface.
  • irregularities may be formed on the contact surface of the substrate 11 with the phosphor layer 35 or the scattering layer 37. Even with the irregularities, the utilization efficiency of the excitation light 14 is improved by scattering the fluorescence to the extraction side to suppress the loss due to the guiding of the fluorescence, and scattering the excitation light 14 to extend the optical path length of the excitation light 14. You can
  • FIG. 6A is a plan view (xy plane) showing the configuration of the fluorescent wheel 102a according to the third embodiment of the present invention.
  • FIG. 6B is a side view (xz plane) showing the configuration of the fluorescent wheel 102a according to the third embodiment of the present invention.
  • the lower layer of the optical element 148a is the wheel 141a.
  • an optical element 148a is arranged on at least a part of the surface of the wheel 141a in the circumferential direction through which the excitation light emitted from the light source passes.
  • the fluorescent wheel 102a according to the present embodiment may include, as the optical element 148a, an optical element having no scattering layer like the optical element 30a according to the first embodiment, or the optical element 30b according to the second embodiment. As described above, an optical element having a scattering layer may be provided. The same applies to the following fourth to seventh embodiments.
  • the optical element 148a may be arranged on at least a part of the circumferential direction of the surface of the wheel 141a through which the excitation light emitted from the light source passes, and as shown in FIG. 6A, the optical element 148a is , Are preferably arranged concentrically on the wheel 141a.
  • FIG. 7A is a schematic diagram showing the configuration of the light source device according to the fourth embodiment of the present invention.
  • FIG. 7B is a side view (xz plane) showing the configuration of the light source module of the light source device according to the fourth embodiment of the present invention.
  • the light source device 140 includes a fluorescent wheel 102a, a driving device 142 that rotates the fluorescent wheel 102a, and a light source 13 that irradiates the optical element 148a with the excitation light 14.
  • the light source device 140 emits fluorescence 117 when the excitation light 14 enters at least the phosphor layer of the optical element 148a arranged in the circumferential direction of the surface of the fluorescence wheel 102a as the fluorescence wheel 102a rotates.
  • the light source device 140 is preferably used in a projector or the like.
  • the light source 13 is preferably a blue laser light source that emits the excitation light 14 having a wavelength that excites the phosphor layer of the optical element 148a.
  • a blue laser diode that excites a fluorescent material such as YAG or LuAG is used.
  • the excitation light 14 that illuminates the phosphor layer of the optical element 148a can pass through the lenses 144a, 144b, 144c on the optical path.
  • the mirror 145 may be arranged on the optical path of the excitation light 14.
  • the mirror 145 is preferably a semi-transparent mirror (half mirror).
  • the fluorescent wheel 102a is fixed to the rotating shaft 147 of the drive device 142 by the wheel fixing member 146.
  • the driving device 142 is preferably a motor, and the fluorescent wheel 102a fixed to the rotary shaft 147, which is the rotary shaft of the motor, by the wheel fixture 146 rotates as the motor rotates.
  • the optical element 148a arranged in the peripheral portion on the surface of the fluorescent wheel 102a receives the excitation light, emits the fluorescent light 117, passes through the mirror 145, and emits the fluorescent light. Since the optical element 148a rotates with the rotation of the fluorescent wheel 102a, the optical element 148a rotates at any time and emits the fluorescent light 117.
  • the wheel may be a wheel 141b including a transmission part 143 that allows the excitation light 14 to pass through a part of the segment.
  • the transmission part 143 is preferably made of glass.
  • the segment is divided into a segment including a conventional phosphor layer 12a that emits a wavelength corresponding to green and a segment including an optical element 30c including a phosphor layer that emits a wavelength corresponding to yellow.
  • the fluorescent wheel 102b may be used.
  • the fluorescent wheel 102c may be divided into two parts. Further, as shown in FIG.
  • the external quantum yield can be maintained at a high level by dividing the fluorescent wheel into a plurality of segments in the circumferential direction and coating the fluorescent substance on each segment. This makes it possible to create various colors while maintaining brightness.
  • FIG. 9 is a schematic diagram showing the configuration of the light source device according to the fifth embodiment of the present invention.
  • the light source device 80 includes an optical element 81, a light source 13 that irradiates the optical element 81 with excitation light, and a reflector 111 that has a reflecting surface that reflects the fluorescence 117 emitted from the optical element 81.
  • the reflecting surface of the reflector 111 has a shape that reflects incident light so as to be emitted in parallel to a certain direction.
  • the light source device 80 is preferably a reflective vehicle headlamp (laser headlight).
  • the light source 13 is preferably a blue laser light source that emits the excitation light 14 having a wavelength that excites the phosphor layer of the optical element 81.
  • the reflector 111 is preferably composed of a semi-parabolic mirror. It is preferable that the paraboloid is divided into upper and lower parts in parallel with the xy plane to form a semiparabolic surface, and the inner surface thereof is a mirror.
  • the reflector 111 has a through hole through which the excitation light 14 passes.
  • the optical element 81 is excited by the blue excitation light 14 and emits fluorescence 117 in the long wavelength region (yellow wavelength) of visible light.
  • the excitation light 14 is also reflected by the surface of the optical element 81 and also becomes diffuse reflection light 118.
  • the optical element 81 is arranged at the focus position of the paraboloid. Since the optical element 81 is located at the focal point of the parabolic mirror, the fluorescence 117 and the diffuse reflected light 118 emitted from the optical element 81 are directed to the reflector 111, and when reflected by the surface of the reflector 111, the emission surface 112 is evenly distributed. Go straight on. White light in which the fluorescence 117 and the diffuse reflection light 118 are mixed is emitted from the emission surface 112 as parallel light.
  • the optical element 81 As the optical element 81, the optical element 30a of the first embodiment and the optical element 30b of the second embodiment can be adopted.
  • FIG. 10 is a schematic diagram showing the configuration of the projection apparatus according to the sixth embodiment of the present invention.
  • the projection apparatus 100 includes a light source device, a rotational position sensor 103 that acquires the rotational position of the fluorescent wheel, a light source control unit 104 that controls the light source 13 based on output information from the rotational position sensor 103, a display element 107, and A light source side optical system 106 that guides the light from the light source device to the display element 107 and a projection side optical system 108 that projects the projection light from the display element 107 onto the screen are provided.
  • the projection device 100 controls the output of the light source 13 based on the information on the rotational position of the fluorescent wheel acquired by the rotational position sensor 103.
  • the light source device includes a fluorescent wheel in which the optical element is divided into a plurality of segments in the circumferential direction and arranged at least in a part of the circumferential direction through which the excitation light 14 emitted from the light source 13 passes. It may be a fluorescent wheel 102a which is not divided into.
