WO2020044952A1 - 半導体受光器 - Google Patents

半導体受光器 Download PDF

Info

Publication number
WO2020044952A1
WO2020044952A1 PCT/JP2019/030476 JP2019030476W WO2020044952A1 WO 2020044952 A1 WO2020044952 A1 WO 2020044952A1 JP 2019030476 W JP2019030476 W JP 2019030476W WO 2020044952 A1 WO2020044952 A1 WO 2020044952A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
light
type
type region
Prior art date
Application number
PCT/JP2019/030476
Other languages
English (en)
French (fr)
Inventor
達郎 開
松尾 慎治
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/263,853 priority Critical patent/US11417783B2/en
Publication of WO2020044952A1 publication Critical patent/WO2020044952A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12078Gallium arsenide or alloys (GaAs, GaAlAs, GaAsP, GaInAs)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/121Channel; buried or the like

Definitions

  • the present invention relates to a semiconductor light receiving device that can be integrated with a semiconductor modulator.
  • FIGS. 6A and 6B show a cross section taken along line aa 'in FIG. 6B.
  • FIG. 6C shows a cross section taken along line aa 'in FIG. 6D.
  • an insulating layer 202 made of SiO 2 a semiconductor layer 203 made of InP, p type region 203a and the n-type made of InP of p type formed by sandwiching a semiconductor layer 203 N-type region 203b made of InP.
  • a p-type contact layer 205 is formed on the p-type region 203a, and an n-type contact layer 206 is formed on the n-type region 203b.
  • the p-type contact layer 205 and the n-type contact layer 206 are made of, for example, InGaAs.
  • the modulator is provided with a modulator core layer 211 made of InGaAsP embedded in the semiconductor layer 203 (FIGS. 6A and 6B), and the light receiver is embedded in the semiconductor layer 203. , And a light absorbing layer 212 (FIGS. 6C and 6D).
  • the light absorption layer 212 has a multiple quantum well structure made of a compound semiconductor having a band gap different from that of the modulator core layer 211.
  • the modulator core layer 211 is connected to external core layers 207 and 208 made of InP, and the light absorption layer 212 is connected to external core layers 209 and 210 made of InP.
  • the modulator core layer and the light absorption layer are made of materials having different band gaps, and an increase in the number of epitaxial growth processes cannot be avoided. Further, the light confinement coefficient of the light absorption layer is extremely high, and with the increase in incident light power, there is a problem in that the operating band is reduced by electric field shielding.
  • the present invention has been made to solve the above-described problems, and has as its object to suppress an increase in the number of processes and a reduction in an operation band.
  • a semiconductor photodetector includes a cladding layer, a semiconductor layer formed on the cladding layer, and formed of a compound semiconductor that guides light of interest, and a light that includes a compound semiconductor formed on the semiconductor layer.
  • An absorption layer, a p-type p-type region formed in the semiconductor layer on one side of the light absorption layer in a direction perpendicular to the direction in which light is guided, and a direction perpendicular to the direction in which light is guided An n-type n-type region formed in the semiconductor layer on the other side of the light absorbing layer, and a p-type p-type contact layer formed on the p-type region.
  • the semiconductor light receiving device includes a core layer provided in the semiconductor layer so as to extend in a direction in which light is guided, and made of a compound semiconductor having a higher refractive index than the semiconductor layer.
  • the light absorption layer and the p-type contact layer are made of the same compound semiconductor and are integrally formed.
  • an n-type n-type contact layer formed on the n-type region is provided.
  • the light absorbing layer, the p-type contact layer, and the n-type contact layer may be made of the same compound semiconductor and formed integrally.
  • the semiconductor layer between the p-type region and the n-type region may be n-type.
  • a lower core layer provided in the clad layer so as to extend in the direction in which light is guided and made of a semiconductor having a higher refractive index than the clad layer may be provided.
  • a light absorbing layer made of a compound semiconductor is provided together with a contact layer on a semiconductor layer made of a compound semiconductor formed on a cladding layer and guiding target light.
  • FIG. 1A is a cross-sectional view illustrating a configuration of the semiconductor light receiving device according to Embodiment 1 of the present invention.
  • FIG. 1B is a plan view showing a configuration of the semiconductor light receiving device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a semiconductor light receiver according to Embodiment 2 of the present invention.
  • FIG. 3A is a cross-sectional view illustrating a configuration of a semiconductor light receiver according to Embodiment 3 of the present invention.
  • FIG. 3B is a cross-sectional view illustrating a configuration of another semiconductor light receiver according to Embodiment 3 of the present invention.
  • FIG. 4A is a cross-sectional view illustrating a configuration of a semiconductor light receiver according to Embodiment 4 of the present invention.
  • FIG. 4B is a cross-sectional view showing a configuration of another semiconductor light receiver according to Embodiment 4 of the present invention.
  • FIG. 5A is a cross-sectional view illustrating a configuration of a semiconductor light receiver according to Embodiment 5 of the present invention.
  • FIG. 5B is a cross-sectional view illustrating a configuration of another semiconductor light receiver according to Embodiment 5 of the present invention.
  • FIG. 6A is a cross-sectional view illustrating a configuration of the modulator.
  • FIG. 6B is a plan view showing the configuration of the modulator.
  • FIG. 6C is a cross-sectional view illustrating a configuration of the semiconductor light receiving device.
  • FIG. 6D is a plan view showing a configuration of the semiconductor light receiving device.
  • FIG. 1A shows a cross section taken along line aa ′ of FIG. 1B.
  • This semiconductor photodetector includes a clad layer 102 formed on a Si substrate 101, a semiconductor layer 103 formed on the clad layer 102, and a light absorption layer 104 formed on the semiconductor layer 103. Is provided.
  • the cladding layer 102 is made of, for example, SiO 2 .
  • the semiconductor layer 103 is made of, for example, a compound semiconductor such as InP.
  • the target light is guided in the direction from the near side to the back side of the semiconductor layer 103 in FIG. 1A and the left and right direction in FIG. 1B.
  • the light absorption layer 104 is made of, for example, a compound semiconductor made of non-doped i-InGaAs.
  • the clad layer 102 is formed on the main surface of the Si substrate 101 by a thermal oxidation method, a CVD method, or the like.
  • an InP layer epitaxially grown on the growth substrate is bonded to the cladding layer 102, and then the growth substrate is removed, so that the semiconductor layer 103 may be formed from the bonded InP layer.
  • the light absorption layer 104 can be formed by growing InGaAs on the semiconductor layer 103 formed on the cladding layer 102 by a metal organic chemical vapor deposition method, a molecular beam epitaxy method, or the like.
  • an InGaAs layer and an InP layer may be sequentially epitaxially grown on the growth substrate, and the InP layer may be bonded to the cladding layer 102, and thereafter, the growth substrate may be removed.
  • the semiconductor layer 103 and the InGaAs layer to be the light absorbing layer 104 are formed on the cladding layer 102.
  • the semiconductor layer 103 includes a p-type region 103a which is p-type on one side of the light absorption layer 104 in a direction perpendicular to the direction in which light is guided.
  • the semiconductor layer 103 includes an n-type region 103b that is n-type on the other side of the light absorption layer 104 in a direction perpendicular to the direction in which light is guided.
  • the semiconductor layer 103 between the p-type region 103a and the n-type region 103b may be n-type.
  • an external core layer 107 and an external core layer 108 made of, for example, InP are connected to the semiconductor layer 103.
  • the outer core layer 107 and the outer core layer 108 are formed on the cladding layer 102. For example, target light is input from the optical waveguide of the outer core layer 107, and target light is output to the optical waveguide of the outer core layer 107.
  • a p-type p-type contact layer 105 is formed on the p-type region 103a.
  • the n-type contact layer 106 is formed on the n-type region 103b.
  • the present invention has a great feature in that the light absorption layer 104 is arranged on the semiconductor layer 103 together with the contact layer.
  • the semiconductor layer 103 is formed, an InGaAs layer is grown thereon, and then a predetermined impurity is introduced into each of the p-type region and the n-type region.
  • the p-type region 103a, the n-type region 103b, the p-type contact layer 105, and the n-type contact layer 106 may be formed.
  • the p-type region 103a and the n-type region 103b may be formed in advance.
  • electrodes are formed on the p-type contact layer 105 and the n-type contact layer 106, respectively.
  • the p-type contact layer 105 and the n-type contact layer 106 are made of, for example, InGaAs.
  • the light absorption layer 104, the p-type contact layer 105, and the n-type contact layer 106 are formed integrally.
  • the light absorption layer 104, the p-type contact layer 105, and the n-type contact layer 106 are made of the same compound semiconductor.
  • the light absorption layer 104, the p-type contact layer 105, and the n-type contact layer 106 formed on the same semiconductor layer formed on the semiconductor layer 103 are horizontal with respect to the plane of the Si substrate 101.
  • a photodiode is formed by forming a pin diode in the direction, and a semiconductor optical receiver of a waveguide coupling type is formed.
  • the light absorption layer 104 is provided in a layer that has been conventionally used as a contact layer. Therefore, the light absorbing layer 104 can be formed in the step (process) of forming the contact layer. Therefore, it is possible to integrate the semiconductor light receiving device and the modulator formed in another region (not shown) without increasing the number of steps.
  • the light confinement in the light absorption layer 104 is relatively small as compared with the conventional buried core structure, a higher optical power resistance than the prior art can be obtained.
  • This semiconductor photodetector includes a clad layer 102 formed on a Si substrate 101, a semiconductor layer 103 formed on the clad layer 102, and a light absorption layer 104 formed on the semiconductor layer 103. Is provided. The target light is guided in the direction from the front to the back of the semiconductor layer 103 in FIG. 2. Further, a p-type p-type contact layer 105 is formed on the p-type region 103a, and an n-type contact layer 106 is formed on the n-type region 103b. Note that the semiconductor layer 103 between the p-type region 103a and the n-type region 103b may be n-type. These configurations are the same as in the first embodiment.
  • the semiconductor device includes the core layer 111 embedded in the semiconductor layer 103.
  • the core layer 111 is provided to extend in a direction in which light is guided.
  • the core layer 111 is made of, for example, a compound semiconductor having a higher refractive index than the semiconductor layer 103 such as InGaAsP.
  • the core layer 111 may be formed in advance on the semiconductor layer 103 which is formed by being attached to the cladding layer 102.
  • the core layer 111 used as the configuration of the modulator in another region is used as the waveguide core of the semiconductor photodetector by the light absorption layer 104.
  • the target light is guided in the optical waveguide by the core layer 111, and is gradually absorbed by the light absorbing layer 104 in the process of guiding the optical waveguide.
  • the core layer 111 having a thickness of 100 nm is embedded in the semiconductor layer 103 having a thickness of 200 nm.
  • a light absorption layer 104 p-type contact layer 105, n-type contact layer 106) having a thickness of 50 nm is formed on the semiconductor layer 103.
  • the semiconductor light receiving device constituted by the light absorbing layer 104 according to the second embodiment configured as described above absorbs light in the 1.5 ⁇ m band and performs photoelectric conversion. Most of the intensity of the guided light is confined in the core layer 111, which is effective for reducing light confinement in the light absorption layer 104. Further, the strong light confinement of the core layer 111 prevents light from leaking to the surrounding p-type region 103a, n-type region 103b, p-type contact layer 105, and n-type contact layer 106, as compared with the first embodiment. Light loss due to free carrier absorption can also be reduced.
  • the semiconductor light receiving device includes a clad layer 102 formed on a Si substrate 101, a semiconductor layer 103 formed on the clad layer 102, and a light absorption layer 104a formed on the semiconductor layer 103. Is provided. The target light is guided from the near side to the far side of the semiconductor layer 103 in FIGS. 3A and 3B.
  • a p-type p-type contact layer 105 is formed on the p-type region 103a, and an n-type contact layer 106 is formed on the n-type region 103b.
  • the light absorption layer 104a, the p-type contact layer 105, and the n-type contact layer 106 are separately formed on the semiconductor layer 103 and are formed separately.
  • the semiconductor layer 103 may be configured in the same manner as in Embodiment 1, and as shown in FIG. 3B, embedded in the semiconductor layer 103 as in Embodiment 2.
  • the core layer 111 may be provided.
  • the semiconductor light receiving device includes a clad layer 102 formed on a Si substrate 101, a semiconductor layer 103 formed on the clad layer 102, and a light absorption layer 104b formed on the semiconductor layer 103. Is provided. The target light is guided in the semiconductor layer 103 in a direction from the near side to the far side of the paper of FIGS. 4A and 4B. Further, a p-type p-type contact layer 105 is formed on the p-type region 103a. These configurations are the same as those of the first, second, and third embodiments except for the light absorption layer 104b. In the fourth embodiment, no n-type contact layer 106 is provided. In the fourth embodiment, an electrode (not shown) is formed directly on n-type region 103b.
  • This semiconductor photodetector includes a clad layer 102 formed on a Si substrate 101, a semiconductor layer 103 formed on the clad layer 102, and a light absorption layer 104 formed on the semiconductor layer 103. Is provided.
  • the target light propagates in the semiconductor layer 103 in a direction from the near side to the far side of the paper of FIGS. 5A and 5B.
  • a p-type p-type contact layer 105 is formed on the p-type region 103a
  • an n-type contact layer 106 is formed on the n-type region 103b.
  • the lower core layer 112 provided in the cladding layer 102 so as to extend in the direction in which light is guided and made of a semiconductor having a higher refractive index than the cladding layer 102 is provided.
  • the lower core layer 112 may be made of, for example, Si.
  • an optical waveguide including the lower core layer 112 is provided on the side of the semiconductor layer 103 (on the side of the Si substrate 101).
  • the light confinement coefficient to the light absorbing layer 104 depends on the shape (sectional shape, plan view shape) and arrangement of the lower core layer 112. Can be adjusted.
  • a light absorption layer made of a compound semiconductor together with a contact layer is formed on a semiconductor layer made of a compound semiconductor formed on a cladding layer and guiding target light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

クラッド層(102)の上に形成された半導体層(103)と、半導体層(103)の上に形成された光吸収層(104)とを備える。半導体層(103)は、光が導波する方向に垂直な方向の光吸収層(104)の一方の側部の側に、p型とされたp型領域(103a)を備え、光が導波する方向に垂直な方向の光吸収層(104)の他方の側部の側に、n型とされたn型領域(103b)を備える。p型領域(103a)の上に、p型のp型コンタクト層(105)が形成され、n型領域(103b)の上にn型コンタクト層(106)が形成されている。

Description

半導体受光器
 本発明は、半導体変調器と集積可能な半導体受光器に関する。
 Si基板上に、III-V族半導体から構成したレーザ、変調器、受光器を集積する技術が広く検討されている。特に、マッハツェンダ変調器と受光器との集積は、コヒーレント通信などの応用先において重要な技術となる。InP系材料を用いた集積素子は、光導波路との集積の容易性や強い光閉じ込め係数による高変調効率などの特長から有望な技術である。例えば、図6A、図6Bに示すような変調器、図6C、図6Dに示すような受光器が報告されている(非特許文献1参照)。なお、図6Aは、図6Bのaa’線の断面を示している。また、図6Cは、図6Dのaa’線の断面を示している。
 いずれも、Si基板201の上に、SiO2からなる絶縁層202を介し、InPからなる半導体層203と、半導体層203を挾んで形成されたp型のInPからなるp型領域203aおよびn型のInPからなるn型領域203bを備える。また、p型領域203aの上には、p型コンタクト層205が形成され、n型領域203bの上には、n型コンタクト層206が形成されている。p型コンタクト層205およびn型コンタクト層206は、例えば、InGaAsから構成されている。
 上述した構成を共通とし、変調器は、半導体層203の中に埋め込んで、InGaAsPからなる変調器コア層211を備え(図6A、図6B)、受光器は、半導体層203の中に埋め込んで、光吸収層212を備えている(図6C、図6D)。光吸収層212は、変調器コア層211とは異なるバンドギャップを有する化合物半導体による多重量子井戸構造とされている。なお、変調器コア層211には、InPからなる外部コア層207,208が接続し、光吸収層212には、InPからなる外部コア層209,210が接続している。
S. Matsuo et al., "Avalanche Gain in Membrane p-i-n Photodiodes on Si Substrate", Proc. of the 24th congress of the international commission for optics, Th1J-05, 2017.
 しかしながら、上述した技術では、変調器コア層と光吸収層とを、各々異なるバンドギャップの材料から構成することになり、エピタキシャル成長プロセス数の増大が避けられない。また、光吸収層の光閉じ込め係数が極めて高く、入射光パワーの増大に伴い、電界遮蔽による動作帯域の低減が問題となる。
 本発明は、以上のような問題点を解消するためになされたものであり、プロセス数の増大を抑制し、動作帯域の低減が抑制できるようにすることを目的とする。
 本発明に係る半導体受光器は、クラッド層と、クラッド層の上に形成され、対象となる光が導波する化合物半導体からなる半導体層と、半導体層の上に形成された化合物半導体からなる光吸収層と、光が導波する方向に垂直な方向の光吸収層の一方の側部の側の半導体層に形成されたp型のp型領域と、光が導波する方向に垂直な方向の光吸収層の他方の側部の側の半導体層に形成されたn型のn型領域と、p型領域の上に形成されたp型のp型コンタクト層とを備える。
 上記半導体受光器において、半導体層の中を光が導波する方向に延在して設けられ、半導体層より屈折率が高い化合物半導体から構成されたコア層を備える。
 上記半導体受光器において、光吸収層およびp型コンタクト層は、同一の化合物半導体から構成されて一体に形成されている。
 上記半導体受光器において、n型領域の上に形成されたn型のn型コンタクト層を備える。なお、光吸収層、p型コンタクト層、およびn型コンタクト層は、同一の化合物半導体から構成されて一体に形成されていてもよい。
 上記半導体受光器において、p型領域とn型領域との間の半導体層は、n型とされていてもよい。
 上記半導体受光器において、クラッド層の中を光が導波する方向に延在して設けられ、クラッド層より屈折率が高い半導体から構成された下部コア層を備えるようにしてもよい。
 以上説明したように、本発明によれば、クラッド層の上に形成されて対象となる光が導波する化合物半導体からなる半導体層の上に、コンタクト層とともに化合物半導体からなる光吸収層を備えるようにしたので、プロセス数の増大を抑制し、動作帯域の低減が抑制できるという優れた効果が得られる。
図1Aは、本発明の実施の形態1における半導体受光器の構成を示す断面図である。 図1Bは、本発明の実施の形態1における半導体受光器の構成を示す平面図である。 図2は、本発明の実施の形態2における半導体受光器の構成を示す断面図である。 図3Aは、本発明の実施の形態3における半導体受光器の構成を示す断面図である。 図3Bは、本発明の実施の形態3における他の半導体受光器の構成を示す断面図である。 図4Aは、本発明の実施の形態4における半導体受光器の構成を示す断面図である。 図4Bは、本発明の実施の形態4における他の半導体受光器の構成を示す断面図である。 図5A、本発明の実施の形態5における半導体受光器の構成を示す断面図である。 図5B、本発明の実施の形態5における他の半導体受光器の構成を示す断面図である。 図6Aは、変調器の構成を示す断面図である。 図6Bは、変調器の構成を示す平面図である。 図6Cは、半導体受光器の構成を示す断面図である。 図6Dは、半導体受光器の構成を示す平面図である。
 以下、本発明の実施の形態おける半導体受光器について説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1における半導体受光器について、図1A、図1Bを参照して説明する。なお、図1Aは、図1Bのaa’線の断面を示している。
 この半導体受光器は、まず、Si基板101の上に形成されたクラッド層102と、クラッド層102の上に形成された半導体層103と、半導体層103の上に形成された光吸収層104とを備える。クラッド層102は、例えば、SiO2から構成されている。半導体層103は、例えば、InPなどの化合物半導体から構成されている。
 半導体層103の、図1Aの紙面の手前から奥への方向、図1Bの紙面の左右方向に対象となる光が導波する。光吸収層104は、例えば、ノンドープのi-InGaAsからなる化合物半導体から構成されている。
 例えば、まず、Si基板101の主表面に、熱酸化法やCVD法などによりクラッド層102を形成する。一方で、成長基板の上にエピタキシャル成長したInPの層をクラッド層102に貼り合わせ、この後、成長基板を除去することで、貼り合わせたInPの層より半導体層103を形成すればよい。また、クラッド層102の上に形成した半導体層103の上に、有機金属気相成長法や分子線エピタキシー法などによりInGaAsを成長することで、光吸収層104が形成できる。また、成長基板の上に、InGaAsの層およびInPの層を順次にエピタキシャル成長し、InPの層をクラッド層102に貼り合わせ、この後、成長基板を除去してもよい。これにより、クラッド層102の上に、半導体層103および光吸収層104となるInGaAsの層が形成された状態となる。
 ここで、半導体層103は、光が導波する方向に垂直な方向の光吸収層104の一方の側部の側に、p型とされたp型領域103aを備える。また、半導体層103は、光が導波する方向に垂直な方向の光吸収層104の他方の側部の側に、n型とされたn型領域103bを備える。なお、p型領域103aとn型領域103bとの間の半導体層103が、n型とされていてもよい。なお、半導体層103には、例えばInPからなる外部コア層107,外部コア層108が接続している。外部コア層107,外部コア層108は、クラッド層102の上に形成されている。例えば、外部コア層107による光導波路より対象とする光が入力され、外部コア層107による光導波路に、対象とする光が出力される。
 また、p型領域103aの上に、p型のp型コンタクト層105が形成されている。加えて、実施の形態1では、n型領域103bの上にn型コンタクト層106が形成されている。本発明では、半導体層103の上に、コンタクト層とともに光吸収層104が配置されているところに大きな特長がある。
 例えば、前述したように、半導体層103を形成し、この上にInGaAsの層を成長した後、p型とする領域、およびn型とする領域の各々に、所定の不純物を導入することで、p型領域103a、n型領域103b、p型コンタクト層105、n型コンタクト層106を形成すればよい。また、接合により半導体層103をクラッド層102に貼り合わせる前に、予めp型領域103a、n型領域103bを形成しておいてもよい。なお、図示していないが、p型コンタクト層105の上、およびn型コンタクト層106の上には、各々電極が形成されている。
 p型コンタクト層105,n型コンタクト層106は、例えば、InGaAsから構成されている。また、実施の形態1において、光吸収層104、p型コンタクト層105、およびn型コンタクト層106は、一体に形成されている。また、光吸収層104、p型コンタクト層105、およびn型コンタクト層106は、同一の化合物半導体から構成されている。
 実施の形態1では、半導体層103の上に形成した同一の半導体層に形成された光吸収層104、p型コンタクト層105、およびn型コンタクト層106により、Si基板101の平面に対して水平方向にp-i-nダイオードを形成してフォトダイオードとし、導波路結合型の半導体受光器としている。実施の形態1において、従来では、コンタクト層として用いられてきた層に、光吸収層104を配置している。このため、コンタクト層を形成する工程(過程)で光吸収層104が形成できる。このため、この半導体受光器と、図示していない他の領域に形成した変調器とを、工程数の増大を伴うことなく集積することが可能となる。
 また、実施の形態1によれば、従来の埋め込みコア構造と比べて、光吸収層104への光閉じ込めは比較的小さくなるため、先行技術より高い光パワー耐性が得られる。
[実施の形態2]
 次に、本発明の実施の形態2における半導体受光器ついて、図2を参照して説明する。
 この半導体受光器は、まず、Si基板101の上に形成されたクラッド層102と、クラッド層102の上に形成された半導体層103と、半導体層103の上に形成された光吸収層104とを備える。半導体層103の、図2の紙面の手前から奥への方向に対象となる光が導波する。また、p型領域103aの上に、p型のp型コンタクト層105が形成され、n型領域103bの上にn型コンタクト層106が形成されている。なお、p型領域103aとn型領域103bとの間の半導体層103が、n型とされていてもよい。これらの構成は、前述した実施の形態1と同様である。
 実施の形態2では、半導体層103の中に埋め込まれて形成されたコア層111を備える。コア層111は、光が導波する方向に延在して設けられている。またコア層111は、例えば、InGaAsPなどの半導体層103より屈折率が高い化合物半導体から構成されている。例えば、クラッド層102に貼り合わせて形成する半導体層103に、予めコア層111を形成しておけばよい。
 実施の形態2では、図示しない他の領域で変調器の構成として用いるコア層111を、光吸収層104による半導体受光器の導波路コアとして用いる。対象とする光は、コア層111による光導波路を導波させ、この光導波路を導波する過程で、光吸収層104に少しずつ吸収させていく。例えば、厚さ200nmとした半導体層103の中に、厚さ100nmとしたコア層111を埋め込んで形成する。また、半導体層103の上に、厚さ50nmとした光吸収層104(p型コンタクト層105,n型コンタクト層106)を形成する。
 このように構成した実施の形態2における光吸収層104による半導体受光器は、1.5μm帯の光を吸収して光電変換する。導波する光の強度の大部分が、コア層111に閉じ込められるため、光吸収層104への光閉じ込め低減に有効である。また、コア層111の強い光閉じ込めにより、この周囲のp型領域103a、n型領域103b、p型コンタクト層105、n型コンタクト層106への光の漏れを防ぎ、実施の形態1に比べてフリーキャリア吸収による光損失も低減可能である。
[実施の形態3]
 次に、本発明の実施の形態3における半導体受光器ついて、図3A,図3Bを参照して説明する。
 この半導体受光器は、まず、Si基板101の上に形成されたクラッド層102と、クラッド層102の上に形成された半導体層103と、半導体層103の上に形成された光吸収層104aとを備える。半導体層103の、図3A,図3Bの紙面の手前から奥への方向に対象となる光が導波する。また、p型領域103aの上に、p型のp型コンタクト層105が形成され、n型領域103bの上にn型コンタクト層106が形成されている。これらの構成は、光吸収層104a以外は、前述した実施の形態1,2と同様である。
 実施の形態3では、光吸収層104aと、p型コンタクト層105と、n型コンタクト層106とを、半導体層103の上で、各々分離して別体に形成している。なお、図3Aに示すように、半導体層103を実施の形態1と同様に構成してもよく、図3Bに示すように、実施の形態2と同様に、半導体層103の中に埋め込まれて形成されたコア層111を備えるようにしてもよい。
[実施の形態4]
 次に、本発明の実施の形態4における半導体受光器ついて、図4A,図4Bを参照して説明する。
 この半導体受光器は、まず、Si基板101の上に形成されたクラッド層102と、クラッド層102の上に形成された半導体層103と、半導体層103の上に形成された光吸収層104bとを備える。半導体層103の、図4A,図4Bの紙面の手前から奥への方向に対象となる光が導波する。また、p型領域103aの上に、p型のp型コンタクト層105が形成されている。これらの構成は、光吸収層104b以外は、前述した実施の形態1,2,3と同様である。実施の形態4では、n型コンタクト層106を備えていない。実施の形態4では、n型領域103bの上に、図示しない電極を直接形成する。
[実施の形態5]
 次に、本発明の実施の形態5における半導体受光器ついて、図5A,図5Bを参照して説明する。
 この半導体受光器は、まず、Si基板101の上に形成されたクラッド層102と、クラッド層102の上に形成された半導体層103と、半導体層103の上に形成された光吸収層104とを備える。半導体層103の、図5A,図5Bの紙面の手前から奥への方向に対象となる光が導波する。また、p型領域103aの上に、p型のp型コンタクト層105が形成され、n型領域103bの上にn型コンタクト層106が形成されている。これらの構成は、前述した実施の形態1,2,3と同様である。
 実施の形態5では、クラッド層102の中を光が導波する方向に延在して設けられ、クラッド層102より屈折率が高い半導体から構成された下部コア層112を備える。下部コア層112は、例えば、Siから構成すればよい。実施の形態5では、半導体層103のした(Si基板101の側)に、下部コア層112による光導波路を備える。実施の形態5によれば、下部コア層112による光導波路にも光閉じ込められるため、下部コア層112の形状(断面形状,平面視の形状)や配置により、光吸収層104への光閉じ込め係数を調整することが可能となる。
 以上に説明したように、本発明によれば、クラッド層の上に形成されて対象となる光が導波する化合物半導体からなる半導体層の上に、コンタクト層とともに化合物半導体からなる光吸収層を備えるようにしたので、プロセス数の増大を抑制し、動作帯域の低減が抑制できるようになる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…Si基板、102…クラッド層、103…半導体層、103a…p型領域、103b…n型領域、104…光吸収層、105…p型コンタクト層、106…n型コンタクト層、107…外部コア層、108…外部コア層。

Claims (7)

  1.  クラッド層と、
     前記クラッド層の上に形成され、対象となる光が導波する化合物半導体からなる半導体層と、
     前記半導体層の上に形成された化合物半導体からなる光吸収層と、
     光が導波する方向に垂直な方向の前記光吸収層の一方の側部の側の前記半導体層に形成されたp型のp型領域と、
     光が導波する方向に垂直な方向の前記光吸収層の他方の側部の側の前記半導体層に形成されたn型のn型領域と、
     前記p型領域の上に形成されたp型のp型コンタクト層と
     を備えることを特徴とする半導体受光器。
  2.  請求項1記載の半導体受光器において、
     前記半導体層の中を光が導波する方向に延在して設けられ、前記半導体層より屈折率が高い化合物半導体から構成されたコア層を備えることを特徴とする半導体受光器。
  3.  請求項1または2記載の半導体受光器において、
     前記光吸収層および前記p型コンタクト層は、同一の化合物半導体から構成されて一体に形成されていることを特徴とする半導体受光器。
  4.  請求項1~3のいずれか1項に記載の半導体受光器において、
     前記n型領域の上に形成されたn型のn型コンタクト層を備えることを特徴とする半導体受光器。
  5.  請求項4記載の半導体受光器において、
     前記光吸収層、前記p型コンタクト層、および前記n型コンタクト層は、同一の化合物半導体から構成されて一体に形成されていることを特徴とする半導体受光器。
  6.  請求項1~5のいずれか1項に記載の半導体受光器において、
     前記p型領域と前記n型領域との間の前記半導体層は、n型とされていることを特徴とする半導体受光器。
  7.  請求項1~6のいずれか1項に記載の半導体受光器において、
     前記クラッド層の中を光が導波する方向に延在して設けられ、前記クラッド層より屈折率が高い半導体から構成された下部コア層を備えることを特徴とする半導体受光器。
PCT/JP2019/030476 2018-08-28 2019-08-02 半導体受光器 WO2020044952A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/263,853 US11417783B2 (en) 2018-08-28 2019-08-02 Semiconductor light receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-158941 2018-08-28
JP2018158941A JP7010173B2 (ja) 2018-08-28 2018-08-28 半導体受光器

Publications (1)

Publication Number Publication Date
WO2020044952A1 true WO2020044952A1 (ja) 2020-03-05

Family

ID=69643626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030476 WO2020044952A1 (ja) 2018-08-28 2019-08-02 半導体受光器

Country Status (3)

Country Link
US (1) US11417783B2 (ja)
JP (1) JP7010173B2 (ja)
WO (1) WO2020044952A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008272A1 (ja) * 2010-07-16 2012-01-19 日本電気株式会社 受光素子及びそれを備えた光通信デバイス、並びに受光素子の製造方法及び光通信デバイスの製造方法
JP2016111363A (ja) * 2014-12-01 2016-06-20 ラクステラ・インコーポレイテッドLuxtera,Inc. ゲルマニウム層コンタクトが無いシリコン上ゲルマニウム光検出器のための方法及びシステム
JP2016171173A (ja) * 2015-03-12 2016-09-23 日本電信電話株式会社 半導体光素子
WO2016190346A1 (ja) * 2015-05-28 2016-12-01 日本電信電話株式会社 受光素子および光集積回路
US20170317116A1 (en) * 2016-05-02 2017-11-02 Huawei Technologies Co., Ltd. Electrostatic discharge guard structure
JP2018046258A (ja) * 2016-09-16 2018-03-22 国立大学法人 東京大学 光集積回路装置及びその製造方法
JP2018129483A (ja) * 2017-02-10 2018-08-16 沖電気工業株式会社 受光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187252A (ja) 2012-03-06 2013-09-19 Mitsubishi Electric Corp アバランシェフォトダイオード及びその製造方法
JP2014056883A (ja) 2012-09-11 2014-03-27 Mitsubishi Electric Corp 半導体受光素子及びその製造方法
JP6036197B2 (ja) 2012-11-13 2016-11-30 三菱電機株式会社 アバランシェフォトダイオードの製造方法
JP6483521B2 (ja) * 2015-05-21 2019-03-13 日本電信電話株式会社 半導体レーザ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008272A1 (ja) * 2010-07-16 2012-01-19 日本電気株式会社 受光素子及びそれを備えた光通信デバイス、並びに受光素子の製造方法及び光通信デバイスの製造方法
JP2016111363A (ja) * 2014-12-01 2016-06-20 ラクステラ・インコーポレイテッドLuxtera,Inc. ゲルマニウム層コンタクトが無いシリコン上ゲルマニウム光検出器のための方法及びシステム
JP2016171173A (ja) * 2015-03-12 2016-09-23 日本電信電話株式会社 半導体光素子
WO2016190346A1 (ja) * 2015-05-28 2016-12-01 日本電信電話株式会社 受光素子および光集積回路
US20170317116A1 (en) * 2016-05-02 2017-11-02 Huawei Technologies Co., Ltd. Electrostatic discharge guard structure
JP2018046258A (ja) * 2016-09-16 2018-03-22 国立大学法人 東京大学 光集積回路装置及びその製造方法
JP2018129483A (ja) * 2017-02-10 2018-08-16 沖電気工業株式会社 受光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONO, H. ET AL.: "Waveguide Butt-Joint German ium Photodetector with Lateral PIN Structure for 1600nm Wavelengths Receiving", IEICE TRANSACTIONS ON ELECTRONICS, vol. E101-C, no. 6, 1 June 2018 (2018-06-01), pages 409 - 415, XP055696031, ISSN: 0916-8524, DOI: 10.1587/transele.E101.C.409 *

Also Published As

Publication number Publication date
JP7010173B2 (ja) 2022-01-26
US20210226073A1 (en) 2021-07-22
US11417783B2 (en) 2022-08-16
JP2020035805A (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2011083657A1 (ja) アバランシェフォトダイオード及びそれを用いた受信機
WO2006123410A1 (ja) アバランシェフォトダイオード
JP2013061632A (ja) 光デバイス、光モジュール、及び光デバイスの製造方法
JP6538969B2 (ja) 光導波路集積受光素子およびその製造方法
US11855410B2 (en) Semiconductor optical module
WO2018117077A1 (ja) 光集積素子および光送信機モジュール
KR20020018611A (ko) 광 검출기 부재
CN112913158B (zh) 光电探测器芯片、光接收及收发组件、光模块及通讯设备
JP3675223B2 (ja) アバランシェフォトダイオードとその製造方法
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
US11281029B2 (en) Optical integrated element and optical module
WO2021124441A1 (ja) 受光デバイス
JPH09283786A (ja) 導波路型半導体受光素子とその製造方法
JP4291085B2 (ja) 導波路型受光素子
WO2020044952A1 (ja) 半導体受光器
US20090324250A1 (en) Wireless transmitters
JP4158197B2 (ja) 受光素子
Yeo et al. Integration of waveguide-type wavelength demultiplexing photodetectors by the selective intermixing of an InGaAs-InGaAsP quantum-well structure
JPH09298337A (ja) 半導体分布ブラッグ反射鏡及びそれを用いた面発光型半導体レーザ
JP2004247620A (ja) 半導体受光素子
CN108987530B (zh) 光电探测器的制作方法
JP4281743B2 (ja) 受光素子およびそれを用いた光受信機
JP2010114158A (ja) 電界吸収型光変調器集積レーザ素子の製造方法
JP2009016878A (ja) 半導体レーザ及びそれを用いた光モジュール
JP5278429B2 (ja) 半導体受光素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855777

Country of ref document: EP

Kind code of ref document: A1