WO2020087328A1 - 光电探测器芯片、光接收及收发组件、光模块及通讯设备 - Google Patents

光电探测器芯片、光接收及收发组件、光模块及通讯设备 Download PDF

Info

Publication number
WO2020087328A1
WO2020087328A1 PCT/CN2018/112927 CN2018112927W WO2020087328A1 WO 2020087328 A1 WO2020087328 A1 WO 2020087328A1 CN 2018112927 W CN2018112927 W CN 2018112927W WO 2020087328 A1 WO2020087328 A1 WO 2020087328A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
semiconductor light
layer
optical
photodetector chip
Prior art date
Application number
PCT/CN2018/112927
Other languages
English (en)
French (fr)
Inventor
程远兵
王衡
戴竞
董英华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021547615A priority Critical patent/JP7204933B2/ja
Priority to CN201880098703.9A priority patent/CN112913158B/zh
Priority to PCT/CN2018/112927 priority patent/WO2020087328A1/zh
Priority to KR1020217014832A priority patent/KR102499111B1/ko
Publication of WO2020087328A1 publication Critical patent/WO2020087328A1/zh
Priority to US17/243,656 priority patent/US20210249835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5045Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement having a frequency filtering function
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the invention relates to the technical field of optical communication, in particular to a photodetector chip, an optical receiving component, an optical transceiver component, an optical module and a communication device.
  • the high-speed optical receiving group device is an important part of the data transmission network, and is mainly used to realize the optical receiving and photoelectric conversion of the optical module.
  • the photodetector chip is an important element of the optical receiver device.
  • the high-speed and large-capacity transmission network is mainly realized by increasing the single-channel modulation rate, but the optical receiver device is limited by the large excess noise introduced by the large modulation bandwidth, and it is difficult to meet the requirement of high sensitivity.
  • An embodiment of the present application provides a photodetector chip, which can reduce the ASE noise introduced by the amplifier while obtaining a larger gain effect, and thereby improve the sensitivity of the light receiving component.
  • Embodiments of the present application also provide an optical receiving component, an optical transceiver component, an optical module, and communication equipment.
  • a monolithic integrated light-receiving chip including a substrate, a semiconductor light amplification portion including a substrate or an amplification portion, and a photodetection portion, the substrate including a surface; the photodetection portion and the semiconductor light
  • the amplification part is horizontally integrated on the surface of the substrate; the photodetection part is located in the light exit direction of the semiconductor light amplification part;
  • the semiconductor optical amplifying part amplifies and filters the input optical signal, and outputs the amplified and filtered optical signal to the photoelectric detection part;
  • the photoelectric detection part is used to convert the amplified and filtered optical signal into an electrical signal
  • the semiconductor light amplification part includes a grating, the grating includes a first grating and a second grating, the first grating and the second grating are cascaded in sequence along the light exit direction, and the first grating is an inclined grating ;
  • the first grating and the second grating are used to filter the optical signal that enters the semiconductor light amplifying portion to pass light of a specific wavelength and simultaneously filter light of other wavelengths.
  • a high preamplification gain is achieved by monolithically integrating the semiconductor light amplification part and the photodetection part; and two cascaded first gratings and The second grating constitutes the function of a bandpass filter to filter the optical signal passing through the semiconductor optical amplification part, ensuring high gain while reducing the noise of the amplified spontaneous emission (ASE) brought by the high gain of the semiconductor optical amplification part, and improving The sensitivity of the photodetector chip.
  • ASE amplified spontaneous emission
  • the period of the first grating is different from the period of the second grating.
  • the bandpass wavelength width of the grating filter is adjusted by controlling the grating periods of the first grating and the second grating. At the same time, it is possible to increase the band gap of the band-pass filter and increase the contrast of the filter by increasing the grating coupling strength.
  • the first grating is disposed obliquely with respect to the light exit direction in a direction perpendicular to the surface of the substrate.
  • the first grating is used as an example.
  • the shading line of the first grating is strip-shaped and has a rectangular cross-section. It includes two opposite side surfaces and parallel surfaces connecting the two side surfaces. The side surfaces are parallel to each other and are inclined relative to the light exit direction.
  • the light exit direction can be regarded as the waveguide direction of the semiconductor light amplification part. Increase the emission area to achieve the passage of the wave in the specific frequency band while shielding the waves in other frequency bands.
  • the cross section of the first grating along the waveguide direction is a periodically arranged parallelogram
  • one grating period includes a parallelogram composed of a high refractive index material and a connected parallelogram composed of a low refractive index material, and this
  • the two parallelogram sides are parallel, and the two sides are parallel to each other and inclined with respect to the waveguide direction of the semiconductor light amplification part
  • the first grating is tilted relative to the light exit direction on a plane parallel to the surface of the substrate.
  • the second grating is an inclined grating or a non-inclined grating.
  • the second grating is inclined relative to the light exit direction in a direction perpendicular to or parallel to the surface of the substrate, and the inclination angle is 2-10 degrees.
  • the first grating is inclined on the plane parallel to the active layer of the semiconductor light amplification part and in the direction perpendicular to the surface of the substrate compared to the waveguide direction of the semiconductor light amplification part Settings.
  • the second grating is inclinedly arranged on the plane parallel to the active layer of the semiconductor light amplifying part and in the direction perpendicular to the surface of the substrate compared to the waveguide direction of the semiconductor light amplifying part.
  • the tilt angle of the first grating is 2-10 degrees.
  • the reflected light of the grating cannot be coupled into the detector waveguide of the semiconductor light amplification part, so as to realize the passage of the light of the specific wavelength and at the same time filter out the light of other wavelengths.
  • the distance between the first grating and the second grating is an integer multiple of the length of the first grating and an integer multiple of the length of the second grating.
  • the first grating and the second grating are cascaded in sequence.
  • the first grating and the second grating are located above or below the active layer of the semiconductor light amplifying part; the first grating and the second grating and the grating
  • the vertical distance between the active layers of the semiconductor light amplification part is less than 1000 nm.
  • the thickness of the first grating and the second grating is 10 to 500 nanometers, and is made of one of InGaAsP, Si, GeSi or InGaN.
  • the semiconductor light amplifying part is directly connected to the photodetection part, (it can be understood that the semiconductor light amplifying part includes a first coupling end, the photodetector includes a second coupling end, and the first coupling end Directly connected to the second coupling end) so that the optical signal amplified by the semiconductor optical amplification section is directly coupled into the photodetection section to ensure that the optical signal amplified by the semiconductor optical amplification section is directly coupled into the Photoelectric detection part coupling efficiency.
  • the waveguide width of the semiconductor light amplification part gradually decreases from the coupling end on the light entrance side to the photodetection part, and the waveguide width of the photodetection part gradually increases toward the coupling direction of the semiconductor light amplification part on the light entrance side, to Ensure the optical coupling efficiency of the photodetection part of the semiconductor optical amplification part.
  • the photodetector chip includes a passive waveguide, and the optical signal amplified by the semiconductor optical amplification part is coupled into the waveguide of the photodetection part through the passive waveguide; along the optical transmission direction, the passive waveguide
  • the width of the layered waveguide gradually increases, so that the optical power entering the passive waveguide gradually increases.
  • the passive waveguide layer is provided between the semiconductor light amplifying part and the photodetection part, and the first and second coupling surfaces of the passive optical waveguide are the semiconductor light amplifying part and the photodetection part
  • the connection is aligned, and the size of the waveguide in the first coupling plane matches the cross-sectional size of the waveguide of the semiconductor optical amplification section to reduce the mode mismatch.
  • the size of the waveguide in the second coupling plane and the size of the photodetection section The waveguide sizes are matched to reduce the mode mismatch, so as to improve the coupling efficiency of the semiconductor optical amplifying part and the photodetection part.
  • the band gap wavelength of the passive waveguide is smaller than the band gap wavelength of the active layer of the semiconductor optical amplification part, and the difference is at least 150 nm; it is ensured that the light transmission loss is sufficiently small.
  • the photodetector chip includes a diluted waveguide layer perpendicular to the surface direction of the substrate, and the diluted waveguide layer is located below the active layer of the semiconductor light amplification part and the active layer of the photodetection part and Located above the surface semiconductor substrate, the main role of the diluted waveguide layer is to expand the fundamental transverse mode spot of the semiconductor optical amplification section, reduce the mode mismatch between the single-mode optical fiber and the semiconductor optical amplification section, thereby increasing the optical coupling efficiency .
  • the diluted waveguide can also be used to couple the optical signal amplified by the semiconductor optical amplification portion into the photodetection portion through the diluted waveguide layer.
  • the diluted waveguide layer is composed of two or more materials with alternating refractive indices.
  • the photodetector chip includes a passive waveguide layer or a diluted waveguide layer
  • the passive waveguide layer or the diluted waveguide layer is formed on the substrate, the semiconductor light amplifying portion and the active layer of the detector under. Further, along the light transmission direction, the waveguide width of the semiconductor light amplifying portion gradually becomes smaller, and the waveguide width of the photodetection portion gradually increases. In order to achieve a coupling matching degree between the semiconductor light amplification part and the photodetection part.
  • the photodetector chip includes a first electrode layer, a second electrode layer and a third electrode layer and an isolation groove, which is perpendicular to the surface direction of the substrate, and the first electrode layer is located in the semiconductor light amplifying part
  • the second electrode layer is located on the top of the photodetection portion
  • the third electrode layer is located on the outer surface of the substrate facing away from the semiconductor light amplification portion
  • the isolation groove is located on the first electrode layer And the second electrode layer to isolate the first electrode and the second electrode layer.
  • the isolation groove is used to insulate the first electrode and the second electrode to reduce electrical crosstalk of the photodetector chip.
  • the length of the semiconductor light amplification part is 50-800 microns
  • the length of the isolation groove is 20 microns
  • the length of the photodetection part is 5-100 microns.
  • the semiconductor optical amplifying part includes a first confinement layer, an active layer and a second confinement layer which are sequentially stacked, and the photodetection part includes a third confinement layer, an active layer and a Four confinement layers.
  • the active layer of the semiconductor light amplification part is coupled with the active layer of the photodetection part.
