WO2020085024A1 - 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2020085024A1
WO2020085024A1 PCT/JP2019/038992 JP2019038992W WO2020085024A1 WO 2020085024 A1 WO2020085024 A1 WO 2020085024A1 JP 2019038992 W JP2019038992 W JP 2019038992W WO 2020085024 A1 WO2020085024 A1 WO 2020085024A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
steel sheet
oriented electrical
electrical steel
insulating film
Prior art date
Application number
PCT/JP2019/038992
Other languages
English (en)
French (fr)
Inventor
山崎 修一
真介 高谷
藤井 浩康
竹田 和年
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980037536.1A priority Critical patent/CN112867810A/zh
Priority to US17/283,208 priority patent/US20210381072A1/en
Priority to JP2020553041A priority patent/JP7047932B2/ja
Priority to KR1020217001402A priority patent/KR102599445B1/ko
Priority to EP19875492.1A priority patent/EP3872227A4/en
Priority to BR112021005578-9A priority patent/BR112021005578A2/pt
Priority to RU2021111388A priority patent/RU2764099C1/ru
Publication of WO2020085024A1 publication Critical patent/WO2020085024A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/76Applying the liquid by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Definitions

  • the present invention relates to a coating liquid for forming an insulating coating for grain-oriented electrical steel sheets, grain-oriented electrical steel sheets, and a method for manufacturing grain-oriented electrical steel sheets.
  • Oriented electrical steel sheet is a steel sheet that has a crystal structure whose main orientation is the (110) [001] orientation and that usually contains 2 mass% or more of Si. Its main use is as an iron core material for transformers and the like, and in particular, there is a demand for a material with a small energy loss during transformation, that is, a material with a low iron loss.
  • a typical manufacturing process of grain-oriented electrical steel sheet is as follows. First, a slab containing 2% by mass to 4% by mass of Si is hot rolled to anneal the hot rolled sheet. Next, decarburization annealing is performed by performing cold rolling one or more times with intermediate annealing between them to obtain a final plate thickness. After that, an annealing separator mainly composed of MgO is applied, and final finish annealing is performed. As a result, a crystal structure having (110) [001] orientation as a main orientation is developed, and a finish annealing coating mainly composed of Mg 2 SiO 4 is formed on the surface of the steel sheet. Finally, the coating liquid for forming the insulating film is applied and baked, and then shipped.
  • Oriented electrical steel sheet has the property that iron loss is improved by applying tension to the steel sheet. Therefore, by forming an insulating film made of a material having a coefficient of thermal expansion smaller than that of the steel sheet at a high temperature, tension is applied to the steel sheet and iron loss can be improved.
  • Patent Documents 1 to 11 Conventionally, various coating liquids for forming an insulating film on a magnetic steel sheet have been known (for example, refer to Patent Documents 1 to 11).
  • the insulating film obtained by baking the coating liquid composed of colloidal silica, primary phosphate and chromic acid disclosed in Patent Document 1 is excellent in various film properties such as tension.
  • the coating solution for forming the above-mentioned insulating film contains hexavalent chromium, and there is a facility consideration in order to improve the working environment in the insulating film forming process of grain-oriented electrical steel sheet. Therefore, development of a coating solution for forming an insulating film of a grain-oriented electrical steel sheet, which does not contain hexavalent chromium and can obtain an insulating film excellent in various film properties such as tension, has been desired.
  • Patent Documents 2 to 5 describe coating liquids for forming an insulating film of a grain-oriented electrical steel sheet, which are mainly composed of colloidal silica and primary phosphate, and are replaced with chromic acid and other additives.
  • the film tension of the insulating film obtained by the coating liquid for forming an insulating film which does not contain chromic acid and uses an additive other than chromic acid is the same as that of the insulating film obtained by the coating liquid for forming an insulating film containing chromic acid. Less than tension.
  • all the additives used in these techniques are more expensive than chromic acid.
  • Patent Documents 6 and 7 disclose an insulating film forming coating liquid containing alumina sol and boric acid. Further, the coating liquid for forming an insulating film disclosed in Patent Document 8 and Patent Document 9 is a coating liquid for forming an insulating film containing alumina or alumina hydrate and boric acid, alumina or alumina hydrate, boric acid. , A coating liquid for forming an insulating film containing colloidal silica and the like are disclosed. The film tension of the insulating film formed by baking these coating liquids is higher than that of the insulating film obtained by baking the above-mentioned coating liquid composed of colloidal silica, primary phosphate and chromic acid. Is obtained.
  • Patent Document 10 by applying an aqueous solution sol containing aluminum oxide and boric acid by the method disclosed in Patent Documents 6 and 7, crystals of xAl 2 0 3 ⁇ yB 2 O 3 are formed.
  • a grain-oriented electrical steel sheet having a quality coating is disclosed.
  • these insulating coatings in terms of corrosion resistance because it is composed of only the crystalline film composed xAl 2 0 3 ⁇ yB 2 O 3, room for further improvement remain.
  • the alumina sol that is a raw material is often expensive.
  • Patent Document 11 discloses a coating liquid composed of kaolin, which is a kind of hydrous silicate, and lithium silicate.
  • the insulating film obtained by baking the coating liquid described in this document has a film tension equal to or higher than that of the insulating film obtained by baking the coating liquid composed of colloidal silica, primary phosphate and chromic acid. .
  • the obtained grain-oriented electrical steel sheet has excellent iron loss.
  • the insulating films formed by these coating liquids are not dense enough.
  • Patent Document 12 discloses a coating liquid including a filler such as kaolin, which is a kind of hydrous silicate, and a binder containing a metal phosphate.
  • a filler such as kaolin, which is a kind of hydrous silicate
  • a binder containing a metal phosphate In the insulating film obtained by baking this coating solution at 250 to 450 ° C., kaolin, which is a kind of hydrous silicate, is dispersed as a filler. The local denseness of the insulating film changes depending on the dispersion state of the filler. As a result, it has been found that the use of these coating solutions may result in insufficient corrosion resistance of the insulating film.
  • an object of the present invention is a coating liquid for forming an insulating coating of a grain-oriented electrical steel sheet, which has a large coating tension and excellent corrosion resistance, even without using a chromium compound, a grain-oriented electrical steel sheet. , And a method for manufacturing a grain-oriented electrical steel sheet.
  • a coating liquid for forming an insulating coating for a grain-oriented electrical steel sheet comprising hydrous silicate particles having aluminum and boric acid.
  • the content ratio of the hydrous silicate particles and the boric acid is 0.2 to 1.5 as a B (boron) / Al (aluminum) molar ratio in the coating liquid
  • ⁇ 1> to ⁇ 3> A coating liquid for forming the insulating coating for a grain-oriented electrical steel sheet according to any one of 1.
  • ⁇ 5> A base material of grain-oriented electrical steel, An insulating coating provided on a base material of the grain-oriented electrical steel sheet, the insulating coating containing crystals of pseudo-tetragonal aluminum borate composed of constituent elements containing Al, B, and O, A grain-oriented electrical steel sheet.
  • the temperature of the baking treatment After applying the coating liquid for forming the insulating coating for grain-oriented electrical steel sheet according to any one of ⁇ 1> to ⁇ 4> to the grain-oriented electrical steel sheet after the final finish annealing, the temperature of the baking treatment
  • a method for producing a grain-oriented electrical steel sheet comprising the step of performing a baking treatment at a temperature of 600 ° C to 1000 ° C.
  • a coating liquid for forming an insulating coating of a grain-oriented electrical steel sheet which is capable of obtaining a coating property excellent in corrosion resistance, a grain-oriented electrical steel sheet, and A method for manufacturing a grain-oriented electrical steel sheet is provided.
  • the numerical range represented by “to” means the range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • the term “process” is used not only as an independent process, but also when the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. included.
  • the coating liquid for forming the insulating coating for a grain-oriented electrical steel sheet according to the present embodiment contains hydrous silicate particles containing aluminum and boric acid.
  • a coating liquid for forming an insulating film that does not use a chromium compound for example, a coating liquid for forming an insulating film containing alumina sol and boron has been studied.
  • An insulating film is formed by applying this insulating film forming coating solution onto the base material of the grain-oriented electrical steel sheet and then baking it.
  • the insulating coating of the grain-oriented electrical steel sheet obtained by using the coating liquid for forming an insulating coating containing alumina sol and boron contains aluminum borate crystals and has excellent coating tension.
  • this insulating film may be inferior in corrosion resistance. Therefore, there is room for improving the corrosion resistance while ensuring the characteristic that an excellent film tension is obtained in the insulating film.
  • the coating liquid for forming the insulating film contains hydrous silicate particles.
  • the hydrous silicate particles may be contained in one kind or in two or more kinds.
  • Hydrous silicates are also called clay minerals and often have a layered structure.
  • the layered structure includes a 1: 1 silicate layer represented by a composition formula X 2-3 Si 2 O 5 (OH) 4 and a composition formula X 2-3 (Si, Al) 4 O 10 (OH) 2 (X is A 2: 1 silicate layer represented by Al, Mg, Fe, etc.) is singly or mixed and has a laminated structure. At least one of a water molecule and an ion may be contained between the layers of the layered structure.
  • hydrous silicates are kaolin (or kaolinite) (Al 2 Si 2 O 5 (OH) 4 ), talc (Mg 3 Si 4 O 10 (OH) 2 ), and pyrophyllite (Al 2 Si 4 O 10 (OH) 2 ) can be exemplified.