  • the blue emission excitation light 14 passes through the fluorescent wheel 102e via the transmissive portion 143.
  • the excitation light 14 applied to the optical element 148a can pass through the mirrors 109a to 109c and the light source side optical system 106 on the optical path.
  • the light source side optical system 106 is preferably a dichroic mirror.
  • a preferred dichroic mirror is capable of reflecting blue light incident at 45 degrees and transmitting red and green light.
  • the blue light by the excitation light 14 incident on the dichroic mirror is reflected and directed to the fluorescent wheel 102e.
  • blue light passes through the fluorescent wheel 102e via the transmission part 143.
  • the excitation light 14 irradiating the segments other than the transmission part 143 irradiates the optical element 148e (30e to 30g) with the timing of rotation of the fluorescent wheel 102e, and causes the optical element 148e (30e to 30g) to emit fluorescence.
  • the optical element 30e emits fluorescence in the green wavelength band
  • the optical element 30f emits fluorescence in the yellow wavelength band
  • the optical element 30g emits fluorescence in the red wavelength band for each segment.
  • the fluorescently emitted green, yellow, and red lights pass through the dichroic mirror and enter the display element 107.
  • the blue light that has passed through the transmissive portion 143 again enters the dichroic mirror via the mirrors 109a to 109c, is reflected again by the dichroic mirror, and enters the display element 107.
  • the projector can include a light source module 101, a display element 107, a light source side optical system 106 (dichroic mirror), and a projection side optical system 108.
  • the light source side optical system 106 (dichroic mirror) guides the light from the light source module 101 to the display element 107, and the projection side optical system 108 can project the projection light from the display element 107 on a screen or the like. it can.
  • the display element 107 is preferably a DMD (Digital Mirror Device).
  • the projection side optical system 108 preferably comprises a combination of projection lens.
  • An optical element according to aspect 1 of the present invention includes a phosphor layer disposed so as to face a lower layer, the phosphor layer including a first binder and a phosphor dispersed in the first binder.
  • Particles and first scattering particles dispersed in the first binder wherein the phosphor particles are excited by excitation light emitted from a light source to emit fluorescence, and the first scattering particles are It is composed of solid particles, has wavelength dependence with respect to scattering, at least a part of the excitation light is transmitted through the first scattering particles, and at least a part of the fluorescence is reflected by the first scattering particles. It is a configuration that is done.
  • the optical element according to aspect 2 of the present invention may be configured such that in the aspect 1, the lower layer is composed of one or more layers including a substrate.
  • the optical element according to the third aspect of the present invention may be configured such that, in the first or second aspect, the first scattering particles are metal nanoparticles.
  • the first scattering particles may be a support body composed of metal nanoparticles and a carrier that supports the metal nanoparticles. Good.
  • the optical element according to the fifth aspect of the present invention may be configured such that, in the first or second aspect, the first scattering particles are particles having a structure in which at least two types of dielectrics having different refractive indexes are laminated. ..
  • the optical element according to aspect 6 of the present invention is the optical element according to any one of aspects 1 to 5 above, further comprising a scattering layer disposed between the lower layer and the phosphor layer, wherein the scattering layer comprises: A second binder, and second scattering particles dispersed in the second binder, wherein the second scattering particles are the phosphor particles, the first binder, and the second binder.
  • the refractive index may be higher than that.
  • the optical element according to aspect 7 of the present invention may be configured such that the first binder and the second binder are the same binder in any one of aspects 1 to 6 above.
  • a fluorescent wheel according to aspect 8 of the present invention is a fluorescent wheel in which the lower layer of the optical element according to any one of aspects 1 to 7 is a wheel, and excitation light emitted from a light source passes through the fluorescent wheel.
  • the optical element may be arranged on at least a part of the surface of the wheel in the circumferential direction.
  • a light source device includes the fluorescent wheel according to aspect 8 above, a drive device that rotates the fluorescent wheel, and a light source that irradiates the optical element with excitation light. With the rotation of, the fluorescent light may be emitted when the excitation light is incident on the fluorescent material layer of the optical element arranged at least in the circumferential direction of the surface of the fluorescent wheel.
  • a vehicle headlamp according to a tenth aspect of the present invention is the optical element according to any one of the first to seventh aspects, a light source that irradiates the optical element with excitation light, and a light emitted from the optical element.
  • a reflector having a reflecting surface for reflecting fluorescence may be provided.
  • a projection apparatus includes: the light source device according to aspect 9; a display element; a light source side optical system that guides light from the light source device to the display element; and the display element. And a projection-side optical system that projects the projection light of (3) onto the screen.
  • a plurality of optical elements according to any one of aspects 1 to 7 are provided in the circumferential direction in at least a part of the circumferential direction through which the excitation light emitted from the light source passes.
  • the light source device according to the above aspect 9 including a fluorescent wheel that is divided into segments, a rotational position sensor that acquires a rotational position of the fluorescent wheel, and a light source based on output information from the rotational position sensor.
  • a light source control unit that controls the display element, a light source side optical system that guides light from the light source device to the display element, and a projection side optical system that projects the projection light from the display element onto a screen, It may be configured to control the output of the light source based on the information on the rotational position of the fluorescent wheel acquired by the rotational position sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

蛍光発光強度および耐久性の向上を実現する。光学素子は、蛍光体層を備え、蛍光体層は、第1のバインダと、当該バインダ内に分散した蛍光体粒子と、当該バインダ内に分散した第1の散乱粒子とを含み、蛍光体粒子は、励起されて蛍光を発光し、第1の散乱粒子は中実の粒子からなり、散乱に関して波長依存性を備え、励起光の一部が、第1の散乱粒子を透過し、蛍光の一部が、第1の散乱粒子によって反射される。

Description

光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置
 本発明は、蛍光ホイール、光源装置、車両用前照灯具、並びに、投影装置に用いる光学素子に関する。
 本願は、2018年10月30日に日本に出願された特願2018-204328号に基づき優先権を主張し、その内容をここに援用する。
 青色レーザなどの励起光を蛍光体に照射した際に、蛍光体が蛍光を発光させることが従来技術として知られている。例えば、特許文献1には、半導体レーザ素子と、半導体レーザ素子からの光を波長変換する波長変換部材と、波長変換部材からの光を制御するレンズと、を備える光学装置が記載されている。特許文献1に記載の波長変換部材は、複数の蛍光体粒子と、外殻が透光性部材でありその内部に中空領域を有する複数の中空体と、複数の蛍光体粒子および複数の中空体を保持する保持体と、を有する。
日本国公開特許公報「特開2015-1709号公報」(2015年1月5日公開)
 しかしながら、上述のような従来技術は、励起光の一部が蛍光体層の表面付近の中空体によって散乱され、蛍光体への入射が妨げられることによって、蛍光発光強度が低下するという問題がある。
 本発明の一態様は、蛍光発光強度および耐久性の向上を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る光学素子は、下位層に面するように配置された蛍光体層を備え、前記蛍光体層は、第1のバインダと、前記第1のバインダ内に分散した蛍光体粒子と、前記第1のバインダ内に分散した第1の散乱粒子と、を含み、前記蛍光体粒子は、光源から出射した励起光によって励起されて蛍光を発光し、前記第1の散乱粒子は中実の粒子からなり、散乱に関して波長依存性を備え、前記励起光の少なくとも一部が、前記第1の散乱粒子を透過し、前記蛍光の少なくとも一部が、前記第1の散乱粒子によって反射される。
 本発明の一態様によれば、蛍光発光強度および耐久性の向上に資することができる。
従来技術に係る光学素子を示す概略図である。 本発明の実施形態1に係る光学素子の構成を示す断面図である。 従来技術に係る光学素子を示す断面図である。 本発明の実施形態1に係る光学素子の蛍光体層に含まれる第1の散乱粒子の一例を示す概略図である。 本発明の実施形態2に係る光学素子の構成を示す断面図である。 本発明の実施形態3に係る蛍光ホイールの構成を示す平面図である。 本発明の実施形態3に係る蛍光ホイールの構成を示す側面図である。 本発明の実施形態4に係る光源装置の構成を示す概略図である。 本発明の実施形態4に係る光源装置の光源モジュールの構成を示す側面図である。 本発明の実施形態4に係る光源装置の蛍光ホイールの変形例の構成を示す平面図である。 本発明の実施形態4に係る光源装置の蛍光ホイールの変形例の構成を示す平面図である。 本発明の実施形態4に係る光源装置の蛍光ホイールの変形例の構成を示す平面図である。 本発明の実施形態4に係る光源装置の蛍光ホイールの変形例の構成を示す平面図である。 本発明の実施形態5に係る光源装置の構成を示す概略図である。 本発明の実施形態6に係る投影装置の構成を示す概略図である。
 図1に一般的な光学素子10の構成を示す。基板11の上に蛍光体層12が堆積された構成が一般的である。反射型の光学系では、蛍光体層12に光源13から発した励起光14が照射し、蛍光体層12は蛍光発光する。蛍光体層12は、一般的に蛍光体粒子と有機バインダとから構成される。有機バインダは、密着性が高いものの、熱伝導率が低いため、青色レーザなどにより蛍光体を発光させた場合、熱による焼損が起こり、所望の蛍光発光強度を得ることができないという問題がある。つまり蛍光体の発光効率の温度依存性を検討する必要がある。
 〔発光効率の温度依存性〕
 蛍光体の発光効率の温度依存性について、YAG:Ce(YAl12:Ce3+)蛍光体の外部量子効率に基づいて説明する。図2に示す通り、YAG(イットリウム・アルミニウム・ガーネット)にドーパントとしてCe(セリウム)をドープした蛍光体材料について、Ceのドープ濃度の違いにより発光効率の温度依存性が相違する様子が確認できる。本発明の一態様におけるCeドープ濃度(mol%)とは、ガーネット系蛍光体の一般式(M1-xREAl12で示される物質において、x×100(mol%)で表される。上記一般式において、M、REは希土類元素群より選ばれる少なくとも一つの元素を含むものが用いられる。一般的に、Mは、Sc、Y、Gd、Lu、REは、Ce、Eu、Tbのうち、少なくとも一種の元素が用いられる。
 蛍光体に励起光を照射した場合、蛍光発光が得られると同時に、励起光の一部は熱エネルギーに変換されるため、蛍光体の照射スポット部は高温になる。熱放射については、一般的に下記の式で説明することができる。
     Q=A・ε・σ・(T^4-T^4)
ここで、Qは放射熱量、Aは放射部面積、εは放射率、σはステファン・ボルツマン定数、Tは放射部の温度、Tは周囲の温度を示す。
 蛍光体の発光効率は蛍光体の温度による影響を受け、温度が増加するに従って発光効率が低下することが知られている。より強い(明るい)蛍光発光を得るためには励起光14の照射強度を強める必要があり、この場合、冷却状況によっては蛍光体層12の温度上昇抑制が十分に行えなくなる場合がある。
 また、蛍光体の温度特性は発光中心元素(本実施形態ではCe)の濃度により変化することが知られている。一般的に市販されているYAG:Ce蛍光体のCe濃度は、常温使用時の発光効率が高い濃度(例えば1.4~1.5mol%程度)が用いられることが多い。これはCeの濃度が低いYAG蛍光体では、内部量子効率は高くなるが、励起光の吸収率が低いため、光学素子として重要な外部量子効率は、Ce濃度1.5mol%付近が最適値となるためである。高エネルギー密度、高強度の励起光照射によって照射スポットの蛍光体温度が250℃を超える領域になるような場合、一般的なYAG:Ce蛍光体(Ce濃度1.4mol%)では発光効率が低下する(図2参照)。しかし、Ce濃度が低いYAG:Ce蛍光体(例えば0.3~1.0mol%程度)は発光効率の温度依存性が小さく、低温時と比較して高濃度の発光体と発光効率が逆転する場合もある。例えば、低温領域(50℃~100℃)では、YAG:Ce蛍光体のCe濃度が高い方が高発光効率となるが、高温領域(250℃~350℃)ではCe濃度が低い方が高発光効率となる傾向がある。かかる傾向に鑑みて本願発明を実施形態ごとに説明する。
 レーザ光による励起では励起密度が高くなり高温となるため、耐熱性の高い酸窒化物系や窒化物系の蛍光体を用いることが望ましい。蛍光体として発光効率の温度依存性が優れている方がより望ましい。また、光源装置として利用するため、蛍光を青色、緑色、赤色等の白色光以外としてもよい。
 近紫外光を赤色光に変換する蛍光体として、例えばCaAlSiN:Eu2+を用いることができる。近紫外光を黄色光に変換する蛍光体として、例えばCa-α-SiAlON:Eu2+を用いることができる。近紫外光を緑色光に変換する蛍光体として、例えばβ-SiAlON:Eu2+やLuAl12:Ce3+(LuAG:Ce)を用いることができる。近紫外光を青色光に変換する蛍光体として、例えば(Sr,Ca,Ba,Mg)10(PO12:EuやBaMgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+を用いることができる。
 また、近紫外光の励起光を黄色光及び青色光に変換する2種類の蛍光体を含むように蛍光部材を形成してもよい。これにより、蛍光部材から出射される黄色光及び青色光の蛍光を混色して擬似白色光が得られる。
 以下では、好ましい実施形態としてYAG:Ce蛍光体の一例について、本願発明を実施形態ごとに説明する。
 〔実施形態1〕
 〔光学素子30aの構成〕
 以下、本発明の一実施形態について、詳細に説明する。図2は、本発明の実施形態1に係る光学素子の構成を示す断面図(xz平面)である。図3は、従来技術に係る光学素子を示す断面図(xz平面)である。図4は、本発明の実施形態1に係る光学素子の蛍光体層に含まれる第1の散乱粒子の一例を示す概略図である。本実施形態に係る光学素子30aは、図1に示した一般的な光学素子10の構成と比べて、蛍光体層の構成が異なる。
 本実施形態に係る光学素子30aは、図2に示すように、下位層である基板11に面して配置された蛍光体層35を備えている。なお、蛍光体層35は、直接下位層に接していなくてもよく、下位層に面するように配置されていればよい。
 ここで、「下位層に面するように配置」とは、蛍光体層35の底面34と、下位層(基板11)の上面15とが向かい合うように配置されている態様を意図する。蛍光体層35の底面34と、下位層(基板11)の上面15とが向かい合うように配置されていれば、実施形態2のように、蛍光体層35と下位層との間に他の部材を備えていてもよい。
 (基板(下位層))
 下位層は、基板11を含む1以上の層から構成されることが好ましい。当該構成を採用することにより、蛍光を基板11によって反射させることができる。基板11はアルミ基板を用いることができる。蛍光発光強度を高める為に、アルミ基板上には銀などの高反射膜がコーティングされているのが好ましい。他の実施形態では、高反射のアルミナ基板、白色完全散乱基板などを用いてもよい。基板11の材質は金属など熱伝導率の高いものが好ましく、特に上述した材料に限定されない。
 (蛍光体層)
 蛍光体層35は、第1のバインダ31aと、第1のバインダ31a内に分散した蛍光体粒子32と、第1のバインダ31a内に分散した第1の散乱粒子33と、を含んでいる。
 第1のバインダ31aは、無機化合物を含むバインダであってもよく、有機化合物を含むバインダであってもよい。無機化合物としては、例えば、アルミナ、シリカ等が挙げられる。有機化合物としては、例えば、シリコーン樹脂等が挙げられる。
 蛍光体層35に占める蛍光体粒子32の割合は、蛍光体層35に対して50~75体積%程度であるのが好ましい。
 蛍光体粒子32は、光源13から出射した励起光14によって励起されて蛍光を発光する。蛍光体粒子32の平均粒径D50は、5~50μm程度であるのが好ましく、20μm程度であるのがより好ましい。蛍光体粒子32は、CeがドープされたYAG蛍光体であることが好ましい。
 第1の散乱粒子33は、中実の粒子からなり、散乱に関して波長依存性を備え、励起光14の少なくとも一部が、第1の散乱粒子33を透過し、蛍光の少なくとも一部が、第1の散乱粒子33によって反射される。蛍光体層35が上述した性質を有する第1の散乱粒子33を含んでいることにより、励起光14の波長変換層への入射を妨げることなく蛍光の波長変換層内での導光を抑制し、蛍光の取り出し効率を高めることができる。ここで、励起光14の入射を妨げないことは、蛍光体層35に入射したが、蛍光体粒子32による蛍光発光に直接寄与することなく、励起光14が蛍光体粒子32に向かわない方向へ、励起光14を透過しない部材によって反射される励起光14を低減することを意図する。蛍光の波長変換層内での導光を抑制することは、界面38で全反射する蛍光を低減し、波長変換層の側面に向かう蛍光を低減することを意図する。ここで界面38は、蛍光体層35の底面34と反対側の面であり、好ましい実施形態では空気と蛍光体層35との界面である。本実施形態に係る光学素子30aは、第1の散乱粒子33を含んでいることにより、図3に示す従来技術に係る光学素子に比べて、界面38で全反射する蛍光を第1の散乱粒子33によって散乱させることにより、界面38で全反射する蛍光を低減し、波長変換層の側面に向かう蛍光を低減することができる。また、「蛍光の取り出し効率」とは、「励起光14が入射した面から出てくる蛍光強度」/「励起光強度」を意図し、「励起光が蛍光体に入射する効率」、「蛍光体の発光効率」、および「発光した蛍光が励起光が入射した面から出ていく効率」が含まれる。また、蛍光体層35は、中実の粒子からなる第1の散乱粒子33を含むことにより、中空粒子を含む蛍光体層に比べて熱伝導率を高めることができるため、蛍光体層35を効率的に冷却することができる。このため、蛍光体層35の熱による焼損を防止することができるため、光学素子30aの耐久性を向上させることができる。
 第1の散乱粒子33は、金属ナノ粒子、金属ナノ粒子と、金属ナノ粒子を担持する担体とからなる担持体、または屈折率の異なる少なくとも2種類の誘電体が積層した構造を有する粒子(以下、波長選択性散乱粒子23と称する)であることが好ましい。蛍光体層35が第1の散乱粒子33として熱伝導率の高い金属ナノ粒子を含むことにより、熱伝導率をより高めることができるため、蛍光体層35をより効率的に冷却することができる。これにより、蛍光体層35の熱による焼損をより防止することができるため、光学素子30aの耐久性をより向上させることができる。蛍光体層35が第1の散乱粒子33として金属ナノ粒子を担体に局在化させた担持体を含むことにより、蛍光の取り出し効率をより高めることができる。このため、蛍光発光強度を向上させることができる。また、担持体は、金属ナノ粒子よりも第1のバインダ31a内に分散し易い。蛍光体層35が第1の散乱粒子33として波長選択性散乱粒子23を含むことにより、蛍光体層35に入射したが、第1の散乱粒子33に散乱されて蛍光体粒子32による蛍光発光に直接寄与しない励起光14を低減することができる。このため、蛍光体層35からの蛍光発光強度を向上させることができる。
 金属ナノ粒子としては、例えば、銀ナノ粒子、金ナノ粒子等が挙げられる。担体は、励起光14の少なくとも一部が透過する性質を有していればよく、蛍光の少なくとも一部が反射する性質を有していても透過する性質を有していてもよいが、蛍光の少なくとも一部を反射させる性質を有していることが好ましい。担持体の金属ナノ粒子と担体とは、異なることがより好ましい。担持体としては、例えば、Al(アルミナ)、SiO(シリカ)、SiO・Al、ゼオライト、MgO、CaO、La等が挙げられる。
 波長選択性散乱粒子23としては、例えば、ダイクロイックミラー粒子(フォトニック粒子)等が挙げられる。例えば、ダイクロイックミラー粒子は、図4に示すように、コア23aと、第1の誘電体層23bと、第2の誘電体層23cと、を含んでいる。第1の誘電体層23bと、第2の誘電体層23cとは、異なる誘電体からなる。コア23aは、第1の誘電体層を構成する誘電体と同一の誘電体から構成されていてもよいし、異なる誘電体から構成されていてもよい。波長選択性散乱粒子23は、透過と反射との切り替え波長域が狭いことが好ましい。これにより、励起光14の波長と蛍光の波長とが近い場合であっても、当該粒子は、少なくとも一部の励起光14によって透過され、少なくとも一部の蛍光を反射することができる。ダイクロイックミラー粒子としては、例えば、パール顔料等が挙げられる。
 蛍光体層35に占める第1の散乱粒子33の割合は、蛍光体層35に対して2~20体積%程度であるのが好ましい。
 蛍光体層35の厚さは、20μm~200μmであるのが好ましい。
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 〔光学素子30bの構成〕
 図5は、本発明の実施形態2に係る光学素子の構成を示す断面図(xz平面)である。
 本実施形態に係る光学素子30bは、下位層である基板11と蛍光体層35との間に配置された散乱層37を更に備えている。
 (散乱層)
 散乱層37は、第2のバインダ31bと、第2のバインダ31b内に分散した第2の散乱粒子36と、を含んでいる。
 第2の散乱粒子36は、蛍光体粒子32、第1のバインダ31a、および第2のバインダ31bよりも屈折率が高い。基板11と蛍光体層35との間に屈折率が高い第2の散乱粒子36を含む散乱層37が配置されていることにより、取り出し側とは反対方向へ向かった蛍光を散乱し、取り出し側へ向かわせることができる。そのため、導光による蛍光のロスを抑制することができる。また、蛍光体層35に入射したが、蛍光体粒子32による蛍光発光に直接寄与することなく、蛍光体層35を透過した励起光14を散乱層37によって散乱することにより、励起光の光路長が伸びるため、励起光の利用効率を向上させることができる。そのため、蛍光発光強度を高めることができる。また、同一の蛍光発光強度を有する光学素子に比べて蛍光体層35の厚さを薄くすることができる。つまり、蛍光体粒子32および第1の散乱粒子33の量を減らすことができる。ここで、「取り出し側」とは、蛍光体層35の、蛍光体層35と散乱層37との接触面(蛍光体層35の底面34)に対向する面であり、「取り出し側とは反対方向」とは、当該接触面または蛍光体層35の側面に向かう方向である。
 第2の散乱粒子36としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)等が挙げられるが、中でも、酸化チタンであることが好ましい。酸化チタンは、ルチル型の結晶構造を有することが好ましい。
 散乱層37に占める第2の散乱粒子36の割合は、散乱層37に対して10~75体積%程度であるのが好ましい。当該構成であることにより、基板11への密着性を有しつつ、上述した効果を奏することができる。
 散乱層37の厚さは、20~50μmであることが好ましい。
 第2のバインダ31bは、第1のバインダ31aで例示したバインダを用いることができる。第1のバインダ31aと第2のバインダ31bとは、異なるバインダであってもよいが、同一のバインダであることが好ましい。当該構成であることにより、蛍光体層35と散乱層37との間での界面ロスを低減することにおいて有効である。ここで、「界面ロスを低減すること」とは、蛍光体層35と散乱層37との接触面から蛍光体層35の側面(Z方向の面)に導光する励起光14および蛍光を低減して、当該接触面から蛍光体層における当該接触面に対向する面に導光する励起光14および蛍光を増加することを意図する。
 また、散乱層37の代わりにまたは散乱層37の形成と共に、基板11の蛍光体層35または散乱層37との接触面に凹凸を形成してもよい。当該凹凸によっても、取り出し側に蛍光を散乱させて蛍光の導光によるロスを抑制し、励起光14を散乱させて励起光14の光路長を伸ばすことにより励起光14の利用効率を向上させることができる。
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 〔蛍光ホイール102aの構成〕
 図6Aは、本発明の実施形態3に係る蛍光ホイール102aの構成を示す平面図(xy平面)である。図6Bは、本発明の実施形態3に係る蛍光ホイール102aの構成を示す側面図(xz平面)である。本実施形態に係る蛍光ホイール102aは、光学素子148aの下位層がホイール141aである。蛍光ホイール102aは、光源から出射された励起光が通過するホイール141aの表面の周方向の少なくとも一部に、光学素子148aが配置されている。本実施形態に係る蛍光ホイール102aは、光学素子148aとして実施形態1に係る光学素子30aのように散乱層を有していない光学素子を備えていてもよいし、実施形態2に係る光学素子30bのように散乱層を有する光学素子を備えていてもよい。なお、以下の実施形態4~7に関しても同様である。
 蛍光ホイール102aは、光源から出射された励起光が通過するホイール141aの表面の周方向の少なくとも一部に、光学素子148aが配置されていればよく、図6Aに示すように、光学素子148aは、同心円状にホイール141a上に配置されていることが好ましい。
 〔実施形態4〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 〔光源装置140の構成〕
 図7Aは、本発明の実施形態4に係る光源装置の構成を示す概略図である。図7Bは、本発明の実施形態4に係る光源装置の光源モジュールの構成を示す側面図(xz平面)である。
 光源装置140は、蛍光ホイール102aと、蛍光ホイール102aを回転させる駆動装置142と、光学素子148aに励起光14を照射する光源13とを備えている。光源装置140は、蛍光ホイール102aの回転に伴い、少なくとも蛍光ホイール102aの表面の周方向に配置された光学素子148aの蛍光体層に励起光14が入射した際に、蛍光117を出射する。
 光源装置140は、好ましくはプロジェクターなどに用いられる。光源装置140では、光源13は、光学素子148aの蛍光体層を励起する波長の励起光14を出射する青色レーザ光源であるのが好ましい。好ましい実施形態では、YAG、LuAG等の蛍光体を励起する青色レーザダイオードが用いられる。光学素子148aの蛍光体層を照射する励起光14は、光路上にてレンズ144a、144b、144cを通過することができる。励起光14の光路上にミラー145が配置されてもよい。ミラー145は半透鏡(ハーフミラー)であるのが好ましい。
 蛍光ホイール102aはホイール固定具146によって、駆動装置142の回転軸147に固定される。駆動装置142は好ましくはモータであり、モータの回転シャフトである回転軸147にホイール固定具146によって固定された蛍光ホイール102aがモータの回転に伴い回転する。
 蛍光ホイール102aの表面上の周辺部に配置された光学素子148aが、励起光を受けて蛍光117を出射し、ミラー145を透過して蛍光を出射する。光学素子148aは、蛍光ホイール102aの回転に伴い回転するため随時回転しながら、蛍光117を出射する。