  • the present application provides a light receiving assembly including a receiving base and the photodetector chip, the photodetector chip is packaged on the receiving base.
  • the present application provides an optical transceiver component, including a base, an optical transmitter, and the optical receiving component.
  • the optical transmitter and the optical receiving component are packaged on the base.
  • the present application provides an optical module, which includes a circuit board and the optical transceiver assembly provided on the circuit board.
  • the present application provides a communication device including a main board and the optical module plugged in the main board.
  • the communication device is an optical line terminal OLT or an optical network unit ONU.
  • two cascaded first gratings and second gratings are provided in the semiconductor light amplifying part to form the function of a band-pass filter to filter the optical signal passing through the semiconductor light amplifying part, While ensuring high gain, the noise of the amplified spontaneous emission (ASE) caused by the high gain of the semiconductor optical amplification part is reduced, and the sensitivity of the photodetector chip is improved.
  • ASE amplified spontaneous emission
  • FIG. 1 is a schematic structural diagram of a photodetector chip provided by an embodiment of the present application, in which a cross-sectional view of a portion of a semiconductor light amplification section is shown, and the cross-section is a cross-section perpendicular to a waveguide direction;
  • FIG. 2 is a partial cross-sectional view of the photodetector chip shown in FIG. 1 showing the photodetection portion, the cross-section being perpendicular to the direction of the waveguide;
  • FIG. 3 is a schematic cross-sectional view of the first embodiment of the grating of the photodetector chip shown in FIG. 1 along the waveguide direction;
  • FIG. 4 is a schematic cross-sectional view of the photodetector chip shown in FIG. 1 including the grating shown in FIG. 3 at another angle along the direction of the waveguide;
  • 5 and 6 are schematic cross-sectional views of the second embodiment of the grating of the photodetector chip shown in FIG. 1 at two different angles along the waveguide direction;
  • FIG. 7 is a schematic cross-sectional view of a second embodiment of the photodetector chip of the present application, which is different from the first embodiment of FIG. 1 in the coupling mode of the semiconductor light amplification portion and the photodetection portion;
  • FIG. 8 is a schematic cross-sectional view of a third embodiment of the photodetector chip of the present application. The difference from the first embodiment of FIG. 1 is the coupling mode of the semiconductor light amplifying portion and the photodetecting portion.
  • an embodiment of the present application provides a photodetector chip, which is used for photoelectric signal conversion of light in a light receiving component.
  • the photodetector chip includes a substrate 10, a semiconductor light amplification portion 20, and a photodetection portion 30; the substrate 10 includes a surface 11, and the photodetection portion 30 and the semiconductor light amplification portion 20 are provided on the substrate On the bottom surface, the photodetection portion 30 is located in the light exit direction of the semiconductor light amplifying portion 20, and the integration of the photodetection portion 30 and the semiconductor light amplifying portion 20 achieves a miniaturized monolithic integration performance.
  • the semiconductor optical amplification section 20 amplifies and filters the input optical signal, and outputs the amplified and filtered optical signal to the photodetection section; the photodetection section 30 is used to apply the amplified and filtered optical signal Turn into an electrical signal.
  • the semiconductor light amplifying portion 20 includes a grating A, and the grating includes a first grating 21 and a second grating 22.
  • the first grating 21 and the second grating 22 are cascaded in sequence, the first grating 21 is an inclined grating; the first grating 21 and the second grating 22 are used for
  • the optical signal entering the semiconductor light amplifying portion 20 is filtered to pass light of a specific wavelength while filtering out light of other wavelengths.
  • a high preamplification gain is achieved by horizontally integrating the semiconductor light amplifying part 20 and the photodetecting part 30 instead of stacking vertically; and two stages are provided in the semiconductor light amplifying part 20
  • the first grating 21 and the second grating 22 are connected to form the function of a band-pass filter, which satisfies the requirement of wide incident wavelength bandwidth, and filters the optical signal passing through the semiconductor optical amplification section 20 to ensure high gain and wide incident wavelength bandwidth. Reducing the noise of the amplified spontaneous emission or ASE caused by the high gain of the semiconductor optical amplifying section 20 improves the sensitivity of the photodetector chip.
  • the period of the first grating 21 is different from the period of the second grating 22.
  • the bandpass wavelength width of the grating filter is adjusted to meet the requirement of passing a wide incident wavelength bandwidth. It is also possible to increase the band gap of the band-pass filter and increase the contrast of the filter by increasing the grating coupling factor.
  • the substrate 10 is formed of indium phosphide material.
  • the semiconductor light amplification portion 20 includes a first confinement layer 251, an active layer 25, and a second confinement layer 252 that are sequentially stacked and grown.
  • the photodetection portion 30 includes a third confinement layer 351, an active layer 35, and a fourth confinement layer 352 that are sequentially stacked and grown.
  • the active layer 25 of the semiconductor light amplification section 20 and the active layer 35 of the photodetection section are sequentially arranged and coupled in the light transmission direction, that is, horizontally integrated.
  • the semiconductor light amplification portion 20 and the photodetection portion 30 are formed on the substrate 10 by growth, that is to say, in one way, the semiconductor light amplification portion and the photodetection portion are directly connected so that The optical signal amplified by the semiconductor optical amplification part is directly coupled into the photodetection part.
  • the photodetector chip further includes a waveguide cap layer 26 that covers the second limiting layer 252 and the fourth limiting layer 352, the first limiting layer 251 and the third limiting layer 351 It is formed on the surface 11 of the substrate 10.
  • the waveguide cap layer 26 is used to form an optical transmission waveguide with the electrode layer of the chip, and is made of InP material, with a thickness of 1.5 ⁇ m to 2 ⁇ m, and a doping concentration greater than 1E18 cm ⁇ 3 .
  • a space isolation layer 261 is provided between the grating A and the second confinement layer 252 of the semiconductor light amplifying portion 20, specifically on the side of the second confinement layer 252 of the active layer 25 away from the active layer 25 And spaced apart from the second limiting layer 252 through the space isolation layer 261.
  • the grating A is a uniform grating.
  • the first grating 21 and the second grating 22 have a thickness of 10 to 500 nm, and are made of one of InGaAsP, Si, GeSi, or InGaN.
  • the first grating 21 includes a plurality of slits 211 and a light-shielding line 212 spaced between every two slits 211, and the widths of the plurality of slits 211 of the first grating 21 are the same.
  • the second grating 22 includes a plurality of slits 221 and a light-shielding line 222 spaced between every two slits.
  • the widths of the plurality of slits 222 of the second grating 22 are the same.
  • the slit 212 of the first grating 21 is larger than the slit 222 of the second grating 22, that is, the first grating 21 is larger than the grating constant of the second grating 22.
  • the grating may be in the form of a full grating or a part of the grating.
  • the full grating means that there are all light-shielding lines and slits within the length of the grating, such as forming a plurality of first gratings 21 and second gratings 22; part of the grating is the length of the grating
  • the inner part has shading lines and slits, for example, it only includes the first grating 21 and the second grating 22, the grating length is L, the length sum of the first grating 21 and the second grating 22 is L1, and there is no grating slit and L-L1 region Shading line.
  • the slit 211 refers to a portion of high refractive index material
  • the light-shielding line 212 refers to a portion of low refractive index material.
  • the grating A is stacked above or below the active layer 25 of the semiconductor light amplifying portion 20 perpendicular to the direction of the surface 11 of the substrate 10. Specifically, the grating A is stacked on the active layer 25 of the semiconductor light amplifying portion 20 toward the side of the substrate 10 or away from the side of the substrate 10 and is in contact with the semiconductor light amplifying portion
  • the active layers 25 of 20 are spaced apart; specifically, spaced by a space isolation layer 261.
  • the first grating 21 and the second grating 22 of the grating are located on the side of the active layer 25 of the semiconductor light amplifying portion 20 facing away from the surface 11 of the substrate 10 and are connected to the second The limiting layer 252 is spaced apart.
  • the space spacer layer is located between the first respective confinement layer 251 and the substrate 10 or between the upper confinement layer 252 and the waveguide cap layer 26 of the semiconductor optical amplification section 20, and the second respectively confinement layer 252 It is separated from the grating layer A by a spatial separation layer 261.
  • the waveguide cover layer 26 of the semiconductor light amplification section 20 covers the grating A.
  • the vertical distance between the first grating 21 and the second grating 22 and the active layer 25 of the semiconductor light amplifying portion 20 is less than 1000 nm.
  • the first grating 21 and the second grating 22 are enlarged relative to the semiconductor light in a direction perpendicular to the surface 11 of the substrate 10
  • the light exit direction of the portion 20 is set obliquely.
  • the first grating 21 and the second grating 22 are both inclined.
  • the first grating 21 and the second grating 22 are parallelogram-shaped in cross section along the waveguide direction, and each includes two opposite sides 2121 and The mutually parallel surfaces connecting the two side surfaces 2121, specifically the two side surfaces 2121 of the first grating 21 and the two side surfaces 2221 of the second grating 22 are parallel to each other and to the waveguide direction of the semiconductor light amplifying portion 20 ( The light exit direction) is inclined, that is, the grating is inclined; meanwhile, the first grating 21 and the second grating 22 are not inclined in the length direction.
  • the tilt angles of the first grating 21 and the second grating 22 may be the same or different.
  • the first grating 21 is an inclined grating
  • the second grating 22 is not inclined.
  • the first grating 21 and the second grating 22 are compared to the semiconductor on a plane parallel to the surface of the substrate 10
  • the light-emitting direction of the light amplifying portion 20 is arranged obliquely.
  • the high-refractive-index layer 212 of the first grating 21 and the light-shielding line 222 of the second grating 22 are strip-shaped, the lengthwise extension direction of the light-shielding line is inclined compared to the waveguide direction, and the two side surfaces 2121 of the first grating 21
  • the two sides 2212 of the second grating 22 are perpendicular to the plane where the active layer is located.
  • the second grating may not be inclined.
  • the inclination angle is 2-10 degrees, to ensure that the reflected light passing through the grating cannot be coupled into the waveguide of the semiconductor light amplifying section 20, so as to realize the Waves of a specific wavelength pass through and simultaneously filter out light of other wavelengths.
  • the size of the distance between the first grating 21 and the second grating 22 satisfies an integer multiple of the length of the first grating 21 and an integer multiple of the length of the second grating 22 to reduce The influence of phase realizes a flat reflection spectrum.
  • the performance of the band-pass filter is formed by using a cascade-tilted grating as the filter structure. Since the inclined grating is used, the reflection of the grating cannot be achieved in the cavity Satisfying the resonance condition, the function of gain clamping amplifier cannot be realized.
  • the filter width of the band-pass filter can be realized by controlling the periods of the first grating 21 and the second grating 22, and the band-gap width of the band-pass filter can also be increased by increasing the grating coupling factor and the contrast of the filter.
  • the photodetector chip includes a first electrode layer 27, a second electrode layer 37 and a third electrode layer 28, and an electrical isolation groove 29, which is perpendicular to the surface 11 of the substrate 10
  • the first electrode layer 27 is located on top of the semiconductor light amplifying portion 20, and the second electrode layer 37 is located on top of the photodetection portion 30.
  • the first electrode layer 27 is located on the side of the waveguide of the semiconductor light amplifying portion 20 away from the substrate 10
  • the second electrode layer 37 is located on the waveguide of the photodetection portion 30 away from the substrate
  • the first electrode layer 27 and the second electrode layer 37 are actually formed in the same step.
  • the third electrode layer 28 is located on the outer surface 12 of the substrate 10; the electrical isolation groove 29 is located between the first electrode layer 27 and the second electrode layer 37 to isolate the first electrode layer 27 and the first Second electrode layer 37.
  • the first sub-electrode is the electrode of the semiconductor light amplifying part 20, and the second electrode layer 37 is The light detection electrode.
  • the first electrode layer 27, the second electrode layer 37 and the third electrode layer 28 may be formed by electron beam evaporation or thermal evaporation and photolithography.
  • the length of the semiconductor light amplifying portion 20 is 50-800 microns
  • the length of the electrical isolation groove 29 is 20 microns
  • the length of the photodetector is 5- 100 microns.
  • the first confinement layer 251, the active layer, the second confinement layer 252, the spacer layer, the semiconductor light amplification The waveguides of the portion 20 are sequentially stacked on the surface 11 of the substrate 10. Located in the area of the photodetection portion 30, the waveguides of the third confinement layer 351, the active layer, the fourth confinement layer 352, and the photodetection portion 30 are sequentially stacked on the surface 11 of the substrate 10, and the waveguide covers the The position before the semiconductor light amplifying section 20 and the photodetecting section 30.
  • the active layer, the first confinement layer 251 and the second confinement layer 252 of the optical amplifier have the same length along the light transmission direction and an end toward the photodetection portion 30 constitutes a coupling end; the photodetection portion 30 has The source layer, the third confinement layer 351 and the fourth confinement layer 352 have the same length along the light transmission direction and an end toward the semiconductor light amplifying portion 20 constitutes a coupling end for coupling with the coupling end of the semiconductor light amplifying portion 20.
  • the first confinement layer 251 and the second confinement layer 252 are used for carrier and photon confinement perpendicular to the surface direction of the substrate 10.
  • the first confinement layer 251 and the second confinement layer 252 are made of quaternary materials such as InGaAlAs with unintentionally doped graded index of refraction (GRIN) to reduce losses, and the thickness is 10 to 400 nm.
  • the active layer 25 of the semiconductor light amplifying portion 20 is used to convert electrical energy into photons, and is made of quaternary materials such as InGaAlAs unintentionally doped, and the thickness of the active layer is 15 nm to 300 nm.
  • the active layer 25 of the semiconductor light amplifying part 20 may be a bulk material, quantum well, quantum wire or quantum dot.
  • the active layer 25 of the semiconductor light amplification section 20 is a quantum well or a quantum dot.
  • the strain of the quantum well can be designed so that the semiconductor light amplification section 20 becomes TE polarization, TM polarization or polarization insensitive optical amplifier.
  • the first electrode layer 27 includes a metal electrode layer 271 and a contact layer 272.
  • the contact layer 272 usually has heavily doped In0.53Ga0.47As with a doping concentration greater than 1E19cm-3 and a thickness of 50-300 nm.
  • the metal electrode layer 271 is stacked on the waveguide cap layer 26, and the contact layer 272 is stacked on the metal electrode layer 271.
  • the material of the metal electrode layer is titanium, platinum, gold alloy, and its total thickness is 500 nm to 2 Micron.
  • the third limiting layer 351 and the fourth limiting layer 352 are used for photon limiting in the vertical direction.
  • the refractive index gradient (GRIN) is unintentionally doped.
  • the active layer of the photodetection portion 30 is used to absorb the signal transmitted through the semiconductor light amplification portion, and may be a bulk material, a quantum well, a quantum wire, or a quantum dot.
  • the active layer of the photodetection portion 30 is a bulk material, and its band gap determines the working wavelength range, which is usually unintentionally doped InGaAs, and its thickness is 10-300 nm.
  • the material of the third electrode layer 28 is gold-germanium-nickel alloy or gold, and the thickness is 200 to 500 nanometers.
  • the active layer 35 of the photodetection portion 30 and the active layer 25 of the semiconductor light amplification portion 20 are formed of the same material; the third limiting layer 351 and the fourth limiting layer 352 are The first limiting layer 251 and the second limiting layer 252 are formed of the same material.
  • the active layer 35 and the active layer 25 may be different materials; the third limiting layer 351 and the fourth limiting layer 352 and the first limiting layer 251 and the second limiting layer 252 may be different materials.
  • the second electrode layer 37 includes a metal electrode layer and a contact layer.
  • the second electrode layer 37 usually has heavily doped In0.53Ga0.47As with a doping concentration greater than 1E19cm -3 and a thickness of 50-300 nm.
  • the metal electrode layer is laminated on the waveguide cap layer 26, and the contact layer is laminated on the metal electrode layer.
  • the material of the metal electrode layer is titanium, platinum, gold alloy, and its thickness is 500 nm to 2 ⁇ m.
  • the first electrode layer 27 and the second electrode layer 37 are the same electrode layer, but are divided by the electrical isolation groove 29, and the first electrode layer 27, the second electrode layer 37 and the waveguide cover layer 26 constitute a photoelectric detection The waveguide of the chip.
  • the electrical isolation groove 29 achieves electrical isolation between the first electrode layer 27 and the second electrode layer 37 by etching a metal electrode layer and a contact layer, and etching the waveguide cover layer 26 to a certain depth, and the isolation resistance is greater than 1000 ohms.
  • the semiconductor optical amplifying portion includes a first coupling end
  • the photodetection portion includes a second coupling end
  • the first coupling end is directly connected to the second coupling end to
  • the optical signal amplified by the semiconductor optical amplification section 20 is directly coupled into the photodetection section 30 to ensure the coupling effect.
  • the first coupling end is formed by the active layer 25 of the semiconductor light amplifying part 20, the waveguide cap layer 26, and the confinement layer facing the same end, and the active layer of the semiconductor light amplifying part 20 is coupled.
  • light enters the waveguide of the semiconductor light amplifying part 20 from the end surface of the semiconductor light amplifying part to realize the light amplification, and then directly couples into the waveguide of the photodetecting part 30.
  • the semiconductor light amplifying part 20 and the photodetection part 30 are integrated in a horizontal monolith by way of butt-joint or selective area growth to ensure amplification via the semiconductor light amplifying part
  • the optical signal is directly coupled into the coupling efficiency of the photodetection part.
  • the waveguide width of the semiconductor light amplifying portion 20 gradually decreases from the coupling end of the light incident side of the semiconductor light amplifying portion 20 toward the photodetection portion 30, and the waveguide width of the photodetection portion 30 is The direction is gradually increased to ensure the optical coupling efficiency of the waveguide of the semiconductor light amplification section 20 and the waveguide of the photodetection section 30.
  • the thickness of the active layer of the photodetection portion 30 is greater than the thickness of the active layer 25 of the semiconductor light amplifying portion 20. In order to accurately couple and avoid loss, the size difference of the waveguide ends where coupling is connected is reduced.
  • the photodetector chip includes a passive waveguide layer 40 that is formed between the semiconductor light amplification portion 20 and the photodetection portion 30
  • the passive waveguide layer 40 is provided between the semiconductor light amplifying portion 20 and the photodetection portion 30, and opposite ends of the passive waveguide layer 40 are respectively connected to the semiconductor light amplifying portion 20 and the The photodetection portion 30 is docked.
  • the passive waveguide layer 40 is coupled to the semiconductor optical amplification portion 20.
  • the waveguide size of the passive waveguide layer 40 matches the waveguide size of the semiconductor optical amplification portion.
  • the waveguide cross-sectional dimensions of the photodetection section 30 are matched to reduce the mode mismatch between the semiconductor optical amplification section and the passive waveguide, and the passive waveguide and the photodetection section, respectively, thereby realizing the semiconductor optical amplification section 20 and the The high coupling efficiency of the photodetection section 30 is described.
  • the band gap wavelength of the passive waveguide layer 40 is smaller than the band gap wavelength of the active layer of the semiconductor optical amplification part, and the difference is at least 150 nm; it is ensured that the transmission loss generated through the passive waveguide is sufficiently small.
  • the photodetector chip includes a diluted waveguide layer 50 perpendicular to the direction of the surface 11 of the substrate 10, and the diluted waveguide layer 50 is located in the semiconductor optical amplifier Between the active layer 25 of the portion 20 and the active layer of the photodetection portion 30 and the substrate 10, the diluted waveguide layer 50 is used to pass the optical signal amplified by the semiconductor optical amplification portion 20 through the diluted waveguide Layer 50 is coupled into the photodetection portion 30.
  • the diluted waveguide layer 50 is composed of two or more materials with alternating refractive indices.
  • the photodetector chip includes the passive waveguide layer 40 or the diluted waveguide layer 50
  • the passive waveguide layer 40 or the diluted waveguide layer 50 is formed on the substrate. Further, along the light transmission direction, the waveguide width of the semiconductor light amplifying portion 20 gradually becomes smaller, and the waveguide width of the photodetection portion 30 gradually increases. In order to achieve high coupling efficiency of the semiconductor light amplifying part 20 and the photodetecting part 30.
  • An embodiment of the present application provides a light receiving assembly, which includes a receiving base, an optical lens placed on the receiving base, a tube cap, a transimpedance amplifier, a limiting amplifier, the photodetector chip, etc.,
  • the photodetector chip is packaged on the receiving base and used to receive the optical signal and convert the optical signal into an electrical signal.
  • An embodiment of the present application provides an optical transceiver component, including a base, an optical transmitter provided on the base, an optical lens, a tube cap, a transimpedance amplifier, a limiting amplifier, and the light receiving component, which is provided on the base
  • the optical transmitter, optical lens, tube cap, transimpedance amplifier, limiting amplifier and the light receiving component cooperate to realize the conversion and transmission of optical signals and electrical signals.
  • An embodiment of the present application provides an optical module, which includes a circuit board and the optical transceiver assembly provided on the circuit board.
  • An embodiment of the present application provides a communication device, which includes a main board and the optical module plugged in the main board.
  • the communication device is an optical line terminal (Optical Line Terminal, OLT) in a PON system. It is an Optical Network Unit (ONU) in the PON system.
  • OLT optical Line Terminal
  • ONU Optical Network Unit
  • the communication device may be other devices than OLT and ONU.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明实施例提供一种光电探测器芯片,其包括衬底、半导体光放大部分以及光电探测部分,所述衬底包括表面;所述光电探测部分与所述半导体光放大部分设于所述衬底的表面上,所述光电探测部分位于所述半导体光放大部分的出光方向上并与所述半导体光放大部分;所述半导体光放大部分对输入的光信号进行放大及滤波,输出放大及滤波后的光信号至所述光电探测部分;所述光电探测部分用于将所述放大及滤波后的光信号转变为电信号;所述半导体光放大部分包含光栅,所述光栅包括级联的第一光栅和第二光栅,所述第一光栅是倾斜光栅;所述第一光栅和第二光栅用于对进入所述半导体光放大部分的光信号进行滤波,以使特定频段的波通过且同时屏蔽其它频段的波。

Description

光电探测器芯片、光接收及收发组件、光模块及通讯设备 技术领域
本发明涉及光通信技术领域,尤其涉及一种光电探测器芯片、光接收组件、光收发组件、光模块及通讯设备。
背景技术
日益增长的数据需求对传输网络的容量、带宽提出了更高的要求,高速通信设备互联成为了构建高速大容量传输网络的基础。高速光接收组器件是数据传输网络重要组成部分,主要用来实现光模块的光接收及光电转换。其中,光电探测器芯片是光接收机器件的重要元件。现有技术中,主要通过提升单通道调制速率来实现高速大容量传输网络,但光接收机器件受限于大调制带宽引入的大过剩噪声,难以满足高灵敏度的需求。
发明内容
本申请实施例提供一种光电探测器芯片,可以在获取较大增益效果的同时减小放大器引入的ASE噪音,继而提升光接收组件的灵敏度。
本申请实施例还提供一种光接收组件、光收发组件、光模块及通讯设备。
第一方面,提供一种单片集成光接收芯片,包括衬底、半导体光放大部分包括衬底或者放大部分以及光电探测部分,所述衬底包括表面;所述光电探测部分和所述半导体光放大部分为水平集成在所述衬底的表面上;所述光电探测部分位于所述半导体光放大部分的出光方向上;
所述半导体光放大部分对输入的光信号进行放大及滤波,输出放大及滤波后的光信号至所述光电探测部分;
所述光电探测部分用于将所述放大及滤波后的光信号转变为电信号;
所述半导体光放大部分包含光栅,所述光栅包括第一光栅和第二光栅,沿着出光方向,所述第一光栅与所述第二光栅依次级联,且所述第一光栅为倾斜光栅;
所述第一光栅和第二光栅用于对进入所述半导体光放大部分的光信号进行滤波,以使特定波长的光通过且同时过滤掉其它波长的光。
本申请所述的光电探测器芯片中,通过将半导体光放大部分和光电探测部分的单片集成来实现了高预放增益;而且在半导体光放大部分内设置两个级联的第一光栅和第二光栅构成带通滤波器的功能,来对经过半导体光放大部分的光信号进行滤波,保证高增益的同时减小半导体光放大部分的高增益带来的放大自发辐射即ASE的噪声,提升了光电探测器芯片的灵敏度。
其中,所述第一光栅的周期与所述第二光栅的周期不等。通过控制第一光栅和第二光栅的光栅周期来调整光栅滤波的带通波长宽度。同时,可通过增加光栅耦合强度来增加带通滤波器禁带宽度和提高滤波器的对比度。
一种实施例中,所述第一光栅在垂直于所述衬底表面方向上相对所述出光方向倾斜设置。本实施例中以所述第一光栅为例,所述第一光栅的遮光线为条状且横截面为矩形,包 括两个相对的侧面和连接两个侧面的相互平行的表面,所述两个侧面相互平行并且相对所述出光方向倾斜,本实施例中,所述出光方向可以看做是所述半导体光放大部分波导方向。增加发射面积,以实现所述的特定频段的波通过且同时屏蔽其它频段的波。可以理解为,所述第一光栅沿波导方向横截面为周期性排列的平行四边形,一个光栅周期包括一个高折射率材料组成的平行四边形和连接的一个低折射率材料组成的平行四边形,并且这两个平行四边形侧边平行,所述两个侧边相互平行并且相对所述半导体光放大部分波导方向倾斜
另一种实施例中,所述第一光栅的在平行于所述衬底的表面的平面上相较于所述出光方向倾斜设置。
一种实施方式中,所述第二光栅为倾斜光栅或非倾斜光栅。所述第二光栅在垂直于或平行于所述衬底的表面方向上相对所述出光方向倾斜设置,且倾斜角度为2-10度。
可以理解为,所述第一光栅的在所述半导体光放大部分的有源层平行的平面上和在垂直于所述衬底的表面方向均相较于所述半导体光放大部分的波导方向倾斜设置。所述第二光栅在所述半导体光放大部分的有源层平行的平面上和在垂直于所述衬底的表面方向均相较于所述半导体光放大部分的波导方向倾斜设置。
其中,所述第一光栅的倾斜角度为2-10度。所述光栅的反射光不能耦合进半导体光放大部分探测器波导,以实现所述的特定波长的光通过且同时过滤掉其它波长的光。
进一步的,所述第一光栅与所述第二光栅之间的间距为所述第一光栅长度的整数倍,并且为所述第二光栅长度的整数倍。沿着光波导方向,所述第一光栅与所述第二光栅依次级联。
其中,垂直于所述衬底表面的方向上,所述第一光栅和第二光栅位于所述半导体光放大部分的有源层的上方或下方;所述第一光栅和第二光栅与所述半导体光放大部分的有源层之间的垂直距离小于1000纳米。
其中,所述第一光栅和第二光栅的厚度为10到500纳米,由InGaAsP、Si、GeSi或InGaN中的一种材料制成。
其中,所述半导体光放大部分与所述光电探测部分直接连接,(可以理解为所述半导体光放大部分包括第一耦合端,所述光检测器包括第二耦合端,所述第一耦合端与所述第二耦合端直接连接)以使经由所述半导体光放大部分放大的光信号直接耦合进入所述光电探测部分,以保证经由所述半导体光放大部分放大的光信号直接耦合进入所述光电探测部分耦合效率。
其中,所述半导体光放大部分的波导宽度由入光侧的耦合端至光电探测部分方向逐渐变小,光电探测部分的波导宽度向所述半导体光放大部分入光侧的耦合方向逐渐增加,以保证半导体光放大部分光电探测部分光耦合效率。
其中,所述光电探测器芯片包括无源波导,经由所述半导体光放大部分放大的光信号通过所述无源波导耦合进入所述光电探测部分的波导;沿光传输方向,所述无源波导层的波导的宽度逐渐增大,使得进入无源波导的光功率逐渐增加。具体的,所述无源波导层设于所述半导体光放大部分与光电探测部分之间,所述无源光波导的第一和第二耦合面所述半导体光放大部分和所述光电探测部分连接对准,所述第一耦合面内的波导尺寸与所述半导体光放大部分的波导截面尺寸相匹配以减小模式失配所述第二耦合面内的波导尺寸与所 述光电探测部分的波导尺寸相匹配以减小模式失配,以提高所述半导体光放大部分与所述光电探测部分的耦合效率。
其中,所述无源波导的带隙波长小于所述半导体光放大部分的有源层带隙波长,且差值至少为150nm;保证光传输损耗足够小。
其中,所述光电探测器芯片包括稀释波导层,垂直于所述衬底的表面方向,所述稀释波导层位于所述半导体光放大部分的有源层和光电探测部分的有源层的下方并位于所述表面半导体衬底之上,所述稀释波导层主要的作用是扩大半导体光放大部分的基横模光斑,减小单模光纤和半导体光放大部分的模式失配,从而增加光耦合效率。同时,所述稀释波导也可用于将经由所述半导体光放大部分放大的光信号通过所述稀释波导层耦合进入所述光电探测部分。其中,所述稀释波导层由两个或以上折射率大小交替的材料组成。具体的,当所述光电探测器芯片包括无源波导层或稀释波导层时,所述无源波导层或稀释波导层形成于所述衬底上,半导体光放大部分和探测器有源层之下。进一步的,沿光传输方向,所述半导体光放大部分的波导宽度逐渐变小,所述光电探测部分的波导宽度逐渐增加。以实现所述半导体光放大部分与所述光电探测部分的耦合匹配度。
其中,所述光电探测器芯片包括第一电极层、第二电极层和第三电极层以及隔离槽,垂直于所述衬底的表面方向,所述第一电极层位于所述半导体光放大部分的顶部,所述第二电极层位于所述光电探测部分的顶部,所述第三电极层位于所述衬底背向所述半导体光放大部分的外表面;所述隔离槽位于第一电极层和第二电极层之间以隔离所述第一电极和第二电极层层。所述隔离槽用于将所述第一电极和第二电极绝缘,以减小光电探测器芯片的电串扰。
其中,沿光传输方向,所述半导体光放大部分的长度为50-800微米,所述隔离槽的长度为20微米,所述光电探测部分的长度为5-100微米。
其中,所述半导体光放大部分包括依次层叠设置的第一限制层、有源层及第二限制层,所述光电探测部分包括依次层叠设置的第三限制层、光电探测部分有源层及第四限制层,所述半导体光放大部分的有源层与所述光电探测部分的有源层耦合。
第二方面,本申请提供一种光接收组件,其包括接收基座和所述的光电探测器芯片,所述光电探测器芯片封装设于所述接收基座上。
第三方面,本申请提供一种光收发组件,包括基座、光发射器和所述光接收组件,所述光发射器和所述光接收组件封装装设于所述基座上。
第四方面,本申请提供一种光模块,其包括电路板及设于电路板上的所述的光收发组件。
第五方面,本申请提供一种通讯设备,其包括主板及插接于所述主板上的所述的光模块,所述通讯设备为光线路终端OLT或光网络单元ONU。
本申请所述的光电探测器芯片中在半导体光放大部分内设置两个级联的第一光栅和第二光栅构成带通滤波器的功能,来对经过半导体光放大部分的光信号进行滤波,保证高增益的同时减小半导体光放大部分的高增益带来的放大自发辐射即ASE的噪声,提升了光电探测器芯片的灵敏度。
附图说明
图1是本申请实施例提供的光电探测器芯片的结构示意图,其中展现了半导体光放大部分部截面图,该截面是垂直于波导方向的截面;
图2是图1所示光电探测器芯片的展现了光电探测部分的部分截面图,该截面是垂直于波导方向的截面;
图3是图1所示光电探测器芯片的光栅的第一实施例沿着波导方向的截面示意图;
图4是图1所示的光电探测器芯片包括图3所示的光栅的另一角度沿着波导方向的截面示意图;
图5和图6是图1所示光电探测器芯片的光栅的第二实施例的两个不同角度沿着波导方向的截面示意图;
图7是本申请的光电探测器芯片的第二实施例的截面示意图,与图1的第一实施例不同的是半导体光放大部分与光电探测部分的耦合方式;
图8是本申请的光电探测器芯片的第三实施例的截面示意图,与图1的第一实施例不同的是半导体光放大部分与光电探测部分的耦合方式。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。
请参阅图1和图2,本申请实施例提供一种光电探测器芯片,用于光接收组件内进行光的光电信号转换。所述光电探测器芯片包括衬底10、半导体光放大部分20以及光电探测部分30;所述衬底10包括表面11,所述光电探测部分30与所述半导体光放大部分20设于所述衬底的表面上,所述光电探测部分30位于所述半导体光放大部分20的出光方向上,所述光电探测部分30与所述半导体光放大部分20的集成实现小型化的单片集成性能。
所述半导体光放大部分20对输入的光信号进行放大及滤波,输出放大及滤波后的光信号至所述光电探测部分;所述光电探测部分30用于将所述放大及滤波后的光信号转变为电信号。
请一并参阅图3与图4,所述半导体光放大部分20包含光栅A,所述光栅包括第一光栅21和第二光栅22。沿着所述半导体光放大部分20的出光方向(光从所述半导体光放大部分20的入光侧的耦合面进入所述半导体光放大部分20内经与耦合面相对的另一端面射出并进入所述光电探测部分30内),所述第一光栅21与所述第二光栅22依次级联,所述第一光栅21是倾斜的光栅;所述第一光栅21和第二光栅22用于对进入所述半导体光放大部分20的光信号进行滤波,以使特定波长的光通过且同时过滤掉其它波长的光。
本申请所述的光电探测器芯片中,通过将半导体光放大部分20和光电探测部分30水平集成而非层叠垂直集成来实现了高预放增益;而且在半导体光放大部分20内设置两个级联的第一光栅21和第二光栅22构成带通滤波器的功能,满足宽入射波长带宽需求,来对经过半导体光放大部分20的光信号进行滤波,保证高增益和宽入射波长带宽的同时减小半导体光放大部分20的高增益带来的放大自发辐射即ASE的噪声,提升了光电探测器芯片 的灵敏度。
请参阅图3,进一步的,所述第一光栅21的周期与所述第二光栅22的周期不等。通过控制第一光栅21和第二光栅22的光栅周期来调整光栅滤波的带通波长宽度,满足宽入射波长带宽通过的需求。也可通过增加光栅耦合因子来增加带通滤波器禁带宽度和提高滤波的对比度。
具体的,请参阅图4,本实施例中,所述衬底10由磷化铟材料形成。所述半导体光放大部分20包括依次层叠生长的第一限制层251、有源层25、第二限制层252。所述光电探测部分30包括依次层叠生长的第三限制层351、有源层35、第四限制层352。所述半导体光放大部分20的有源层25与所述光电探测部分的有源层35在光的传输方向上依次排列并耦合,即水平集成。半导体光放大部分20以及光电探测部分30通过生长的方式形成于所述衬底10上,也就是说,一种方式中所述半导体光放大部分与所述光电探测部分直接连接,以使经由所述半导体光放大部分放大的光信号直接耦合进入所述光电探测部分。所述光电探测器芯片还包括波导盖层26,所述波导盖层26覆盖所述第二限制层252和第四限制层352上,所述第一限制层251和所述第三限制层351形成于衬底10的表面11上。本实施例中,所述波导盖层26用于与芯片的电极层形成光传输的波导,由InP材料制成,厚度为1.5微米至2微米,掺杂浓度大于1E18cm -3
所述光栅A与所述半导体光放大部分20的第二限制层252之间设有空间隔离层261,具体的是位于有源层25的第二限制层252上远离有源层25的一侧并与第二限制层252通过空间隔离层261间隔设置。所述光栅A为均匀光栅,进一步的,所述第一光栅21和第二光栅22的厚度为10到500纳米,由InGaAsP、Si、GeSi或InGaN中的一种材料制成。
所述第一光栅21包括数个狭缝211和间隔于每两个狭缝211之间的遮光线212,所述第一光栅21的数个狭缝211的宽度相同。所述第二光栅22包括数个狭缝221和间隔于每两个狭缝之间的遮光线222,所述第二光栅22的数个狭缝222的宽度相同。本实施例中,所述第一光栅21的狭缝212大于所述第二光栅22的狭缝222,即第一光栅21大于第二光栅22光栅常数。所述光栅可以使全光栅形式也可以是部分光栅形式,全光栅形式是指光栅长度内全部有遮光线和狭缝,比如形成多个第一光栅21和第二光栅22;部分光栅是光栅长度内部分有遮光线和狭缝,比如只包括第一光栅21和第二光栅22,光栅长度为L,第一光栅21和第二光栅22长度和为L1,L-L1区域无光栅狭缝和遮光线。其中狭缝211是指高折射率材料的部分,遮光线212是指低折射率材料的部分。
本实施例中,垂直于所述衬底10的表面11方向,所述光栅A层叠于所述半导体光放大部分20的有源层25的上方或下方。具体的是,所述光栅A层叠于所述半导体光放大部分20的有源层25朝向所述衬底10的一侧或者背向所述衬底10的一侧并与所述半导体光放大部分20的有源层25之间并间隔设置;具体是通过空间隔离层261间隔。本实施例中,所述光栅的第一光栅21和第二光栅22位于所述半导体光放大部分20的有源层25的背向所述衬底10表面11的一侧并与所述第二限制层252间隔。
其中,所述空间间隔层位于第一分别限制层251和所述衬底10之间或者位于所述半导体光放大部分20的上限制层252与波导盖层26之间,第二分别限制层252和所述光栅层A之间由空间间隔层261间隔。所述半导体光放大部分20的波导盖层26覆盖所述光栅A。
进一步的,所述第一光栅21和第二光栅22与所述半导体光放大部分20的有源层25之间的垂直距离小于1000纳米。
如图3与图4,本申请的第一种实施例中,所述第一光栅21和所述第二光栅22在垂直于所述的衬底10的表面11方向上相对所述半导体光放大部分20的出光方向倾斜设置。本实施例中以所述第一光栅21和第二光栅22均倾斜为例,所述第一光栅21和第二光栅22沿波导方向横截面为平行四边形,均包括两个相对的侧面2121和连接两个侧面2121的相互平行的表面,具体的第一光栅21的所述两个侧面2121和第二光栅22的所述两个侧面2221相互平行并且相对所述半导体光放大部分20波导方向(出光方向)倾斜,即倾斜光栅;同时,第一光栅21和第二光栅22的长度方向上不倾斜。当所述第一光栅21和所述第二光栅22均倾斜设置时,所述第一光栅21的和所述第二光栅22的倾斜角度可以相同,也可以不同。其他实施方式中,所述第一光栅21为倾斜的光栅,所述第二光栅22不倾斜。
请参阅图5和图6,本申请的光栅的第二种实施例中,所述第一光栅21和所述第二光栅22在与衬底10的表面平行的平面上相较于所述半导体光放大部分20的出光方向倾斜设置。具体的所述第一光栅21的高折射率层212和第二光栅22的遮光线222为条状,遮光线长度延伸方向相较于波导方向倾斜且所述第一光栅21的两个侧面2121与第二光栅22的两个侧面2212在所述有源层所在平面垂直。当然,所述第二光栅可以不倾斜。
进一步的,所述第一光栅21和所述第二光栅22倾斜时,其倾斜角度为2-10度,保证经过所述光栅的反射光不能耦合进半导体光放大部分20波导,以实现所述的特定波长的波通过且同时过滤掉其它波长的光。
进一步的,所述第一光栅21与所述第二光栅22之间的间距的尺寸满足所述第一光栅21长度的整数倍,以及满足所述第二光栅22长度的整数倍,以减小相位的影响,实现平坦的反射谱。
本实施例中,为减小放大器放大引入的ASE噪声的影响,采用级联倾斜的光栅作为滤波器结构形成了带通滤波器的性能,由于采用倾斜的光栅,故光栅的反射在腔内无法满足谐振条件,无法实现增益钳制放大器的功能。可通过控制第一光栅21和第二光栅22的周期来实现带通滤波器的滤波宽度,也可通过增加光栅耦合因子来增加带通滤波器禁带宽度和提高滤波器的对比度。
如图4所示,进一步的,所述光电探测器芯片包括第一电极层27、第二电极层37和第三电极层28以及电隔离槽29,垂直于所述衬底10的表面11方向,所述第一电极层27位于所述半导体光放大部分20的顶部,所述第二电极层37位于所述光电探测部分30的顶部。具体的,所述第一电极层27位于所述半导体光放大部分20的波导上远离衬底10的一侧,所述第二电极层37位于所述光电探测部分30的的波导上远离衬底10的一侧,实际上所述第一电极层27和第二电极层37为同一步骤形成。所述第三电极层28位于所述衬底10的外表面12上;所述电隔离槽29位于第一电极层27和第二电极层37之间以隔离所述第一电极层27和第二电极层37。具体的,所述电隔离槽29的表面无金属电极,向衬底10方向凹设一定深度形成,所述第一子电极为所述半导体光放大部分20电极,所述第二电极层37为所述光探测电极。具体的,所述第一电极层27、第二电极层37和第三电极层28可以通过电子束蒸发或热蒸发并光刻方式形成。
进一步的,本实施例中,沿光传输方向,所述半导体光放大部分20的长度为50-800微米,所述电隔离槽29的长度为20微米,所述光探测器的长度为5-100微米。
本实施例中,垂直于所述衬底10的表面11方向上,位于半导体光放大部分20的区域内,第一限制层251、有源层、第二限制层252、间隔层、半导体光放大部分20的波导依次层叠于所述衬底10的表面11。位于光电探测部分30的区域,所述第三限制层351、有源层、第四限制层352、光电探测部分30的波导依次层叠于所述衬底10的表面11,所述波导覆盖所述半导体光放大部分20与光电探测部分30之前的位置。所述光放大器的有源层、第一限制层251和第二限制层252沿着光传输方向的长度相同并且朝向所述光电探测部分30的一端构成耦合端;所述光电探测部分30的有源层、第三限制层351和第四限制层352沿着光传输方向的长度相同并且朝向所述半导体光放大部分20的一端构成耦合端,用于与半导体光放大部分20的耦合端耦合。
本实施例中,对于半导体光放大部分20来说,所述第一限制层251和第二限制层252用于垂直衬底10的表面方向载流子和光子限制。所述第一限制层251和第二限制层252为减小损耗,由非故意掺杂的折射率渐变(GRIN)的InGaAlAs等四元材料制成GRIN-SCH,且厚度均为10至400纳米。所述半导体光放大部分20的有源层25用于将电能转化为光子,由非故意掺杂的InGaAlAs等四元材料制成,并且该有源层厚度为15纳米至300纳米。进一步的,该所述半导体光放大部分20的有源层25可以是体材料、量子阱、量子线或量子点。其他实施例中,所述半导体光放大部分20的有源层25为量子阱或量子点,对于量子阱形式的有源层,可以通过设计量子阱的应变使得所述半导体光放大部分20变为TE偏振、TM偏振或偏振不敏感的光放大器。
所述第一电极层27包括金属电极层271和接触层272。接触层272为了便于和金属形成欧姆接触,通常有重掺杂的In0.53Ga0.47As,掺杂浓度大于1E19cm-3,厚度为50-300纳米。所述金属电极层271层叠于所述波导盖层26上,所述接触层272叠于金属电极层271上,金属电极层的材料为钛、铂、金合金,其总厚度为500纳米至2微米。
本实施例中,对于光电探测部分30来说,所述第三限制层351和第四限制层352用于垂直方向光子限制,为减小损耗,由非故意掺杂的折射率渐变(GRIN)的InGaAlAs等四元材料制成GRIN-SCH,厚度为20至500纳米。所述光电探测部分30的有源层用于吸收经所述半导体光放大部分传递的信号,可以是体材料、量子阱、量子线或量子点。本实施例中,所述光电探测部分30的有源层为体材料,其带隙决定了能工作的波长范围,通常为非故意掺杂的InGaAs,其厚度为10-300nm。所述第三电极层28的材料为金锗镍合金或金,厚度为200至500纳米。本实施例中,所述光电探测部分30的有源层35与所述半导体光放大部分20的有源层25为相同的材料形成;所述第三限制层351和第四限制层352与所述第一限制层251和第二限制层252采用相同的材料形成,在其它实施方式中,有源层35与有源层25可以为不同材料;所述第三限制层351和第四限制层352与所述第一限制层251和第二限制层252可以为不同材料。
所述第二电极层37包括金属电极层和接触层。第二电极层37为了便于和金属形成欧姆接触,通常有重掺杂的In0.53Ga0.47As,掺杂浓度大于1E19cm -3,厚度为50-300纳米。所述金属电极层层叠于所述波导盖层26上,所述接触层层叠于所述金属电极层上,金属电 极层的材料为钛、铂、金合金,其厚度为500纳米至2微米。实际上所述第一电极层27和第二电极层37为同一电极层,只是通过电隔离槽29分割,并且所述第一电极层27和第二电极层37与波导盖层26构成光电检测芯片的波导。
所述电隔离槽29通过刻金属电极层和接触层,并刻蚀波导盖层26一定深度实现第一电极层27和第二电极层37之间的电隔离,隔离电阻大于1000欧姆。
本实施例的一种实施方式中,所述半导体光放大部分包括第一耦合端,所述光电检测部分包括第二耦合端,所述第一耦合端与所述第二耦合端直接连接,以使经由所述半导体光放大部分20放大的光信号直接耦合进入所述光电探测部分30,以保证耦合效果。其中所述第一耦合端为半导体光放大部分20的有源层25、波导盖层26、限制层朝向相同的端部共同形成,而发生耦合的为半导体光放大部分20的有源层。具体的,光由所述半导体光放大部分端面进入半导体光放大部分20波导实现光放大后直接耦合进入所述光电探测部分30波导中。所述半导体光放大部分20和所述光电探测部分30通过对接生长的方式(butt-joint)或者选区外延(selective area growth)的方式在水平单片集成,以保证经由所述半导体光放大部分放大的光信号直接耦合进入所述光电探测部分耦合效率。
进一步的,所述半导体光放大部分20的波导宽度由半导体光放大部分20的入光侧的耦合端面向光电探测部分30方向逐渐变小,光电探测部分30的波导宽度向所述半导体光放大部分方向逐渐增加,以保证所述半导体光放大部分20的波导与光电探测部分30的波导的光耦合效率。通常情况光电探测部分30的有源层厚度大于所述半导体光放大部分20的有源层25厚度,为了能精确的耦合且避免损耗,将发生耦合连接的波导端部的尺寸差度减小。
参阅图7,本实施例的另一种实施方式中,所述光电探测器芯片包括无源波导层40,无源波导层40形成于所述半导体光放大部分20与所述光电探测部分30之间的衬底10上,所述半导体光放大部分20放大的光信号通过所述无源波导层40耦合进入所述光电探测部分30。具体的,所述无源波导层40设于所述半导体光放大部分20与光电探测部分30之间,所述无源波导层40的相对两端分别与所述半导体光放大部分20及所述光电探测部分30对接,无源波导层40与半导体光放大部分20耦合的无源波导层40波导尺寸与所述半导体光放大部分的波导尺寸相匹配,与光电探测部分30耦合的波导截面尺寸与所述光电探测部分30的波导截面尺寸相匹配,以分别减小半导体光放大部分和无源波导、无源波导和光电探测部分间的模式失配,从而实现所述半导体光放大部分20与所述光电探测部分30的高耦合效率。
进一步的,所述无源波导层40的带隙波长小于所述半导体光放大部分的有源层的带隙波长,且差值至少为150nm;保证经由无源波导产生的传输损耗足够小。
请参阅图8,本实施例的另一种实施方式中,所述光电探测器芯片包括稀释波导层50,垂直于衬底10的表面11方向,所述稀释波导层50位于所述半导体光放大部分20的有源层25和光电探测部分30的有源层的与衬底10之间,所述稀释波导层50用于将经由所述半导体光放大部分20放大的光信号通过所述稀释波导层50耦合进入所述光电探测部分30。其中,所述稀释波导层50由两个或以上折射率大小交替的材料组成。具体的,当所述光电探测器芯片包括无源波导层40或稀释波导层50时,所述无源波导层40或稀释波导层50 形成于所述衬底上。进一步的,沿光传输方向,所述半导体光放大部分20的波导宽度逐渐变小,所述光电探测部分30的波导宽度逐渐增加。以实现所述半导体光放大部分20与所述光电探测部分30的高耦合效率。
本申请实施例提供一种光接收组件,其包括接收基座、放置于所述接收基座的光学透镜、管帽、跨阻放大器、限幅放大器和所述的光电探测器芯片等,所述光电探测器芯片封装设于所述接收基座上,用于接受光信号并将光信号转换为电信号。
本申请实施例提供一种光收发组件,包括基座、设于基座的光发射器、光学透镜、管帽、跨阻放大器、限幅放大器和所述光接收组件,所述设于基座的光发射器、光学透镜、管帽、跨阻放大器、限幅放大器与所述光接收组件配合实现光信号与电信号的转换和传输。
本申请实施例提供一种光模块,其包括电路板及设于电路板上的所述的光收发组件。
本申请实施例提供一种通讯设备,其包括主板及插接于所述主板上的所述的光模块,所述通讯设备为PON系统中的光线路终端(Optical Line Terminal,OLT),也可以是PON系统中的光网络单元(Optical Network Unit,ONU)。或者,该通讯设备也可以为OLT和ONU以外的其他设备。
以上是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。

Claims (24)

  1. 一种光电探测器芯片,其特征在于,包括衬底、半导体光放大部分以及光电探测部分,所述衬底包括表面;
    所述光电探测部分与所述半导体光放大部分设于所述衬底的表面上,所述光电探测部分位于所述半导体光放大部分的出光方向上;
    所述半导体光放大部分对输入的光信号进行放大及滤波,输出放大及滤波后的光信号至所述光电探测部分;
    所述光电探测部分用于将所述放大及滤波后的光信号转变为电信号;
    所述半导体光放大部分包含光栅,所述光栅包括第一光栅和第二光栅,沿着出光方向,所述第一光栅与所述第二光栅依次级联,所述第一光栅是倾斜光栅;
    所述第一光栅和第二光栅用于对进入所述半导体光放大部分的光信号进行滤波,以使特定频段的波通过且同时屏蔽其它频段的波。
  2. 如权利要求1所述的光电探测器芯片,其特征在于,所述第一光栅的周期与所述第二光栅的周期不等。
  3. 如权利要求1或2所述的光电探测器芯片,其特征在于,所述第一光栅在垂直于所述衬底的表面方向上相对所述出光方向倾斜设置。
  4. 如权利要求1或2所述的光电探测器芯片,其特征在于,所述第一光栅在平行于所述衬底的表面的平面上相较于所述出光方向半导体光放大部分倾斜设置。
  5. 如权利要求1-4任一项所述的光电探测器芯片,其特征在于,所述第一光栅的倾斜角度为2-10度。
  6. 如权利要求1-5任一项所述的光电探测器芯片,其特征在于,所述第一光栅与所述第二光栅之间的间距的尺寸为所述第一光栅长度的整数倍,并且为所述第二光栅长度的整数倍。
  7. 如权利要求1-6任一项所述的光电探测器芯片,其特征在于,所述第二光栅为倾斜光栅或非倾斜光栅。
  8. 如权利要求7所述的光电探测器芯片,其特征在于,所述第二光栅在垂直于或平行于所述衬底的表面方向上相对所述出光方向倾斜设置,且倾斜角度为2-10度。
  9. 如权利要求1-8任一项所述的光电探测器芯片,其特征在于,垂直于所述衬底的表面的方向,所述第一光栅和第二光栅位于所述半导体光放大部分的有源层的上方或下方;所述第一光栅和第二光栅与所述半导体光放大部分的有源层之间的垂直距离小于1000纳米。
  10. 如权利要求1-9任一项所述的光电探测器芯片,其特征在于,所述第一光栅和第二光栅的厚度为10到500纳米,由InGaAsP、Si、GeSi或InGaN中的一种材料制成。
  11. 如权利要求1-10任一项所述的光电探测器芯片,其特征在于,所述半导体光放大部分与所述光电探测部分直接连接,以使经由所述半导体光放大部分放大的光信号直接耦合进入所述光电探测部分。
  12. 如权利要求11所述的光电探测器芯片,其特征在于,所述半导体光放大部分的波导 宽度向所述光电探测部分方向逐渐变小,光电探测部分的波导宽度向所述半导体光放大部分方向逐渐增加。
  13. 如权利要求1-10任一项所述的光电探测器芯片,其特征在于,所述光电探测器芯片包括无源波导层,经由所述半导体光放大部分放大的光信号通过所述无源波导耦合进入所述光电探测部分的波导。
  14. 如权利要求13所述的光电探测器芯片,其特征在于,沿光传输方向,所述无源波导层的波导的宽度逐渐增大。
  15. 如权利要求14所述的光电探测器芯片,其特征在于,所述无源波导的带隙波长小于所述半导体光放大部分有源层的带隙波长,且差值至少为150nm。
  16. 如权利要求1-10任一项所述的光电探测器芯片,其特征在于,所述光电探测器芯片包括稀释波导层,垂直于所述衬底的表面方向,所述稀释波导层位于所述半导体光放大部分的有源层和光电探测部分的有源层的下方并位于所述表面之上,所述稀释波导层用于将经由所述半导体光放大部分放大的光信号通过所述稀释波导层耦合进入所述光电探测部分。
  17. 如权利要求1-16任一项所述的光电探测器芯片,其特征在于,所述光电探测器芯片包括第一电极层、第二电极层和第三电极层以及电隔离槽,垂直于所述衬底的表面方向,所述第一电极层位于所述半导体光放大部分的顶部,所述第二电极层位于所述光电探测部分的顶部,所述第三电极位于所述衬底背向所述半导体光放大部分的外表面;所述电隔离槽位于第一电极和第二电极层之间以隔离所述第一电极和第二电极。
  18. 如权利要求1-17任一项所述的光电探测器芯片,其特征在于,沿光传输方向,所述半导体光放大部分的长度为50-800微米,所述电隔离槽的长度为20微米,所述光电探测部分的长度为5-100微米。
  19. 如权利要求1-18任一项所述的光电探测器芯片,其特征在于,所述半导体光放大部分包括依次层叠设置的第一限制层、有源层及第二限制层,所述光电探测部分包括依次层叠设置的第三限制层、光电探测部分有源层及第四限制层,所述半导体光放大部分的有源层与所述光电探测部分的有源层对准耦合。
  20. 一种光接收组件,其特征在于,包括接收基座和如权利要求1-19任一项所述的光电探测器芯片,所述光电探测器芯片封装设于所述接收基座上。
  21. 一种光收发组件,其特征在于,基座、光发射器和权利要求20所述光接收组件,所述光发射器和所述光接收组件封装装设于所述基座上。
  22. 一种光模块,其特征在于,包括电路板及设于电路板上的如权利要求21所述的光收发组件。
  23. 一种通讯设备,其特征在于,包括主板及插接于所述主板上的如权利要求22所述的光模块。
  24. 如权利要求23所述的通讯设备,其特征在于,所述通讯设备为光线路终端OLT或光网络单元ONU。
PCT/CN2018/112927 2018-10-31 2018-10-31 光电探测器芯片、光接收及收发组件、光模块及通讯设备 WO2020087328A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021547615A JP7204933B2 (ja) 2018-10-31 2018-10-31 光検出器チップ、光受信及び送受信コンポーネント、光モジュール、及び通信装置
CN201880098703.9A CN112913158B (zh) 2018-10-31 2018-10-31 光电探测器芯片、光接收及收发组件、光模块及通讯设备
PCT/CN2018/112927 WO2020087328A1 (zh) 2018-10-31 2018-10-31 光电探测器芯片、光接收及收发组件、光模块及通讯设备
KR1020217014832A KR102499111B1 (ko) 2018-10-31 2018-10-31 광검출기 칩, 광 수신 및 송수신기 어셈블리, 광 모듈 및 통신 장비
US17/243,656 US20210249835A1 (en) 2018-10-31 2021-04-29 Photodetector chip, optical receiving and transceiver components, optical module, and communications device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112927 WO2020087328A1 (zh) 2018-10-31 2018-10-31 光电探测器芯片、光接收及收发组件、光模块及通讯设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/243,656 Continuation US20210249835A1 (en) 2018-10-31 2021-04-29 Photodetector chip, optical receiving and transceiver components, optical module, and communications device

Publications (1)

Publication Number Publication Date
WO2020087328A1 true WO2020087328A1 (zh) 2020-05-07

Family

ID=70461938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112927 WO2020087328A1 (zh) 2018-10-31 2018-10-31 光电探测器芯片、光接收及收发组件、光模块及通讯设备

Country Status (5)

Country Link
US (1) US20210249835A1 (zh)
JP (1) JP7204933B2 (zh)
KR (1) KR102499111B1 (zh)
CN (1) CN112913158B (zh)
WO (1) WO2020087328A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252314A (zh) * 2021-05-17 2021-08-13 京东方科技集团股份有限公司 光学检测装置、方法及显示装置
CN115047571A (zh) * 2022-06-27 2022-09-13 中国科学院半导体研究所 光探测器芯片镀膜结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410258B (zh) * 2021-06-18 2022-12-16 福州京东方光电科技有限公司 一种探测基板、探测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222121A (zh) * 2007-12-13 2008-07-16 清华大学 利用soa四波混频效应产生高频微波的集成光电子器件
CN102369676A (zh) * 2011-06-08 2012-03-07 华为技术有限公司 光发射机、光探测器和无源光网络系统
CN103248447A (zh) * 2012-02-09 2013-08-14 北京邮电大学 波分复用无源光网络系统
CN107566045A (zh) * 2017-10-10 2018-01-09 成都优博创通信技术股份有限公司 光接收模块和光通信装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067623B2 (ja) * 1984-11-09 1994-01-26 日本電気株式会社 光双安定集積素子
JPH01170084A (ja) * 1987-12-25 1989-07-05 Nippon Telegr & Teleph Corp <Ntt> 集積型光アンプ素子
JP2684568B2 (ja) * 1989-01-24 1997-12-03 日本電信電話株式会社 光集積回路
DE69030831T2 (de) * 1989-03-10 1998-01-15 Canon Kk Photodetektor mit wellenlängenselektivem optischem Koppler
JP2847820B2 (ja) * 1989-11-21 1999-01-20 住友電気工業株式会社 光電子集積装置
JP2873856B2 (ja) * 1990-04-03 1999-03-24 キヤノン株式会社 光増幅器
US5103455A (en) * 1990-05-09 1992-04-07 Gte Laboratories Incorporated Monolithically integrated semiconductor optical preamplifier
JPH07226530A (ja) * 1994-02-10 1995-08-22 Hikari Gijutsu Kenkyu Kaihatsu Kk 光半導体素子
JP3887738B2 (ja) * 1998-11-04 2007-02-28 富士通株式会社 半導体光集積回路装置及びその製造方法
US6410941B1 (en) * 2000-06-30 2002-06-25 Motorola, Inc. Reconfigurable systems using hybrid integrated circuits with optical ports
US20030015707A1 (en) * 2001-07-17 2003-01-23 Motorola, Inc. Integrated radio frequency , optical, photonic, analog and digital functions in a semiconductor structure and method for fabricating semiconductor structure utilizing the formation of a compliant substrate for materials used to form the same
US7209611B2 (en) * 2002-10-08 2007-04-24 Infinera Corporation Transmitter photonic integrated circuit (TxPIC) chips utilizing compact wavelength selective combiners/decombiners
WO2003102659A2 (en) * 2001-10-09 2003-12-11 Infinera Corporation Demultiplexing optical signal receiver photonic integrated circuit (rxpic) and associated transmitter and method of testing a photonic integrated circuit
JP4330376B2 (ja) * 2002-10-22 2009-09-16 富士通株式会社 光半導体装置及びその駆動方法
JP4107426B2 (ja) * 2003-04-16 2008-06-25 日本電信電話株式会社 ゲインクランプ光増幅器
JP3819871B2 (ja) * 2003-05-23 2006-09-13 三洋電機株式会社 光デバイスおよびその製造方法
JP2006029995A (ja) * 2004-07-16 2006-02-02 Fujikura Ltd 光学式物理量測定方法および装置
CN101473439B (zh) * 2006-04-17 2013-03-27 全视技术有限公司 阵列成像系统及相关方法
US8611756B1 (en) * 2008-04-16 2013-12-17 Cirrex Systems, Llc Highly integrated system and method for optical communication
WO2013145271A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 光素子、光送信素子、光受信素子、ハイブリッドレーザ、光送信装置
CN102882601B (zh) * 2012-09-10 2015-04-22 胡朝阳 硅光子集成高速光通信收发模块
CN102841479A (zh) * 2012-10-07 2012-12-26 电子科技大学 一种基于瞬态啁啾跃变的全光波长转换集成芯片
CN105356295A (zh) * 2015-11-10 2016-02-24 南京大学 基于重构-等效啁啾和纳米压印制备dfb激光器及阵列的方法
CN108701968B (zh) * 2016-03-09 2021-03-23 华为技术有限公司 一种光放大器
CN106158998B (zh) * 2016-06-30 2017-08-04 浙江大学 一种可见光及近红外波段硅基光波导集成光电探测器
CN107658321B (zh) * 2016-07-25 2019-12-27 南京威派视半导体技术有限公司 基于复合介质栅的双器件光敏探测单元、探测器及其方法
US10042131B1 (en) * 2017-04-05 2018-08-07 Xilinx, Inc. Architecture for silicon photonics enabling wafer probe and test
CN108089262A (zh) * 2018-01-04 2018-05-29 中国人民解放军火箭军工程大学 一种用于激光通信的芯片式集成光学天线
CN108447938B (zh) * 2018-02-27 2019-12-20 中国科学院微电子研究所 光电探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222121A (zh) * 2007-12-13 2008-07-16 清华大学 利用soa四波混频效应产生高频微波的集成光电子器件
CN102369676A (zh) * 2011-06-08 2012-03-07 华为技术有限公司 光发射机、光探测器和无源光网络系统
CN103248447A (zh) * 2012-02-09 2013-08-14 北京邮电大学 波分复用无源光网络系统
CN107566045A (zh) * 2017-10-10 2018-01-09 成都优博创通信技术股份有限公司 光接收模块和光通信装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252314A (zh) * 2021-05-17 2021-08-13 京东方科技集团股份有限公司 光学检测装置、方法及显示装置
CN115047571A (zh) * 2022-06-27 2022-09-13 中国科学院半导体研究所 光探测器芯片镀膜结构
CN115047571B (zh) * 2022-06-27 2023-12-05 中国科学院半导体研究所 光探测器芯片镀膜结构

Also Published As

Publication number Publication date
CN112913158A (zh) 2021-06-04
JP7204933B2 (ja) 2023-01-16
US20210249835A1 (en) 2021-08-12
CN112913158B (zh) 2022-10-04
KR102499111B1 (ko) 2023-02-14
KR20210076112A (ko) 2021-06-23
JP2022513380A (ja) 2022-02-07

Similar Documents

Publication Publication Date Title
US20210249835A1 (en) Photodetector chip, optical receiving and transceiver components, optical module, and communications device
US8098969B2 (en) Waveguide optically pre-amplified detector with passband wavelength filtering
US8466528B2 (en) Semiconductor light-receiving element, optical communication device, optical interconnect module, and photoelectric conversion method
JP5866911B2 (ja) 多チャネル光導波路型受光デバイス
JP4090402B2 (ja) 半導体光増幅器及びそれを用いた光モジュ−ル
JP2003533896A (ja) 複数の非対称導波路を有する光子集積検出器
EP2924481A1 (en) Monolithically integrated photonic tunable receiver for selecting optical signals with different wavelengths
JPH04229684A (ja) モノリシック集積半導体光前置増幅器
WO2011147380A2 (zh) 光发射机、光探测器和无源光网络系统
JP4318981B2 (ja) 導波路型受光素子
CN112786717A (zh) 一种微环耦合多通道集成光电探测器
US7974539B2 (en) Bi-directional optical module
WO1997008757A1 (en) Waveguide type photodetector
US20080137178A1 (en) Reflection-type optical modulator module
CN110336184B (zh) 一种低噪声的soa-pin集成光探测器
US10921516B2 (en) Photodiode device monolithically integrating waveguide element with photodiode element type of optical waveguide
KR101901342B1 (ko) 광수신 모듈
JP2836050B2 (ja) 光波長フィルター及びそれを用いた装置
JPH06204549A (ja) 導波路型受光素子並びにその製造方法及びその駆動方法
JP2011165848A (ja) 面入射型フォトダイオード
JP2004247620A (ja) 半導体受光素子
JP2785452B2 (ja) 光受信装置
JP5278429B2 (ja) 半導体受光素子及びその製造方法
WO2020044952A1 (ja) 半導体受光器
JP2004319916A (ja) 受光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217014832

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18938307

Country of ref document: EP

Kind code of ref document: A1