  • Most of the hydrous silicate particles are purified and finely pulverized naturally occurring hydrous silicate particles.
  • the hydrous silicate particles it is preferable to use at least one kind of particles selected from the group consisting of kaolin, talc, and pyrophyllite from the viewpoint of industrial availability. Further, from the viewpoint of obtaining excellent film tension and excellent corrosion resistance, hydrous silicate particles containing aluminum are used.
  • the hydrous silicate particles containing aluminum have excellent reactivity with boric acid, form pseudo-tetragonal aluminum borate, and have excellent film tension and excellent corrosion resistance. From this viewpoint, it is preferable to use at least one kind of particles of kaolin and pyrophyllite as the hydrous silicate particles, and it is more preferable to use kaolin.
  • the hydrous silicate particles may be used in combination.
  • the specific surface area of the hydrous silicate particles is preferably 20 m 2 / g or more, more preferably 40 m 2 / g or more, and further preferably 50 m 2 / g or more.
  • the upper limit of the specific surface area is not particularly limited, and the specific surface area may be 200 m 2 / g or less, 180 m 2 / g or less, or 150 m 2 / g or less.
  • the specific surface area of the hydrous silicate particles is a specific surface area based on the BET method, and is measured by a method according to JIS Z 8830: 2013.
  • hydrous silicate particles having a specific surface area of 20 m 2 / g or more It is difficult to obtain hydrous silicate particles commercially available for industrial use, which have a specific surface area of 20 m 2 / g or more. Therefore, for example, a hydrated silicate particle having a specific surface area of 20 m 2 / g or more can be obtained by subjecting a commercial product to pulverization treatment.
  • Ball mills, vibration mills, bead mills, jet mills, etc. are effective means for pulverizing hydrous silicate particles.
  • These pulverization processes may be dry pulverization in which powder is pulverized as it is, or wet pulverization performed in a slurry state in which hydrous silicate particles are dispersed in a dispersion medium such as water or alcohol.
  • the crushing treatment is effective in both dry crushing and wet crushing.
  • the specific surface area of the hydrous silicate particles also increases with the crushing time by various crushing means. Therefore, the specific surface area of the hydrous silicate particles can be obtained by controlling the pulverization time to obtain hydrous silicate particles having the required specific surface area and a dispersion thereof.
  • the hydrous silicate may be in the form of plate-like particles, because in many cases, the hydrous silicate has a layered structure, that is, a structure in which a plurality of layers are laminated.
  • the crushing process causes delamination of the laminate. That is, the pulverization process reduces the thickness of the plate-like particles of the plate-like hydrous silicate. The thinner the thickness, the easier the reaction with boric acid is. Therefore, the thickness of the hydrous silicate particles (plate-like particles) is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and further preferably 0.02 ⁇ m or less.
  • the lower limit of the thickness of the hydrous silicate particles (plate-like particles) is not particularly limited, but since the particle surface is activated and the viscosity becomes high when suspended in water, it may be 0.001 ⁇ m or more. , Preferably 0.002 ⁇ m or more, more preferably 0.005 ⁇ m or more.
  • the thickness of the hydrous silicate particles (plate-like particles) is determined by analyzing an image of the hydrous silicate particle shape obtained by a scanning electron microscope or a transmission electron microscope.
  • the viscosity of the dispersion liquid increases as the specific surface area of the hydrous silicate particles increases. Then, when the specific surface area is increased to more than 200 m 2 / g by pulverization, the viscosity of the dispersion liquid may be increased to cause gelation and hinder the pulverization process. Therefore, you may add a dispersing agent to a dispersion liquid as needed.
  • the increase in viscosity during the pulverization process can be suppressed by adding a dispersant.
  • a dispersant when an organic dispersant is added, it may be decomposed and carbonized during baking of the insulating film and may be carburized in the grain-oriented electrical steel sheet. Therefore, when the dispersant is used, the inorganic dispersant is preferable.
  • inorganic dispersants include polyphosphates and water glass.
  • Specific examples of the former dispersants include sodium diphosphate and sodium hexametaphosphate.
  • Specific examples of the latter dispersants include sodium silicate and potassium silicate.
  • the addition amount of these inorganic dispersants is preferably suppressed to 20% by mass or less based on the total mass of the hydrous silicate particles.
  • the dispersant is an optional additional component, the lower limit of the dispersant is not particularly limited and may be 0%. That is, the coating liquid may not contain a dispersant such as polyphosphate and water glass. In the case of dry pulverization, it is not necessary to add a dispersant during pulverization.
  • boric acid As boric acid, those obtained by a known production method can be used, and either orthoboric acid or metaboric acid may be used. It is preferable to use orthoboric acid as boric acid. Boric acid may be used in the form of particulate boric acid, or may be used after dissolving or dispersing boric acid in water.
  • the content ratio of the hydrous silicate particles and boric acid contained in the insulating film forming coating solution is not particularly limited as the B (boron) / Al (aluminum) molar ratio. From the viewpoint of obtaining excellent film tension and excellent corrosion resistance, the B (boron) / Al (aluminum) molar ratio is preferably 1.5 or less. Note that boric acid and borate have relatively low solubility in water. Therefore, if the B / Al molar ratio is too large, the concentration of the coating liquid must be reduced, and it becomes difficult to obtain the desired amount of coating.
  • the upper limit of the B / Al molar ratio is 1.5 or less, preferably 1.3 or less, more preferably 1.0 or less.
  • the lower limit of the B / Al molar ratio is not particularly limited and may be 0.05 or more, or 0.1 or more. From the viewpoint of obtaining excellent film tension and excellent corrosion resistance, the lower limit of the B / Al molar ratio is preferably 0.2 or more. Therefore, the content ratio of hydrous silicate particles and boric acid is preferably 0.2 to 1.5 in terms of B (boron) / Al (aluminum) molar ratio.
  • Dispersion medium (or solvent)
  • alcohols such as ethyl alcohol, methyl alcohol, and propyl alcohol can be used in addition to water.
  • dispersion medium or the solvent it is preferable to use water from the viewpoint of not having flammability.
  • the solid concentration of the insulating film forming coating solution is not particularly limited as long as it can be applied to the grain-oriented electrical steel sheet.
  • the solid content concentration of the insulating coating forming coating liquid is, for example, in the range of 5% by mass to 50% by mass (preferably 10% by mass to 30% by mass).
  • the coating liquid for forming an insulating film according to the present embodiment may or may not contain a small amount of other additives, if necessary, within a range that does not impair the properties of film tension and corrosion resistance. Good (0% by mass). When a small amount of other additives is contained, for example, it is preferably 3% by mass or less, and more preferably 1% by mass or less, based on the total solid content of the coating liquid for forming an insulating film according to the present embodiment.
  • examples of other additives include, for example, a surfactant that prevents repelling of the coating liquid on the steel sheet.
  • the viscosity of the insulating film forming coating solution is preferably 1 mPa ⁇ s to 100 mPa ⁇ s from the viewpoint of coating workability and the like. If the viscosity is too high, it becomes difficult to apply, and if the viscosity is too low, the coating solution may flow and it may be difficult to obtain a desired coating amount.
  • the measurement is performed with a B type viscometer (Brookfield type viscometer). The measurement temperature is 25 ° C.
  • the coating liquid for forming the insulating film does not contain hexavalent chromium.
  • the insulating film obtained by the insulating film forming coating liquid according to the present embodiment is baked at a high temperature (for example, 600 ° C. or higher) in order to obtain high tension. Therefore, when the coating liquid for forming the insulating film contains a resin, the resin is decomposed and carburized by baking. As a result, the magnetic properties of the grain-oriented electrical steel sheet are deteriorated. From this viewpoint, it is preferable that the coating liquid for forming the insulating film does not contain an organic component such as a resin.
  • the coating liquid for forming an insulating film according to the present embodiment can apply tension to a steel sheet by baking, and is suitable as a coating liquid for forming an insulating film on a grain-oriented electrical steel sheet.
  • the insulating coating forming liquid according to the present embodiment can also be applied to non-oriented electrical steel sheets.
  • the coating liquid for forming an insulating film according to the present embodiment is applied to a non-oriented electrical steel sheet, the insulating film does not contain an organic component, and the punching property of the steel sheet is not improved. Therefore, the benefit of application to non-oriented electrical steel sheets is small.
  • the insulating coating film forming coating liquid according to the present embodiment may be prepared by mixing and stirring the hydrous silicate particles and boric acid together with the dispersion medium (solvent).
  • the order of adding the hydrous silicate particles and boric acid is not particularly limited. For example, after preparing a dispersion liquid in which a predetermined amount of hydrous silicate particles is dispersed in water as a dispersion medium, a predetermined amount of boric acid may be added and mixed and stirred.
  • a predetermined amount of hydrous silicate particles may be added to the boric acid aqueous solution and mixed and stirred. If necessary, other additives may be added and mixed and stirred. Then, the coating liquid for forming the insulating film may be adjusted to a desired solid content concentration.
  • the liquid temperature of the coating liquid may be warm (for example, 50 ° C.) or normal temperature (for example, 25 ° C.).
  • the hydrated silicate particles and boric acid in the coating liquid can be measured as follows.
  • the coating liquid in which the hydrated silicate particles and boric acid are mixed hardly reacts with each other at 100 ° C. or lower. Therefore, the coating liquid at 100 ° C. or lower is, for example, in a slurry state in which hydrous silicate particles are dispersed in an aqueous boric acid solution. Specifically, first, the coating liquid for forming an insulating film is filtered.
  • the coating liquid is separated into a filtrate containing a boric acid aqueous solution derived from boric acid before mixing and a residue containing a hydrous silicate derived from hydrous silicate particles.
  • ICP-AES analysis high frequency inductively coupled plasma-atomic emission spectroscopy
  • the X-ray fluorescence analysis of the residue reveals the molar ratio of boron to aluminum (B / Al) of the hydrous silicate.
  • the specific surface area of the hydrous silicate particles is such that the hydrous silicate particles separated above are dispersed in a solvent in which the hydrous silicate particles are insoluble. Then, the specific surface area is determined by the BET method described above.
  • the thickness of the hydrous silicate particles (plate-like particles) can be determined by observation with the electron microscope described above.
  • the grain-oriented electrical steel sheet according to the present embodiment is a base material of the grain-oriented electrical steel sheet and an insulating film provided on the base material of the grain-oriented electrical steel sheet, and is composed of constituent elements containing Al, B, and O.
  • the insulating film is composed of a reaction product of boric acid and a hydrous silicate containing aluminum, and a crystal of pseudo-tetragonal aluminum borate composed of constituent elements containing Al, B, and O is formed on at least a part of the insulating film. Contains.
  • the insulating coating containing crystals of pseudo-tetragonal aluminum borate composed of constituent elements containing Al, B, and O is different from the conventional insulating coating.
  • the insulating film formed of phosphate, colloidal silica, and chromic acid based on Patent Documents 1 to 4 is an amorphous substance containing Al, Mg, P, Si, Cr, and O as constituent elements.
  • an insulating film using alumina sol and boric acid represented by Patent Document 6 has a composition formula xAl 2 O 3 ⁇ yB containing Al, B, and O as constituent elements, as shown in Patent Document 10. It is composed only of crystalline substances expressed by 2 O 3 .
  • an insulating film according to the present embodiment includes a ⁇ cubic crystal aluminum borate xAl 2 0 3 ⁇ yB 2 O 3 that Al component is produced by the reaction of boric acid in the water-containing silicate particles, hydrous silicate It is composed of an amorphous component resulting from the remaining components other than Al of the particles.
  • Al component is produced by the reaction of boric acid in the water-containing silicate particles, hydrous silicate It is composed of an amorphous component resulting from the remaining components other than Al of the particles.
  • kaolin is used as the hydrous silicate particles
  • a mixture of pseudo-tetragonal aluminum borate and silica is obtained as follows. Therefore, the composition of the insulating coating in the grain-oriented electrical steel sheet according to this embodiment is different from that of the conventional insulating coating. 2yH 3 BO 3 + xAl 2 Si 2 O 5 (OH) 4 ⁇ xAl 2 O 3 ⁇ yB 2 O 3 + 2xSiO 2 + (2x + 3
  • the grain-oriented electrical steel sheet according to this embodiment has excellent film tension because the insulating film contains crystals of pseudo-tetragonal aluminum borate composed of constituent elements containing Al, B, and O. Further, the structure having an amorphous layer surrounding the crystal phase has excellent corrosion resistance. Further, a dense film is formed as the insulating film of the grain-oriented electrical steel sheet according to this embodiment.
  • the grain-oriented electrical steel sheet according to this embodiment is preferably obtained by the manufacturing method described below.
  • After applying the coating liquid for forming there is a step of performing a baking treatment at a baking treatment temperature of 600 ° C. to 1000 ° C.
  • the grain-oriented electrical steel sheet after the final finish annealing is a grain-oriented electrical steel sheet which is a base material before the coating liquid (that is, the insulating coating forming coating liquid according to the present embodiment) is applied.
  • the grain-oriented electrical steel sheet after the final finish annealing is not particularly limited.
  • the grain-oriented electrical steel sheet as a base material is obtained as follows. Specifically, for example, a steel slab containing 2% by mass to 4% by mass of Si is hot-rolled, hot-rolled sheet annealed, and cold-rolled, and then decarburized annealed. After that, it is obtained by applying an annealing separator having a MgO content of 50% by mass or more and performing final finish annealing.
  • the grain-oriented electrical steel sheet after the final finish annealing may not have the finish annealing film.
  • the coating amount is not particularly limited. From the viewpoint of obtaining excellent film tension and excellent corrosion resistance, it is preferable that the amount of the film after forming the insulating film is applied in the range of 1 g / m 2 to 10 g / m 2 . It is more preferably 2 g / m 2 to 8 g / m 2 .
  • the coating amount after the baking treatment can be obtained from the weight difference before and after the insulating film is peeled off.
  • the excellent film tension and corrosion resistance may be equal to or higher than that of a conventional insulating film, particularly, an insulating film using a coating liquid containing a chromium compound.
  • the film tension is 8 MPa and the corrosion resistance is 0%.
  • the film tension may be 5 MPa or more, preferably 8 MPa or more, and more preferably 10 MPa or more, in consideration of the allowable likelihood.
  • the corrosion resistance may be 10% or less, preferably 5% or less, more preferably 1% or less, or 0%.
  • the method of applying the coating liquid for forming the insulating film to the grain-oriented electrical steel sheet after the final finish annealing there is no particular limitation on the method of applying the coating liquid for forming the insulating film to the grain-oriented electrical steel sheet after the final finish annealing.
  • a coating method such as a roll method, a spray method, or a dipping method may be used.
  • the reaction between the hydrous silicate particles and boric acid is promoted. Many hydrous silicates release structural water near a heating temperature of 550 ° C. and react with boric acid in the process. If the baking temperature is less than 600 ° C, the reaction between the hydrous silicate particles and boric acid is not sufficient. Therefore, each of the hydrous silicate particles and boric acid forms an insulating film in which they are mixed. Therefore, the baking temperature is 600 ° C. or higher. The preferable lower limit of the baking temperature is 700 ° C. or higher. On the other hand, when a baking temperature higher than 1000 ° C.
  • the baking temperature is set to 1000 ° C. or lower.
  • a preferable upper limit is 950 ° C. or lower.
  • the baking time may be 5 seconds to 300 seconds (preferably 10 seconds to 120 seconds).
  • the heating method for performing the baking treatment is not particularly limited, and examples thereof include a radiant furnace, a hot air stove, and induction heating.
  • the insulating film after the baking process becomes a dense film.
  • the thickness of the insulating film is preferably 0.5 ⁇ m to 5 ⁇ m (preferably 1 ⁇ m to 4 ⁇ m).
  • the thickness of the insulating film after the baking process can be obtained by observing the cross-section SEM.
  • Denseness can be evaluated by the porosity in the film. When a large amount of voids are present in the film, it is considered that the insulating film has low film tension and inferior corrosion resistance.
  • the porosity may be 10% or less, preferably 5% or less, more preferably 3% or less, more preferably 2% or less, and particularly preferably 1% or less.
  • the coating liquid for forming an insulating film according to the present embodiment makes it possible to obtain a grain-oriented electrical steel sheet which is excellent in both film tension and corrosion resistance even if it does not contain a chromium compound. Moreover, the grain-oriented electrical steel sheet provided with the insulating coating by the insulating coating forming coating solution according to the present embodiment is excellent in magnetic characteristics and also in space factor.
  • the evaluation methods for each evaluation are as follows.
  • Film tension The film tension is calculated from the warpage of the steel sheet that occurs when one surface of the insulating film is peeled off.
  • the specific conditions are as follows.
  • the insulating coating on only one side provided on the grain-oriented electrical steel sheet is removed with an alkaline aqueous solution.
  • the film tension is calculated from the warp of the grain-oriented electrical steel sheet by the following formula.
  • Formula: film tension 190 ⁇ plate thickness (mm) ⁇ plate warp (mm) / ⁇ plate length (mm) ⁇ 2 [MPa]
  • Iron loss and magnetic flux density are measured according to the method described in JIS C 2550-1: 2011. Specifically, the iron loss per unit mass (W 17/50 ) is measured under the condition that the amplitude of the measured magnetic flux density is 1.7 T and the frequency is 50 Hz. For the magnetic flux density (B 8 ), the value of the magnetic flux density at a magnetizing force of 800 A / m is measured.
  • the present invention is not limited to the above.
  • the above is an exemplification, and any technology having substantially the same configuration as the technical idea described in the scope of the claims of the present invention and exhibiting the same operational effect is the technology of the present invention. It is included in the target range.
  • Example A First, commercially available hydrous silicate particles of kaolin, talc, and pyrophyllite (specific surface areas are all 10 m 2 / g) were prepared and pulverized by various means shown in Table 1 below. When a dispersant was added, it was added when preparing a water slurry before treatment by wet pulverization, and at the time of preparing a coating solution after pulverization treatment by dry pulverization. After the pulverization treatment, the specific surface area was measured according to the method described in JIS Z 8830: 2013.
  • a coating solution having the composition shown in Table 1 was prepared using the above-mentioned hydrous silicate particles.
  • a part of the prepared solution was sampled and allowed to stand at room temperature (25 ° C.) for 2 days and then the state of the coating solution (presence or absence of gelation) was observed.
  • the coating liquid shown in Example 22 is an example in which two kinds of hydrous silicate particles are mixed and used. As a result of observation, no gelling was observed in any of the coating solutions having the compositions shown in Table 1.
