WO2020162357A1 - 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置 - Google Patents

波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置 Download PDF

Info

Publication number
WO2020162357A1
WO2020162357A1 PCT/JP2020/003686 JP2020003686W WO2020162357A1 WO 2020162357 A1 WO2020162357 A1 WO 2020162357A1 JP 2020003686 W JP2020003686 W JP 2020003686W WO 2020162357 A1 WO2020162357 A1 WO 2020162357A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
wavelength conversion
conversion element
wavelength
fluorescent
Prior art date
Application number
PCT/JP2020/003686
Other languages
English (en)
French (fr)
Inventor
透 菅野
裕一 一ノ瀬
英臣 由井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN202080012551.3A priority Critical patent/CN113396201A/zh
Priority to US17/428,250 priority patent/US20220136679A1/en
Priority to JP2020571165A priority patent/JPWO2020162357A1/ja
Publication of WO2020162357A1 publication Critical patent/WO2020162357A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels

Definitions

  • the present invention relates to a light source device, a vehicle headlamp, a transmissive illumination device, a display device, and a wavelength conversion element used in an illumination device.
  • the present application claims priority based on Japanese Patent Application No. 2019-19794 filed in Japan on February 6, 2019, the contents of which are incorporated herein by reference.
  • the phosphor In an optical element that irradiates a phosphor with excitation light to emit light, the phosphor generates heat.
  • a configuration in which particles of a plurality of sizes are packed is known as a conventional technique in order to improve the film density of the phosphor and enhance the heat dissipation.
  • Patent Document 1 discloses a wavelength conversion member and a light emitting device capable of suppressing the transmission of light from a light source by reducing the voids without reducing the conversion efficiency of light by the phosphor particles having a large particle size. There is.
  • the ratio of the translucent ceramics is small, and the main heat conduction is the heat dissipation to the substrate through the particles.
  • the phosphor is poor in efficiency and the luminous efficiency of the phosphor is low.
  • One aspect of the present invention has been made in view of the above problems, and an object thereof is to improve the luminous efficiency of the fluorescent layer.
  • a wavelength conversion element is a wavelength conversion element that converts a wavelength range of incident light into a wavelength range different from a wavelength range of incident light, and A fluorescent layer in which first particles and second particles smaller than the first particles are dispersed in a binder, wherein the first particles have a fluorescent characteristic with respect to the wavelength of the incident light;
  • the ratio of the volume of the first binder to the volume of the particle group including the first particles and the second particles in the fluorescent layer is 10% or more and less than 50%.
  • (A) It is a schematic sectional drawing which showed typically the wavelength conversion element which concerns on Embodiment 1 of this invention.
  • (B) It is a schematic sectional drawing which showed typically the light-emitting device concerning a prior art.
  • 3 is a graph showing a particle size distribution of phosphor particles included in the wavelength conversion element according to the first embodiment of the present invention. It is a schematic sectional drawing which showed typically the modification of the wavelength conversion element which concerns on Embodiment 1 of this invention. It is a schematic sectional drawing which showed typically the example of mounting of the wavelength conversion element which concerns on Embodiment 1 of this invention. It is a schematic sectional drawing which showed typically the wavelength conversion element which concerns on Embodiment 2 of this invention.
  • (C) is a schematic sectional drawing which showed typically the wavelength conversion element of a comparative example. It is a schematic sectional drawing which showed typically the wavelength conversion element which concerns on Embodiment 4 of this invention. It is a graph which shows the particle size distribution of the particle contained in the wavelength conversion element which concerns on Embodiment 4 of this invention. It is a schematic sectional drawing which showed typically the wavelength conversion element which concerns on Embodiment 5 of this invention. It is a schematic sectional drawing which showed typically the wavelength conversion element which concerns on Embodiment 6 of this invention.
  • FIG. 1A is a schematic sectional view schematically showing the wavelength conversion element according to the first embodiment of the present invention.
  • a light emitting device according to a conventional technique is schematically shown in FIG.
  • a conventional light emitting device 1 b has phosphor particles arranged on a substrate 13.
  • the phosphor particles include first particles 10 and second particles 11 smaller than the first particles 10.
  • the particles are bonded to each other by a translucent ceramic.
  • the ratio of the translucent ceramics is small and there is a problem in heat dissipation.
  • the fluorescent layer 19b with a small amount of binder, there are many contact points between the fluorescent substance and the void (air), and the heat dissipation is low. Therefore, it is preferable to replace the portion other than the phosphor with a material having a higher thermal conductivity than the void. Further, it is more preferable that the material has higher thermal conductivity than the phosphor material.
  • a binder having a high thermal conductivity and containing an inorganic material such as an aluminum compound as a main component is preferable because heat can be efficiently transferred.
  • a binder containing alumina, boehmite, or the like as a main component is preferable.
  • the thermal conductivity of the main materials used for the wavelength conversion element at room temperature is as follows.
  • the shape of the phosphor is not a perfect spherical shape and is randomly arranged in a non-periodic manner, so the ratio of the phosphor in the phosphor layer is considered to be 90% or less in terms of volume ratio to the phosphor layer at the maximum.
  • the /binder ratio is preferably 0.9 or less.
  • the amount of the binder is less than this, the voids in the fluorescent film increase and the heat conduction deteriorates. Further, when the particle/binder ratio is smaller than 0.1, the particle component occupying the fluorescent film becomes small and the luminous efficiency is lowered, so that the particle/binder ratio is preferably larger than 0.1.
  • the wavelength conversion element 1 a includes a first particle 10 which is a phosphor particle in a binder 12, and a second particle smaller than the first particle 10.
  • the particles 11 and the fluorescent layer 19a are dispersed (the binder 12 used for the fluorescent layer is also referred to as a "first binder").
  • the fluorescent layer 19 a is disposed on the substrate 13.
  • the first particle 10 and the second particle 11 have fluorescence characteristics with respect to the wavelength of the incident light and convert the wavelength range of the incident light into a wavelength range different from the wavelength range of the incident light.
  • the ratio of the volume of the binder 12 to the volume of the particle group including the first particles 10 and the second particles 11 in the fluorescent layer 19a is preferably 10% or more and less than 50%.
  • the fluorescent layer 19a has a thickness of 50 ⁇ m
  • the first particles 10 and the second particles 11 are fluorescent materials in which YAG:Ce (yttrium aluminum garnet is doped with Ce (cerium) as a dopant).
  • the phosphor is a yellow light emitting phosphor such as Y 3 Al 5 O 12 :Ce 3+ ).
  • the binder 12 preferably contains inorganic alumina as a main component. It is preferable that the average particle diameter D50 of the first particles 10 is 25 ⁇ m and the average particle diameter D50 of the second particles 11 is 5 ⁇ m.
  • the mixing ratio of the first particles 10:second particles 11:binder 12 is preferably 50%:30%:20% by volume.
  • the particle size of the phosphor is preferably about 10 to 30 ⁇ m for the first particles 10 and about 1 to 10 ⁇ m for the second particles 11.
  • the difference in particle size between the first particles and the second particles is preferably twice or more, more preferably three times or more.
  • the particle shape is not particularly limited to a spherical shape or an elliptical shape.
  • the particle size distribution of the phosphor particles in the first embodiment is shown in FIG.
  • the horizontal axis of FIG. 2 represents the particle diameter, and the vertical axis represents the volume ratio. As shown in FIG. 2, the particle size distribution is characterized by having two distinct peaks.
  • the particle size distribution of the phosphor can be measured by a laser diffraction/scattering apparatus LA-950 or the like using a static light scattering method manufactured by Horiba, Ltd. after appropriately separating the binder and the particles.
  • FIG. 3 is a schematic cross-sectional view schematically showing wavelength conversion elements 1c to 1e of a modified example of the wavelength conversion element 1a according to the first embodiment of the present invention.
  • FIG. 3A shows a wavelength conversion element 1c having a structure in which a fluorescent layer 19c is arranged on a substrate 33a in which a groove having a rectangular cross section is formed.
  • FIG. 3B shows a wavelength conversion element 1d having a structure in which the fluorescent layer 19d is arranged on the substrate 33b in which a groove having an arc cross section is formed.
  • FIG. 3C shows the wavelength conversion element 1e having a structure in which the fluorescent layer 19e is arranged on the substrate 33c in which a groove having a V-shaped cross section is formed.
  • the fluorescent layers 19d to 19e preferably have the same structure as the fluorescent layer 19a shown in FIG. 1A, but the arrangement relationship with the substrate is different.
  • FIG. 4 is a schematic diagram schematically showing a mounting example of the wavelength conversion element according to the first embodiment of the present invention. Although the mode in which the wavelength conversion element 1a illustrated in FIG. 1A is arranged on the heat sink 18 is illustrated, the wavelength conversion elements 1c to 1e of the modified examples may be arranged on the heat sink 18.
  • the substrate 13 is preferably composed of, for example, an aluminum substrate or a highly reflective alumina substrate.
  • the material of the substrate 13 is preferably a material having high thermal conductivity such as metal, and is not particularly limited to the above materials.
  • the substrate 13 be coated with a highly reflective film such as silver, titanium oxide, a multi-reflection film and a dielectric mirror. It is also desirable to dispose the scattering layer 100 on the substrate 13, as described later in the sixth embodiment.
  • the substrate 13 is also referred to as the substrate 13 even when the fluorescent layer is not directly disposed on the substrate 13 as in the case of including the coated layer or the scattering layer 100 between the fluorescent layer and the substrate 13.
  • the substrate is also referred to as a lower layer.
  • the substrate 13 is cooled by directly making fixed contact with the heat sink 18.
  • the light source device 1 mounted with the wavelength conversion element has a light source 15 for emitting the excitation light 14 and a wavelength conversion element 1 a arranged on the heat sink 18.
  • the light source 15 is preferably a light source that emits blue excitation light such as a blue laser or a blue LED.
  • the excitation light 14 emitted from the light source 15 is applied to the fluorescent layer 19a, and a part thereof is diffusely reflected by the surface of the fluorescent layer 19a to become reflected light 17.
  • part of the excitation light 14 enters the fluorescent layer 19a, emits fluorescent light by the action of the fluorescent particles, and is emitted as fluorescent light 16 from the fluorescent layer 19a.
  • FIG. 5 is a schematic sectional view schematically showing the wavelength conversion element according to the second embodiment of the present invention.
  • FIG. 6 is a graph showing the temperature dependence of the luminous efficiency of the phosphor.
  • Q A ⁇ ⁇ ⁇ ⁇ (T A ⁇ 4-T B ⁇ 4)
  • Q is the amount of radiant heat
  • A is the area of the radiating part
  • is the emissivity
  • is the Stefan-Boltzmann constant
  • T A is the temperature of the radiating part
  • T B is the ambient temperature.
  • the luminous efficiency of the phosphor is affected by the temperature of the phosphor, and as shown in FIG. 6, the luminous efficiency decreases as the temperature increases.
  • the temperature characteristic of the phosphor changes depending on the concentration of the luminescence center element (Ce in this embodiment).
  • Ce concentration of the YAG:Ce phosphor that is generally commercially available, a concentration having a high luminous efficiency at room temperature (for example, about 1.4 to 1.5 mol%) is often used. This is because the YAG phosphor having a low Ce concentration has a high internal quantum efficiency, but since the absorptance of excitation light is low, the external quantum efficiency important as a wavelength conversion element has an optimum value near a Ce concentration of 1.5 mol %. This is because When the phosphor temperature of the irradiation spot becomes a region exceeding 250° C.
  • the luminous efficiency of a general YAG:Ce phosphor (for example, Ce concentration 1.4 mol%) is increased. Decrease (see FIG. 6).
  • the YAG:Ce phosphor having a low Ce concentration (for example, about 0.3 mol%) has a small temperature dependence of the light emission efficiency, and the light emission efficiency may be reversed from that of the light emission body having a high concentration as compared with that at a low temperature. For example, in the graph of FIG. 6, a low temperature region (50° C. to 100° C.) and a high temperature region (250° C. to 350° C.) are compared.
  • Excitation with laser light increases the excitation density and raises the temperature, so it is desirable to use an oxynitride-based or nitride-based phosphor with high heat resistance. It is more desirable that the phosphor has excellent temperature dependence of luminous efficiency. Further, since it is used as a light source device, fluorescence other than white light such as blue, green and red may be used.
  • CaAlSiN 3 :Eu 2+ As a phosphor that converts near-ultraviolet light into red light, for example, CaAlSiN 3 :Eu 2+ can be used. As a phosphor that converts near-ultraviolet light into yellow light, Ca- ⁇ -SiAlON:Eu 2+ can be used, for example. As a phosphor that converts near-ultraviolet light into green light, for example, ⁇ -SiAlON:Eu 2+ or Lu 3 Al 5 O 12 :Ce 3+ (LuAG:Ce) can be used.
  • Examples of the phosphor that converts near-ultraviolet light into blue light include (Sr,Ca,Ba,Mg) 10 (PO 4 ) 6 C 12 :Eu and BaMgAl 10 O 17 :Eu 2+ , (Sr,Ba) 3 MgSi 2 O 8 :Eu 2+ can be used.
  • the fluorescent member may be formed so as to include two types of fluorescent substances that convert the excitation light of near-ultraviolet light into yellow light and blue light.
  • the pseudo white light is obtained by mixing the yellow light and the blue light emitted from the fluorescent member.
  • the fluorescent layer 29 a includes the same first particles 10 as in the first embodiment, and the second particles 21 having the emission center element concentration higher than the emission center element concentration of the first particles 10.
  • the wavelength conversion element 2a further including is shown.
  • the fluorescent layer 29 b includes the same second particles 11 as in the first embodiment, and the first particles 20 having a higher concentration of the emission center element than the concentration of the emission center element of the second particles 11.
  • the wavelength conversion element 2b further including is shown.
  • the fluorescent layer 29a shown in FIG. 5(a) preferably has a layer thickness of, for example, about 50 ⁇ m.
  • the first particles 10 are YAG:Ce phosphors as in the first embodiment, and preferably have an average particle diameter D50 of about 25 ⁇ m.
  • the Ce concentration of the dopant of the first particles 10 is preferably 0.7 mol% (about 0.5 to 1.0 mol%).
  • the second particles 21 are YAG:Ce phosphors, and the average particle diameter D50 is preferably about 5 ⁇ m.
  • the Ce concentration of the dopant of the second particles 21 is preferably 1.5 mol% (about 1.0 to 2.0 mol%).
  • the binder 12 of the fluorescent layer 29a preferably contains an inorganic alumina binder as a main component, but is not limited to the material.
  • the fluorescent layer 29b shown in FIG. 5B preferably has a layer thickness of about 50 ⁇ m.
  • the first particles 20 are YAG:Ce phosphors and preferably have an average particle diameter D50 of about 25 ⁇ m.
  • the Ce concentration of the dopant of the first particles 20 is preferably 1.5 mol% (about 1.0 to 2.0 mol%).
  • the second particles 11 are YAG:Ce phosphors as in Embodiment 1, and the average particle diameter D50 is preferably about 5 ⁇ m.
  • the Ce concentration of the dopant of the second particles 11 is preferably 0.7 mol% (about 0.5 to 1.0 mol%).
  • the binder 12 of the fluorescent layer 29b preferably contains an inorganic alumina binder as a main component, but is not limited to the material.
  • the absorption rate of the excitation light 14 will decrease.
  • the dopant Ce concentration of the YAG:Ce phosphor is high, the absorptance of the excitation light 14 increases.
  • the external quantum efficiency of the YAG:Ce phosphor changes depending on the particle size of the phosphor particles and the Ce concentration, and the excitation light absorption/emission at that time also changes, so the emission color also changes.
  • the Ce concentration may be high in either the first particles or the second particles and can be selected according to the application and is not particularly limited.
  • the wavelength conversion elements 2a and 2b shown in FIG. 5 are arranged on the substrate 13, but can be arranged on the substrates 33a to 33c having the grooves as shown in FIG. Further, the wavelength conversion elements 2a and 2b can be mounted on the light source device 1 shown in FIG.
  • FIG. 7A and 7B are schematic cross-sectional views schematically showing the wavelength conversion element according to the third embodiment of the present invention.
  • FIG. 7C is a schematic cross-sectional view schematically showing the wavelength conversion element of the comparative example.
  • the wavelength conversion element 3c of the comparative example is schematically shown in FIG.
  • the phosphor layer 39c of the comparative example is characterized in that the binder 12 includes the first particles 10 which are phosphor particles, but does not include the second particles smaller than the first particles 10.
  • the first particles 10 emit fluorescence and the fluorescence 16 is emitted from the surface on which the excitation light 14 is incident.
  • FIG. 1 shows that the first particles 10 emit fluorescence and the fluorescence 16 is emitted from the surface on which the excitation light 14 is incident.
  • the fluorescence when the excitation light 14 is applied to the first particles 10 which are phosphor particles, the relationship between the curvature of the first particles 10 and the incident angle of the excitation light 14 Depending on the conditions such as the refractive index of the binder 12, the fluorescence may be totally reflected at the interface, and the fluorescence 16 may not be extracted from the surface on which the excitation light 14 is incident. Such fluorescence becomes a fluorescence emission loss due to internal light guide, and the extraction efficiency of fluorescence decreases.
  • fluorescence extraction efficiency is intended to mean “fluorescence intensity emitted from the surface on which the excitation light 14 is incident”/"excitation light intensity", and "efficiency of excitation light incident on the phosphor” and “of the phosphor”"Emissionefficiency” and “efficiency of emitting fluorescence from the surface on which excitation light is incident” are included.
  • the wavelength conversion element 3a includes a first particle 10 which is a phosphor particle in a binder 12, and a second particle smaller than the first particle 10.
  • the fluorescent layer 39a in which the particles 31 are dispersed is provided.
  • the fluorescent layer 39 a is disposed on the substrate 13.
  • the second particles 31 of the third embodiment are characterized by having a scattering characteristic with respect to the wavelength of incident light.
  • the fluorescent layer 39a shown in FIG. 7(a) preferably has a layer thickness of, for example, about 50 ⁇ m.
  • the first particles 10 are YAG:Ce phosphors as in the first embodiment, and preferably have an average particle diameter D50 of about 25 ⁇ m.
  • the second particles 31 may be particles having a scattering property and may contain YAG as a main component, but are preferably particles containing titanium oxide, silica, zinc oxide, diamond or the like as a main component. ..
  • the particles having the scattering property have a particle size of at least about a wavelength.
  • the average particle diameter D50 of the second particles 31 can be set to about 2 ⁇ m.
  • the average particle diameter D50 of the second particles 31 having the scattering characteristic with respect to the wavelength of the incident light is smaller than the wavelength of the incident light.
  • the average particle diameter D50 of the second particles 31 is more preferably about 200 nm.
  • the binder 12 of the fluorescent layer 39a preferably contains an inorganic alumina binder as a main component, but is not limited to the material.
  • the second particles 31 having the scattering characteristic scatter the fluorescence totally reflected at the interface, thereby reducing the fluorescence totally reflected at the interface.
  • the second particles 31 are preferably hollow particles having voids inside. Since the void has a low refractive index, scattering easily occurs due to the difference in refractive index.
  • the third embodiment can be combined with the above-described first or second embodiment.
  • the dopant concentration of the phosphor particles may be changed as described in the second embodiment.
  • the Ce concentration which is the dopant of the first particles 10 included in the fluorescent layer 39a of the wavelength conversion element 3a shown in FIG. 7A is 0.7 mol% (about 0.5 to 1.0 mol%).
  • the Ce concentration which is the dopant of the first particles 20 included in the fluorescent layer 39b of the wavelength conversion element 3b shown in FIG. 7B is 1.5 mol% (about 1.0 to 2.0 mol%).
  • the concentration of Ce which is a dopant
  • the temperature of the phosphor particles is increased, and the luminous efficiency is reduced.
  • the second particles 31 it is preferable to employ more of the second particles 31 made of solid particles than to employ many of hollow particles having voids inside.
  • the thermal conductivity can be increased as compared with the fluorescent layer including the hollow particles, so that the fluorescent layer 39b can be efficiently cooled. Therefore, it is possible to prevent the fluorescent layer 39b from being burned by heat, and it is possible to improve the durability of the wavelength conversion element 3b.
  • the wavelength conversion elements 3a and 3b shown in FIGS. 7A and 7B are arranged on the substrate 13, the substrate 33a having the groove as shown in FIG. 3 is formed. Through 33c. Further, the wavelength conversion elements 3a and 3b can be mounted on the light source device 1 shown in FIG.
  • FIG. 8 is a schematic cross-sectional view schematically showing the wavelength conversion element according to the fourth embodiment of the present invention.
  • FIG. 9 is a graph showing a particle size distribution of particles included in the wavelength conversion element according to the fourth embodiment of the present invention.
  • the wavelength conversion element 4a includes a first particle 10 which is a phosphor particle in a binder 12, and a second particle smaller than the first particle 10.
  • the fluorescent layer 49a in which the particles 11 and the third particles 31 smaller than the second particles 11 are dispersed is provided.
  • the fluorescent layer 49a is disposed on the substrate 13.
  • the first particle 10 and the second particle 11 have fluorescence characteristics with respect to the wavelength of the incident light and convert the wavelength range of the incident light into a wavelength range different from the wavelength range of the incident light.
  • the third particle 31 of the fourth exemplary embodiment is characterized by having a scattering characteristic with respect to the wavelength of incident light, similarly to the second particle 31 of the third exemplary embodiment. It is preferable that the third particles 31 of the fourth exemplary embodiment and the second particles 31 of the third exemplary embodiment have the same configuration. It is preferable that the first particles 10, the second particles 11 and the binder 12 of the fourth exemplary embodiment and the first particles 10, the second particles 11 and the binder 12 of the first exemplary embodiment have the same configuration.
  • the fluorescent layer 49a As a preferred example of the fluorescent layer 49a, it is preferable that the fluorescent layer has a thickness of 50 ⁇ m, and the first particles 10 and the second particles 11 are composed of a yellow light emitting phosphor such as YAG:Ce. It is preferable that the third particles 31 having the scattering property have titanium oxide, silica, zinc oxide, and diamond as the main components.
  • the binder 12 is preferably composed mainly of inorganic alumina, but is not limited to the material.
  • the average particle diameter D50 of the first particles 10 is preferably 25 ⁇ m, and the average particle diameter D50 of the second particles 11 is preferably 5 ⁇ m.
  • the average particle diameter D50 of the third particles 31 is preferably 0.2 ⁇ m.
  • FIG. 9 shows the particle size distribution of particles in the fourth embodiment.
  • the horizontal axis of FIG. 9 represents the diameter of the particles, and the vertical axis represents the volume ratio.
  • the particle size distribution is characterized by having three distinct peaks.
  • the particle size distribution of the phosphor can be measured by a laser diffraction/scattering apparatus LA-950 or the like using a static light scattering method manufactured by Horiba, Ltd. after appropriately separating the binder and the particles.
  • the lower limit of the phosphor mixed as the second particles 11 is about several ⁇ m.
  • the scattering property inside the fluorescent layer 49a is enhanced, and the fluorescence extraction efficiency in the direction of the surface on which the incident light is incident is improved. be able to.
  • the fourth embodiment can be combined with the above-described first to third embodiments.
  • the dopant concentration of the phosphor particles may be changed as described in the second embodiment.
  • the concentration of Ce which is the dopant of the first particles 10 made of YAG:Ce contained in the fluorescent layer 49b of the wavelength conversion element 4b shown in FIG. 8B, is 0.7 mol% (0.5 to 1). 0.0 mol%).
  • the Ce concentration which is the dopant of the second particles 21 made of YAG:Ce contained in the fluorescent layer 49b is 1.5 mol% (about 1.0 to 2.0 mol%). preferable.
  • the Ce concentration which is the dopant of the first particles 20 made of YAG:Ce contained in the fluorescent layer 49c of the wavelength conversion element 4c shown in FIG. 8C is 1.5 mol% (1.0 to 2). 0.0 mol%).
  • the concentration of Ce as a dopant of the second particles 11 made of YAG:Ce contained in the fluorescent layer 49b is 0.7 mol% (about 0.5 to 1.0 mol%). preferable.
  • the third particles 31 are made of many solid particles of titanium oxide rather than hollow particles having voids inside. Since the solid particles are included, the thermal conductivity can be increased as compared with the fluorescent layer including the hollow particles, so that the fluorescent layers 49b and 49c can be efficiently cooled. Therefore, it is possible to prevent the fluorescent layers 49b and 49c from being burned by heat, and it is possible to improve the durability of the wavelength conversion elements 4b and 4c.
  • the wavelength conversion elements 4a to 4c shown in FIG. 8 are arranged on the substrate 13, but can be arranged on the substrates 33a to 33c having grooves as shown in FIG. .. Further, the wavelength conversion elements 4a to 4c can be mounted on the light source device 1 shown in FIG.
  • FIG. 10 is a schematic sectional view schematically showing the wavelength conversion element according to the fifth embodiment of the present invention.
  • the wavelength conversion element 5a includes a first particle 10 which is a phosphor particle in a binder 12, and a second particle smaller than the first particle 10.
  • the fluorescent layer 59a in which the particles 11 and the fourth particles 51 smaller than the first particles are dispersed is provided.
  • the fluorescent layer 59a is preferably disposed on the substrate 13 as in the first to fourth embodiments described above.
  • the fourth particle has a fluorescent property of receiving the wavelength of the incident light and converting it into a wavelength different from the wavelength emitted by the first particle.
  • the fluorescent layer 59a has a thickness of 50 ⁇ m, and the first particles 10 and the second particles 11 are yellow-emitting phosphors such as YAG:Ce (Y 3 Al 5 O 12 :Ce 3+ ). It is preferably composed of The fourth particles 51 having fluorescence characteristics different from YAG preferably have CASN (CaAlSiN 3 :Eu 2+ ) as a main component.
  • the binder 12 is preferably composed mainly of inorganic alumina, but is not limited to the material.
  • the average particle diameter D50 of the first particles 10 is preferably 25 ⁇ m, and the average particle diameter D50 of the second particles 11 is preferably 5 ⁇ m.
  • the average particle diameter D50 of the fourth particles 51 is preferably 5 ⁇ m.
  • the fourth particles 51 containing CASN (CaAlSiN 3 :Eu 2+ ) as a main component a red component of fluorescence can be provided.
  • the emission color of the phosphor layer 59a can be changed.
  • the phosphor to be used can be appropriately changed according to the required color.
  • a phosphor that converts near-ultraviolet light into red light for example, CaAlSiN 3 :Eu 2+ can be used.
  • a phosphor that converts near-ultraviolet light into yellow light Ca- ⁇ -SiAlON:Eu 2+ can be used, for example.
  • a phosphor that converts near-ultraviolet light into green light for example, ⁇ -SiAlON:Eu 2+ or Lu 3 Al 5 O 12 :Ce 3+ (LuAG:Ce) can be used.
  • Examples of the phosphor that converts near-ultraviolet light into blue light include (Sr,Ca,Ba,Mg) 10 (PO 4 ) 6 C 12 :Eu and BaMgAl 10 O 17 :Eu 2+ , (Sr,Ba) 3 MgSi 2 O 8 :Eu 2+ can be used.
  • the fifth embodiment can be combined with the above-described first to fourth embodiments.
  • the dopant concentration of the phosphor particles may be changed as described in the second embodiment.
  • the concentration of Ce as the dopant of the first particles 10 made of YAG:Ce contained in the fluorescent layer 59b of the wavelength conversion element 5b shown in FIG. 10B has a concentration of 0.7 mol% (0.5 to 1). 0.0 mol%).
  • the Ce concentration which is the dopant of the second particles 21 made of YAG:Ce contained in the fluorescent layer 59b is 1.5 mol% (about 1.0 to 2.0 mol%). preferable.
  • the Ce concentration which is the dopant of the first particles 20 made of YAG:Ce contained in the fluorescent layer 59c of the wavelength conversion element 5c shown in FIG. 10C is 1.5 mol% (1.0 to 2). 0.0 mol%).
  • the concentration of Ce as a dopant of the second particles 11 made of YAG:Ce contained in the fluorescent layer 49b is 0.7 mol% (about 0.5 to 1.0 mol%). preferable.
  • a red component of fluorescence can be added to the aspect of the second embodiment.
  • concentration of Ce which is the dopant
  • the temperature of the phosphor particles is increased and the luminous efficiency is decreased.
  • a third particle 31 having a scattering characteristic with respect to the wavelength of incident light is further included. (See (d) to (f) of FIG. 10).
  • the configuration of the wavelength conversion element 5d shown in (d) of FIG. 10 is a configuration in which the third particles 31 are mixed with the configuration of the wavelength conversion element 5a shown in (a) of FIG.
  • the configuration of the wavelength conversion element 5e illustrated in (e) of FIG. 10 is a configuration in which the third particle 31 is mixed with the configuration of the wavelength conversion element 5b illustrated in (b) of FIG.
  • the configuration of the wavelength conversion element 5f shown in (f) of 10 is a configuration in which the third particles 31 are mixed with the configuration of the wavelength conversion element 5c shown in (c) of FIG.
  • the scattering property inside the fluorescent layers 59d to 59f is enhanced, and the fluorescence extraction efficiency in the direction of the plane on which the incident light is incident is improved. Can be improved.
  • the wavelength conversion elements 5a to 5f shown in FIG. 10 can be arranged on the substrate 13, but may be arranged on the substrates 33a to 33c having the grooves as shown in FIG. it can. Further, the wavelength conversion elements 5a to 5f can be mounted on the light source device 1 shown in FIG. [Sixth Embodiment] Another embodiment of the present invention will be described below. For convenience of description, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will not be repeated.
  • (Structure of wavelength conversion element) 11 to 14 are sectional views schematically showing the configuration of the wavelength conversion element according to the sixth embodiment of the present invention.
  • the fluorescent layer is arranged so as to face the lower layer, and the substrate 13 and the fluorescent layers 19a, 29a, 29b, 39a, 39b, 49a, 49b, 49c, 59a, which are the lower layer, are arranged. It further comprises a scattering layer 100 arranged between the layers 59b, 59c, 59d, 59e and 59f.
  • the scattering layer 100 includes a binder 12a and scattering particles 31a dispersed in the binder 12a (the binder 12a used in the scattering layer is also referred to as a "second binder").
  • the binder 12a preferably has the same configuration as the binder 12 described above, but may have another configuration.
  • the scattering particles 31a preferably have a higher refractive index than the first particles 10, 20, the second particles 11, 21, the fourth particles 51 and the binder 12a.
  • the scattering particles 31a of the sixth embodiment and the third particles 31 of the fourth embodiment preferably have the same structure.
  • a scattering layer 100 including scattering particles 31a having a high refractive index is arranged between the substrate 13 and the fluorescent layers 19a, 29a, 29b, 39a, 39b, 49a, 49b, 49c, 59a, 59b, 59c, 59d, 59e, 59f.
  • the fluorescent substance particles the first particles 10, 20; the second particles 11, 21; the fourth particles 51
  • the fluorescent layers 19a, 29a the fluorescent substance particles
  • the thickness of the fluorescent layers 19a, 29a, 29b, 39a, 39b, 49a, 49b, 49c, 59a, 59b, 59c, 59d, 59e, 59f is made thinner than that of the wavelength conversion element having the same fluorescence emission intensity. be able to. That is, it is possible to reduce the amount of phosphor particles (first particles 10, 20; second particles 11, 21; fourth particles 51).
  • the "removal side” is a surface of the fluorescent layer that faces the contact surface between the fluorescent layer and the scattering layer (bottom surface of the fluorescent layer), and the "direction opposite to the retrieving side” is the contact surface. Alternatively, the direction is toward the side surface of the fluorescent layer.
  • the scattering particles 31a preferably contain titanium oxide (TiO 2 ), silica, zinc oxide (ZnO), and diamond as the main components. Of these, titanium oxide is preferable. Titanium oxide preferably has a rutile type crystal structure.
  • the proportion of the scattering particles 31a in the scattering layer 100 is preferably about 10 to 75% by volume with respect to the scattering layer 100. With such a configuration, the above-described effect can be achieved while having the adhesion to the substrate 13.
  • the thickness of the scattering layer 100 is preferably 20 to 60 ⁇ m.
  • FIG. 11A shows an example combined with the first embodiment.
  • the wavelength conversion element 101a includes a fluorescent layer 19a in which first particles 10 which are phosphor particles and second particles 11 which are smaller than the first particles 10 are dispersed in a binder 12. ..
  • a scattering layer 100 is further provided between the substrate 13 and the fluorescent layer 19a.
  • the wavelength conversion elements 102a and 102b include the first particles 10 and 20 which are phosphor particles in the binder 12, and the second particles 21 and 11 which are smaller than the first particles 10 and 20. And fluorescent layers 29a and 29b dispersed therein. A scattering layer 100 is further provided between the substrate 13 and the fluorescent layers 29a and 29b.
  • the first particles 10 and 20 which are phosphor particles and the second particles 31 smaller than the first particles 10 and 20 are dispersed in the binder 12.
  • the fluorescent layers 39a and 39b are provided.
  • the second particle 31 has a scattering characteristic.
  • a scattering layer 100 is further provided between the substrate 13 and the fluorescent layers 39a and 39b.
  • the wavelength conversion elements 104a, 104b, and 104c include the first particles 10 and 20, which are phosphor particles, and the second particles 11 smaller than the first particles 10 and 20, in the binder 12. 21 and third particles 31 smaller than the second particles 11 and 21 are dispersed in the fluorescent layers 49a, 49b and 49c. Furthermore, the said 3rd particle
  • a scattering layer 100 is further provided between the substrate 13 and the fluorescent layers 49a, 49b, 49c.
  • the wavelength conversion elements 105a, 105b, and 105c include the first particles 10 and 20 which are phosphor particles in the binder 12, and the second particles 11 smaller than the first particles 10 and 20, 21 and the fourth particles 51 smaller than the first particles 10 and 20 are dispersed in the fluorescent layers 59a, 59b, and 59c.
  • the fourth particles have a fluorescent property of receiving the wavelength of incident light and converting it to a wavelength different from the wavelength emitted by the first particles.
  • a scattering layer 100 is further provided between the substrate 13 (not shown) and the fluorescent layers 59a, 59b, 59c.
  • the wavelength conversion elements 105d, 105e, and 105f include first particles 10 and 20, which are phosphor particles, and second particles 11 smaller than the first particles 10 and 20 in the binder 12. 21 and the third particles 31 smaller than the second particles 11 and 21 and the fourth particles 51 smaller than the first particles 10 and 20 are provided with fluorescent layers 59d, 59e and 59f. Further, the third particle 31 has a scattering property, and the fourth particle has a fluorescent property of receiving the wavelength of incident light and converting it to a wavelength different from the wavelength emitted by the first particle. A scattering layer 100 is further provided between the substrate 13 (not shown) and the fluorescent layers 59d, 59e, 59f.
  • the scattering properties inside the fluorescent layers 19a, 29a, 29b, 39a, 39b, 49a, 49b, 49c, 59a, 59b, 59c, 59d, 59e, 59f are further enhanced, and incident light is absorbed. It is possible to further improve the fluorescence extraction efficiency in the direction of the incident surface.
  • the scattering layer 100 shown in FIGS. 11 to 14 can be arranged on the substrate 13, but it can also be arranged on the substrates 33a to 33c in which the grooves as shown in FIG. 3 are formed.
  • the wavelength conversion elements 101a, 102a, 102b, 103a, 103b, 104a, 104b, 104c, 105a, 105b, 105c, 105d, 105e, 105f can be mounted on the light source device 1 shown in FIG.
  • FIG. 15 is a schematic view schematically showing the light source device 6 according to the seventh embodiment of the present invention.
  • the light source device 6 is a headlight (vehicle headlamp), and is preferably a reflective laser headlight.
  • the excitation light source 15 is preferably a blue laser light source that emits the excitation light 14 having a wavelength that excites the fluorescent layer of the wavelength conversion element 60.
  • the reflector 61 is preferably composed of a semi-parabolic mirror. It is preferable that the paraboloid is divided into upper and lower parts by a dividing surface 62 parallel to the xy plane to form a semiparabolic surface, and the inner surface thereof has a mirror structure.
  • the reflector 61 has a through hole through which the excitation light 14 passes.
  • the wavelength conversion element 60 is excited by the blue excitation light 14 and emits fluorescence 16 in the long wavelength region (yellow wavelength) of visible light.
  • the excitation light 14 strikes the irradiation surface of the wavelength conversion element 60 and becomes the diffuse reflection light 17.
  • the wavelength conversion element 60 is arranged at the focus position of the paraboloid on the split surface 62. Since the wavelength conversion element 60 is located at the focal point of the parabolic mirror, when the fluorescence 16 and the diffuse reflection light 17 emitted from the wavelength conversion element 60 hit the reflector 61 and are reflected, they go straight to the emission surface 63 uniformly. To do. White light in which the fluorescence 16 and the diffuse reflection light 17 are mixed is emitted from the emission surface 63 as parallel light.
  • the wavelength conversion element 1a according to the first embodiment it is preferable to use the wavelength conversion element 1a according to the first embodiment as the wavelength conversion element 60 arranged at the focus of the paraboloid disclosed in FIG.
  • the wavelength conversion element 1a to the sixth embodiment it is possible to achieve higher luminous efficiency than ever.
  • 105f can be used.
  • FIG. 16 is a schematic view schematically showing the light source device 7 according to the eighth embodiment of the present invention.
  • the light source device 7 is a transmissive illumination device, preferably a transmissive laser headlight.
  • FIG. 16 shows an example in which the wavelength conversion element 70 is arranged on the transparent heat sink substrate 71.
  • the excitation light 14 is emitted from the surface of the transparent heat sink substrate 71 opposite to the surface on which the fluorescent layer is arranged.
  • the transparent heat sink substrate 71 preferably has a heat sink function. It is known that when a fluorescent layer is deposited on the transmissive heat sink substrate 71, when the excitation light enters from the heat sink side, the heat sink side has high heat dissipation.
  • the light emitted from the wavelength conversion element 70 emits fluorescence from the surface facing the incident light side, is reflected by the parabolic surface 72, and is emitted with directivity.
  • the wavelength conversion element 70 disclosed in FIG. 16 preferably uses the wavelength conversion element 1a according to the first embodiment.
  • the wavelength conversion element 1a it is possible to achieve higher luminous efficiency than ever.
  • the transparent heat sink substrate 71 disclosed in FIG. 12 the substrates 33a to 33c having the grooves as shown in FIG. 3 described in the first embodiment can be applied.
  • the wavelength conversion element 70 disclosed in FIG. 16 is the wavelength conversion elements 1c to 1e according to the first embodiment, the wavelength conversion elements 2a to 2b according to the second embodiment, and the embodiment.
  • 103b, 104a, 104b, 104c, 105a, 105b, 105c, 105d, 105e, 105f can be used.
  • FIG. 17A shows a schematic view of the display device 8 according to the ninth embodiment of the present invention.
  • the light source device 8 is preferably used in a projector or the like equipped with the fluorescent wheel 141.
  • the excitation light source 15 is preferably a blue laser light source that emits the excitation light 14 having a wavelength that excites the fluorescent layer 148.
  • a blue laser diode that excites a fluorescent material such as YAG or LuAG is used.
  • the excitation light 14 illuminating the fluorescent layer 148 can pass through the lenses 143, 144a, 144b on the optical path.
  • the mirror 145 may be arranged on the optical path of the excitation light 14.
  • the mirror 145 is preferably a dichroic mirror.
  • FIG. 17B shows a schematic plan view (xy plane) of the fluorescent wheel 141 that can be mounted on the display device 8.
  • FIG. 17C shows a schematic side view (xz plane) of the fluorescent wheel 141 that can be mounted on the display device 8.
  • the fluorescent layer 148 is arranged on the fluorescent wheel 141.
  • a fluorescent layer 148 is deposited on at least a portion of the perimeter on the surface of the fluorescent wheel 141.
  • the fluorescent wheel 141 is fixed to a rotary shaft 147 of the drive device 142 by a wheel fixing tool 146.
  • the driving device 142 is preferably a motor, and the fluorescent wheel 141 fixed to the rotary shaft 147, which is the rotary shaft of the motor, by the fixture 146 rotates as the motor rotates.
  • the fluorescent layer 148 deposited on at least a part of the peripheral portion on the surface of the fluorescent wheel 141 receives the excitation light 14 and emits the fluorescent light 16 and transmits the fluorescent light 16 through the mirror 145. Since the fluorescent layer 148 rotates as the fluorescent wheel 141 rotates, the fluorescent layer 148 emits the fluorescent light 16 while rotating at any time.
  • the wavelength conversion element 1a fluorescent layer 19a
  • the first embodiment As the fluorescent layer 148 disclosed in (b) and (c) of FIG.
  • the substrate of the fluorescent wheel 141 disclosed in FIG. 17 is formed with a groove as shown in FIG. 3 described in the first embodiment along a peripheral portion on the surface of the fluorescent wheel 141.
  • Substrates 33a to 33c can be applied.
  • the fluorescent layer 148 disclosed in (b) and (c) of FIG. 17 has the wavelength conversion elements 1c to 1e according to the first embodiment and the wavelength conversion according to the second embodiment.
  • 102a, 102b, 103a, 103b, 104a, 104b, 104c, 105a, 105b, 105c, 105d, 105e, 105f can be used.
  • FIG. 18 shows a schematic sectional view of a light source device 9 according to Embodiment 10 of the present invention.
  • the light source device 9 is a lighting device, and is preferably a shell type light emitting diode (LED).
  • the light source device 9 includes a lead wire 154 that constitutes a pair of electrode terminals, and an excitation light source that emits the excitation light 14 and is electrically connected to the pair of lead wires 154.
  • the excitation light source is preferably a light emitting diode (LED) element 153.
  • a light emitting diode (LED) element 153 is arranged on the bottom surface of a recess provided in one of the pair of lead wires 154 with its main light emitting direction facing upward. It is preferable that the recess is formed so that the outer periphery of the light emitting diode (LED) element 153 arranged on the bottom of the recess is surrounded by a mortar-shaped slope.
  • the wavelength conversion element is provided in the concave portion so as to cover the light emitting diode (LED) element 153 arranged on the bottom surface of the concave portion.
  • the fluorescent layer 151 of the wavelength conversion element is irradiated with the excitation light 14 from the first surface (bottom surface) side, and the fluorescent light 16 is extracted from the second surface facing the first surface.
  • the wavelength conversion element 1a fluorescent layer 19a
  • the wavelength conversion element 1a fluorescent layer 19a
  • the fluorescent layer 151 disclosed in FIG. 18 includes the wavelength conversion elements 2a to 2b according to the second embodiment, the wavelength conversion elements 3a to 3b according to the third embodiment, and the fourth embodiment.
  • Wavelength conversion elements 4a to 4c according to Embodiment 5 wavelength conversion elements 5a to 5f according to Embodiment 5, and wavelength conversion elements 101a, 102a, 102b, 103a, 103b, 104a, 104b, 104c, 105a, 105b, 105c according to Embodiment 6.
  • 105d, 105e, 105f can be used.
  • a wavelength conversion element is a wavelength conversion element that converts a wavelength range of incident light into a wavelength range different from a wavelength range of incident light, including first particles in a first binder, A fluorescent layer in which second particles smaller than the first particles are dispersed, the first particles having a fluorescent characteristic with respect to the wavelength of the incident light, and the first particles in the fluorescent layer and The ratio of the volume of the first binder to the volume of the particle group including the second particles is 10% or more and less than 50%.
  • the luminous efficiency of the fluorescent layer can be improved.
  • the wavelength conversion element according to the second aspect of the present invention may be configured such that, in the first aspect, the thermal conductivity of the first binder is higher than the thermal conductivity of the first particles and the second particles. Good.
  • the temperature rise of the fluorescent layer can be reduced, and the luminous efficiency of the fluorescent layer can be improved.
  • the second particles may have a fluorescent property with respect to the wavelength of the incident light.
  • the filling rate of the phosphor particles in the fluorescent layer is improved, and the luminous efficiency of the fluorescent layer can be improved.
  • the wavelength conversion element according to aspect 4 of the present invention is the wavelength conversion element according to any one of aspects 1 to 3 above, wherein the first particles and the second particles are composed of a phosphor doped with an emission center element.
  • the concentration of the emission center atom doped in the first particle may be different from the concentration of the emission center atom doped in the second particle.
  • the temperature rise of the phosphor particles in the fluorescent layer can be controlled, and the luminous efficiency of the fluorescent layer can be improved.
  • the wavelength conversion element according to aspect 5 of the present invention is the wavelength conversion element according to any one of aspects 1 to 4, wherein third particles smaller than the first particles are further dispersed in the first binder, and The third particle may have a scattering property for the wavelength of the incident light, and the particle group may further include the third particle.
  • the efficiency of extracting fluorescence from the fluorescent layer is improved, and the emission efficiency of the fluorescent layer can be improved.
  • the wavelength conversion element according to the sixth aspect of the present invention may be configured such that, in the first or second aspect, the second particles have a scattering characteristic with respect to the wavelength of the incident light.
  • the efficiency of extracting fluorescence from the fluorescent layer is improved, and the emission efficiency of the fluorescent layer can be improved.
  • the wavelength conversion element according to aspect 7 of the present invention is the configuration according to aspect 5 or 6 above, wherein the average particle size of the particles having scattering characteristics with respect to the wavelength of the incident light is smaller than the wavelength of the incident light. Good.
  • the scattering characteristics of the scattering particles are improved, and the luminous efficiency of the fluorescent layer can be improved.
  • a wavelength conversion element according to aspect 8 of the present invention is the wavelength conversion element according to any one of aspects 1 to 7, wherein fourth particles smaller than the first particles are further dispersed in the first binder,
  • the particle of No. 4 has a fluorescent property of receiving the wavelength of the incident light and converting it to a wavelength different from the wavelength emitted by the first particle, and the particle group further includes the fourth particle. Good.
  • Aspect 8 of the present invention it is possible to improve the efficiency of extracting fluorescent light from the fluorescent layer and improve the luminous efficiency of the fluorescent layer while controlling the temperature rise of the phosphor particles in the fluorescent layer.
  • a wavelength conversion element according to aspect 9 of the present invention is the wavelength conversion element according to any one of aspects 1 to 8 above, wherein the fluorescent layer is arranged so as to face a lower layer, and is disposed between the lower layer and the fluorescent layer. Further comprising a scattering layer disposed, the scattering layer comprising a second binder, and particles having scattering properties dispersed in the second binder, wherein the particles having scattering properties are: A configuration may be adopted in which particles having a fluorescent characteristic, the first binder, and the second binder have a higher refractive index than the first binder and the second binder.
  • the utilization efficiency of the excitation light can be improved.
  • the wavelength conversion element according to the tenth aspect of the present invention may be configured such that, in any one of the first to ninth aspects, the first binder has an aluminum compound as a main component.
  • heat can be efficiently transferred, so that the heat dissipation of the wavelength conversion element can be improved.
  • the light source device may be configured to include the wavelength conversion element according to any one of aspects 1 to 10 above and a light source that emits incident light to the wavelength conversion element.
  • the eleventh aspect of the present invention it is possible to provide a light source device in which the luminous efficiency of the fluorescent layer is improved.
  • a vehicle headlamp according to an twelfth aspect of the present invention includes the light source device according to the eleventh aspect, and a reflector having a reflecting surface that reflects the fluorescence emitted from the wavelength conversion element, and the reflector of the reflector is provided.
  • the surface may reflect the fluorescence emitted from the wavelength conversion element so as to be emitted in parallel to a certain direction.
  • a transmissive illumination device includes the light source device according to aspect 11 above, and a transmissive substrate on which the wavelength conversion element is disposed, and the transmissive substrate is irradiated with the light source.
  • An irradiating surface and a surface facing the irradiating surface, the wavelength conversion element is arranged on a surface of the transmissive substrate facing the irradiating surface, and the light source has the wavelength through the transmissive substrate.
  • the conversion element may be irradiated with incident light, and the fluorescent layer may emit fluorescence from a surface facing the incident light side.
  • the thirteenth aspect of the present invention it is possible to provide a transmissive lighting device in which the luminous efficiency of the fluorescent layer is improved.
  • a display device is the display device according to any one of aspects 1 to 10, wherein the light source that emits the incident light and at least a part of the circumferential direction through which the incident light emitted from the light source passes.
  • the wavelength conversion element described is provided with a fluorescent wheel laid, and a drive device for rotating the fluorescent wheel, with the rotation of the fluorescent wheel, at least when incident light is incident on the surface of the wavelength conversion element, It may be configured to emit fluorescence.
  • the fourteenth aspect of the present invention it is possible to provide a display device in which the luminous efficiency of the fluorescent layer is improved.
  • An illumination device provides the pair of electrode terminals, a light source that emits incident light and is electrically connected to the pair of electrode terminals, and the illumination device according to any one of aspects 1 to 10 above.
  • the wavelength conversion element according to, wherein the light source is arranged on the bottom surface of the recess provided in one of the pair of electrode terminals with its main light emitting direction facing upward, and the outer circumference of the light source arranged on the bottom surface of the recess.
  • the concave portion is formed so as to be surrounded by a mortar-shaped slope, the wavelength conversion element is provided in the concave portion so as to cover the light source, and the fluorescent layer has a first surface on the opposite side in the thickness direction. A second surface, wherein the first surface faces the light source side, and when the incident light is irradiated from the first surface side, fluorescence is emitted from the second surface. Good.
  • the fifteenth aspect of the present invention it is possible to provide a lighting device in which the luminous efficiency of the fluorescent layer is improved.
  • the wavelength conversion element according to the sixteenth aspect of the present invention may be configured such that, in the first aspect, the thermal conductivity of the first binder is larger than the thermal conductivity of the void.
  • the temperature rise of the fluorescent layer can be reduced, and the luminous efficiency of the fluorescent layer can be improved.
  • the wavelength conversion element according to the seventeenth aspect of the present invention may be configured such that, in any one of the first to ninth aspects, the second binder has an aluminum compound as a main component.
  • heat can be efficiently transferred, so that the heat dissipation of the wavelength conversion element can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)

Abstract

蛍光層の発光効率の向上を実現する。入射光の波長域を入射光の波長域とは異なる波長域に変換する波長変換素子であって、第1のバインダ内に第1の粒子と、前記第1の粒子より小さい第2の粒子とが分散した蛍光層を備え、前記第1の粒子は、前記入射光の波長に対して蛍光特性を備え、前記蛍光層における前記第1の粒子および前記第2の粒子を包含する粒子群の体積に対する前記第1のバインダの体積の比率が10%以上50%未満である。

Description

波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置
 本発明は、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置に用いる波長変換素子に関する。
 本願は、2019年2月6日に日本で出願された特願2019-19794号に基づき優先権を主張し、その内容をここに援用する。
 励起光を蛍光体に照射し発光させる光学素子において、蛍光体には発熱が生じる。蛍光体の膜密度を向上させ放熱性を高めるために、複数のサイズの粒子を詰める構成が従来技術として知られている。
 特許文献1には、大粒径の蛍光体粒子による光の変換効率を低下させることなく、空隙を減少させて、光源光の透過を抑制することができる波長変換部材および発光装置か開示されている。
国際公開番号WO2017/188191(2017年11月2日公開)
 しかしながら、上述のような従来技術は、粒子同士をバインダが結合し、空隙が大部分を占める構成では、透光性セラミックスの割合が少なく、主な熱伝導は粒子を通して基板に放熱されるため放熱性が悪く、蛍光体の発光効率が低いという問題がある。
 本発明の一態様は、上記の問題点に鑑みてなされたものであり、その目的は、蛍光層の発光効率の向上を実現することにある。
 上記の課題を解決するために、本発明の一態様に係る波長変換素子は、入射光の波長域を入射光の波長域とは異なる波長域に変換する波長変換素子であって、第1のバインダ内に第1の粒子と、前記第1の粒子より小さい第2の粒子とが分散した蛍光層を備え、前記第1の粒子は、前記入射光の波長に対して蛍光特性を備え、前記蛍光層における前記第1の粒子および前記第2の粒子を包含する粒子群の体積に対する前記第1のバインダの体積の比率が10%以上50%未満である構成である。
 本発明の一態様によれば、蛍光層の発光効率を向上させることができるという効果を奏する。
(a)本発明の実施形態1に係る波長変換素子を模式的に示した概略断面図である。(b)従来技術にかかる発光装置を模式的に示した概略断面図である。 本発明の実施形態1に係る波長変換素子に包含される蛍光体粒子の粒度分布を示すグラフである。 本発明の実施形態1に係る波長変換素子の変形例を模式的に示した概略断面図である。 本発明の実施形態1に係る波長変換素子の実装例を模式的に示した概略断面図である。 本発明の実施形態2に係る波長変換素子を模式的に示した概略断面図である。 蛍光体の発光効率の温度依存性を示すグラフである (a),(b)は、本発明の実施形態3に係る波長変換素子を模式的に示した概略断面図である。(c)は、比較例の波長変換素子を模式的に示した概略断面図である。 本発明の実施形態4に係る波長変換素子を模式的に示した概略断面図である。 本発明の実施形態4に係る波長変換素子に包含される粒子の粒度分布を示すグラフである。 本発明の実施形態5に係る波長変換素子を模式的に示した概略断面図である。 本発明の実施形態6に係る波長変換素子を模式的に示した概略断面図である。 本発明の実施形態6に係る波長変換素子を模式的に示した概略断面図である。 本発明の実施形態6に係る波長変換素子を模式的に示した概略断面図である。 本発明の実施形態6に係る波長変換素子を模式的に示した概略断面図である。 本発明の実施形態7に係る光源装置を模式的に示した概略図を示す。 本発明の実施形態8に係る光源装置を模式的に示した概略図を示す。 (a)は、本発明の実施形態9に係る表示装置の概略図を示す。(b)は、蛍光ホイールの概略平面図を示す。(c)は、蛍光ホイールの概略側面図を示す。 本発明の実施形態10に係る光源装置9の概略断面図を示す。
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
 図1の(a)は、本発明の実施形態1に係る波長変換素子を模式的に示した概略断面図である。本発明の実施形態1に係る構成と比較するために、図1の(b)に従来技術にかかる発光装置を模式的に示した。
  (従来技術との対比)
 図1の(b)に示すとおり、従来技術の発光装置1bは、基板13の上に蛍光体粒子が配置されている。当該蛍光体粒子は、第1の粒子10と、第1の粒子10より小さい第2の粒子11とからなる。特許文献1に開示された従来技術では、各粒子同士は透光性セラミックスで結合されている。しかし、従来技術に係る発光装置1bでは、透光性セラミックスの割合が少なく、放熱性に問題があった。
 バインダが少ない蛍光層19bの場合、蛍光体と空隙(空気)の接触点が多く、放熱性が低い。そのため、空隙よりも熱伝導率の高い材料で蛍光体以外の部分を置き換えるのが好ましい。さらに、蛍光体材料よりも熱伝導率の高い材料であればより好ましい。効率的に熱を移動させることができるためアルミニウム化合物などの無機材料を主成分とする高熱伝導率のバインダが好ましい。アルミニウム化合物のうち、特にアルミナ、ベーマイトなどを主成分とするバインダが好ましい。
 波長変換素子に用いられる主な材料の常温における熱伝導率は、以下のとおりである。
Figure JPOXMLDOC01-appb-T000001
 また、蛍光体の形状を完全な球形と仮定し、更に、蛍光体の粒径が単一の粒径からなると仮定すると、最密充填構造となった場合、蛍光体密度が約74%(≒π/√18)となると想定される。多球の場合1-(1-π/√18)^2=約93%程度が限界値となる。実際は、蛍光体の形状は完全な球形ではなく、非周期的にランダムに配置されるため、蛍光層に占める蛍光体の割合は、最大で蛍光層に対する体積比で90%以下と考えられ、粒子/バインダ比は0.9以下となるのが好ましい。これよりも、バインダが少ない場合、蛍光膜中の空隙が増加し熱伝導が悪化する。また、粒子/バインダ比が0.1よりも小さい場合、蛍光膜中に占める粒子成分が小さくなり、発光効率が低下するため粒子/バインダ比が0.1よりも大きい方が好ましい。
 図1の(a)に示すとおり、本願発明の実施形態1に係る波長変換素子1aは、バインダ12内に蛍光体粒子である第1の粒子10と、第1の粒子10より小さい第2の粒子11とが分散した蛍光層19aを備える(蛍光層に用いられるバインダ12を「第1のバインダ」とも称する)。好ましい実施形態では、蛍光層19aは、基板13の上に配置される。
 第1の粒子10および第2粒子11は、入射光の波長に対して蛍光特性を備え、入射光の波長域を入射光の波長域とは異なる波長域に変換する。蛍光層19aにおける第1の粒子10および第2の粒子11を包含する粒子群の体積に対するバインダ12の体積の比率が10%以上50%未満であることが好ましい。
 好ましい蛍光層19aの実施例としては、蛍光層厚が50μmであり、第1の粒子10および第2の粒子11がYAG:Ce(イットリウム・アルミニウム・ガーネットにドーパントとしてCe(セリウム)をドープした蛍光体であり、例えば、YAl12:Ce3+)などの黄色発光蛍光体から構成されることが好ましい。またバインダ12は、無機アルミナを主成分とすることが好ましい。第1の粒子10の平均粒径D50が、25μmであり、第2の粒子11の平均粒径D50が、5μmであることが好ましい。第1の粒子10:第2の粒子11:バインダ12の混合比としては、体積比では50%:30%:20%とすることが好ましい。
 蛍光体の粒径としては、第1の粒子10は10~30μm、第2の粒子11は1~10μm程度が好ましい。第1の粒子と第2の粒子の粒径差としては2倍以上、より好ましくは3倍以上差があることが好ましい。粒子形状は球形、楕円形状特に限定しない。本実施形態1における蛍光体粒子の粒度分布を図2に示す。図2の横軸は粒子の直径を示し、縦軸に体積比を示す。図2に示すとおり、粒度分布は、明瞭な2つのピークを有することを特徴とする。蛍光体の粒度分布は、バインダと粒子を適切に分離後、堀場製作所の静的光散乱法を用いるレーザ回折/散乱装置LA-950などで測定することができる。
  (変形例)
 図1の(a)に沿って上述した本発明の典型的な態様では、基板13の上に蛍光層19aが配置されている。本発明にかかる波長変換素子は、かかる態様に限定されず、例えば図3に示したような様々なバリエーションが存在する。図3は、本発明の実施形態1に係る波長変換素子1aの変形例の波長変換素子1c乃至1eを模式的に示した概略断面図である。図3の(a)は、断面形状が矩形となる溝が形成された基板33aに蛍光層19cが配置される構成の波長変換素子1cを示す。図3の(b)は、断面形状が弧を有する溝が形成された基板33bに蛍光層19dが配置される構成の波長変換素子1dを示す。図3の(c)は、断面形状がV字形状を有する溝が形成された基板33cに蛍光層19eが配置される構成の波長変換素子1eを示す。蛍光層19d乃至19eの構成は、図1の(a)に示した蛍光層19aと同じであることが好ましいが、基板との配置関係が異なる。
  (実装例)
 図4は、本発明の実施形態1に係る波長変換素子の実装例を模式的に示した概略図である。ヒートシンク18上に図1の(a)に例示した波長変換素子1aを配置した態様を例示しているが、変形例の波長変換素子1c乃至1eをヒートシンク18上に配置してもよい。
 蛍光層19aの作製プロセスとしては、スクリーン印刷法などを用いることが好ましい。基板13は、例えば、アルミ基板、高反射のアルミナ基板などで構成されることが好ましい。基板13の材質は、金属など熱伝導率の高いものが望ましく、特に上記材料に限定されない。蛍光発光強度を高める為に、基板13上には銀、酸化チタン、増反射多層膜、誘電体ミラーなどの高反射膜がコーティングされていることが望ましい。実施形態6にて後述するように、基板13上に散乱層100を配置することも望ましい。本発明の一態様では、蛍光層と基板13との間にコーティングされた層や散乱層100を含む場合のように、基板13上に直接蛍光層が配置されない場合であっても基板13とも称するが、当該基板を下位層とも称する。基板13は直接ヒートシンク18と固定接触させることで冷却される。
 図4に示すように、波長変換素子を実装した光源装置1は、励起光14を出射する光源15と、ヒートシンク18上に配置された波長変換素子1aとを有する。光源15は、青色レーザ、青色LEDなど青色の励起光を出射する光源が好ましい。
 光源15から出射された励起光14は、蛍光層19aに照射され、一部は蛍光層19aの表面で乱反射され反射光17となる。一方、励起光14の一部は、蛍光層19a内に入射し、蛍光体粒子との作用により蛍光発光し、蛍光16として蛍光層19aから出射される。
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図5は、本発明の実施形態2に係る波長変換素子を模式的に示した概略断面図である。図6は、蛍光体の発光効率の温度依存性を示すグラフである。
  (発光効率の温度依存性)
 蛍光体の発光効率の温度依存性について、YAG:Ce(YAl12:Ce3+)蛍光体の外部量子効率に基づいて説明する。図6に示す通り、YAGにドーパントとしてCeをドープした蛍光体材料について、Ceのドープ濃度の違いにより発光効率の温度依存性が相違する様子が確認できる。本発明の一態様におけるCeドープ濃度(mol%)とは、ガーネット系蛍光体の一般式(M1-xREAl12で示される物質において、x×100(mol%)で表される。上記一般式において、M、REは希土類元素群より選ばれる少なくとも一つの元素を含むものが用いられる。一般的に、Mは、Sc、Y、Gd、Lu、REは、Ce、Eu、Tbのうち、少なくとも一種の元素が用いられる。
 蛍光体に励起光を照射した場合、蛍光発光が得られると同時に、励起光の一部は熱エネルギーに変換されるため、蛍光体の照射スポット部は高温になる。熱放射については、一般的に下記の式で説明することができる。
     Q=A・ε・σ・(T^4-T^4)
ここで、Qは放射熱量、Aは放射部面積、εは放射率、σはステファン・ボルツマン定数、Tは放射部の温度、Tは周囲の温度を示す。
 蛍光体の発光効率は蛍光体の温度による影響を受け、図6に示すように、温度が増加するに従って発光効率が低下することが知られている。より強い(明るい)蛍光発光を得るためには励起光14の照射強度を強める必要があり、この場合、冷却状況によっては蛍光層の温度上昇抑制が十分に行えなくなる場合がある。
 また、蛍光体の温度特性は発光中心元素(本実施形態ではCe)の濃度により変化することが知られている。一般的に市販されているYAG:Ce蛍光体のCe濃度は、常温使用時の発光効率が高い濃度(例えば1.4~1.5mol%程度)が用いられることが多い。これはCeの濃度が低いYAG蛍光体では、内部量子効率は高くなるが、励起光の吸収率が低いため、波長変換素子として重要な外部量子効率は、Ce濃度1.5mol%付近が最適値となるためである。高密度、高強度の励起光照射によって照射スポットの蛍光体温度が250℃を超える領域になるような場合、一般的なYAG:Ce蛍光体(例えば、Ce濃度1.4mol%)では発光効率が低下する(図6参照)。しかし、Ce濃度が低いYAG:Ce蛍光体(例えば0.3mol%程度)は発光効率の温度依存性が小さく、低温時と比較して高濃度の発光体と発光効率が逆転する場合もある。例えば、図6のグラフにおいて低温領域(50℃~100℃)と高温領域(250℃~350℃)とを比較する。低温領域では、YAG:Ce蛍光体のCe濃度が高い方が高発光効率となるが、高温領域ではCe濃度が低い方が高発光効率となる傾向がある。かかる傾向に鑑みて本願発明を実施形態ごとに説明する。
 なお、発光中心元素濃度の低い蛍光体は励起光の吸収が小さいという問題が有り、励起光を充分に吸収できないと言う問題がある。
 レーザ光による励起では励起密度が高くなり高温となるため、耐熱性の高い酸窒化物系や窒化物系の蛍光体を用いることが望ましい。蛍光体として発光効率の温度依存性が優れている方がより望ましい。また、光源装置として利用するため、蛍光を青色、緑色、赤色等の白色光以外としてもよい。