 図8A~図8Dは、本発明の実施形態4に係る光源装置の蛍光ホイールの変形例の構成を示す平面図(xy平面)である。図8A,図8C,図8Dに示すように、ホイールは、セグメントの一部を励起光14が透過する透過部143を備えたホイール141bとすることができる。好ましい実施形態では、透過部143はガラスからなることが好ましい。かかるセグメント構成とすることにより、励起光14を1つの蛍光ホイールで複数の波長に変換させることが可能となる。図8Aに示すように、緑色に相当する波長を蛍光発光する従来の蛍光体層12aを備えるセグメントと、黄色に相当する波長を蛍光発光する蛍光体層を有する光学素子30cを備えるセグメントとに分割した蛍光ホイール102bとしてもよい。また、図8Bに示すように、緑色に相当する波長を蛍光発光する蛍光体層を有する光学素子30dを備えるセグメントと、黄色に相当する波長を蛍光発光する従来の蛍光体層12bを備えるセグメントとに分割した蛍光ホイール102cとしてもよい。また、図8Cに示すように、緑色に相当する波長を蛍光発光する蛍光体層を備える光学素子30dと、黄色に相当する波長を蛍光発光する蛍光体層を備える光学素子とに分割した蛍光ホイール102dとしてもよい。また、図8Dに示すように、緑色に相当する波長を蛍光発光する蛍光体層を備える光学素子30eと、黄色に相当する波長を蛍光発光する蛍光体層を備える光学素子30fと、赤色に相当する波長を蛍光発光する蛍光体層を備える光学素子30gとに分割した蛍光ホイール102eとしてもよい。蛍光ホイールを周方向に複数のセグメントに分割し、蛍光体をセグメント毎に塗り分けることにより、外部量子収率を高い水準に維持することが可能となる。これにより、明るさを維持しつつ様々な色を作り出すことができる。
 〔実施形態5〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 〔光源装置80の構成〕
 図9は、本発明の実施形態5に係る光源装置の構成を示す概略図である。光源装置80は、光学素子81と、光学素子81に励起光を照射する光源13と、光学素子81から出射した蛍光117を反射させる反射面を有するリフレクタ111とを備えている。リフレクタ111の反射面は、入射した光を一定方向に平行に出射するように反射させる形状を有している。
 光源装置80は好ましくは反射型車両用前照灯具(レーザヘッドライト)である。光源13は、光学素子81の蛍光体層を励起する波長の励起光14を出射する青色レーザ光源であるのが好ましい。リフレクタ111は、半放物面ミラーから構成されるのが好ましい。放物面をxy平面に平行に上下に2分割して半放物面とし、その内面はミラーになっているのが好ましい。リフレクタ111には励起光14が通過する透孔がある。光学素子81は、青色の励起光14によって励起され、可視光の長波長域(黄色波長)の蛍光117を発する。また、励起光14は、光学素子81の表面にて反射され、拡散反射光118ともなる。光学素子81は、放物面の焦点の位置に配置される。光学素子81が、放物面ミラーの焦点の位置にあるので、光学素子81から出射された蛍光117、拡散反射光118はリフレクタ111へ向い、その表面にて反射すると、一様に出射面112に直進する。蛍光117と拡散反射光118とが混ざり合った白色光が平行光として出射面112から出射する。
 実施形態5では、光学素子81として、実施形態1の光学素子30a、および実施形態2の光学素子30bを採用することができる。
 〔実施形態6〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 〔投影装置の構成〕
 図10は、本発明の実施形態6に係る投影装置の構成を示す概略図である。投影装置100は、光源装置と、蛍光ホイールの回転位置を取得する回転位置センサ103と、回転位置センサ103からの出力情報に基づいて光源13を制御する光源制御部104と、表示素子107と、光源装置からの光を表示素子107まで導光する光源側光学系106と、表示素子107からの投影光をスクリーンに投影する投影側光学系108とを備えている。投影装置100は、回転位置センサ103により取得された蛍光ホイールの回転位置の情報により光源13の出力を制御する。光源装置は、光源13から出射された励起光14が通過する周方向の少なくとも一部に、光学素子が周方向に複数セグメントに分割されて配置された蛍光ホイールを備えているが、上述したセグメントに分割されていない蛍光ホイール102aであってもよい。
 例えば、図8Dのように蛍光ホイール102eのセグメントの一部に透過部143を設けた場合、青色発光の励起光14は透過部143を介して蛍光ホイール102eを透過する。光学素子148aに照射した励起光14は、光路上にてミラー109a~109cおよび光源側光学系106を経由することができる。光源側光学系106はダイクロイックミラーであるのが好ましい。好ましいダイクロイックミラーは、45度で入射した青色の光は反射させ、赤色および緑色の光は透過させることができる。
 より詳細に検討すると、上記光学特性を備えたダイクロイックミラーを光源側光学系106に採用することにより、ダイクロイックミラーに入射する励起光14による青色の光は反射されて蛍光ホイール102eに向けられる。蛍光ホイール102eの回転のタイミングにより、青色の光は透過部143を介して蛍光ホイール102eを透過する。蛍光ホイール102eの回転のタイミングにより、透過部143以外のセグメントに照射された励起光14は、光学素子148e(30e~30g)を照射し、光学素子148e(30e~30g)を蛍光発光させる。セグメント毎に光学素子30eでは緑色波長帯域の蛍光が発光され、光学素子30fでは黄色波長帯域の蛍光が発光され、光学素子30gでは赤色波長帯域の蛍光が発光される。蛍光発光された緑色、黄色および赤色の光は、ダイクロイックミラーを透過して表示素子107に入射する。透過部143を透過した青色の光は、ミラー109a~109cを介して再度ダイクロイックミラーに入射し、ダイクロイックミラーで再度反射されて表示素子107に入射する。
 好ましい実施形態では、プロジェクタ(投影装置100)は、光源モジュール101と、表示素子107と、光源側光学系106(ダイクロイックミラー)と、投影側光学系108と、を備えることができる。光源側光学系106(ダイクロイックミラー)は、光源モジュール101からの光を上記表示素子107まで導光し、投影側光学系108は、上記表示素子107からの投影光をスクリーン等に投影することができる。好ましい実施形態では、表示素子107はDMD(デジタルミラーデバイス)であるのが好ましい。投影側光学系108は投影部レンズの組み合わせからなるのが好ましい。
 〔まとめ〕
 本発明の態様1に係る光学素子は、下位層に面するように配置された蛍光体層を備え、前記蛍光体層は、第1のバインダと、前記第1のバインダ内に分散した蛍光体粒子と、前記第1のバインダ内に分散した第1の散乱粒子と、を含み、前記蛍光体粒子は、光源から出射した励起光によって励起されて蛍光を発光し、前記第1の散乱粒子は中実の粒子からなり、散乱に関して波長依存性を備え、前記励起光の少なくとも一部が、前記第1の散乱粒子を透過し、前記蛍光の少なくとも一部が、前記第1の散乱粒子によって反射される構成である。
 本発明の態様2に係る光学素子は、上記の態様1において、前記下位層が、基板を含む1以上の層から構成される構成としてもよい。
 本発明の態様3に係る光学素子は、上記の態様1または2において、前記第1の散乱粒子が、金属ナノ粒子である構成としてもよい。
 本発明の態様4に係る光学素子は、上記の態様1または2において、前記第1の散乱粒子が、金属ナノ粒子と、前記金属ナノ粒子を担持する担体とからなる担持体である構成としてもよい。
 本発明の態様5に係る光学素子は、上記の態様1または2において、前記第1の散乱粒子が、屈折率の異なる少なくとも2種類の誘電体が積層した構造を有する粒子である構成としてもよい。
 本発明の態様6に係る光学素子は、上記の態様1~5の何れか一項において、前記下位層と前記蛍光体層との間に配置された散乱層を更に備え、前記散乱層は、第2のバインダと、前記第2のバインダ内に分散した第2の散乱粒子と、を含み、前記第2の散乱粒子は、前記蛍光体粒子、前記第1のバインダ、および前記第2のバインダよりも屈折率が高い構成としてもよい。
 本発明の態様7に係る光学素子は、上記の態様1~6の何れか一項において、前記第1のバインダと、前記第2のバインダとが、同一のバインダである構成としてもよい。
 本発明の態様8に係る蛍光ホイールは、上記の態様1~7の何れか一項に記載の光学素子の前記下位層がホイールである蛍光ホイールであって、光源から出射された励起光が通過する前記ホイールの表面の周方向の少なくとも一部に、前記光学素子が配置されている構成としてもよい。
 本発明の態様9に係る光源装置は、上記の態様8に記載の蛍光ホイールと、前記蛍光ホイールを回転させる駆動装置と、前記光学素子に励起光を照射する光源と、を備え、前記蛍光ホイールの回転に伴い、少なくとも前記蛍光ホイールの表面の周方向に配置された前記光学素子の前記蛍光体層に励起光が入射した際に、蛍光を出射する構成としてもよい。
 本発明の態様10に係る車両用前照灯具は、上記の態様1~7の何れか一項に記載の光学素子と、前記光学素子に励起光を照射する光源と、前記光学素子から出射した蛍光を反射させる反射面を有するリフレクタと、を備えた構成としてもよい。
 本発明の態様11に係る投影装置は、上記の態様9に記載の光源装置と、表示素子と、前記光源装置からの光を前記表示素子まで導光する光源側光学系と、前記表示素子からの投影光をスクリーンに投影する投影側光学系と、を備える構成としてもよい。
 本発明の態様12に係る投影装置は、光源から出射された励起光が通過する周方向の少なくとも一部に、上記の態様1~7の何れか一項に記載の光学素子が周方向に複数セグメントに分割されて配置された蛍光ホイールを備えた上記の態様9に記載の光源装置と、前記蛍光ホイールの回転位置を取得する回転位置センサと、前記回転位置センサからの出力情報に基づいて光源を制御する光源制御部と、表示素子と、前記光源装置からの光を前記表示素子まで導光する光源側光学系と、前記表示素子からの投影光をスクリーンに投影する投影側光学系と、を備え、前記回転位置センサにより取得された前記蛍光ホイールの回転位置の情報により光源の出力を制御する構成としてもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。

Claims (12)

  1.  下位層に面するように配置された蛍光体層を備え、
     前記蛍光体層は、第1のバインダと、前記第1のバインダ内に分散した蛍光体粒子と、前記第1のバインダ内に分散した第1の散乱粒子と、を含み、
     前記蛍光体粒子は、光源から出射した励起光によって励起されて蛍光を発光し、
     前記第1の散乱粒子は中実の粒子からなり、散乱に関して波長依存性を備え、
     前記励起光の少なくとも一部が、前記第1の散乱粒子を透過し、前記蛍光の少なくとも一部が、前記第1の散乱粒子によって反射されることを特徴とする光学素子。
  2.  前記下位層が、基板を含む1以上の層から構成されることを特徴とする請求項1に記載の光学素子。
  3.  前記第1の散乱粒子が、金属ナノ粒子であることを特徴とする請求項1または2に記載の光学素子。
  4.  前記第1の散乱粒子が、金属ナノ粒子と、前記金属ナノ粒子を担持する担体とからなる担持体であることを特徴とする請求項1または2に記載の光学素子。
  5.  前記第1の散乱粒子が、屈折率の異なる少なくとも2種類の誘電体が積層した構造を有する粒子であることを特徴とする請求項1または2に記載の光学素子。
  6.  前記下位層と前記蛍光体層との間に配置された散乱層を更に備え、
     前記散乱層は、第2のバインダと、前記第2のバインダ内に分散した第2の散乱粒子と、を含み、
     前記第2の散乱粒子は、前記蛍光体粒子、前記第1のバインダ、および前記第2のバインダよりも屈折率が高いことを特徴とする請求項1~5の何れか一項に記載の光学素子。
  7.  前記第1のバインダと、前記第2のバインダとが、同一のバインダであることを特徴とする請求項1~6の何れか一項に記載の光学素子。
  8.  請求項1~7の何れか一項に記載の光学素子の前記下位層がホイールである蛍光ホイールであって、
     光源から出射された励起光が通過する前記ホイールの表面の周方向の少なくとも一部に、前記光学素子が配置されていることを特徴とする蛍光ホイール。
  9.  請求項8に記載の蛍光ホイールと、
     前記蛍光ホイールを回転させる駆動装置と、
     前記光学素子に励起光を照射する光源と、
    を備え、
     前記蛍光ホイールの回転に伴い、少なくとも前記蛍光ホイールの表面の周方向に配置された前記光学素子の前記蛍光体層に励起光が入射した際に、蛍光を出射することを特徴とする光源装置。
  10.  請求項1~7の何れか一項に記載の光学素子と、
     前記光学素子に励起光を照射する光源と、
     前記光学素子から出射した蛍光を反射させる反射面を有するリフレクタと、
    を備えたことを特徴とする車両用前照灯具であって、
     前記リフレクタの反射面が、入射した光を一定方向に平行に出射するように反射させる形状を有することを特徴とする車両用前照灯具。
  11.  請求項9に記載の光源装置と、
     表示素子と、
     前記光源装置からの光を前記表示素子まで導光する光源側光学系と、
     前記表示素子からの投影光をスクリーンに投影する投影側光学系と、
    を備えることを特徴とする投影装置。
  12.  光源から出射された励起光が通過する周方向の少なくとも一部に、請求項1~7の何れか一項に記載の光学素子が周方向に複数セグメントに分割されて配置された蛍光ホイールを備えた請求項9に記載の光源装置と、
     前記蛍光ホイールの回転位置を取得する回転位置センサと、
     前記回転位置センサからの出力情報に基づいて光源を制御する光源制御部と、
     表示素子と、
     前記光源装置からの光を前記表示素子まで導光する光源側光学系と、
     前記表示素子からの投影光をスクリーンに投影する投影側光学系と、
    を備え、
     前記回転位置センサにより取得された前記蛍光ホイールの回転位置の情報により光源の出力を制御することを特徴とする投影装置。
PCT/JP2019/041926 2018-10-30 2019-10-25 光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置 WO2020090663A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018204328A JP2022022480A (ja) 2018-10-30 2018-10-30 光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置
JP2018-204328 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090663A1 true WO2020090663A1 (ja) 2020-05-07

Family

ID=70462372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041926 WO2020090663A1 (ja) 2018-10-30 2019-10-25 光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置

Country Status (2)

Country Link
JP (1) JP2022022480A (ja)
WO (1) WO2020090663A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075292A1 (ja) * 2020-10-05 2022-04-14 シャープ株式会社 波長変換素子および発光システム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083695A (ja) * 2010-09-16 2012-04-26 Seiko Epson Corp 光源装置およびプロジェクター
JP2014056074A (ja) * 2012-09-12 2014-03-27 Ricoh Co Ltd 照明光源装置及びこの照明光源装置を備えた投射装置及び投射装置の制御方法
JP2015215583A (ja) * 2013-11-08 2015-12-03 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2016034891A (ja) * 2014-08-01 2016-03-17 信越石英株式会社 波長変換用石英ガラス部材及びその製造方法
JP2017016792A (ja) * 2015-06-29 2017-01-19 シャープ株式会社 波長変換素子、発光装置、表示装置および照明装置
JP2017125868A (ja) * 2016-01-12 2017-07-20 パナソニックIpマネジメント株式会社 光源装置、及び投写型表示装置
JP2017173370A (ja) * 2016-03-18 2017-09-28 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
JP2017191280A (ja) * 2016-04-15 2017-10-19 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
WO2017208334A1 (ja) * 2016-05-31 2017-12-07 マクセル株式会社 光源装置とそれを利用した電子装置
JP2018101013A (ja) * 2016-12-19 2018-06-28 富士フイルム株式会社 波長変換フィルムおよびバックライトユニット
JP2018106097A (ja) * 2016-12-28 2018-07-05 大日本印刷株式会社 光波長変換部材、バックライト装置、および画像表示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083695A (ja) * 2010-09-16 2012-04-26 Seiko Epson Corp 光源装置およびプロジェクター
JP2014056074A (ja) * 2012-09-12 2014-03-27 Ricoh Co Ltd 照明光源装置及びこの照明光源装置を備えた投射装置及び投射装置の制御方法
JP2015215583A (ja) * 2013-11-08 2015-12-03 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2016034891A (ja) * 2014-08-01 2016-03-17 信越石英株式会社 波長変換用石英ガラス部材及びその製造方法
JP2017016792A (ja) * 2015-06-29 2017-01-19 シャープ株式会社 波長変換素子、発光装置、表示装置および照明装置
JP2017125868A (ja) * 2016-01-12 2017-07-20 パナソニックIpマネジメント株式会社 光源装置、及び投写型表示装置
JP2017173370A (ja) * 2016-03-18 2017-09-28 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
JP2017191280A (ja) * 2016-04-15 2017-10-19 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
WO2017208334A1 (ja) * 2016-05-31 2017-12-07 マクセル株式会社 光源装置とそれを利用した電子装置
JP2018101013A (ja) * 2016-12-19 2018-06-28 富士フイルム株式会社 波長変換フィルムおよびバックライトユニット
JP2018106097A (ja) * 2016-12-28 2018-07-05 大日本印刷株式会社 光波長変換部材、バックライト装置、および画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075292A1 (ja) * 2020-10-05 2022-04-14 シャープ株式会社 波長変換素子および発光システム

Also Published As

Publication number Publication date
JP2022022480A (ja) 2022-02-07

Similar Documents

Publication Publication Date Title
US9885813B2 (en) Projection apparatus
JP6258083B2 (ja) 発光ユニット、発光装置、照明装置および車両用前照灯
JP6644081B2 (ja) 発光装置、照明装置、および発光装置が備える発光体の製造方法
JP6251868B2 (ja) 照明光学系およびこれを用いた電子装置
JP2012243701A (ja) 光源装置および照明装置
JP6271216B2 (ja) 発光ユニットおよび照明装置
JPWO2017038164A1 (ja) 発光装置
JP5675248B2 (ja) 光源装置および照明装置
JP6125666B2 (ja) 発光装置
US20210210660A1 (en) Wavelength conversion element and light source device
WO2020162357A1 (ja) 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置
WO2020090663A1 (ja) 光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置
WO2019230935A1 (ja) 波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置
US11506360B2 (en) Optical element and optical device
JP6266796B2 (ja) 発光装置、照明装置、スポットライト、車両用前照灯、および内視鏡
JP7113356B2 (ja) 発光装置
WO2020189405A1 (ja) 光学素子、車両用前照灯具、光源装置、および投影装置
JP7361888B2 (ja) 光変換装置および照明システム
JP2014017095A (ja) 照明装置及び車両用前照灯
WO2021095397A1 (ja) 波長変換素子、蛍光ホイール、光源装置、車両用前照灯具及び投影装置
JP2022181221A (ja) 発光素子、照明装置及び投影装置
JP2022112948A (ja) 光源装置およびプロジェクター
JP2021018339A (ja) 光源装置およびプロジェクター
TW202041810A (zh) 反射體及照射裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP