CN114914789A - 一种基于3μm SOI的集成硅基激光器及其制备方法 - Google Patents

一种基于3μm SOI的集成硅基激光器及其制备方法 Download PDF

Info

Publication number
CN114914789A
CN114914789A CN202210324690.0A CN202210324690A CN114914789A CN 114914789 A CN114914789 A CN 114914789A CN 202210324690 A CN202210324690 A CN 202210324690A CN 114914789 A CN114914789 A CN 114914789A
Authority
CN
China
Prior art keywords
silicon
layer
substrate
type inp
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210324690.0A
Other languages
English (en)
Inventor
武爱民
刘丽
冯大增
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202210324690.0A priority Critical patent/CN114914789A/zh
Publication of CN114914789A publication Critical patent/CN114914789A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明涉及一种基于3μm SOI的集成硅基激光器及其制备方法,由下至上包括:SOI基片的硅衬底、二氧化硅绝缘层、顶层本征硅、锗薄膜层、n型InP缓冲层、n型InP下接触层、AlGaInAs量子阱有源区、p型InP覆盖层和p型InGaAs上接触层,以及由顶层本征硅衬底刻蚀的硅波导。本发明通过在硅衬底上外延锗再生长InP材料,再制备AlGaInAs量子阱激光器,可以实现与硅波导的高效耦合,也可以同时加工多个激光器,有利于实现大规模光电集成。

Description

一种基于3μm SOI的集成硅基激光器及其制备方法
技术领域
本发明属于硅基光电子器件领域,特别涉及一种基于3μm SOI的集成硅基激光器及其制备方法。
背景技术
随着人们对大容量、高速和低成本的信息传播的要求越来越迫切,近年来硅基光电子学得以蓬勃发展,但是硅基光源一直没有得到真正的解决,成为制约硅基光电子学在面向应用实现大规模光子集成和光电集成时的瓶颈。硅由于是间接带隙半导体材料给高效硅基光源的实现带来巨大困难,实用化的硅基激光是半导体科学家门长期奋斗的目标。
近年来,解决硅基光源的主流思想还是硅基混合集成激光器,具体可以细分为三种:第一种是外部耦合,将封装好的III-V激光器倒装焊到硅光芯片上,但是该方案需要极高的对准精度,耦合效率低,并且集成度不够高;第二种是混合集成,将III-V族裸片直接键合在硅芯片上,再制备激光器,但是该方案工艺难度很大,制造成本高;第三种是直接外延,在硅片上直接生长III-V材料,再制备激光器,但是由于硅和III-V材料之间存在原子极性的差异,因而容易在外延材料中产生反相畴问题,且还存在较大的晶格失配和热失配,硅上直接外延III-V材料时控制位错和材料表面的微裂缝都是极具挑战的世界级难题。
发明内容
本发明所要解决的技术问题是提供一种基于3μm SOI的集成硅基激光器及其制备方法,通过在硅衬底上外延锗再生长InP材料,再制备AlGaInAs量子阱激光器,可以实现与硅波导的高效耦合,也可以同时加工多个激光器,有利于实现大规模光电集成。
本发明提供了一种基于3μm SOI的集成硅基激光器,由下至上包括:SOI基片的硅衬底、二氧化硅绝缘层、顶层本征硅、锗薄膜层、n型InP缓冲层、n型InP下接触层、AlGaInAs量子阱有源区、p型InP覆盖层和p型InGaAs上接触层,以及由顶层本征硅衬底刻蚀的硅波导。
所述二氧化硅绝缘层位于硅衬底内部。
所述硅波导的形状为条形、锥形、弧形和环形中的任一种。
本发明提供了一种基于3μm SOI的集成硅基激光器的制备方法,包括:
(1)在3μm SOI基片的硅衬底上刻蚀出硅槽,在硅槽中通过薄膜生长工艺生长锗;
(2)随后在硅槽中依次外延生长n型InP缓冲层、n型InP下接触层、AlGaInAs量子阱有源区、p型InP覆盖层和p型InGaAs上接触层,最后在p型InGaAs上接触层上生长Pt/Au金属电极,在n型InP下接触层上生长Ti/Pt/Au金属电极,即得硅基激光器;
(3)对基片进行化学机械抛光平坦化处理,进行波导掩膜曝光,得到波导刻蚀;使用干法刻蚀SOI基片顶层硅,形成硅波导,即得基于3μm SOI的集成硅基激光器。
所述步骤(3)中的干法刻蚀气体为SF6
锗与InP材料之间的晶格失配显著小于硅与InP材料之间,在锗上外延InP材料能有效抑制位错,为实现硅基光源提供了切实可行的解决方案,而且3μm SOI基片制备工艺成熟,能够有效降低制造成本,有良好的产业化前景;更为重要的是该制备理念还可以用于在3μmSOI基片上制备其他III-V族材料与器件,具有很好的通用性。
有益效果
(1)本发明通过在硅衬底上外延锗再生长InP材料,再制备AlGaInAs量子阱激光器,可以实现与硅波导的高效耦合,也可以同时加工多个激光器,有利于实现大规模光电集成。
(2)本发明器件结构紧凑,可以直接在片上与波导进行耦合,比端面耦合等外部耦合方式更高效,可以实现与CMOS工艺兼容的SOI基片上制备量子点或者量子阱激光器,适合于硅基光电集成缺少核心光源的研制,具有广泛的应用前景。
附图说明
图1为本发明激光器的结构立体图;
图2为本发明激光器的结构俯视图;
图3为本发明激光器的结构侧视图;
图4a-l为本发明激光器的制备过程示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
如图4a-l所示,激光器制备:
(1)为顶硅厚度为3um的SOI基片(其中硅衬底厚度在200~600um之间,二氧化硅绝缘层(埋氧层)厚度在0.2~2um之间);
(2)通过ICP刻蚀工艺在3um SOI基片上对顶硅进行刻蚀,刻蚀2.8um的深槽,槽的宽度100~300um(宽度可以根据后面激光器制备要求而调整);
(3)通过薄膜生长工艺(PECVD或LPCVP)在SOI基底上进行选区生长锗,生长位置定位在(1)中刻蚀的硅槽;
(4)对SOI基片表面进行CMP(化学机械抛光)处理,使得生长锗之后的表面平整光滑,至此激光器的衬底制备完成;
(5)通过ICP刻蚀工艺刻蚀(3)中生长的锗,刻蚀深度2.5um(此深度可以根据后面激光器制备的要求而调整);
(6)在(5)刻蚀的深槽中外延生长n型InP缓冲层,缓冲层的厚度为1~1.5um(选区外延生长技术);
(7)在n型InP缓冲层上生长300nm~500nm厚的n型InP下接触层;
(8)在n型InP下接触层上生长1~6个周期的AlGaInAs量子阱有源区,有源区的宽度为5~30um;
(9)在AlGaInAs量子阱有源区上生长1~2um厚的p型InP覆盖层;
(10)在p型InP覆盖层上生长50~300nm厚的p型InGaAs上接触层;
(11)在p型InGaAs上接触层上生长5~30um宽的Pt/Au金属电极(宽度与p型InGaAs上接触层一致),在n型InP下接触层上生长宽度为50um的Ti/Pt/Au金属电极。
波导制备:
(1)对基片进行化学机械抛光平坦化处理;
(2)进行波导掩膜曝光和显影检测,得到显影良好的波导刻蚀区(位于激光器端面耦合区,即激光器结构两端);
(3)使用干法快速刻蚀SOI基片顶层硅,形成硅波导,刻蚀气体为SF6

Claims (5)

1.一种基于3μm SOI的集成硅基激光器,其特征在于:由下至上包括:SOI基片的硅衬底、二氧化硅绝缘层、顶层本征硅、锗薄膜层、n型InP缓冲层、n型InP下接触层、AlGaInAs量子阱有源区、p型InP覆盖层和p型InGaAs上接触层,以及由顶层本征硅衬底刻蚀的硅波导。
2.根据权利要求1所述的集成硅基激光器,其特征在于:所述二氧化硅绝缘层位于硅衬底内部。
3.根据权利要求1所述的集成硅基激光器,其特征在于:所述硅波导的形状为条形、锥形、弧形和环形中的任一种。
4.一种基于3μm SOI的集成硅基激光器的制备方法,包括:
(1)在3μm SOI基片的硅衬底上刻蚀出硅槽,在硅槽中通过薄膜生长工艺生长锗;
(2)随后在硅槽中依次外延生长n型InP缓冲层、n型InP下接触层、AlGaInAs量子阱有源区、p型InP覆盖层和p型InGaAs上接触层,最后在p型InGaAs上接触层上生长Pt/Au金属电极,在n型InP下接触层上生长Ti/Pt/Au金属电极,即得硅基激光器;
(3)对基片进行化学机械抛光平坦化处理,进行波导掩膜曝光,得到波导刻蚀;使用干法刻蚀SOI基片顶层硅,形成硅波导,即得基于3μm SOI的集成硅基激光器。
5.根据权利要求4所述的制备方法,其特征在于:所述步骤(3)中的干法刻蚀气体为SF6
CN202210324690.0A 2022-03-30 2022-03-30 一种基于3μm SOI的集成硅基激光器及其制备方法 Pending CN114914789A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210324690.0A CN114914789A (zh) 2022-03-30 2022-03-30 一种基于3μm SOI的集成硅基激光器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210324690.0A CN114914789A (zh) 2022-03-30 2022-03-30 一种基于3μm SOI的集成硅基激光器及其制备方法

Publications (1)

Publication Number Publication Date
CN114914789A true CN114914789A (zh) 2022-08-16

Family

ID=82763343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210324690.0A Pending CN114914789A (zh) 2022-03-30 2022-03-30 一种基于3μm SOI的集成硅基激光器及其制备方法

Country Status (1)

Country Link
CN (1) CN114914789A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104411A1 (en) * 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Vertically-integrated waveguide photodetector apparatus and related coupling methods
US20130196459A1 (en) * 2012-01-31 2013-08-01 National Tsing Hua University Hybrid optoelectronic device
CN111628409A (zh) * 2020-06-08 2020-09-04 江苏华兴激光科技有限公司 一种1.55微米波长硅基量子阱激光器外延材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104411A1 (en) * 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Vertically-integrated waveguide photodetector apparatus and related coupling methods
US20130196459A1 (en) * 2012-01-31 2013-08-01 National Tsing Hua University Hybrid optoelectronic device
CN111628409A (zh) * 2020-06-08 2020-09-04 江苏华兴激光科技有限公司 一种1.55微米波长硅基量子阱激光器外延材料及制备方法

Similar Documents

Publication Publication Date Title
US9653639B2 (en) Laser using locally strained germanium on silicon for opto-electronic applications
US8741684B2 (en) Co-integration of photonic devices on a silicon photonics platform
JP6091273B2 (ja) 半導体装置とその製造方法
CN106953234B (zh) 硅基单片集成激光器及其制作方法
CN111628410A (zh) 一种1.55微米波长硅基量子点激光器外延材料及制备方法
CN111129941B (zh) 一种硅基集成激光器芯片倒装耦合结构
US10690852B2 (en) III-V semiconductor waveguide nanoridge structure
EP3471221B1 (en) Active-passive waveguide photonic system
JP2018046258A (ja) 光集積回路装置及びその製造方法
EP4205184A1 (en) Diode with light-sensitive intrinsic region
CN111244227B (zh) 一种硅基光子集成模块及其制备方法
CN111987585B (zh) 一种硅波导输出激光器
CN106229813B (zh) 硅基横向注入激光器及其制备方法
US11056856B2 (en) Plasmonic laser
CN113178771B (zh) 一种基于GaAsOI衬底的InAs量子点激光器结构及制备方法
CN111785818B (zh) 基于多孔下包层的GaN基波导器件及其制备方法和应用
JP2014183194A (ja) 半導体装置の製造方法
CN109638648B (zh) 电注入硅基iii-v族边发射纳米线激光器及其制备方法
CN114914789A (zh) 一种基于3μm SOI的集成硅基激光器及其制备方法
CN111834889B (zh) 等离激元回音壁光泵激光器及其制备方法
CN111755948B (zh) 具有脊波导结构的GePb激光器及其形成方法
CN114914790A (zh) 一种可单片集成的低损耗硅基激光器及其制备方法
CN113644549B (zh) 电泵激光器及其制备方法
WO2023152873A1 (ja) ナノ構造デバイスの作製方法
CN111600195B (zh) 一种硅基单片集成激光器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination