JP2018046258A - 光集積回路装置及びその製造方法 - Google Patents

光集積回路装置及びその製造方法 Download PDF

Info

Publication number
JP2018046258A
JP2018046258A JP2016182116A JP2016182116A JP2018046258A JP 2018046258 A JP2018046258 A JP 2018046258A JP 2016182116 A JP2016182116 A JP 2016182116A JP 2016182116 A JP2016182116 A JP 2016182116A JP 2018046258 A JP2018046258 A JP 2018046258A
Authority
JP
Japan
Prior art keywords
optical
semiconductor
integrated circuit
layer
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016182116A
Other languages
English (en)
Inventor
充 竹中
Mitsuru Takenaka
充 竹中
健 亢
Jian Kang
健 亢
高木 信一
Shinichi Takagi
信一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2016182116A priority Critical patent/JP2018046258A/ja
Publication of JP2018046258A publication Critical patent/JP2018046258A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】効率のよい光集積回路装置及びその製造方法を提供する。【解決手段】支持基板2のクラッド層2b上に、レーザダイオード5、光変調器6に対応したIII−V族半導体又はGeを含む半導体基板をそれぞれ貼付し、これら半導体基板からレーザダイオード5、光変調器6を形成する。クラッド層2b上にシリコンを堆積させてアモルファスシリコン層を形成する。このアモルファスシリコン層をエッチングすることによって、レーザダイオード5、光変調器6が光を射出し、また入射する端面5a、6a、6bに端部が結合した光導波路8,9を形成する。【選択図】図4

Description

本発明は、光集積回路装置及びその製造方法に関する。
レーザダイオードや光変調器、受光器などの半導体光素子や種々の光導波路を基板上に集積した光集積回路装置は光通信技術の進展に伴いますます重要性を増している。このような光集積回路装置では、Si-on-Insulator(以下SOIという。)基板が用いられることが多く、Siフォトニクス技術が注目されている。半導体光素子としては、レーザダイオード、屈折率や光の透過強度を制御する光変調器、受光器(フォトダイオード)等が挙げられる。
上記のSiフォトニクス技術では、シリコンからなる光導波路の上に半導体光素子を構成する半導体を貼り付けたハイブリッド構造が知られている(例えば、非特許文献1、参照)。非特許文献1では、SOI基板のシリコン層に光導波路が形成され、その光導波路の上にMQW(multi quantum well:多重量子井戸)構造の活性層を含む各種III−V族半導体を積層した構造のレーザダイオードが記載されている。
A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express, vol. 14, no. 20, p. 9203, 2006.
上記のようにSOI基板のシリコン層に形成した光導波路の上にIII−V族半導体を積層した構造では、III−V族半導体への光閉じ込め効果が小さい。このため、レーザダイオードにおける誘導放出が小さく、レーザ光を出力するために多くの電流が必要となり、レーザダイオードの発光効率が悪かった。また、例えば、シリコンの導波路の上に半導体層を積層した構造の光変調器では、導波路から染み出した光の一部に変調を行うため、変調効率が悪い。このように、SOI基板のシリコン層に形成した光導波路の上に半導体層を設けた構造の半導体光素子は効率が悪く、結果として光集積回路装置の効率が悪いという問題があった。
本発明は、上記事情を鑑みてなされたものであり、効率のよい光集積回路装置及びその製造方法を提供することを目的とする。
本発明の光集積回路装置は、表面にクラッド層を有する支持基板と、III−V族半導体又はGeを含む半導体の能動光導波路がクラッド層上に設けられ、支持基板の表面に対して起立した素子端面に光の入射部または射出部を有する半導体光素子と、クラッド層上に設けられるとともに、一端が素子端面に光学的に結合され、支持基板の表面に沿って延びるシリコンの受動光導波路とを備え、クラッド層は、能動光導波路及び受動光導波路よりも屈折率が低いものである。
また、本発明の光集積回路装置の製造方法は、支持基板の表面に設けられたクラッド層上に、III−V族半導体基板またはGeを含む半導体基板を貼り合わせる貼付工程と、半導体基板から、支持基板の表面に対して起立した素子端面に光の入射部または射出部が設けられた半導体光素子を形成する光素子形成工程と、貼付工程を経た支持基板にシリコン層を形成する工程を含み、シリコン層から、一端が光素子の素子端面に光学的に結合された受動光導波路を形成する光導波路形成工程とを有するものである。
本発明の光集積回路装置によれば、能動光導波路及び受動光導波路よりも屈折率が低いクラッド層上に半導体光素子のIII−V族半導体又はGeを含む半導体の能動光導波路を設けて半導体光素子の効率を高めるとともに、この半導体光素子の素子端面に支持基板の表面に沿って延びるシリコンの光導波路の一端を結合したから、光集積回路装置の効率がよくなる。
本発明の光集積回路装置の製造方法によれば、支持基板に貼り合わせたIII−V族半導体又はGeを含む半導体基板から半導体光素子を形成し、支持基板の表面に対して起立し、光の入射部または射出部が設けられた素子端面に一端を結合させてシリコンからなる受動光導波路を形成するので、III−V族半導体構造又はGeを含む半導体構造の半導体光素子を有する光集積回路装置を容易に製造することができる。
本発明を実施した光集積回路装置の外観を示す斜視図である。 図1の切断線B-B’におけるレーザダイオードの断面図である。 図1の切断線C-C’における光変調器の断面図である。 図1の切断線A-A’における光集積回路の断面図である。 支持基板に半導体基板を貼り付ける工程を示す説明図である。 支持基板上のアモルファスシリコン層の形成状態を示す説明図である。 マスクを用いて半導体基板をエッチングする状態を示す説明図である。 高濃度のpドープによってコンタクト層を形成する状態を示す説明図である。 高濃度のnドープによってコンタクト層を形成する状態を示す説明図である。 複数の光集積回路を設けた光集積回路装置の外観を示す斜視図である。 図10の切断線D-D’における受光器の断面図である。 別の構造のレーザダイオードを示す断面図である。 別の構造の光変調器を示す断面図である。 素子端面を傾斜面とする工程を示す説明図である。
図1において、本発明を実施した光集積回路装置1は、支持基板2に形成された光集積回路3を有している。支持基板2は、基板本体2aと、この基板本体2aの表面に形成されたクラッド層2bとから構成される。基板本体2aは、例えば、Si(シリコン)製であり、その表面が酸化されることによって酸化シリコン(Si0)からなるクラッド層2bが形成されている。なお、光集積回路3の表面は、保護膜4(図2参照)で覆われているが、図1では、その図示を省略している。
支持基板2は、クラッド層2b及びその上に形成される各種半導体光素子、光導波路を支持する部材であり、その表面にクラッド層2bを有するものであれば、材料は特に限定されない。クラッド層2は、絶縁性を有し、クラッド層として機能、すなわち透明であって受動光導波路、半導体光素子の光能動光導波路よりも屈折率が低いものであれば、酸化シリコンに限定されない。クラッド層2として、例えばアルミナ、窒化シリコン、SiC、AlN、GaN等の透明半導体、ワイドギャップ半導体等で形成してもよい。本実施形態のように、酸化シリコンからなるクラッド層2bは、半導体光素子に用いるIII−V族半導体またはGeを含む半導体に対して屈折率が十分に低いので、半導体光素子の能動光導波路に極めて高い光閉じ込め効果を持たせる上で有用である。
光集積回路3は、レーザダイオード5から出力されるレーザ光を光変調器6で変調し、その変調されたレーザ光を光出力部7から外部に出力するものである。光集積回路3のレーザダイオード5と光変調器6の間、光変調器6と光出力部7の間には、受動光導波路としての光導波路8、9が設けられている。
レーザダイオード5は、後述するようにクラッド層2b上に貼り付けた半導体基板を加工した半導体部11と、駆動電圧を印加するための電極12a、12bとを有し、同様に、光変調器6は、半導体基板を加工した半導体部13と、駆動電圧を印加するための電極14a、14bとを有している。半導体光素子としてのレーザダイオード5、光変調器6を構成する半導体部11、13は、クラッド層2b上に貼り付けられた別々の半導体基板から形成される。
レーザダイオード5、光変調器6等の半導体光素子を形成する半導体基板としては、III−V族半導体、またはGeを含む半導体からなるものが用いられる。III−V族半導体としては、InGaAsP、InPの他に、InGaAs、InAlAs、GaAs、AlGaAs、GaSb、AlGaSb、InSb、InGaSb等が挙げられる。Geを含む半導体としては、GeやSiGe等が挙げられる。
光導波路8は、レーザダイオード5からのレーザ光を光変調器6に伝送する。また、光導波路9は、光変調器6で変調されたレーザ光を光変調器6から光出力部7に伝送する。光導波路8、9は、アモルファスシリコンで形成されており、レーザダイオード5と光変調器6との間に支持基板2の表面に沿って帯状にそれぞれ設けられている。この例では、レーザダイオード5と光出力部7とを結ぶ直線的な光導波方向に沿って、光導波路8、9が直線的に設けられているが、湾曲した形状でもよい。光出力部7は、光導波路9と一体にアモルファスシリコンで形成された回折格子結合器であり、光導波路9からの光を外部へ出力する。
光導波路8、9は、アモルファスシリコンからなるが、ポリシリコンや単結晶のシリコンであってもよいが、CVD(chemical vapor deposition)法等を用いて容易に作製できる点、光閉じ込めの強い点からアモルファスシリコンとすることが好ましい。
図2にレーザダイオード5の一例を示すように、半導体部11は、クラッド層2b上に設けられており、下部クラッド層21、InGaAsP多重量子井戸(MQW:multi quantum well)構造の活性層22、上部クラッド層23を積層した半導体構造を有している。半導体部11は、活性層22及び上部クラッド層23の部分が下部クラッド層21よりも突出した形状となっている。この突出した部分の活性層22及び上部クラッド層23と、その直下の下部クラッド層21によってレーザダイオード5の内部の能動光導波路が構成される。下部クラッド層21は、例えばInGaAsPからなり、上部クラッド層23は、InPからなる。このように、レーザダイオード5は、酸化シリコンからなるクラッド層2b上にIII−V族半導体で能動光導波路が形成されており、その能動光導波路に対してクラッド層2bの屈折率が十分に低いので、能動光導波路において強い光閉じ込め効果が得られる。このため、レーザダイオード5は、誘導放出が大きく発光効率が高くなる。したがって、小さな駆動電流で大きな出力が得られるとともに、小型化を図る上で有利となる。なお、下部クラッド層21、上部クラッド層23は、InP,InGaAsPのいずれでもよい。
下部クラッド層21の光導波方向と直交する幅方向(図2の左右方向)の両端に、コンタクト層25a、25bが設けられている。コンタクト層25a上に電極12aが、コンタクト層25b上に電極12bがそれぞれ設けられている。コンタクト層25aは、下部クラッド層21のInGaAsPを高濃度にpドープしたものであり、コンタクト層25bは、下部クラッド層21のInGaAsPを高濃度にnドープしたものである。
上記レーザダイオード5は、電極12a、12bに対して、駆動電圧が印加されることによって活性層22に電子とホールが注入されることで発光し、レーザ光を出力する。レーザダイオード5の支持基板2の表面に対して起立した各端面のうち、光変調器6に向いた端面5a(図4参照)からレーザ光が射出される。すなわち、端面5aは、レーザ光を射出する射出部を有する素子端面である。なお、レーザダイオード5では、高濃度にpドープしたコンタクト層25a側の電極12aがプラス電位となるように駆動電圧を印加する。
図3に光変調器6の一例を示すように、半導体部13は、クラッド層2b上に設けられた半導体構造を有し、p型半導体層31とn型半導体層32との接合構造になっている。p型半導体層31とn型半導体層32とで光変調器6の内部の能動光導波路が構成されている。接合構造を含む中央部は、突出した形状となっている。p型半導体層31とn型半導体層32は、例えばInPをpドープ、nドープしたものである。また、幅方向におけるp型半導体層31の端部には、高濃度にpドープしたコンタクト層34aが、またn型半導体層32の端部には、高濃度にnドープしたコンタクト層34bがそれぞれ設けられている。なお、p型半導体層31とn型半導体層32としては、InPの他、InGaAsP等のIII−V族半導体やSiGe、Ge等の半導体を用いたpn接合構造のものであってもよい。
上記のように構成される光変調器6は、空乏型光変調器であり、駆動電圧に応じて、p型半導体層31とn型半導体層32の境界の空乏層の幅を変化させて、キャリア濃度を変化させる。これにより、光変調器6の内部の光導波路の屈折率が変化することで、伝搬する光の位相に変調がかかる。なお、駆動電圧は、逆バイアス電圧となるように光変調器6に印加される。
光変調器6は、p型半導体層31とn型半導体層32の接合面が光導波方向と平行となる姿勢に設けられている。このように配置された光変調器6は、その各端面のうちレーザダイオード5に向いた端面6aが変調すべき光を内部に入射する入射部を有する素子端面となり、端面6a(図4参照)と反対側の端面6b(図4参照)が変調した光を外部に射出する射出部を有する素子端面となる。
上記のように、光変調器6は、酸化シリコンからなるクラッド層2b上にIII−V族半導体またはGeを含む半導体で能動光導波路が形成されており、その能動光導波路に対してクラッド層2bの屈折率が十分に低いので、能動光導波路において強い光閉じ込め効果が得られる。このことから、光変調器6における屈折率変化部や吸収変化部と入射されたレーザ光の重なりが大きくなり変調効率が高くなる。そして、変調効率が高いため、光変調器6の小型化を図る上で有利となる。
図4に示すように光導波路8、9は、クラッド層2b上にそれぞれ設けられている。光導波路8は、光導波方向の一端がレーザダイオード5の端面5aに結合されており、他端が光変調器6の端面6aに結合されている。また、光導波路9は、その一端が光変調器6の端面6bに結合されており、他端が光出力部7の入力面7aに結合されている。このようにレーザダイオード5、光変調器6と、光導波路8,9は、端面同士を結合させた突き合わせ接続構造になっている。これにより、レーザダイオード5の端面5aから出力されるレーザ光は、光導波路8に入射し、光導波路8を通って光変調器6の端面6aから光変調器6内に入射する。光変調器6内に入射したレーザ光は、光変調器6内を通過する際に変調され、その変調されたレーザ光が端面6bから出力される。端面6bから出力されるレーザ光は、光導波路9に入射し、光導波路9を通って光出力部7の入力面7aから光出力部7内に入射する。光出力部7内に入射したレーザ光は、光出力部7の回折格子の作用で外部に出力される。なお、図4では、保護膜4の図示を省略している。
次に上記光集積回路装置1の作製手順について説明する。光集積回路装置1は、下記第1〜第7工程により作製される。なお、下記に説明する光集積回路装置1の作製手順は一例であり、これに作製手順を限定するものではない。
第1工程では、図5に示すように、予め用意された支持基板2のクラッド層2b上のレーザダイオード5、光変調器6を形成すべき領域に、半導体部11、13の元となる半導体基板11A、13Aを貼付することによって、クラッド層2b上に半導体部11B、13Bを形成する。半導体基板11Aは、半導体部11と同じ積層構造、すなわち下部クラッド層21、活性層22、上部クラッド層23を積層したものであり、同じ積層構造を有する半導体部11Bがクラッド層2b上に形成される。一方、半導体基板13Aとしては、上記のように半導体部13がInPをドープした構成とした場合では、アンドープのInPからなる基板が用いられ、InPからなる半導体部13Bがクラッド層2b上に形成される。
半導体基板11A、13Aを支持基板2に貼り合わせるには、例えば表面活性化常温接合法を用いることができる。すなわち、常温下の真空中において、支持基板2の表面すなわちクラッド層2bと半導体基板11A、13Aの各表面を、例えばAr(アルゴン)ガスをそれぞれ照射することで活性化してから、半導体基板11A、13Aの各表面をクラッド層2bの表面に密着させた状態で押圧する。これにより、クラッド層2bと半導体基板11A、13Aとの各表面の原子の結合手同士が直接結合し、クラッド層2b上に固定された半導体部11B、13Bが形成される。なお、半導体基板11A、13Aと、支持基板2の表面にそれぞれAl層を原子層堆積法により堆積して、Al層同士の表面で貼り合わせしてもよい。この場合、室温大気中で貼り合わせた後、加圧加熱(200℃から300℃程度)することで貼り合わせることができる。
上記のようにレーザダイオード5や光変調器6の半導体光素子を形成すべき支持基板2の各領域にそれぞれ半導体基板を貼り付ければよいから、大口径の支持基板2を用いる場合であっても、半導体光素子の元となる半導体基板は小片のものとすることができる。したがって、半導体光素子の元となる半導体基板の大口径化が難しい場合であっても、大口径の支持基板2に多数の半導体光素子、光集積回路、光集積回路装置を作製することが可能である。また、III−V族半導体を積層した半導体基板11AとInPからなる半導体基板13Aのように、材料や積層構造等が異なる複数の半導体基板をそれぞれ支持基板2の任意の位置に貼り合わせることができる。このため、各々の半導体光素子を最適な材料や積層構造で任意の位置に作製することができる。さらには、結晶成長によりSOI基板にGeの半導体部を形成する場合、結晶欠陥が問題となるが、貼り合わせであれば良好な結晶構造を有するGeの半導体部を形成可能である。
第2工程では、図6に示すように、クラッド層2b上に光導波路8,9及び光出力部7となるアモルファスシリコン層41を形成する。このアモルファスシリコン層41の形成は、例えば、CVD法によりSiをクラッド層2bの表面に堆積してから、化学機械研磨(CMP;Chemical Mechanical Polishing)により、その表面を平坦化する。アモルファスシリコン層41は、半導体部11Bと、半導体部13Bとの間にも形成される。
続く第3工程では、半導体部11B、13Bの電極形成予定領域の厚みを薄くするとともに、光出力部7の回折格子の溝7b(図1参照)を形成するために、所定パターンのマスク43を用いてドライエッチングを行う。マスクのパターンとしては、図7に示すように、半導体部11Bの領域では、電極形成予定領域が開口し、それ以外の領域を覆うパタ−ンになっている。半導体部13Bの領域についても同様であり、電極形成予定領域が開口し、それ以外の領域を覆うパタ−ンになっている。一方、アモルファスシリコン層41の領域では、光出力部7の回折格子の溝7b以外の領域と、光導波路8、9の形成予定領域を覆うパターンになっている。
ドライエッチングによる半導体部11B、13B、アモルファスシリコン層41の各エッチレートを適宜調整することによって、半導体部11B、13Bの電極形成予定領域を所望の厚みとし、また所望とする深さの回折格子の溝7bを形成する。なお、第3工程及び下記の工程で用いるマスクとしては、例えば一般的なフォトリソグラフィ技術を用いてパターニングしたシリコン酸化膜を用いればよい。
上記第3工程により、半導体部11Bは、その幅方向の両端で活性層22及び上部クラッド層23がそれぞれエッチングされて、下部クラッド層21が所定の厚さに残った形状になる。また、半導体部13Bは、幅方向の両端がそれぞれエッチングされることで、中央部が突出した形状になる。
第4工程では、クラッド層2b上の各半導体部11B、13B、光導波路8、9及び光出力部7の形成予定領域を覆うパターンのマスクを用いて、アモルファスシリコン層41をドライエッチングする。これにより、アモルファスシリコン層41から不要な部分が取り除かれて、光導波路8、9と光出力部7とが所定形状に形成される。光導波路8、9は、支持基板2の表面に沿って延びており、図4に示されるように、光導波路8は、その両端を半導体部11Bの端面5aと半導体部13Bの端面6aとに結合し、光導波路9は、その両端を半導体部13Bの端面6bと光出力部7の入力面7aとに結合した形状になる。
第5工程では、イオン注入とアニール処理とにより、レーザダイオード5のコンタクト層25a、25bと、光変調器6の各半導体層31、32及びコンタクト層34a、34bを形成する。例えば、コンタクト層25a、25bを形成する場合、図8に示すように、半導体部11Bのコンタクト層25aの形成予定領域だけを露出させるレジストマスク44を形成し、露出した下部クラッド層21の領域にBe,Mg等の不純物を高濃度でイオン注入する。そして、レジストマスク44の除去後、アニール処理を行う。これにより、下部クラッド層21の一端に高濃度にpドープしたコンタクト層25aが形成される。
コンタクト層25aの形成後、図9に示すように、半導体部11Bのコンタクト層25bの形成予定領域だけを露出させるレジストマスク45を形成し、露出した下部クラッド層21の領域にSi等の不純物を高濃度でイオン注入する。そして、レジストマスク45の除去後、アニール処理を行う。これにより、下部クラッド層21のもう一方の一端に高濃度にnドープしたコンタクト層25bが形成される。
光変調器6となる半導体部13Bに対しては、レジストマスクのパターン変えながら、イオン注入によるnドープ、pドープ、高濃度のnドープ、pドープ、高濃度のpドープと、アニール処理を行うことによって、p型半導体層31、n型半導体層32とコンタクト層34a、34bを形成する。
上記のようにコンタクト層25a、25bと、光変調器6の各半導体層31、32及びコンタクト層34a、34bを形成することで、レーザダイオード5の半導体部11、光変調器6の半導体部13が作製される。
なお、不純物は、半導体に応じたものを適宜に選択して用いることができる。半導体部13Bに対するドープをする場合で、例えば、InPに対するnドープを行うときには、不純物としてはSi等を、またpドープを行うときには、不純物としてはBe、Mg、Zn等を用いればよい。また、SiGeやGeからなる半導体をpドープする場合には、不純物としてB(ホウ素)を、またnドープする場合には、不純物としてP,Asを用いることができる。
第6工程では、例えばCVD法により、SiOを堆積することによって、各半導体部11、13、光出力部7、光導波路8、9、及びこれらが形成されていないクラッド層2bの表面を覆うように保護膜4を形成する。保護膜4は、化学機械研磨(CMP;Chemical Mechanical Polishing)により、その表面を平坦化することも可能である。
第7工程では、所定のパターンのレジストマスクを用いたドライエッチングにより、コンタクト層25a、25bの上方、及びコンタクト層34a、34の上面の保護膜4それぞれ除去する。この後に、レジストマスクを残した状態で、例えばスパッタリングによりAu(金)を堆積させることで、電極12a、12b、及び電極14a、14bを形成する。この後に、レジストマスクとともにその上に堆積されたAuが除去される。
以上のようにして、支持基板2上に、光導波路8、9によって、レーザダイオード5と光変調器6、光変調器6と光出力部7とを繋いだ光集積回路3が形成される。なお、上記第3工程、第5工程及び第7工程が半導体光素子を形成する光素子形成工程であり、第2工程及び第4工程が光導波路を形成する光導波路形成工程である。
上記の例では、1つの光集積回路だけを支持基板上に設けているが複数の光集積回路を支持基板上に設けてもよい。例えば、図10に示す光集積回路装置61は、光集積回路3の他に光集積回路63を支持基板2上に形成している。なお、以下に詳細を説明する他は、上記の図1に示す例と同様であり、実質的に同じ部材には同一の符号を付してその詳細な説明を省略する。
光集積回路63は、光出力部7と同様な構造を持つ回折格子結合器からなる光入力部64と、受光した光の強度に応じた電流を流す受光器65とを光導波路66で結合したものである。この光集積回路63は、光入力部64から入力される外部からの光、例えばレーザ光を光導波路65を介して受光器66に入射させる。光入力部64は、光導波路66と一体にアモルファスシリコンで形成されている。光導波路66は、アモルファスシリコンからなり、光入力部64と受光器65との間に、支持基板2の表面に沿って帯状に設けられている。
半導体光素子としての受光器65は、半導体基板を加工した半導体部71と、逆バイアス電圧が印加されて光導波路13からの受光した光の強度に応じた電流を流す一対の電極72a、72bとを有している。レーザダイオード5、光変調器6及び半導体部71の元となる半導体基板は、クラッド層2b上に貼り付けられた別々の半導体基板から形成されている。
図11に一例を示すように、受光器65の半導体部71は、クラッド層2b上に設けられており、能動光導波路としての吸収層72を有している。吸収層72は、アンドープの例えばInGaAsやGe等の半導体からなり、クラッド層2b上に形成されている。また、受光器65は、PIN型のものであり、幅方向における吸収層72の両端に高濃度にpドープしたコンタクト層75aと、高濃度にnドープしたコンタクト層75bがそれぞれ設けられている。コンタクト層75a、75bの上部には電極72a、72bが設けられている。
コンタクト層73a、73bは、吸収層72と同じ半導体を高濃度ドープしたものとなっている。なお、コンタクト層73a、73bを、Ni−InGaAs,NiGeなどの合金層とした構造であってもよい。この場合には、受光器65は、ショットキー接合を利用したMSM型となる。
受光器65は、コンタクト層73a、73bが並ぶ方向が光導波方向と直交する向きに形成されており、光入力部64側を向いた素子端面としての端面65a(図10参照)に光が入射される。光導波路66は、その一端が受光器65の端面65aに結合されており、他端が光入力部64の出力面(図示省略)に結合されている。
上記のような光集積回路装置61を作製する場合、上記第1工程において、レーザダイオード5、光変調器6の半導体部11、13の元となる半導体基板11A、13Aとともに、受光器65の半導体部71の元となる半導体基板、すなわち例えばInGaAsやGe等の半導体基板を支持基板2のクラッド層2bに貼り付ければよい。この後に、上記と同様な手順により、光集積回路3の各部とともに、光集積回路63の光入力部64、受光器65、光導波路66を形成することができる。
上記に説明した各半導体光素子の構成は一例であり、それらの構成に限定されるものではない。例えば、図12、図13に示すような半導体光素子であってもよい。図12に示すレーザダイオード85は、半導体部11において能動光導波路の両側に溝86をそれぞれ形成することで、コンタクト層87a、87bの厚みを能動光導波路の厚みと同じにした構造になっている。このような、構造とした場合、コンタクト層87a、87bの抵抗を低減する上で有利になる。なお、光変調器や受光器についても同様な構成とすることができる。
また、図13に示す光変調器90は、p型半導体層31とn型半導体層32との間に、真性半導体層91を配したPIN接合構造になっている。この光変調器90では、PIN接合に逆バイアス電圧を印加することよって生じる電界吸収効果(フランツケルディッシュ効果あるいは量子閉じ込めシュタルク効果)により、光の吸収の増減が可能になり、吸収変調器が可能となる。
なお、図12、図13では、図2、図3に示す構成部材と実質的に同じ部材には同一の符号を付してある。
また、半導体光素子の素子端面を傾斜面とすることも光導波路との結合を容易にする上で有用である。この場合には、例えば図14に示すように、支持基板2上の半導体部95の上部表面に酸化シリコン膜96を形成し(図14A)、この後に半導体部95の素子端面95aが上向きの傾斜面となるようにウエットエッチングを行う(図14B)。例えば、Geからなる半導体部95である場合には、エッチング液として、硫酸過水(SPM:Sulfuric acid Peroxide Mixture)等を用いればよい。そして、ウエットエッチング後、酸化シリコン膜96を除去してから、CVD法等で堆積させて光導波路を形成するアモルファスシリコン層98を形成する(図14C)。なお、半導体部95の上部に形成された余剰なアモルファスシリコン99は、化学機械研磨によって除去することができる。
上記の各例の光集積回路は、それを構成する各半導体光素子のそれぞれの素子端面が光導波路の一端に結合された構造であるが、光集積回路装置は、そのような構造と従来のようにシリコンの光導波路の上に半導体光素子の半導体構造が貼り合わせた構造とが混在してもよい。
1、10 光集積回路装置
3、63 光集積回路
5 レーザダイオード
6 光変調器
8、9 光導波路
11、13 半導体部
11A、13A 半導体基板
5a、6a、6b、65a 端面
41 シリコン層

Claims (7)

  1. 表面にクラッド層を有する支持基板と、
    III−V族半導体又はGeを含む半導体の能動光導波路が前記クラッド層上に設けられ、前記支持基板の表面に対して起立した素子端面に光の入射部または射出部を有する半導体光素子と、
    前記クラッド層上に設けられるとともに、一端が前記素子端面に光学的に結合され、前記支持基板の表面に沿って延びるシリコンの受動光導波路と
    を備え
    前記クラッド層は、前記能動光導波路及び前記受動光導波路よりも屈折率が低いことを特徴とする光集積回路装置。
  2. 前記受動光導波路は、アモルファスシリコンであることを特徴とする請求項1記載の光集積回路装置。
  3. 前記クラッド層は、酸化シリコン膜であることを特徴とする請求項1または2に記載の光集積回路装置。
  4. 支持基板の表面に設けられたクラッド層上に、III−V族半導体基板またはGeを含む半導体基板を貼り合わせる貼付工程と、
    前記半導体基板から、前記支持基板の表面に対して起立した素子端面に光の入射部または射出部が設けられた半導体光素子を形成する光素子形成工程と、
    前記貼付工程を経た前記支持基板にシリコン層を形成する工程を含み、前記シリコン層から、一端が前記光素子の前記素子端面に光学的に結合された受動光導波路を形成する光導波路形成工程と
    を有することを特徴とする光集積回路装置の製造方法。
  5. 前記光導波路形成工程は、アモルファスシリコンからなる前記シリコン層を形成することを特徴とする請求項4に記載の光集積回路装置の製造方法。
  6. 前記クラッド層は、酸化シリコン膜であることを特徴とする請求項4または5に記載の光集積回路装置の製造方法。
  7. 前記光素子形成工程は、前記素子端面を上向きの傾斜面に形成することを特徴とする請求項4ないし6のいずれか1項に記載の光集積回路装置の製造方法。

JP2016182116A 2016-09-16 2016-09-16 光集積回路装置及びその製造方法 Pending JP2018046258A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016182116A JP2018046258A (ja) 2016-09-16 2016-09-16 光集積回路装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182116A JP2018046258A (ja) 2016-09-16 2016-09-16 光集積回路装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2018046258A true JP2018046258A (ja) 2018-03-22

Family

ID=61695054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182116A Pending JP2018046258A (ja) 2016-09-16 2016-09-16 光集積回路装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2018046258A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144448A (ja) * 2018-02-22 2019-08-29 日本電信電話株式会社 光変調器
JP2020035805A (ja) * 2018-08-28 2020-03-05 日本電信電話株式会社 半導体受光器
WO2020158431A1 (ja) * 2019-02-01 2020-08-06 日本電信電話株式会社 波長可変レーザ
JP2020187315A (ja) * 2019-05-17 2020-11-19 富士通株式会社 光半導体素子
WO2021038635A1 (ja) * 2019-08-23 2021-03-04 シャープ株式会社 発光素子、表示装置、および発光素子の製造方法
WO2021053711A1 (ja) * 2019-09-17 2021-03-25 三菱電機株式会社 半導体レーザ装置
WO2023119364A1 (ja) * 2021-12-20 2023-06-29 日本電信電話株式会社 光デバイス

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163559A1 (ja) * 2018-02-22 2019-08-29 日本電信電話株式会社 光変調器
JP2019144448A (ja) * 2018-02-22 2019-08-29 日本電信電話株式会社 光変調器
US11747659B2 (en) 2018-02-22 2023-09-05 Nippon Telegraph And Telephone Corporation Optical modulator
JP7010173B2 (ja) 2018-08-28 2022-01-26 日本電信電話株式会社 半導体受光器
JP2020035805A (ja) * 2018-08-28 2020-03-05 日本電信電話株式会社 半導体受光器
WO2020044952A1 (ja) * 2018-08-28 2020-03-05 日本電信電話株式会社 半導体受光器
WO2020158431A1 (ja) * 2019-02-01 2020-08-06 日本電信電話株式会社 波長可変レーザ
JP2020126878A (ja) * 2019-02-01 2020-08-20 日本電信電話株式会社 波長可変レーザ
JP2020187315A (ja) * 2019-05-17 2020-11-19 富士通株式会社 光半導体素子
JP7275843B2 (ja) 2019-05-17 2023-05-18 富士通オプティカルコンポーネンツ株式会社 光半導体素子
WO2021038635A1 (ja) * 2019-08-23 2021-03-04 シャープ株式会社 発光素子、表示装置、および発光素子の製造方法
JPWO2021053711A1 (ja) * 2019-09-17 2021-03-25
WO2021053711A1 (ja) * 2019-09-17 2021-03-25 三菱電機株式会社 半導体レーザ装置
JP7229377B2 (ja) 2019-09-17 2023-02-27 三菱電機株式会社 半導体レーザ装置
WO2023119364A1 (ja) * 2021-12-20 2023-06-29 日本電信電話株式会社 光デバイス

Similar Documents

Publication Publication Date Title
US11728624B2 (en) Tensile strained semiconductor photon emission and detection devices and integrated photonics system
JP2018046258A (ja) 光集積回路装置及びその製造方法
JP5468011B2 (ja) 発光素子並びに受光素子及びその製造方法
US10305250B2 (en) III-Nitride nanowire array monolithic photonic integrated circuit on (001)silicon operating at near-infrared wavelengths
JP6300240B2 (ja) 半導体デバイス
US9423560B2 (en) Electronic/photonic integrated circuit architecture and method of manufacture thereof
US20080137692A1 (en) Long wavelength vertical cavity surface emitting laser device and method of fabricating the same
JP2010263153A (ja) 半導体集積光デバイス及びその作製方法
JP2013207231A (ja) 半導体装置及びその製造方法
KR20190088803A (ko) 반도체 레이저 장치 및 그 제조 방법
JP6459460B2 (ja) 半導体受光素子を作製する方法
CN109801930B (zh) 异质半导体结构及其制造方法
US10554018B2 (en) Hybrid vertical current injection electro-optical device with refractive-index-matched current blocking layer
CN112259649B (zh) 一种超辐射发光二极管及其制作方法
JP2002232080A (ja) 電流閉じ込め構造を持つ半導体素子及びその製造方法
JP2021057517A (ja) 波長可変レーザ素子およびその製造方法
WO2011093226A1 (ja) ゲルマニウム光学素子
Inoue et al. GaInAsP/InP lateral-current-injection membrane DFB laser integrated with GaInAsP waveguides on Si substrate
WO2023152873A1 (ja) ナノ構造デバイスの作製方法
WO2023238184A1 (ja) 光変調器
JP7056436B2 (ja) 光半導体素子の製造方法、サセプタおよびその製造方法
JPH05175535A (ja) 量子化Si光半導体装置
CN117296218A (zh) 光子晶体半导体激光装置及其制造方法
CN114914789A (zh) 一种基于3μm SOI的集成硅基激光器及其制备方法
Okumura et al. Injection type GaInAsP/InP/Si DFB lasers directly bonded on SOI substrate