 近紫外光を赤色光に変換する蛍光体として、例えばCaAlSiN:Eu2+を用いることができる。近紫外光を黄色光に変換する蛍光体として、例えばCa-α-SiAlON:Eu2+を用いることができる。近紫外光を緑色光に変換する蛍光体として、例えばβ-SiAlON:Eu2+やLuAl12:Ce3+(LuAG:Ce)を用いることができる。近紫外光を青色光に変換する蛍光体として、例えば(Sr,Ca,Ba,Mg)10(PO12:EuやBaMgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+を用いることができる。
 また、近紫外光の励起光を黄色光及び青色光に変換する2種類の蛍光体を含むように蛍光部材を形成してもよい。これにより、蛍光部材から出射される黄色光及び青色光の蛍光を混色して擬似白色光が得られる。
  (発光中心元素濃度が異なる蛍光体を混合した蛍光層)
 上述した蛍光体の発光効率の温度依存性に鑑みて、蛍光体粒子である第1の粒子と第2の粒子との発光中心元素濃度が異なる態様を以下説明する。
 図5の(a)は、蛍光層29aが実施形態1と同じ第1の粒子10を備え、第1の粒子10の発光中心元素濃度よりも高濃度の発光中心元素濃度の第2の粒子21を更に備える波長変換素子2aを示す。図5の(b)は、蛍光層29bが実施形態1と同じ第2の粒子11を備え、第2の粒子11の発光中心元素濃度よりも高濃度の発光中心元素濃度の第1の粒子20を更に備える波長変換素子2bを示す。
 図5の(a)に示した蛍光層29aは、例えば層の厚さが50μm程度であるのが好ましい。第1の粒子10は、実施形態1と同様にYAG:Ce蛍光体であり、平均粒径D50が25μm程度であるのが好ましい。第1の粒子10のドーパントであるCe濃度は0.7mol%(0.5~1.0mol%程度)であるのが好ましい。
 一方、第2の粒子21は、YAG:Ce蛍光体であり、平均粒径D50が5μm程度であるのが好ましい。第2の粒子21のドーパントであるCe濃度は1.5mol%(1.0~2.0mol%程度)であることが好ましい。
 蛍光層29aのバインダ12は、無機アルミナバインダを主成分とするのが好ましいが、当該材料に限定されない。蛍光層29aの組成比は、例えば体積比で、第1の粒子10:第2の粒子21:バインダ12=50%:30%:20%とすることが好ましい。
 図5の(b)に示した蛍光層29bは、蛍光層29aと同様に、層の厚さが50μm程度であるのが好ましい。第1の粒子20は、YAG:Ce蛍光体であり、平均粒径D50が25μm程度であるのが好ましい。第1の粒子20のドーパントであるCe濃度は1.5mol%(1.0~2.0mol%程度)であるのが好ましい。
 一方、第2の粒子11は、実施形態1と同様にYAG:Ce蛍光体であり、平均粒径D50が5μm程度であるのが好ましい。第2の粒子11のドーパントであるCe濃度は0.7mol%(0.5~1.0mol%程度)であるのが好ましい。
 蛍光層29aと同様に、蛍光層29bのバインダ12は、無機アルミナバインダを主成分とするのが好ましいが、当該材料に限定されない。蛍光層29bの組成比は、例えば体積比で、第1の粒子20:第2の粒子11:バインダ12=50%:30%:20%とすることが好ましい。
 蛍光体粒子の粒径が小さい場合、励起光14の吸収率が低下する。一方、YAG:Ce蛍光体のドーパントCe濃度が高い場合、励起光14の吸収率が増加する。YAG:Ce蛍光体の外部量子効率は蛍光体粒子の粒径やCe濃度によって変化し、その際の励起光吸収・発光が変化するため発光色も変化する。
 YAG:Ce蛍光体である第1の粒子と、第1の粒子より小さい第2の粒子のドーパントCe濃度を変化させることにより、目標とする色温度への調整が容易に可能となる。Ce濃度は、第1の粒子、第2の粒子のどちらが高くても良く、用途に応じて選択することができ、特に限定されない。
  (実施形態1との組み合わせ)
 当該実施形態2は、上述した実施形態1と組み合わせることができる。
 例えば、図5に示した波長変換素子2a,2bは、基板13の上に配置されているが、図3に示したような溝が形成された基板33a乃至33cに配置することができる。また、波長変換素子2a,2bを図4に示した光源装置1に実装することができる。
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図7の(a),(b)は、本発明の実施形態3に係る波長変換素子を模式的に示した概略断面図である。図7の(c)は、比較例の波長変換素子を模式的に示した概略断面図である。
  (比較例の構成)
 図7の(c)に比較例の波長変換素子3cを模式的に示す。比較例の蛍光層39cは、バインダ12内に蛍光体粒子である第1の粒子10を包含するが、第1の粒子10より小さい第2の粒子を包含しないことを特徴とする。励起光14が蛍光体粒子である第1の粒子10に照射された場合、第1の粒子10は蛍光発光し、励起光14が入射した面から蛍光16が出射するのが好ましい。しかし、図7の(c)に示すように、励起光14が蛍光体粒子である第1の粒子10に照射された場合、第1の粒子10の曲率と励起光14の入射角度との関係や、バインダ12の屈折率などの条件により、蛍光が界面で全反射し、励起光14が入射した面から蛍光16を取り出すことができない場合がある。かかる蛍光は、内部導光による蛍光出射ロス(損失)となり、蛍光の取り出し効率が低下する。「蛍光の取り出し効率」とは、「励起光14が入射した面から出てくる蛍光強度」/「励起光強度」を意図し、「励起光が蛍光体に入射する効率」、「蛍光体の発光効率」、および「励起光が入射した面から蛍光が出ていく効率」が含まれる。
  (散乱粒子を混合した蛍光層)
 図7の(a)に示すとおり、本願発明の実施形態3に係る波長変換素子3aは、バインダ12内に蛍光体粒子である第1の粒子10と、第1の粒子10より小さい第2の粒子31とが分散した蛍光層39aを備える。好ましい実施形態では、蛍光層39aは、基板13の上に配置される。実施形態1の第2の粒子11と異なり、本実施形態3の第2の粒子31は、入射光の波長に対して散乱特性を備えることを特徴とする。
 図7の(a)に示した蛍光層39aは、例えば層の厚さが50μm程度であるのが好ましい。第1の粒子10は、実施形態1と同様にYAG:Ce蛍光体であり、平均粒径D50が25μm程度であるのが好ましい。
 一方、第2の粒子31は、散乱特性を備えた粒子であればよく、YAGを主成分としてもよいが、酸化チタン、シリカ、酸化亜鉛、ダイアモンドなどを主成分とする粒子であるのが好ましい。
 光散乱として、幾何光学的な散乱、ミー散乱、レイリー散乱などが存在する。特に光の波長付近の粒径ではミー散乱により散乱効率が最大になることが知られている。また散乱の波長依存性も小さいことが知られている。そのため、散乱特性を備えた粒子としては、少なくとも波長程度のサイズの粒径であることが好ましい。本実施形態では第2の粒子31の平均粒径D50は2μm程度とすることができる。更に好ましい実施形態では、入射光の波長に対して散乱特性を備えた第2の粒子31の平均粒径D50が、入射光の波長よりも小さいことが好ましい。例えば、第2の粒子31の平均粒径D50が200nm程度であるのがより好ましい。
 蛍光層39aのバインダ12は、無機アルミナバインダを主成分とするのが好ましいが、当該材料に限定されない。蛍光層39aの組成比は、例えば体積比で、第1の粒子10:第2の粒子31:バインダ12=50%:30%:20%とすることが好ましい。
 図7の(c)に示す比較例の蛍光層39cに比べて、散乱特性を備えた第2の粒子31によって、界面で全反射する蛍光を散乱させることにより、界面で全反射する蛍光を低減させ、蛍光層39aの側面に向かう蛍光を低減することができる。
 第2の粒子31は、内部に空隙のある中空粒子を採用するのも好ましい。空隙は屈折率が低いため、屈折率差による散乱が生じやすい。
  (他の実施形態との組み合わせ)
 当該実施形態3は、上述した実施形態1または2と組み合わせることができる。
 例えば、実施形態2で説明したように、蛍光体粒子のドーパント濃度を変化させてもよい。
 例えば、図7の(a)に示した波長変換素子3aの蛍光層39aに包含される第1の粒子10のドーパントであるCe濃度は0.7mol%(0.5~1.0mol%程度)とすることができる。一方、図7の(b)に示した波長変換素子3bの蛍光層39bに包含される第1の粒子20のドーパントであるCe濃度を1.5mol%(1.0~2.0mol%程度)とすることができる。
 実施形態2で上述したとおり、ドーパントであるCe濃度を高くすると蛍光体粒子の温度が高くなり、発光効率が低下する。かかる場合、第2の粒子31は、内部に空隙のある中空粒子を多く採用するよりも、中実の粒子からなる第2の粒子31を多く採用することが好ましい。中実の粒子を含むことにより、中空粒子を含む蛍光層に比べて熱伝導率を高めることができるため、蛍光層39bを効率的に冷却することができる。このため、蛍光層39bの熱による焼損を防止することができ、波長変換素子3bの耐久性を向上させることができる。
 また、例えば、図7の(a),(b)に示した波長変換素子3a,3bは、基板13の上に配置されているが、図3に示したような溝が形成された基板33a乃至33cに配置することができる。また、波長変換素子3a,3bを図4に示した光源装置1に実装することができる。
 〔実施形態4〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図8は、本発明の実施形態4に係る波長変換素子を模式的に示した概略断面図である。図9は、本発明の実施形態4に係る波長変換素子に包含される粒子の粒度分布を示すグラフである。
  (散乱粒子を混合した蛍光層)
 図8の(a)に示すとおり、本願発明の実施形態4に係る波長変換素子4aは、バインダ12内に蛍光体粒子である第1の粒子10と、第1の粒子10より小さい第2の粒子11と、第2の粒子11より小さい第3の粒子31とが分散した蛍光層49aを備える。好ましい実施形態では、蛍光層49aは、基板13の上に配置される。
 第1の粒子10および第2粒子11は、入射光の波長に対して蛍光特性を備え、入射光の波長域を入射光の波長域とは異なる波長域に変換する。本実施形態4の第3の粒子31は、実施形態3の第2の粒子31と同様に、入射光の波長に対して散乱特性を備えることを特徴とする。本実施形態4の第3の粒子31と実施形態3の第2の粒子31とは同じ構成であるのが好ましい。本実施形態4の第1の粒子10、第2の粒子11およびバインダ12と実施形態1の第1の粒子10、第2の粒子11およびバインダ12とは同じ構成であるのが好ましい。
 好ましい蛍光層49aの実施例としては、蛍光層厚が50μmであり、第1の粒子10および第2の粒子11がYAG:Ceなどの黄色発光蛍光体から構成されることが好ましい。散乱特性を備える第3の粒子31は、酸化チタン、シリカ、酸化亜鉛、ダイアモンドを主成分とすることが好ましい。
 またバインダ12は、無機アルミナを主成分とすることが好ましいが、当該材料に限定されない。蛍光層49aの組成比は、例えば体積比で、第1の粒子10:第2の粒子11:第3の粒子31:バインダ12=50%:20%:10%:20%とすることが好ましい。
 第1の粒子10の平均粒径D50が、25μmであり、第2の粒子11の平均粒径D50が、5μmであることが好ましい。第3の粒子31の平均粒径D50が、0.2μmであることが好ましい。
 本実施形態4における粒子の粒度分布を図9に示す。図9の横軸は粒子の直径を示し、縦軸に体積比を示す。図9に示すとおり、粒度分布は、明瞭な3つのピークを有することを特徴とする。蛍光体の粒度分布は、バインダと粒子を適切に分離後、堀場製作所の静的光散乱法を用いるレーザ回折/散乱装置LA-950などで測定することができる。
 蛍光体は粒径が大きい方が発光効率が良く、サブミクロン程度になると発光効率が急激に低下する。そのため、第2の粒子11として混合する蛍光体は、数μm程度を下限値とするのが好ましい。
 本実施形態4において第3の粒子31を混合することにより、実施形態3と同様に、蛍光層49a内部での散乱性を高め、入射光が入射する面の方向への蛍光取り出し効率を向上させることができる。
  (他の実施形態との組み合わせ)
 当該実施形態4は、上述した実施形態1~3と組み合わせることができる。
 例えば、実施形態2で説明したように、蛍光体粒子のドーパント濃度を変化させてもよい。
 例えば、図8の(b)に示した波長変換素子4bの蛍光層49bに包含されるYAG:Ceからなる第1の粒子10のドーパントであるCe濃度は0.7mol%(0.5~1.0mol%程度)とすることができる。実施形態2と同様に、蛍光層49bに包含されるYAG:Ceからなる第2の粒子21のドーパントであるCe濃度は1.5mol%(1.0~2.0mol%程度)であることが好ましい。
 一方、図8の(c)に示した波長変換素子4cの蛍光層49cに包含されるYAG:Ceからなる第1の粒子20のドーパントであるCe濃度を1.5mol%(1.0~2.0mol%程度)とすることができる。実施形態2と同様に、蛍光層49bに包含されるYAG:Ceからなる第2の粒子11のドーパントであるCe濃度は0.7mol%(0.5~1.0mol%程度)であることが好ましい。
 実施形態2で上述したとおり、ドーパントであるCe濃度を高くすると蛍光体粒子の温度が高くなり、発光効率が低下する。かかる場合、第3の粒子31は、内部に空隙のある中空粒子を多く採用するよりも、中実の酸化チタン粒子からなる第3の粒子31を多く採用することが好ましい。中実の粒子を含むことにより、中空粒子を含む蛍光層に比べて熱伝導率を高めることができるため、蛍光層49b,49cを効率的に冷却することができる。このため、蛍光層49b,49cの熱による焼損を防止することができ、波長変換素子4b,4cの耐久性を向上させることができる。
 また、例えば、図8に示した波長変換素子4a~4cは、基板13の上に配置されているが、図3に示したような溝が形成された基板33a~33cに配置することができる。また、波長変換素子4a~4cを図4に示した光源装置1に実装することができる。
 〔実施形態5〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図10は、本発明の実施形態5に係る波長変換素子を模式的に示した概略断面図である。
  (異種蛍光体粒子を混合した蛍光層)
 図10の(a)に示すとおり、本願発明の実施形態5に係る波長変換素子5aは、バインダ12内に蛍光体粒子である第1の粒子10と、第1の粒子10より小さい第2の粒子11と、第1の粒子より小さい第4の粒子51とが分散した蛍光層59aを備える。図10には記載していないが、上述した実施形態1~4と同様に、蛍光層59aは基板13の上に配置されることが好ましい。
 第4の粒子は、前記入射光の波長を受けて第1の粒子が放射する波長とは異なる波長に変換する蛍光特性を備える。
 好ましい蛍光層59aの実施態様としては、蛍光層厚が50μmであり、第1の粒子10および第2の粒子11がYAG:Ce(YAl12:Ce3+)などの黄色発光蛍光体から構成されることが好ましい。YAGとは異なる蛍光特性を備える第4の粒子51は、CASN(CaAlSiN:Eu2+)を主成分とすることが好ましい。
 またバインダ12は、無機アルミナを主成分とすることが好ましいが、当該材料に限定されない。蛍光層59aの組成比は、例えば体積比で、第1の粒子10:第2の粒子11:第4の粒子51:バインダ12=50%:20%:10%:20%とすることが好ましい。
 第1の粒子10の平均粒径D50が、25μmであり、第2の粒子11の平均粒径D50が、5μmであることが好ましい。第4の粒子51の平均粒径D50が、5μmであることが好ましい。
 本実施形態5において、CASN(CaAlSiN:Eu2+)を主成分とする第4の粒子51を混合することにより、蛍光の赤色成分を付与することができる。異なる種類の蛍光体を混ぜることにより、蛍光層59aの発光色を変化させることができる。
 要求される色に合わせて用いる蛍光体を適宜変更することができる。近紫外光を赤色光に変換する蛍光体として、例えばCaAlSiN:Eu2+を用いることができる。近紫外光を黄色光に変換する蛍光体として、例えばCa-α-SiAlON:Eu2+を用いることができる。近紫外光を緑色光に変換する蛍光体として、例えばβ-SiAlON:Eu2+やLuAl12:Ce3+(LuAG:Ce)を用いることができる。近紫外光を青色光に変換する蛍光体として、例えば(Sr,Ca,Ba,Mg)10(PO12:EuやBaMgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+を用いることができる。
  (他の実施形態との組み合わせ)
 当該実施形態5は、上述した実施形態1~4と組み合わせることができる。
 例えば、実施形態2で説明したように、蛍光体粒子のドーパント濃度を変化させてもよい。
 例えば、図10の(b)に示した波長変換素子5bの蛍光層59bに包含されるYAG:Ceからなる第1の粒子10のドーパントであるCe濃度は0.7mol%(0.5~1.0mol%程度)とすることができる。実施形態2と同様に、蛍光層59bに包含されるYAG:Ceからなる第2の粒子21のドーパントであるCe濃度は1.5mol%(1.0~2.0mol%程度)であることが好ましい。
 一方、図10の(c)に示した波長変換素子5cの蛍光層59cに包含されるYAG:Ceからなる第1の粒子20のドーパントであるCe濃度を1.5mol%(1.0~2.0mol%程度)とすることができる。実施形態2と同様に、蛍光層49bに包含されるYAG:Ceからなる第2の粒子11のドーパントであるCe濃度は0.7mol%(0.5~1.0mol%程度)であることが好ましい。
 本実施形態5において、上述した第4の粒子51を混合することにより、実施形態2の態様に更に蛍光の赤色成分を付与することができる。実施形態2で上述したとおり、ドーパントであるCe濃度を高くすると蛍光体粒子の温度が高くなり、発光効率が低下する。異なる種類の蛍光体を混ぜることにより、発光効率および温度を調整しつつ、蛍光層59b、59cの発光色を変化させることができる。
 更に、本実施形態5において、実施形態4で説明したように、実施形態3の第2の粒子31と同様に、入射光の波長に対して散乱特性を備える第3の粒子31を更に備えることができる(図10の(d)~(f)参照)。
 図10の(d)に示した波長変換素子5dの構成は、図10の(a)に示した波長変換素子5aの構成に、第3の粒子31を混合した構成である。同様に、図10の(e)に示した波長変換素子5eの構成は、図10の(b)に示した波長変換素子5bの構成に、第3の粒子31を混合した構成であり、図10の(f)に示した波長変換素子5fの構成は、図10の(c)に示した波長変換素子5cの構成に、第3の粒子31を混合した構成である。
 図10の(d)~(f)の態様では、実施形態3,4と同様に、蛍光層59d~59f内部での散乱性を高め、入射光が入射する面の方向への蛍光取り出し効率を向上させることができる。
 また、例えば、図10に示した波長変換素子5a~5fは、基板13の上に配置することができるが、図3に示したような溝が形成された基板33a~33cに配置することもできる。また、波長変換素子5a~5fを図4に示した光源装置1に実装することができる。
〔実施形態6〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 (波長変換素子の構成)
 図11~図14は、本発明の実施形態6に係る波長変換素子の構成を模式的に示す断面図である。
 本実施形態に係る波長変換素子は、蛍光層は下位層に面するように配置され、下位層である基板13と蛍光層19a,29a,29b,39a,39b,49a,49b,49c,59a,59b,59c,59d,59e,59fとの間に配置された散乱層100を更に備えている。
 (散乱層100)
 散乱層100は、バインダ12aと、バインダ12a内に分散した散乱粒子31aと、を含んでいる(散乱層に用いられるバインダ12aを「第2のバインダ」とも称する)。バインダ12aは、上述したバインダ12と同じ構成であることが好ましいが、別の構成であってもよい。散乱粒子31aは、第1の粒子10,20、第2の粒子11,21、第4の粒子51およびバインダ12aよりも屈折率が高いことが好ましい。本実施形態6の散乱粒子31aと実施形態4の第3の粒子31とは同じ構成であるのが好ましい。
 基板13と蛍光層19a,29a,29b,39a,39b,49a,49b,49c,59a,59b,59c,59d,59e,59fとの間に屈折率が高い散乱粒子31aを含む散乱層100が配置されていることにより、取り出し側とは反対方向へ向かった蛍光を散乱し、取り出し側へ向かわせることができる。そのため、導光による蛍光のロスを抑制することができる。また、蛍光層に入射したが、蛍光体粒子(第1の粒子10,20;第2の粒子11,21;第4の粒子51)による蛍光発光に直接寄与することなく、蛍光層19a,29a,29b,39a,39b,49a,49b,49c,59a,59b,59c,59d,59e,59fを透過した励起光14を散乱層100によって散乱することにより、励起光14の光路長が伸びるため、励起光14の利用効率を向上させることができる。そのため、蛍光発光強度を高めることができる。
 また、同一の蛍光発光強度を有する波長変換素子に比べて蛍光層19a,29a,29b,39a,39b,49a,49b,49c,59a,59b,59c,59d,59e,59fの厚さを薄くすることができる。つまり、蛍光体粒子(第1の粒子10,20;第2の粒子11,21;第4の粒子51)の量を減らすことができる。ここで、「取り出し側」とは、蛍光層の、蛍光層と散乱層との接触面(蛍光層の底面)に対向する面であり、「取り出し側とは反対方向」とは、当該接触面または蛍光層の側面に向かう方向である。
 散乱粒子31aとしては、酸化チタン(TiO)、シリカ、酸化亜鉛(ZnO)、ダイアモンドを主成分とすることが好ましい。中でも、酸化チタンであることが好ましい。酸化チタンは、ルチル型の結晶構造を有することが好ましい。
 散乱層100に占める散乱粒子31aの割合は、散乱層100に対して10~75体積%程度であるのが好ましい。当該構成であることにより、基板13への密着性を有しつつ、上述した効果を奏することができる。
 散乱層100の厚さは、20~60μmであることが好ましい。
  (他の実施形態との組み合わせ)
 当該実施形態6は、上述した実施形態1~5と組み合わせることができる。
 図11の(a)は、実施形態1と組み合わせた例を示す。実施形態1と同様に、波長変換素子101aは、バインダ12内に蛍光体粒子である第1の粒子10と、第1の粒子10より小さい第2の粒子11とが分散した蛍光層19aを備える。基板13と蛍光層19aとの間に、散乱層100を更に備えている。
 図11の(b),(c)は、実施形態2と組み合わせた例を示す。実施形態2と同様に、波長変換素子102a,102bは、バインダ12内に蛍光体粒子である第1の粒子10,20と、第1の粒子10,20より小さい第2の粒子21,11とが分散した蛍光層29a,29bを備える。基板13と蛍光層29a,29bとの間に、散乱層100を更に備えている。
 図12の(a),(b)は、実施形態3と組み合わせた例を示す。実施形態3と同様に、波長変換素子103a,103bは、バインダ12内に蛍光体粒子である第1の粒子10,20と、第1の粒子10,20より小さい第2の粒子31とが分散した蛍光層39a,39bを備える。当該第2の粒子31は散乱特性を備える。基板13と蛍光層39a,39bとの間に、散乱層100を更に備えている。
 図13の(a),(b),(c)は、実施形態4と組み合わせた例を示す。実施形態4と同様に、波長変換素子104a,104b,104cは、バインダ12内に蛍光体粒子である第1の粒子10,20と、第1の粒子10,20より小さい第2の粒子11,21と、第2の粒子11,21より小さい第3の粒子31とが分散した蛍光層49a,49b,49cを備える。更に、当該第3の粒子31は散乱特性を備える。基板13と蛍光層49a,49b,49cとの間に、散乱層100を更に備えている。
 図14の(a)~(f)は、実施形態5と組み合わせた例を示す。実施形態5と同様に、波長変換素子105a,105b,105cは、バインダ12内に蛍光体粒子である第1の粒子10,20と、第1の粒子10,20より小さい第2の粒子11,21と、第1の粒子10,20より小さい第4の粒子51とが分散した蛍光層59a,59b,59cを備える。第4の粒子は、入射光の波長を受けて第1の粒子が放射する波長とは異なる波長に変換する蛍光特性を備える。基板13(図示せず)と蛍光層59a,59b,59cとの間に、散乱層100を更に備えている。
 実施形態5と同様に、波長変換素子105d,105e,105fは、バインダ12内に蛍光体粒子である第1の粒子10,20と、第1の粒子10,20より小さい第2の粒子11,21と、第2の粒子11,21より小さい第3の粒子31と、第1の粒子10,20より小さい第4の粒子51とが分散した蛍光層59d,59e,59fを備える。更に、当該第3の粒子31は散乱特性を備え、第4の粒子は、入射光の波長を受けて第1の粒子が放射する波長とは異なる波長に変換する蛍光特性を備える。基板13(図示せず)と蛍光層59d,59e,59fとの間に、散乱層100を更に備えている。
 図11~図14の態様では、蛍光層19a,29a,29b,39a,39b,49a,49b,49c,59a,59b,59c,59d,59e,59f内部での散乱性を更に高め、入射光が入射する面の方向への蛍光取り出し効率を更に向上させることができる。
 また、図11~図14に示した散乱層100は、基板13の上に配置することができるが、図3に示したような溝が形成された基板33a~33cに配置することもできる。また、波長変換素子101a,102a,102b,103a,103b,104a,104b,104c,105a,105b,105c,105d,105e,105fを図4に示した光源装置1に実装することができる。
 〔実施形態7〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
  (光源装置の構成)
 図15に本発明の実施形態7に係る光源装置6を模式的に示した概略図を示す。光源装置6は、ヘッドライト(車両用前照灯具)であり、好ましくは反射型レーザヘッドライトである。
 励起光源15は、波長変換素子60の蛍光層を励起する波長の励起光14を出射する青色レーザ光源であることが好ましい。リフレクタ61は、半放物面ミラーから構成されることが好ましい。放物面をxy平面に平行な分割面62により上下に2分割して半放物面とし、その内面はミラーの構成になっていることが好ましい。リフレクタ61には励起光14が通過する透孔がある。波長変換素子60は、青色の励起光14によって励起され、可視光の長波長域(黄色波長)の蛍光16を発光する。また、励起光14は、波長変換素子60の照射表面に当たって拡散反射光17ともなる。波長変換素子60は、分割面62上の放物面の焦点の位置に配置される。波長変換素子60が、放物面ミラーの焦点の位置にあるので、波長変換素子60から出射された蛍光16、拡散反射光17はリフレクタ61へ当たって反射すると、一様に出射面63に直進する。蛍光16と拡散反射光17とが混ざり合った白色光が平行光として出射面63から出射する。
 本実施形態7において、図15に開示した放物面の焦点に配置した波長変換素子60は、実施形態1にかかる波長変換素子1aを用いることが好ましい。波長変換素子1aを実施形態6に適用することにより、従来よりも更に高い発光効率が可能となる。
  (他の実施形態との組み合わせ)
 他の好ましい実施形態では、実施形態1にかかる波長変換素子1c~1e、実施形態2にかかる波長変換素子2a~2b、実施形態3にかかる波長変換素子3a~3b、実施形態4にかかる波長変換素子4a~4c、実施形態5にかかる波長変換素子5a~5f、実施形態6にかかる波長変換素子101a,102a,102b,103a,103b,104a,104b,104c,105a,105b,105c,105d,105e,105fを用いることができる。
 〔実施形態8〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
  (光源装置の構成)
 図16に本発明の実施形態8に係る光源装置7を模式的に示した概略図を示す。光源装置7は、透過型照明装置であり、好ましくは透過型レーザヘッドライトである。
 透過型の灯具では、基板側から励起光14を照射して蛍光発光させる。図16では、透過性ヒートシンク基板71の上に波長変換素子70が配置された一例を示す。蛍光層が配置された面とは反対側の透過性ヒートシンク基板71の面から励起光14を照射させる。透過性ヒートシンク基板71はヒートシンク機能を備えているのが好ましい。透過型のヒートシンク基板71に蛍光層が堆積している場合、ヒートシンク側から励起光が入射すると、ヒートシンク側は放熱性が高いことが知られている。
 波長変換素子70で発光した光は、入射光側と対向する面から蛍光を出射し、放物面72で反射され指向性をもって出射される。
 本実施形態8において、図16に開示した波長変換素子70は、実施形態1にかかる波長変換素子1aを用いることが好ましい。波長変換素子1aを実施形態8に適用することにより、従来よりも更に高い発光効率が可能となる。
  (他の実施形態との組み合わせ)
 他の好ましい実施形態では、図12に開示した透過性ヒートシンク基板71は、実施形態1にて説明した図3に示したような溝が形成された基板33a乃至33cを適用することができる。
 他の好ましい実施形態では、本実施形態8において、図16に開示した波長変換素子70は、実施形態1にかかる波長変換素子1c~1e、実施形態2にかかる波長変換素子2a~2b、実施形態3にかかる波長変換素子3a~3b、実施形態4にかかる波長変換素子4a~4c、実施形態5にかかる波長変換素子5a~5f、実施形態6にかかる波長変換素子101a,102a,102b,103a,103b,104a,104b,104c,105a,105b,105c,105d,105e,105fを用いることができる。
 〔実施形態9〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
  (光源装置の構成)
 図17の(a)に本発明の実施形態9に係る表示装置8の概略図を示す。光源装置8は、好ましくは、蛍光ホイール141を備えたプロジェクターなどに用いられる。
 励起光源15は、蛍光層148を励起する波長の励起光14を出射する青色レーザ光源であることが好ましい。好ましい実施形態では、YAG、LuAG等の蛍光体を励起する青色レーザダイオードが用いられる。蛍光層148を照射する励起光14は、光路上にてレンズ143、144a、144bを通過することができる。励起光14の光路上にミラー145が配置されてもよい。ミラー145はダイクロイックミラーであることが好ましい。
  (蛍光ホイールの構成)
 図17の(b)に表示装置8に実装できる蛍光ホイール141の概略平面図(xy平面)を示す。図17の(c)に表示装置8に実装できる蛍光ホイール141の概略側面図(xz平面)を示す。
 蛍光層148は蛍光ホイール141上に配置される。好ましい実施形態では、蛍光ホイール141の表面上の周辺部の少なくとも一部に蛍光層148が堆積される。蛍光ホイール141はホイール固定具146で、駆動装置142の回転軸147に固定される。駆動装置142は好ましくはモータであり、モータの回転シャフトである回転軸147に固定具146で固定された蛍光ホイール141がモータの回転に伴い回転する。
 蛍光ホイール141の表面上の周辺部の少なくとも一部に堆積された蛍光層148が、励起光14を受けて蛍光16を発光し、ミラー145を透過して蛍光16を出射する。蛍光層148は、蛍光ホイール141の回転に伴い回転するため随時回転しながら、蛍光16を出射する。
 本実施形態9において、図17の(b),(c)に開示した蛍光層148は、実施形態1にかかる波長変換素子1a(蛍光層19a)を用いることが好ましい。波長変換素子1aを実施形態9に適用することにより、従来よりも更に高い発光効率が可能となる。
  (他の実施形態との組み合わせ)
 他の好ましい実施形態では、図17に開示した蛍光ホイール141の基板は、実施形態1にて説明した図3に示したような溝が、蛍光ホイール141の表面上の周辺部に沿って形成された基板33a乃至33cを適用することができる。
 他の好ましい実施形態では、本実施形態9において、図17の(b),(c)に開示した蛍光層148は、実施形態1にかかる波長変換素子1c~1e、実施形態2にかかる波長変換素子2a~2b、実施形態3にかかる波長変換素子3a~3b、実施形態4にかかる波長変換素子4a~4c、実施形態5にかかる波長変換素子5a~5f、実施形態6にかかる波長変換素子101a,102a,102b,103a,103b,104a,104b,104c,105a,105b,105c,105d,105e,105fにおける蛍光層を用いることができる。
 〔実施形態10〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
  (光源装置の構成)
 図18に本発明の実施形態10に係る光源装置9の概略断面図を示す。光源装置9は、照明装置であり、好ましくは砲弾型発光ダイオード(LED)である。
 光源装置9は、一対の電極端子を構成するリードワイヤ154と、励起光14を発光し一対のリードワイヤ154と電気的に接続された励起光源と、を備える。励起光源は、発光ダイオード(LED)素子153であるのが好ましい。
 図18に示すように、一対のリードワイヤ154のうちの一方に設けられた凹部底面に発光ダイオード(LED)素子153がその主たる発光方位を上向きにして配置される。凹部底面に配置された発光ダイオード(LED)素子153の外周をすり鉢状の斜面で囲うように凹部が形成されるのが好ましい。凹部底面に配置された発光ダイオード(LED)素子153を覆うように波長変換素子が凹部に設けられる。波長変換素子の蛍光層151は、第1の面(底面)側から励起光14が照射され、第1の面に対向する第2の面から蛍光16を取り出す。
 図18に示すように、リードワイヤに形成された凹部を覆うように、蛍光層151の第2の面(上面)の上に樹脂152でパッケージされる。
 本実施形態10において、図18に開示した蛍光層151は、実施形態1にかかる波長変換素子1a(蛍光層19a)を用いることが好ましい。波長変換素子1aを実施形態10に適用することにより、従来よりも更に高い発光効率が可能となる。
  (他の実施形態との組み合わせ)
 他の好ましい実施形態では、本実施形態10において、図18に開示した蛍光層151は、実施形態2にかかる波長変換素子2a~2b、実施形態3にかかる波長変換素子3a~3b、実施形態4にかかる波長変換素子4a~4c、実施形態5にかかる波長変換素子5a~5f、実施形態6にかかる波長変換素子101a,102a,102b,103a,103b,104a,104b,104c,105a,105b,105c,105d,105e,105fにおける蛍光層を用いることができる。
 〔まとめ〕
 本発明の態様1に係る波長変換素子は、入射光の波長域を入射光の波長域とは異なる波長域に変換する波長変換素子であって、第1のバインダ内に第1の粒子と、前記第1の粒子より小さい第2の粒子とが分散した蛍光層を備え、前記第1の粒子は、前記入射光の波長に対して蛍光特性を備え、前記蛍光層における前記第1の粒子および前記第2の粒子を包含する粒子群の体積に対する前記第1のバインダの体積の比率が10%以上50%未満である構成である。
 本発明の態様1によれば、蛍光層の発光効率を向上させることができる。
 本発明の態様2に係る波長変換素子は、上記の態様1において、前記第1のバインダの熱伝導率が、前記第1の粒子および前記第2の粒子の熱伝導率よりも大きい構成としてもよい。
 本発明の態様2によれば、蛍光層の温度上昇を低減することができ、蛍光層の発光効率を向上させることができる。
 本発明の態様3に係る波長変換素子は、上記の態様1または2において、前記第2の粒子は、前記入射光の波長に対して蛍光特性を備える構成としてもよい。
 本発明の態様3によれば、蛍光層の蛍光体粒子の充填率が向上し、蛍光層の発光効率を向上させることができる。
 本発明の態様4に係る波長変換素子は、上記の態様1から3のいずれか一項において、前記第1の粒子および前記第2の粒子は、発光中心元素がドープされた蛍光体から構成され、前記第1の粒子にドープされる発光中心原子の濃度が、前記第2の粒子にドープされる発光中心原子の濃度と異なる構成としてもよい。
 本発明の態様4によれば、蛍光層の蛍光体粒子の温度上昇を制御することができ、蛍光層の発光効率を向上させることができる。
 本発明の態様5に係る波長変換素子は、上記の態様1から4のいずれか一項において、前記第1のバインダ内に前記第1の粒子より小さい第3の粒子が更に分散し、前記第3の粒子は、前記入射光の波長に対して散乱特性を備え、前記粒子群が更に、前記第3の粒子を包含する構成としてもよい。
 本発明の態様5によれば、蛍光層からの蛍光取り出し効率が向上し、蛍光層の発光効率を向上させることができる。
 本発明の態様6に係る波長変換素子は、上記の態様1または2において、前記第2の粒子は、前記入射光の波長に対して散乱特性を備える構成としてもよい。
 本発明の態様6によれば、蛍光層からの蛍光取り出し効率が向上し、蛍光層の発光効率を向上させることができる。
 本発明の態様7に係る波長変換素子は、上記の態様5または6において、前記入射光の波長に対して散乱特性を備えた粒子の平均粒径が、前記入射光の波長よりも小さい構成としてもよい。
 本発明の態様7によれば、散乱粒子の散乱特性が向上し、蛍光層の発光効率を向上させることができる。
 本発明の態様8に係る波長変換素子は、上記の態様1から7のいずれか一項において、前記第1のバインダ内に前記第1の粒子より小さい第4の粒子が更に分散し、前記第4の粒子は、前記入射光の波長を受けて前記第1の粒子が放射する波長とは異なる波長に変換する蛍光特性を備え、前記粒子群が更に、前記第4の粒子を包含する構成としてもよい。
 本発明の態様8によれば、蛍光層の蛍光体粒子の温度上昇を制御しつつ、蛍光層からの蛍光取り出し効率が向上し、蛍光層の発光効率を向上させることができる。
 本発明の態様9に係る波長変換素子は、上記の態様1から8のいずれか一項において、前記蛍光層が下位層に面するように配置され、前記下位層と前記蛍光層との間に配置された散乱層を更に備え、前記散乱層は、第2のバインダと、前記第2のバインダ内に分散した散乱特性を備えた粒子と、を含み、前記散乱特性を備えた粒子は、前記蛍光特性を備えた粒子、前記第1のバインダ、および前記第2のバインダよりも屈折率が高いことを特徴とする構成としてもよい。
 本発明の態様9によれば、励起光の光路長が伸びるため、励起光の利用効率を向上させることができる。
 本発明の態様10に係る波長変換素子は、上記の態様1から9のいずれか一項において、前記第1のバインダが、アルミニウム化合物を主成分とする構成としてもよい。
 本発明の態様10によれば、効率的に熱を移動させることができるため波長変換素子の放熱性を向上させることができる。
 本発明の態様11に係る光源装置は、上記の態様1から10のいずれか一項に記載の波長変換素子と、前記波長変換素子に入射光を射出する光源と、を備える構成としてもよい。
 本発明の態様11によれば、蛍光層の発光効率が向上した光源装置を提供することができる。
 本発明の態様12に係る車両用前照灯具は、上記の態様11に記載の光源装置と、前記波長変換素子から出射した蛍光を反射させる反射面を有するリフレクタと、を備え、前記リフレクタの反射面が、前記波長変換素子から出射した蛍光を一定方向に平行に出射するように反射させる構成としてもよい。
 本発明の態様12によれば、蛍光層の発光効率が向上した反射型車両用前照灯具を提供することができる。
 本発明の態様13に係る透過型照明装置は、上記の態様11に記載の光源装置と、前記波長変換素子を配置する透過性基板と、を備え、前記透過性基板は、前記光源が照射される照射面と、前記照射面と対向する面とを有し、前記透過性基板の照射面と対向する面に前記波長変換素子が配置され、前記光源が、前記透過性基板を介して前記波長変換素子に入射光を照射し、前記蛍光層が、入射光側と対向する面から蛍光を出射する構成としてもよい。
 本発明の態様13によれば、蛍光層の発光効率が向上した透過型照明装置を提供することができる。
 本発明の態様14に係る表示装置は、入射光を射出する光源と、前記光源から出射された入射光が通過する周方向の少なくとも一部に、上記の態様1から10のいずれか一項に記載の波長変換素子が敷設された蛍光ホイールと、前記蛍光ホイールを回転させる駆動装置と、を備え、前記蛍光ホイールの回転に伴い、少なくとも前記波長変換素子の表面に入射光が入射した際に、蛍光を出射する構成としてもよい。
 本発明の態様14によれば、蛍光層の発光効率が向上した表示装置を提供することができる。
 本発明の態様15に係る照明装置は、一対の電極端子と、入射光を発光し、前記一対の電極端子と電気的に接続された光源と、上記の態様1から10の何れか一項に記載の波長変換素子と、を備え、前記一対の電極端子の一方に設けられた凹部底面に前記光源がその主たる発光方位を上向きにして配置され、前記凹部底面に配置された前記光源の外周をすり鉢状の斜面で囲うように前記凹部が形成され、前記光源を覆うように前記波長変換素子が前記凹部に設けられ、前記蛍光層が、厚さ方向において互いに反対側にある第1の面と第2の面とを有し、前記第1の面が前記光源側に面し、前記第1の面側から入射光が照射されることにより前記第2の面より蛍光が出射される構成としてもよい。
 本発明の態様15によれば、蛍光層の発光効率が向上した照明装置を提供することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明の態様16に係る波長変換素子は、上記の態様1において、前記第1のバインダの熱伝導率が、空隙の熱伝導率よりも大きい構成としてもよい。
 本発明の態様16によれば、蛍光層の温度上昇を低減することができ、蛍光層の発光効率を向上させることができる。
 本発明の態様17に係る波長変換素子は、上記の態様1から9のいずれか一項において、前記第2のバインダが、アルミニウム化合物を主成分とする構成としてもよい。
 本発明の態様17によれば、効率的に熱を移動させることができるため波長変換素子の放熱性を向上させることができる。

Claims (15)

  1.  入射光の波長域を入射光の波長域とは異なる波長域に変換する波長変換素子であって、
     第1のバインダ内に第1の粒子と、前記第1の粒子より小さい第2の粒子とが分散した蛍光層を備え、
     前記第1の粒子は、前記入射光の波長に対して蛍光特性を備え、
     前記蛍光層における前記第1の粒子および前記第2の粒子を包含する粒子群の体積に対する前記第1のバインダの体積の比率が10%以上50%未満であることを特徴とする波長変換素子。
  2.  前記第1のバインダの熱伝導率が、前記第1の粒子および前記第2の粒子の熱伝導率よりも大きいことを特徴とする請求項1に記載の波長変換素子。
  3.  前記第2の粒子は、前記入射光の波長に対して蛍光特性を備えることを特徴とする請求項1または2に記載の波長変換素子。
  4.  前記第1の粒子および前記第2の粒子は、発光中心元素がドープされた蛍光体から構成され、
     前記第1の粒子にドープされる発光中心原子の濃度が、前記第2の粒子にドープされる発光中心原子の濃度と異なることを特徴とする請求項1から3のいずれか一項に記載の波長変換素子。
  5.  前記第1のバインダ内に前記第1の粒子より小さい第3の粒子が更に分散し、
     前記第3の粒子は、前記入射光の波長に対して散乱特性を備え、
     前記粒子群が更に、前記第3の粒子を包含することを特徴とする請求項1から4のいずれか一項に記載の波長変換素子。
  6.  前記第2の粒子は、前記入射光の波長に対して散乱特性を備えることを特徴とする請求項1または2に記載の波長変換素子。
  7.  前記入射光の波長に対して散乱特性を備えた粒子の平均粒径が、前記入射光の波長よりも小さいことを特徴とする請求項5または6に記載の波長変換素子。
  8. 前記第1のバインダ内に前記第1の粒子より小さい第4の粒子が更に分散し、
     前記第4の粒子は、前記入射光の波長を受けて前記第1の粒子が放射する波長とは異なる波長に変換する蛍光特性を備え、
     前記粒子群が更に、前記第4の粒子を包含することを特徴とする請求項1から7のいずれか一項に記載の波長変換素子。
  9.  前記蛍光層が下位層に面するように配置され、
     前記下位層と前記蛍光層との間に配置された散乱層を更に備え、
     前記散乱層は、第2のバインダと、前記第2のバインダ内に分散した散乱特性を備えた粒子と、を含み、
     前記散乱特性を備えた粒子は、前記蛍光特性を備えた粒子、前記第1のバインダ、および前記第2のバインダよりも屈折率が高いことを特徴とする請求項1~8の何れか一項に記載の波長変換素子。
  10.  前記第1のバインダが、アルミニウム化合物を主成分とすることを特徴とする請求項1~9の何れか一項に記載の波長変換素子。
  11.  請求項1から10のいずれか一項に記載の波長変換素子と、
     前記波長変換素子に入射光を射出する光源と、
    を備えることを特徴とする光源装置。
  12.  請求項11に記載の光源装置と、
     前記波長変換素子から出射した蛍光を反射させる反射面を有するリフレクタと、
    を備え、
     前記リフレクタの反射面が、前記波長変換素子から出射した蛍光を一定方向に平行に出射するように反射させることを特徴とする車両用前照灯具。
  13.  請求項11に記載の光源装置と、
     前記波長変換素子を配置する透過性基板と、
    を備え、
     前記透過性基板は、前記光源が照射される照射面と、前記照射面と対向する面とを有し、
     前記透過性基板の照射面と対向する面に前記波長変換素子が配置され、
     前記光源が、前記透過性基板を介して前記波長変換素子に入射光を照射し、
     前記蛍光層が、入射光側と対向する面から蛍光を出射することを特徴とする透過型照明装置。
  14.  入射光を射出する光源と、
     前記光源から出射された入射光が通過する周方向の少なくとも一部に、請求項1から10のいずれか一項に記載の波長変換素子が敷設された蛍光ホイールと、
     前記蛍光ホイールを回転させる駆動装置と、
    を備え、
     前記蛍光ホイールの回転に伴い、少なくとも前記波長変換素子の表面に入射光が入射した際に、蛍光を出射することを特徴とする表示装置。
  15.  一対の電極端子と、
     入射光を発光し、前記一対の電極端子と電気的に接続された光源と、
     請求項1から10の何れか一項に記載の波長変換素子と、
    を備え、
     前記一対の電極端子の一方に設けられた凹部底面に前記光源がその主たる発光方位を上向きにして配置され、前記凹部底面に配置された前記光源の外周をすり鉢状の斜面で囲うように前記凹部が形成され、
     前記光源を覆うように前記波長変換素子が前記凹部に設けられ、
     前記蛍光層が、厚さ方向において互いに反対側にある第1の面と第2の面とを有し、
     前記第1の面が前記光源側に面し、
     前記第1の面側から入射光が照射されることにより前記第2の面より蛍光が出射されることを特徴とする照明装置。
PCT/JP2020/003686 2019-02-06 2020-01-31 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置 WO2020162357A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080012551.3A CN113396201A (zh) 2019-02-06 2020-01-31 波长变换元件、光源装置、车辆用前照灯具、透射型照明装置、显示装置以及照明装置
US17/428,250 US20220136679A1 (en) 2019-02-06 2020-01-31 Wavelength conversion element, light source device, vehicle headlight, transmissive lighting device, display device, and lighting device
JP2020571165A JPWO2020162357A1 (ja) 2019-02-06 2020-01-31 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019019794 2019-02-06
JP2019-019794 2019-02-06

Publications (1)

Publication Number Publication Date
WO2020162357A1 true WO2020162357A1 (ja) 2020-08-13

Family

ID=71947995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003686 WO2020162357A1 (ja) 2019-02-06 2020-01-31 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置

Country Status (4)

Country Link
US (1) US20220136679A1 (ja)
JP (1) JPWO2020162357A1 (ja)
CN (1) CN113396201A (ja)
WO (1) WO2020162357A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075293A1 (ja) * 2020-10-06 2022-04-14 シャープ株式会社 波長変換素子、光学機器及び波長変換素子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022039095A (ja) * 2020-08-27 2022-03-10 セイコーエプソン株式会社 蛍光体粒子、波長変換素子、光源装置、蛍光体粒子の製造方法、波長変換素子の製造方法、及びプロジェクター

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243727A (ja) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd 発光装置
WO2017077739A1 (ja) * 2015-11-04 2017-05-11 シャープ株式会社 発光体、発光装置、照明装置、および発光体の製造方法
JP2017191280A (ja) * 2016-04-15 2017-10-19 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
JP2017215507A (ja) * 2016-06-01 2017-12-07 キヤノン株式会社 波長変換素子、光源装置および画像投射装置
JP2017215568A (ja) * 2016-05-31 2017-12-07 キヤノン株式会社 波長変換素子、光源装置および画像投射装置
JP2019045778A (ja) * 2017-09-06 2019-03-22 セイコーエプソン株式会社 波長変換素子、光源装置およびプロジェクター
WO2019230935A1 (ja) * 2018-05-31 2019-12-05 シャープ株式会社 波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254723A (ja) * 2006-02-23 2007-10-04 Fujifilm Corp Eu含有無機化合物、これを含む発光性組成物と発光体、固体レーザ装置、発光装置
JP2014207436A (ja) * 2013-03-18 2014-10-30 日本碍子株式会社 波長変換体
CN106206904B (zh) * 2015-04-29 2019-05-03 深圳光峰科技股份有限公司 一种波长转换装置、荧光色轮及发光装置
US11242963B2 (en) * 2016-03-31 2022-02-08 Sony Corporation Light source device and electronic apparatus
CN107304984B (zh) * 2016-04-22 2020-06-09 松下电器产业株式会社 波长转换部件以及投光灯
WO2017188191A1 (ja) * 2016-04-25 2017-11-02 日本特殊陶業株式会社 波長変換部材、その製造方法および発光装置
CN107450261B (zh) * 2016-05-31 2021-02-05 佳能株式会社 波长转换元件、光源装置和图像投影装置
CN108300473A (zh) * 2016-08-10 2018-07-20 深圳市光峰光电技术有限公司 一种波长转换装置及其制备方法、发光装置和投影装置
US11429015B2 (en) * 2018-03-06 2022-08-30 Sony Corporation Light-emitting element, light source device and projector
CN112236706B (zh) * 2018-04-28 2024-01-16 美题隆精密光学(上海)有限公司 高效且均匀的激光激发式白光生成器
JP7369724B2 (ja) * 2018-07-27 2023-10-26 マテリオン コーポレイション 蛍光体照明システムのための反射色補正

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243727A (ja) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd 発光装置
WO2017077739A1 (ja) * 2015-11-04 2017-05-11 シャープ株式会社 発光体、発光装置、照明装置、および発光体の製造方法
JP2017191280A (ja) * 2016-04-15 2017-10-19 セイコーエプソン株式会社 波長変換素子、照明装置およびプロジェクター
JP2017215568A (ja) * 2016-05-31 2017-12-07 キヤノン株式会社 波長変換素子、光源装置および画像投射装置
JP2017215507A (ja) * 2016-06-01 2017-12-07 キヤノン株式会社 波長変換素子、光源装置および画像投射装置
JP2019045778A (ja) * 2017-09-06 2019-03-22 セイコーエプソン株式会社 波長変換素子、光源装置およびプロジェクター
WO2019230935A1 (ja) * 2018-05-31 2019-12-05 シャープ株式会社 波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Catalogue of adhesives", TAOGOSEI, April 2016 (2016-04-01), pages 1 - 4, XP055731114, Retrieved from the Internet <URL:http://www.toagosei.co.jp/products/functional/catalog/pdf/index_pdf_04.pdf> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075293A1 (ja) * 2020-10-06 2022-04-14 シャープ株式会社 波長変換素子、光学機器及び波長変換素子の製造方法

Also Published As

Publication number Publication date
JPWO2020162357A1 (ja) 2021-12-09
US20220136679A1 (en) 2022-05-05
CN113396201A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
US8872208B2 (en) Light source device and lighting device
US6653765B1 (en) Uniform angular light distribution from LEDs
JP5261380B2 (ja) 発光装置
TWI392829B (zh) 產生白光之螢光照明
WO2012124587A1 (ja) 波長変換部材およびその製造方法、ならびに、発光装置、照明装置および前照灯
JP5598974B2 (ja) 照明装置
JP6644081B2 (ja) 発光装置、照明装置、および発光装置が備える発光体の製造方法
JP2016021582A (ja) 発光モジュール
WO2012128384A1 (ja) 発光装置、照明装置および前照灯
KR20140053837A (ko) 원거리 광발광 반사 변환기를 구비하는 led 백색광원
WO2020162357A1 (ja) 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置
JP5675248B2 (ja) 光源装置および照明装置
JP6125666B2 (ja) 発光装置
JP6997869B2 (ja) 波長変換素子および光源装置
JP2012243618A (ja) 光源装置および照明装置
US11506360B2 (en) Optical element and optical device
WO2019230935A1 (ja) 波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置
JP5781367B2 (ja) 光源装置および照明装置
JP2017025167A (ja) 発光体、光源装置および照明装置
WO2020090663A1 (ja) 光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置
WO2021111724A1 (ja) 波長変換素子、波長変換装置および発光システム
JP2014026837A (ja) 照明装置、前照灯、投影装置、屋内照明および屋外照明
JP2013161889A (ja) 発光装置、車両用前照灯および発光装置の色み調整方法
WO2019230936A1 (ja) 光学素子、車両用前照灯具、光源装置、および投影装置
WO2020189405A1 (ja) 光学素子、車両用前照灯具、光源装置、および投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752710

Country of ref document: EP

Kind code of ref document: A1