  • the obtained grain-oriented electrical steel sheet with an insulating coating was evaluated for coating characteristics and corrosion resistance. Moreover, the magnetic characteristics were evaluated. Furthermore, the porosity of the insulating film was measured. The results are shown in Table 2. The evaluation method of each evaluation shown in Table 2 is as described above.
  • the B / Al molar ratio shown in Table 1 is a calculated value obtained by mixing and adjusting hydrous silicate particles and boric acid so that the B / Al molar ratio becomes the value shown in Table 1.
  • composition of the reference coating liquid in Table 1 is as follows. 20% by weight colloidal silica aqueous dispersion: 100 parts by weight 50% aluminum phosphate aqueous solution: 60 parts by weight Chromic anhydride: 6 parts by weight
  • composition of the comparative coating liquid 1 in Table 1 is as follows.
  • the solid content concentration (mass%) of hydrous silicate particles (clay mineral particles) and boric acid in Table 1 is calculated as an anhydride, for example, kaolin is calculated as Al 2 O 3 .2SiO 2 and boric acid is calculated as B 2 O 3. It was done.
  • the crushing means in Table 1 are as follows. JM: Jet mill (dry type) BD: Ball mill (dry type) BW: Ball mill (wet type) BM: Bead mill (wet type)
  • Examples 1 to 36 are insulating films formed by using a coating liquid for forming an insulating film containing hydrous silicate particles and boric acid.
  • the insulating film of each example has a large film tension and excellent corrosion resistance. Further, it has excellent space factor and magnetic properties. Further, it is understood that the insulating coatings of the respective examples can obtain the same or higher performance as the coating when the coating liquid containing the chromium compound shown in the reference example is used.
  • the insulation film formed using the coating solution for forming an insulation film containing hydrous silicate particles and containing no boric acid has poor corrosion resistance. Further, it can be seen that the insulating film of Comparative Example 1 obtained by the coating liquid containing alumina sol and boric acid is inferior in corrosion resistance.
  • FIG. 1 shows an example of a result of observing a cross section of a conventional grain-oriented electrical steel sheet provided with an insulating film by SEM.
  • FIG. 2 shows the results of observing the cross section of the grain-oriented electrical steel sheet provided with the insulating coating of Example 10 by SEM.
  • 11 is an insulating film and 12 is a finish annealing film.
  • reference numeral 21 is an insulating film, and 22 is a finish annealing film. In the following description, the reference numerals will be omitted.
  • the insulating film shown in FIG. 1 has many voids. Therefore, the insulating film shown in FIG. 1 is considered to have low film tension and poor corrosion resistance.
  • the insulating film shown in FIG. 2 is a dense film with very few voids. Therefore, it is considered that the insulating film shown in FIG. 2 has high film tension and is also superior in corrosion resistance. Therefore, the grain-oriented electrical steel sheet obtained by using the coating liquid for forming an insulating film of the present embodiment has a densified insulating film and has a large film tension and corrosion resistance even without using a chromium compound. It can be seen that excellent film characteristics are obtained. Further, it is understood that these film characteristics are obtained, and the magnetic characteristics and the space factor are also excellent.
  • FIG. 3 shows the result of X-ray crystal structure analysis of the insulating film of Example 10 using an X-ray diffractometer. From the graph shown in FIG. 3, it can be seen that the insulating film of Example 10 contains the constituent elements containing Al, B, and O and contains pseudo-tetragonal aluminum borate.
  • Example B Next, the baking temperature is changed and the film characteristics and magnetic characteristics are evaluated.
  • the coating solution adjusted to have the same composition as in Example 10 is applied and dried in the same procedure as in Example 1 so that the amount of the insulating film after baking is 5 g / m 2 .
  • the baking temperature is changed to the conditions shown in Table 3 to perform the baking process (the baking time is the same). The results are shown in Table 3.
  • Comparative Examples 6 and 7 in which the baking temperature is less than 600 ° C. are inferior in corrosion resistance because the reaction between the hydrous silicate particles and boric acid is not sufficient.
  • the baking temperature is 600 ° C. or higher, excellent corrosion resistance is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】クロム化合物を使用することがなくても、皮膜張力が大きく、耐食性に優れた皮膜特性が得られる方向性電磁鋼板の絶縁皮膜形成用の塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法の提供。 【解決手段】アルミニウムを有する含水珪酸塩粒子と、ホウ酸と、を含有する、方向性電磁鋼板用絶縁皮膜を形成するための塗布液。

Description

方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
 本発明は、方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法に関する。
 方向性電磁鋼板は(110)[001]方位を主方位とする結晶組織を有し、通常2質量%以上のSiを含有する鋼板である。その主要な用途は変圧器等の鉄心材料であり、特に変圧の際のエネルギーロスが少ない材料、すなわち鉄損の低い材料が求められている。
 方向性電磁鋼板の典型的な製造プロセスは以下の通りである。まず、Siを2質量%~4質量%含有するスラブを熱間圧延し、熱延板を焼鈍する。次に、1回または中間焼鈍を挟んで2回以上の冷間圧延を施して最終板厚とし、脱炭焼鈍を行う。この後、MgOを主体とする焼鈍分離剤を塗布し最終仕上げ焼鈍を行う。それにより、(110)[001]方位を主方位とする結晶組織を発達させると共に、鋼板表面にMgSiOを主体とする仕上げ焼鈍皮膜が形成される。最後に、絶縁皮膜形成用の塗布液を塗布、及び焼き付けした後、出荷される。
 方向性電磁鋼板は、鋼板に対して張力を付与することにより鉄損が改善するという性質を有する。したがって、鋼板よりも熱膨張率の小さい材質の絶縁皮膜を高温で形成することにより、鋼板に張力が付与され、鉄損を改善することができる。
 従来から、電磁鋼板に絶縁皮膜を形成するための塗布液が種々知られている(例えば、特許文献1~11を参照)。
特開昭48-039338号公報 特公昭54-143737号公報 特開2000-169972号公報 特開2000-178760号公報 国際公開第2015/115036号 特開平06-065754号公報 特開平06-065755号公報 特開平08-325745号公報 特開平09-256164号公報 特開平06-306628号公報 特開2017-075358号公報 国際公開第2010/146821号
 特許文献1に開示された、コロイダルシリカ、第一燐酸塩、及びクロム酸から構成される塗布液を焼き付けて得られる絶縁皮膜は、張力等の各種皮膜特性に優れている。
 しかしながら、上記絶縁皮膜を形成するための塗布液には、6価クロムが含まれており、方向性電磁鋼板の絶縁皮膜形成工程における労働環境を改善するために、設備上の配慮を有する。そのため、6価クロムを含まずに、張力等の各種皮膜特性に優れた絶縁皮膜が得られる、方向性電磁鋼板の絶縁皮膜形成用の塗布液の開発が待望されている。
 例えば、特許文献2~特許文献5には、コロイダルシリカと第一燐酸塩とを主体とし、クロム酸に変えて、他の添加物を用いる方向性電磁鋼板の絶縁皮膜形成用の塗布液が記載されている。しかしながら、クロム酸を含まず、クロム酸以外の添加物を用いる絶縁皮膜形成用塗布液によって得られる絶縁皮膜の皮膜張力は、クロム酸を含む絶縁皮膜形成用塗布液によって得られた絶縁皮膜の皮膜張力より小さい。また、これら技術で用いられている添加物は、いずれもクロム酸よりも高価である。
 一方、特許文献6及び特許文献7には、アルミナゾル及びホウ酸を含む絶縁皮膜形成用塗布液が開示されている。また、特許文献8及び特許文献9に開示されている絶縁皮膜形成用塗布液は、アルミナ又はアルミナ水和物、及びホウ酸を含む絶縁皮膜形成用塗布液、アルミナ又はアルミナ水和物、ホウ酸、コロイダルシリカを含む絶縁皮膜形成用塗布液などが開示されている。これら塗布液を焼き付けて形成される絶縁皮膜の皮膜張力は、前述のコロイダルシリカ、第一燐酸塩、及びクロム酸から構成される塗布液を焼き付けて得られる絶縁皮膜に比較して、大きな皮膜張力が得られる。さらに、特許文献10には、特許文献6及び特許文献7に開示されるような方法で、酸化アルミニウムとホウ酸を含む水溶液ゾルを塗布することで、xAl・yBなる結晶質皮膜を備えた方向性電磁鋼板が開示されている。
 しかしながら、これらの絶縁皮膜は、xAl・yBなる結晶質皮膜のみから構成されているため耐食性の観点で、さらなる改良の余地が残されている。また原料となるアルミナゾルは高価なものが多い。
 原料が比較的安価に入手でき、かつ焼き付け後に大きな皮膜張力が得られる可能性がある物質として、含水珪酸塩(層状粘土鉱物)が挙げられる。
 例えば、特許文献11では、含水珪酸塩の一種であるカオリンと珪酸リチウムからなる塗布液が開示されている。この文献に記載の塗布液を焼き付けて得られる絶縁皮膜は、コロイダルシリカ、第一燐酸塩、及びクロム酸から構成される塗布液を焼き付けて得られる絶縁皮膜と、同等以上の皮膜張力が得られる。また、得られた方向性電磁鋼板は、優れた鉄損を有する。しかしながら、これらの塗布液による絶縁皮膜は、いずれも緻密さに欠ける。その結果として、これらの塗布液の使用は、絶縁皮膜の耐食性が不十分となる場合があることが判明した。
 特許文献12では、含水珪酸塩の一種であるカオリン等のフィラー、およびリン酸金属塩を含むバインダーからなる塗布液が開示されている。この塗布液を250~450℃で焼き付けた絶縁皮膜では、含水珪酸塩の一種であるカオリン等がフィラーとして分散している。そのフィラーの分散状況に応じて、絶縁皮膜の局所的な緻密さは変化する。その結果として、これらの塗布液の使用は、絶縁皮膜の耐食性が不十分となる場合があることが判明した。
 そこで、本発明の目的は、クロム化合物を使用することがなくても、皮膜張力が大きく、耐食性に優れた皮膜特性が得られる方向性電磁鋼板の絶縁皮膜形成用の塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法を提供することにある。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1>
 アルミニウムを有する含水珪酸塩粒子と、ホウ酸と、を含有する、方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
<2>
 前記含水珪酸塩粒子の比表面積が、20m/g以上である、<1>に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
<3>
 前記含水珪酸塩粒子が、カオリン、及びパイロフィライトの少なくとも1種の粒子を含む、<1>又は<2>のいずれか1つに記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
<4>
 前記含水珪酸塩粒子と、前記ホウ酸との含有比が、塗布液中のB(ホウ素)/Al(アルミニウム)モル比として、0.2~1.5である、<1>~<3>のいずれか1つに記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
<5>
 方向性電磁鋼板の母材と、
 前記方向性電磁鋼板の母材上に設けられた絶縁皮膜であって、Al、B、及びOを含む構成元素からなる擬正方晶ホウ酸アルミニウムの結晶を含有する絶縁皮膜と、
 を有する、方向性電磁鋼板。
<6>
 最終仕上げ焼鈍後の方向性電磁鋼板に対し、<1>~<4>のいずれか1つに記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液を塗布した後、焼き付け処理の温度が600℃~1000℃である焼き付け処理を施す工程を有する、方向性電磁鋼板の製造方法。
 本発明によれば、クロム化合物を使用することがなくても、皮膜張力が大きく、耐食性に優れた皮膜特性が得られる方向性電磁鋼板の絶縁皮膜形成用の塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法が提供される。
従来の絶縁皮膜を備える方向性電磁鋼板の一例を示す断面写真である。 実施例10における絶縁皮膜を備える方向性電磁鋼板の断面写真である。 実施例10における絶縁皮膜をX線結晶構造解析した結果を表すグラフである。
 以下、本発明の好ましい実施形態の一例について説明する。
 なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書中において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
<方向性電磁鋼板用絶縁皮膜を形成するための塗布液>
 本実施形態に係る方向性電磁鋼板用絶縁皮膜を形成するための塗布液(絶縁皮膜形成用塗布液)は、アルミニウムを有する含水珪酸塩粒子と、ホウ酸と、を含有する。
 前述のように、クロム化合物を使用しない絶縁皮膜形成用塗布液として、例えば、アルミナゾル及びホウ素を含む絶縁皮膜形成用塗布液が検討されてきた。この絶縁皮膜形成用塗布液を用い、方向性電磁鋼板の母材上に塗布した後、焼き付けることで、絶縁皮膜が形成される。アルミナゾル及びホウ素を含む絶縁皮膜形成用塗布液によって得られた方向性電磁鋼板の絶縁皮膜は、ホウ酸アルミニウム結晶を含み、優れた皮膜張力を有する。しかしながら、原因は定かではないが、この絶縁皮膜は、耐食性が劣位となる場合がある。そのため、絶縁皮膜における優れた皮膜張力が得られるという特性を確保しながら、耐食性を改善させる余地があった。
 そこで、優れた皮膜張力を確保した上で、絶縁皮膜の耐食性の改善について検討した。その結果、含水珪酸塩粒子とホウ酸とを組み合わせることで、皮膜張力に優れ、耐食性が改善された方向性電磁鋼板の絶縁皮膜が得られることが判明した。この絶縁皮膜は、緻密な絶縁皮膜となる。このため、従来の絶縁皮膜と同等以上の皮膜張力を有する。また、アルミナゾル及びホウ素を含む絶縁皮膜形成用塗布液によって得られた絶縁皮膜よりも優れた耐食性が得られると考えられる。
 以下、本実施形態に係る塗布液を構成する各材料について説明する。
(含水珪酸塩粒子)
 絶縁皮膜形成用塗布液には、含水珪酸塩粒子を含有している。含水珪酸塩粒子は、1種で含有していてもよく、2種以上で含有していてもよい。
 含水珪酸塩は、粘土鉱物とも称され、多くの場合、層状の構造をもっている。層状構造は組成式X2-3Si(OH)で表現される1:1珪酸塩層と、組成式X2-3(Si,Al)10(OH)(XはAl、Mg、Fe等)で表現される2:1珪酸塩層とが、単独または混合して、積層された構造となっている。層状構造の層間には、水分子、及びイオンの少なくとも一方を含む場合もある。
 含水珪酸塩は、代表的なものとして、カオリン(もしくはカオリナイト)(AlSi(OH))、タルク(MgSi10(OH))、パイロフィライト(AlSi10(OH))を挙げることができる。含水珪酸塩粒子の多くは、天然に産する含水珪酸塩を精製および微粉化したものである。含水珪酸塩粒子は、工業的に入手しやすい観点で、カオリン、タルク、及びパイロフィライトからなる群より選ばれる少なくとも1種の粒子を用いることがよい。また、優れた皮膜張力及び優れた耐食性が得られる観点で、アルミニウムを含む含水珪酸塩粒子を用いる。アルミニウムを含む含水珪酸塩粒子は、ホウ酸との反応性に優れ、擬正方晶ホウ酸アルミニウムを生成し、優れた皮膜張力及び優れた耐食性が得られる。その観点で、含水珪酸塩粒子は、カオリン、及びパイロフィライトの少なくとも1種の粒子を用いることが好ましく、カオリンを用いることがより好ましい。含水珪酸塩粒子は複合して用いてもよい。
 含水珪酸塩粒子の比表面積が大きいほど、ホウ酸との反応が促進されやすい。そのため、含水珪酸塩粒子の比表面積は、20m/g以上であることが好ましく、40m/g以上であることがより好ましく、50m/g以上であることがさらに好ましい。
 一方、比表面積の上限値は、特に限定されず、比表面積が200m/g以下であってもよく、180m/g以下であってもよく、150m/g以下であってもよい。比表面積の上限値が上記以下であることで、絶縁皮膜形成用塗布液の分散安定性(粘度安定性)が保ち易くなる。含水珪酸塩粒子の比表面積は、BET法に基づく比表面積であり、JIS Z 8830:2013に準拠した方法により測定される。
(比表面積20m/g以上の含水珪酸塩粒子の製造)
 工業用途で市販されている含水珪酸塩粒子では、比表面積20m/g以上のものを入手することは難しい。そのため、例えば、市販品に対し粉砕処理を施すことにより、比表面積20m/g以上である含水珪酸塩粒子を得ることができる。
 含水珪酸塩粒子の粉砕手段としては、ボールミル、振動ミル、ビーズミル、ジェットミル等が有効である。これらの粉砕処理では、粉体のまま粉砕する乾式粉砕でもよく、水、アルコール等の分散媒に含水珪酸塩粒子を分散させたスラリー状態で行う湿式粉砕でもよい。粉砕処理は、乾式粉砕及び湿式粉砕のいずれの処理でも有効である。含水珪酸塩粒子の比表面積は、各種粉砕手段によっても、粉砕時間とともに増大する。そのため、含水珪酸塩粒子の比表面積は、粉砕時間を管理することにより、所要の比表面積を有する含水珪酸塩粒子およびその分散液を得ることができる。
 含水珪酸塩は、板状粒子であってもよく、これは、多くの場合、含水珪酸塩が層状の構造、すなわち複数の層が積層した構造であるためである。粉砕処理により、積層の剥離が生じる。つまり、粉砕処理によって、板状含水珪酸塩の板状粒子の厚みが薄くなる。この厚さが薄いほど、ホウ酸との反応が促進されやすい。そのため、含水珪酸塩粒子(板状粒子)の厚みは、0.1μm以下であることが好ましく、0.05μm以下であることがより好ましく、0.02μm以下であることがさらに好ましい。
 一方、含水珪酸塩粒子(板状粒子)の厚みの下限は、特に限定されないが、粒子表面が活性化して水に懸濁した場合の粘度が高くなるので、0.001μm以上であってもよく、好ましくは0.002μm以上であってもよく、より好ましくは0.005μm以上であってもよい。
 含水珪酸塩粒子(板状粒子)の厚みは、走査型電子顕微鏡または透過型電子顕微鏡によって得られた含水珪酸塩粒子形状の画像を解析して、求められる。
 湿式粉砕処理の場合、含水珪酸塩粒子の比表面積の増大とともに、分散液の粘度が上昇する。そして、粉砕によって比表面積が200m/gを超えるまで増大すると、分散液の粘度が上昇しゲル化して粉砕処理に支障を来たす場合がある。したがって、必要に応じて、分散液に分散剤を添加してもよい。
 粉砕処理中の粘度の上昇は分散剤を添加することで抑制できる。ただし、分散剤の中でも、有機分散剤を添加すると、絶縁皮膜の焼き付け時に分解して炭化し、方向性電磁鋼板中に浸炭する場合があるため、分散剤を用いる場合は、無機分散剤が好ましい。無機系の分散剤の例として、ポリ燐酸塩、水ガラス等を挙げることができる。前者の具体的な分散剤として、二燐酸ナトリウム、ヘキサメタ燐酸ナトリウムなどがある。後者の具体的な分散剤として、珪酸ナトリウム、珪酸カリウムがある。
 これら無機分散剤の添加量は、含水珪酸塩粒子の全質量に対し20質量%以下に抑えることが好ましい。無機分散剤の添加量を20質量%以下とすることで、焼き付け後の皮膜組成の変化が抑制され、より高い皮膜張力が得られ易くなる。分散剤は任意付加成分であるので、分散剤の下限値は特に限定されるものではなく、0%であってもよい。つまり、塗布液が、ポリ燐酸塩、水ガラス等の分散剤を含まないものであってもよい。
 乾式粉砕処理の場合には、粉砕時の分散剤添加を行わなくてもよい。
(ホウ酸)
 ホウ酸は、公知の製法で得られるものを使用することができ、オルトホウ酸及びメタホウ酸のいずれでもよい。ホウ酸は、オルトホウ酸を用いることがよい。ホウ酸は、粒子状のホウ酸で用いてもよく、ホウ酸を水に溶解または分散させてから使用してもよい。
(含水珪酸塩粒子とホウ酸との含有比)
 絶縁皮膜形成用塗布液中に含有する、含水珪酸塩粒子と、ホウ酸との含有比は、B(ホウ素)/Al(アルミニウム)モル比として、特に限定されない。優れた皮膜張力及び優れた耐食性が得られる観点で、B(ホウ素)/Al(アルミニウム)モル比は、1.5以下であることが好ましい。なお、ホウ酸及びホウ酸塩は、水にする溶解度が比較的小さい。そのため、B/Alモル比を大きくしすぎると、塗布液濃度を小さくせざるを得ず、目的とする被膜量を得ることが難しくなる。したがって、B/Alモル比の上限を1.5以下、好ましくは1.3以下、さらに好ましくは1.0以下とすることが好ましい。B/Alモル比の下限は特に限定されず、0.05以上でもよく、0.1以上でもよい。優れた皮膜張力及び優れた耐食性が得られる観点で、B/Alモル比の下限は0.2以上とすることが好ましい。したがって、含水珪酸塩粒子と、ホウ酸との含有比は、B(ホウ素)/Al(アルミニウム)モル比として、0.2~1.5であることが好ましい。
(分散媒(または溶媒))
 絶縁皮膜形成用塗布液に用いる分散媒又は溶媒としては、水の他に、例えば、エチルアルコール、メチルアルコール、及びプロピルアルコールのようなアルコール類を用いることが可能である。分散媒又は溶媒は、引火性を有しない観点で、水を用いることが好ましい。
 絶縁皮膜形成用塗布液の固形分濃度としては、方向性電磁鋼板に塗布可能な範囲であれば、特に限定されるものではない。絶縁皮膜形成用塗布液の固形分濃度は、例えば、5質量%~50質量%(好ましくは10質量%~30質量%)の範囲が挙げられる。
 また、本実施形態に係る絶縁皮膜形成用塗布液は、皮膜張力及び耐食性の特性を損ねない範囲で、必要に応じて、その他の添加剤を少量含んでいてもよく、含んでいなくてもよい(0質量%)。その他の添加剤を少量含む場合、例えば、本実施形態に係る絶縁皮膜形成用塗布液の全固形分に対し、3質量%以下とすることがよく、1質量%以下とすることがよい。なお、その他の添加剤の例としては、例えば、鋼板上での塗布液のはじきを防止する界面活性剤が挙げられる。
 絶縁皮膜形成用塗布液の粘度は、塗布の作業性等の観点から、1mPa・s~100mPa・sであることがよい。粘度が高すぎると塗布しにくくなり、粘度が低すぎると塗布液が流れて目的とする被膜量を得ることが難しくなることがある。測定はB型粘度計(ブルックフィールド型粘度計)によって行う。また、測定温度は25℃である。
 なお、作業環境の観点で、絶縁皮膜形成用塗布液には、6価クロムは含まないことがよい。また、本実施形態に係る絶縁皮膜形成用塗布液によって得られる絶縁皮膜は、高い張力とするために、高温(例えば、600℃以上)で焼き付ける。そのため、絶縁皮膜形成用塗布液に樹脂を含有させると、焼き付けによって樹脂が分解浸炭する。その結果として、方向性電磁鋼板の磁気特性を劣化させてしまう。この観点で、絶縁皮膜形成用塗布液に、樹脂等の有機成分は含まないことがよい。
 ここで、本実施形態に係る絶縁皮膜形成用塗布液は、焼き付けによって鋼板に張力を付与することができ、方向性電磁鋼板の絶縁皮膜を形成するための塗布液として好適である。なお、本実施形態に係る絶縁皮膜形成用塗布液は、無方向性電磁鋼板に対して適用することも可能ではある。しかしながら、本実施形態に係る絶縁皮膜形成用塗布液を無方向性電磁鋼板に適用しても、絶縁皮膜中に有機成分を含有せず、鋼板の打ち抜き性改善効果が無い。そのため、無方向性電磁鋼板への適用の便益は少ない。
(塗布液の調製方法)
 本実施形態に係る絶縁皮膜形成用塗布液の調製は、分散媒(溶媒)とともに、含水珪酸塩粒子と、ホウ酸とを混合攪拌すればよい。含水珪酸塩粒子と、ホウ酸との添加順序は特に限定されない。例えば、分散媒としての水に対し、所定量の含水珪酸塩粒子を分散させた分散液を調製した後、所定量のホウ酸を添加して、混合攪拌してもよい。又は、溶媒としての水に所定量のホウ酸を溶解したホウ酸水溶液を調製した後、ホウ酸水溶液に対し、所定量の含水珪酸塩粒子を添加して混合攪拌してもよい。
 また、必要に応じて、その他の添加剤を添加して混合攪拌すればよい。そして、絶縁皮膜形成用塗布液を目的とする固形分濃度に調整すればよい。塗布液の液温は、加温(例えば、50℃)してもよく、常温(例えば、25℃)でもよい。
(塗布液の成分の分析)
 本実施形態に係る絶縁皮膜形成用塗布液において、塗布液中の含水珪酸塩粒子、及びホウ酸は、以下のようにして測定することが可能である。
 含水珪酸塩粒子、及びホウ酸を混合した塗布液は、100℃以下では両者が反応することはほとんどない。そのため、100℃以下の塗布液は、例えば、ホウ酸水溶液に含水珪酸塩粒子が分散したスラリー状態にある。
 具体的には、まず、絶縁皮膜形成用塗布液をろ過する。ろ過することにより、塗布液は、混合前のホウ酸に由来するホウ酸水溶液を含むろ液と、含水珪酸塩粒子に由来する含水珪酸塩を含む残渣とに分離される。次に、ろ液をICP-AES分析(高周波誘導結合プラズマ-原子発光分光分析)することにより、ホウ酸を含むことが明らかとなる。また、残渣を蛍光X線分析することにより、含水珪酸塩のアルミニウムに対するホウ素のモル比(B/Al)が明らかとなる。
 さらに、含水珪酸塩粒子の比表面積は、上記で分離した含水珪酸塩粒子を、含水珪酸塩粒子が溶解しない溶媒に分散する。その後、前述のBET法により、比表面積が求められる。また、含水珪酸塩粒子(板状粒子)の厚さは、前述の電子顕微鏡による観察によって求められる。
<方向性電磁鋼板及び方向性電磁鋼板の製造方法>
 次に、本実施形態に係る方向性電磁鋼板及び方向性電磁鋼板の製造方法の好ましい実施形態の一例について説明する。
 本実施形態に係る方向性電磁鋼板は、方向性電磁鋼板の母材と、方向性電磁鋼板の母材上に設けられた絶縁皮膜であって、Al、B、及びOを含む構成元素からなる擬正方晶ホウ酸アルミニウムの結晶を含有する絶縁皮膜と、を有する。絶縁皮膜は、ホウ酸とアルミニウムを有する含水珪酸塩との反応生成物からなり、Al、B、及びOを含む構成元素からなる擬正方晶ホウ酸アルミニウムの結晶を絶縁皮膜中の少なくとも一部に含有している。
 本実施形態に係る方向性電磁鋼板において、Al、B、及びOを含む構成元素からなる擬正方晶ホウ酸アルミニウムの結晶を含む絶縁皮膜は、従来の絶縁皮膜とは異なるものである。
 例えば、特許文献1~4に基づく、燐酸塩とコロイダルシリカ、クロム酸から形成される絶縁皮膜は、Al、Mg、P、Si、Cr、及びOを構成元素とする非晶質物質である。また、特許文献6に代表されるアルミナゾルとホウ酸を用いる絶縁皮膜は、特許文献10に示されているように、Al、B、及びOを構成元素とする、組成式xAl・yBで表現される結晶質物質のみから構成される。
 これに対し、本実施形態に係る絶縁皮膜は、含水珪酸塩粒子中のAl成分がホウ酸との反応により生成した擬正方晶ホウ酸アルミニウムxAl・yBと、含水珪酸塩粒子のAl以外の残余の成分に起因する非晶質成分から構成される。例えば、含水珪酸塩粒子としてカオリンを用いた場合には、以下のように、擬正方晶ホウ酸アルミニウムとシリカの混合物になる。したがって、本実施形態に係る方向性電磁鋼板における絶縁皮膜の組成は、従来の絶縁皮膜とは異なるものである。
 2yHBO + xAlSi(OH)
→ xAl・yB + 2xSiO + (2x+3y)H
 本実施形態に係る方向性電磁鋼板は、絶縁皮膜がAl、B、及びOを含む構成元素からなる擬正方晶ホウ酸アルミニウムの結晶を含有することで、優れた皮膜張力を有する。また、結晶相を非晶質層が取り囲むような構造をることにより優れた耐食性を有する。また、本実施形態に係る方向性電磁鋼板の絶縁皮膜は、緻密な皮膜が形成される。本実施形態に係る方向性電磁鋼板は、以下で説明する製造方法によって得られることが好ましい。
 本実施形態に係る方向性電磁鋼板の製造方法は、最終仕上げ焼鈍後の方向性電磁鋼板(つまり、方向性電磁鋼板の母材)に対し、本実施形態に係る方向性電磁鋼板用絶縁皮膜を形成するための塗布液を塗布した後、焼き付け処理の温度が600℃~1000℃である焼き付け処理を施す工程を有する。
(最終仕上げ焼鈍後の方向性電磁鋼板)
 最終仕上げ焼鈍後の方向性電磁鋼板は、上記塗布液(つまり、本実施形態に係る絶縁皮膜形成用塗布液)を塗布する前の母材となる方向性電磁鋼板である。最終仕上げ焼鈍後の方向性電磁鋼板は特に限定されるものではない。母材となる方向性電磁鋼板は、好適な一例として、次のようにして得られる。具体的には、例えば、Siを2質量%~4質量%含有する鋼片を熱間圧延、熱延板焼鈍、及び冷間圧延を施した後、脱炭焼鈍を行う。この後、MgOの含有量が50質量%以上である焼鈍分離剤を塗布し、最終仕上げ焼鈍を行うことにより得られる。最終仕上げ焼鈍後の方向性電磁鋼板は、仕上げ焼鈍皮膜を有していなくてもよい。
(絶縁皮膜形成用塗布液の塗布および焼き付け処理)
 最終仕上げ焼鈍後の方向性電磁鋼板に、本実施形態に係る絶縁皮膜形成用塗布液を塗布した後、焼き付け処理を行う。塗布量は特に限定されるものではない。優れた皮膜張力及び優れた耐食性が得られる観点で、絶縁皮膜形成後の皮膜の量として、1g/m~10g/mの範囲となるように塗布することが好適である。より好適には2g/m~8g/mである。なお、焼き付け処理後の塗布量は絶縁皮膜剥離前後の重量差から求めることができる。
 また、優れた皮膜張力および耐食性とは、従来の絶縁皮膜、特に、クロム化合物を含む塗布液を用いた場合の絶縁皮膜と同等以上のことであってもよい。後述する、参考例(クロム化合物を含む塗布液を用いた場合の絶縁皮膜)では、皮膜張力が8MPaであり、耐食性が0%である。本実施形態に係る絶縁皮膜では、許容可能な尤度を考慮して、皮膜張力が5MPa以上、好ましくは8MPa以上であってもよく、さらに好ましくは10MPa以上であってもよい。また、耐食性は10%以下、好ましくは5%以下であってもよく、さらに好ましくは1%以下であってもよく、0%であってもよい。
 最終仕上げ焼鈍後の方向性電磁鋼板に、絶縁皮膜形成用塗布液を塗布する方法としては、特に限定するものではない。例えば、ロール方式、スプレー方式、ディップ方式などの塗布方式による塗布方法が挙げられる。
 絶縁皮膜形成用塗布液を塗布した後、焼き付けを行う。緻密な皮膜を形成し、優れた皮膜張力及び優れた耐食性が得られる観点で、含水珪酸塩粒子とホウ酸との反応を促進させる。多くの含水珪酸塩は加熱温度550℃近傍で構造水を放出し、その過程でホウ酸と反応する。焼き付け温度が600℃未満では、含水珪酸塩粒子とホウ酸との反応が十分ではない。そのため、含水珪酸塩粒子とホウ酸とのそれぞれが、混在した絶縁皮膜となる。したがって、焼き付け温度は600℃以上とする。焼き付け温度の好ましい下限は700℃以上である。一方で、1000℃超の焼き付け温度を採用した場合、方向性電磁鋼板が軟化して歪みが入りやすくなるので、焼き付け温度は1000℃以下とする。好ましい上限は950℃以下である。焼き付け時間は、5秒~300秒(好ましくは10秒~120秒)であることがよい。
 なお、焼き付け処理を行う加熱方法は、特に限定されるものではなく、例えば、輻射炉、熱風炉、誘導加熱等が挙げられる。
 焼き付け処理後の絶縁皮膜は、緻密な皮膜となる。絶縁皮膜の厚さとしては、0.5μm~5μm(好ましくは1μm~4μm)であることがよい。
 なお、焼き付け処理後の絶縁皮膜の厚さは、断面SEM観察によって求めることができる。
 緻密さは、皮膜中の空隙率によって評価することができる。皮膜中に空隙が多量に存在していると、絶縁皮膜は、皮膜張力が低く、さらに耐食性も劣位であると考えられる。本実施形態に係る絶縁皮膜では、空隙率が10%以下、好ましくは5%以下、さらに好ましくは3%以下、より好ましくは2%以下、特に好ましくは1%以下であってもよい。
 以上の工程により、本実施形態に係る絶縁皮膜形成用塗布液によって、クロム化合物を含有していなくても、皮膜張力及び耐食性の両特性がともに優れる方向性電磁鋼板が得られる。また、本実施形態に係る絶縁皮膜形成用塗布液によって絶縁皮膜が設けられた方向性電磁鋼板は、磁気特性にも優れ、さらに、占積率にも優れる。
 本実施形態によって得られた絶縁皮膜付きの方向性電磁鋼板に対し、皮膜特性及び耐食性、磁気特性、絶縁皮膜の空隙率等を評価する場合、各評価の評価方法は、以下のとおりである。
(耐食性)
 35℃に保った状態で5質量%NaCl水溶液を試験片に連続的に噴霧し、48時間経過後における錆の発生状況を観察し、面積率を算出する。
(皮膜張力)
 皮膜張力は、絶縁皮膜の片面を剥離したときに生じる鋼板の反りから計算する。具体的な条件は、以下のとおりである。
 方向性電磁鋼板に設けられている片面のみの絶縁皮膜をアルカリ水溶液により除去する。その後、方向性電磁鋼板の反りから、下記式により、皮膜張力を求める。
 式:皮膜張力=190×板厚(mm)×板の反り(mm)/{板長さ(mm)}[MPa]
(占積率)
 JIS C 2550-5:2011に記載の方法に準じて測定する。
(皮膜空隙率)
 後方散乱電子によって絶縁皮膜の断面の画像を得る。この画像に対して二値化処理を行い、二値画像を得る。この二値画像から空隙(気孔)の面積を除いた断面の面積Aを得る。
 空隙充填した二値画像から空隙(気孔)の面積を含めた断面の面積Aを得る。そして、空隙率Fを、下記式(F)により求める。
 絶縁皮膜に対し、倍率5000倍で観察を行って5つの画像を得て、得られた空隙率から平均値を算出する。
 式(F) F={1-(A/A)}×100
(鉄損及び磁束密度)
 JIS C 2550-1:2011に記載の方法に準じて、鉄損及び磁束密度を測定する。具体的には、測定磁束密度の振幅1.7T、周波数50Hzにおける条件下で、単位質量当たりの鉄損(W17/50)として測定する。また、磁束密度(B)は、磁化力800A/mにおける磁束密度の値を測定する。
 なお、本発明の好適な実施形態の一例について説明したが、本発明は、上記に限定されるものではない。上記は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下、実施例を例示して、本発明を具体的に説明するが、本発明はこれに限定されるものではない。
(実施例A)
 まず、市販のカオリン、タルク、及びパイロフィライトの含水珪酸塩粒子(比表面積はすべて10m/g)を用意し、下記表1に示す各種手段により粉砕処理を行った。分散剤を添加する場合には、湿式粉砕では処理前の水スラリー作成時に、乾式粉砕では粉砕処理後の塗布液調整時に添加した。粉砕処理後にJIS Z 8830:2013に記載の方法に準じて、比表面積測定を行った。
 上記含水珪酸塩粒子を用い、表1に示す組成の塗布液を調製した。塗布液の安定性を確認するために、調製液の一部を採取し、室温(25℃)で2昼夜放置後に塗布液の状態(ゲル化の有無)を観察した。なお、実施例22に示す塗布液は、2種の含水珪酸塩粒子を混合して使用する例である。観察の結果、表1に示す組成の塗布液は、いずれの塗布液もゲル化が見られなかった。
 最終仕上げ焼鈍を完了した仕上げ焼鈍皮膜を備える板厚0.23mmの方向性電磁鋼板(B=1.93T)を準備し、表1に示す組成の塗布液を、焼き付け処理後の絶縁皮膜量が5g/mとなるように塗布乾燥し、850℃、30秒間の条件で焼き付け処理を行った。
 得られた絶縁皮膜付きの方向性電磁鋼板に対し、皮膜特性及び耐食性を評価した。また、磁気特性を評価した。さらに、絶縁皮膜の空隙率を測定した。表2に結果を示す。表2に示す各評価の評価方法は、上述のとおりである。
 なお、表1に示すB/Alのモル比は、B/Alのモル比が表1に示す値となるように、含水珪酸塩粒子と、ホウ酸とを混合調整した計算値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、表1中の参考塗布液の組成は以下のとおりである。
・コロイダルシリカ20質量%水分散液:100質量部
・燐酸アルミニウム50質量%水溶液:60質量部
・無水クロム酸:6質量部
 表1中の比較塗布液1の組成は以下のとおりである。
・固形分10質量%のアルミナゾル:100質量部
・ホウ酸:7質量部
 なお、表1における含水珪酸塩粒子(粘土鉱物粒子)およびホウ酸の固形分濃度(質量%)は無水物換算、例えばカオリンはAl・2SiO、ホウ酸はBとして計算したものである。
 表1中の粉砕手段は以下のとおりである。
 JM:ジェットミル(乾式)
 BD:ボールミル(乾式)
 BW:ボールミル(湿式)
 BM:ビーズミル(湿式)
 表1に示すとおり、実施例1~36は、含水珪酸塩粒子とホウ酸とを含む絶縁皮膜形成用塗布液を用い形成した絶縁皮膜である。表2に示すとおり、各実施例の絶縁皮膜は、皮膜張力が大きく、耐食性にも優れる。さらに、占積率および磁気特性にも優れる。
 また、各実施例の絶縁皮膜は、参考例に示すクロム化合物を含む塗布液を用いた場合の皮膜と、同等以上の性能が得られることがわかる。
 一方、含水珪酸塩粒子を含み、ホウ酸を含まない絶縁皮膜形成用塗布液を用いて形成した絶縁皮膜は、耐食性に劣ることが分かる。さらに、アルミナゾルと、ホウ酸とを含む塗布液により得られた比較例1の絶縁皮膜では、耐食性に劣ることが分かる。
 ここで、図1に、SEMにより、従来の絶縁皮膜が設けられた方向性電磁鋼板の断面を観察した結果の一例を示す。また、図2に、SEMにより、実施例10の絶縁皮膜が設けられた方向性電磁鋼板の断面を観察した結果を示す。図1において、11は絶縁皮膜、12は仕上げ焼鈍皮膜を表す。また、図2において、21は絶縁皮膜、22は仕上げ焼鈍皮膜を表す。以下、符号は省略して説明する。
 図1に示す絶縁皮膜には、空隙が多量に存在している。このため、図1に示す絶縁皮膜は、皮膜張力が低く、さらに耐食性も劣位であると考えられる。一方、図2に示す絶縁皮膜には、空隙が極めて少ない緻密な皮膜となることが明らかとなった。このため、図2に示す絶縁皮膜は、皮膜張力が高く、さらに耐食性も優位であると考えられる。
 したがって、本実施形態の絶縁皮膜形成用塗布液を用いて得られる方向性電磁鋼板は、緻密化された絶縁皮膜を有し、クロム化合物を使用することが無くても、皮膜張力が大きく、耐食性に優れた皮膜特性が得られることがわかる。また、これら皮膜特性が得られるとともに、磁気特性及び占積率も優れることがわかる。
 図3に、実施例10の絶縁皮膜をX線回折装置によりX線結晶構造解析を行った結果を示す。図3に示すグラフから、実施例10の絶縁皮膜には、Al、B、及びOを含む構成元素からなり、擬正方晶ホウ酸アルミニウムを含有することが分かる。
(実施例B)
 次に、焼き付け温度を変更して、皮膜特性及び磁気特性を評価する。実施例10と同様の組成に調整した塗布液を、実施例1と同様の手順で、焼き付け処理後の絶縁皮膜量が5g/mとなるように塗布乾燥する。そして、焼き付け温度を表3に示す条件に変更して焼き付け処理を行う(焼き付け時間は同じ)。表3に結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、焼き付け温度が600℃未満である比較例6及び7は含水珪酸塩粒子とホウ酸との反応が十分ではないため、耐食性が劣位である。一方、焼き付け温度が600℃以上である各実施例は、優れた耐食性が得られる。
 以上、本発明の好適な実施例について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。

Claims (6)

  1.  アルミニウムを有する含水珪酸塩粒子と、ホウ酸と、を含有する、方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
  2.  前記含水珪酸塩粒子の比表面積が、20m/g以上である、請求項1に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
  3.  前記含水珪酸塩粒子が、カオリン、及びパイロフィライトの少なくとも1種の粒子を含む、請求項1又は請求項2に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
  4.  前記含水珪酸塩粒子と、前記ホウ酸との含有比が、塗布液中のB(ホウ素)/Al(アルミニウム)モル比として、0.2~1.5である、請求項1~請求項3のいずれか1項に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液。
  5.  方向性電磁鋼板の母材と、
     前記方向性電磁鋼板の母材上に設けられた絶縁皮膜であって、Al、B、及びOを含む構成元素からなる擬正方晶ホウ酸アルミニウムの結晶を含有する絶縁皮膜と、
     を有する、方向性電磁鋼板。
  6.  最終仕上げ焼鈍後の方向性電磁鋼板に対し、請求項1~請求項4のいずれか1項に記載の方向性電磁鋼板用絶縁皮膜を形成するための塗布液を塗布した後、焼き付け処理の温度が600℃~1000℃である焼き付け処理を施す工程を有する、方向性電磁鋼板の製造方法。
PCT/JP2019/038992 2018-10-25 2019-10-02 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法 WO2020085024A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980037536.1A CN112867810A (zh) 2018-10-25 2019-10-02 用于形成方向性电磁钢板用绝缘皮膜的涂布液、方向性电磁钢板及方向性电磁钢板的制造方法
US17/283,208 US20210381072A1 (en) 2018-10-25 2019-10-02 Coating liquid for forming insulation coating for grain-oriented electrical steel sheets, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP2020553041A JP7047932B2 (ja) 2018-10-25 2019-10-02 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
KR1020217001402A KR102599445B1 (ko) 2018-10-25 2019-10-02 방향성 전자 강판용 절연피막을 형성하기 위한 도포액, 방향성 전자 강판, 및 방향성 전자 강판의 제조 방법
EP19875492.1A EP3872227A4 (en) 2018-10-25 2019-10-02 COATING LIQUID FOR PRODUCTION OF AN INSULATION FILM FOR CORE-ORIENTED ELECTROMAGNETIC STEEL SHEET, CORE-ORIENTATION ELECTROMAGNETIC STEEL SHEET AND METHOD OF PRODUCTION OF CORE-ORIENTATION ELECTROMAGNETIC STEEL SHEET
BR112021005578-9A BR112021005578A2 (pt) 2018-10-25 2019-10-02 líquido de revestimento para formação de revestimento de isolamento para chapas de aço elétrico de grãos orientados, chapa de aço elétrico de grãos orientados, e método de produção da chapa de aço elétrico de grãos orientados
RU2021111388A RU2764099C1 (ru) 2018-10-25 2019-10-02 Покрывающая жидкость для формирования изоляционного покрытия на листах анизотропной электротехнической стали, лист анизотропной электротехнической стали и способ производства листа анизотропной электротехнической стали

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-200878 2018-10-25
JP2018200878 2018-10-25

Publications (1)

Publication Number Publication Date
WO2020085024A1 true WO2020085024A1 (ja) 2020-04-30

Family

ID=70331063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038992 WO2020085024A1 (ja) 2018-10-25 2019-10-02 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US20210381072A1 (ja)
EP (1) EP3872227A4 (ja)
JP (1) JP7047932B2 (ja)
KR (1) KR102599445B1 (ja)
CN (1) CN112867810A (ja)
BR (1) BR112021005578A2 (ja)
RU (1) RU2764099C1 (ja)
WO (1) WO2020085024A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191327A1 (ja) 2021-03-11 2022-09-15 日本製鉄株式会社 方向性電磁鋼板およびその製造方法
WO2024096068A1 (ja) * 2022-11-02 2024-05-10 日本製鉄株式会社 塗布液、塗布液の製造方法、及び方向性電磁鋼板の製造方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5237934A (en) * 1975-09-04 1977-03-24 Nippon Steel Corp Electrical iron plate
JPS5348946A (en) * 1976-10-18 1978-05-02 Nippon Steel Corp Electric steel
JPS54143737A (en) 1978-04-28 1979-11-09 Kawasaki Steel Co Formation of chromiummfree insulating top coating for directional silicon steel plate
JPH0665754A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板の製造方法
JPH0665755A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板
JPH06306628A (ja) 1993-04-19 1994-11-01 Nippon Steel Corp 低鉄損一方向性珪素鋼板
JPH08325745A (ja) 1995-05-26 1996-12-10 Nippon Steel Corp 低鉄損一方向性珪素鋼板およびその製造方法
JPH09256164A (ja) 1996-03-21 1997-09-30 Nippon Steel Corp 低鉄損一方向性珪素鋼板およびその製造方法
JPH09272983A (ja) * 1996-04-09 1997-10-21 Nippon Steel Corp 耐食性に優れた低鉄損一方向性珪素鋼板の製造方法
JP2000169972A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2000178760A (ja) 1998-12-08 2000-06-27 Nippon Steel Corp クロムを含まない表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2003171773A (ja) * 2001-12-04 2003-06-20 Nippon Steel Corp 張力皮膜を有する一方向性珪素鋼板
WO2010146821A1 (ja) 2009-06-17 2010-12-23 新日本製鐵株式会社 絶縁被膜を有する電磁鋼板及びその製造方法
WO2015115036A1 (ja) 2014-01-31 2015-08-06 Jfeスチール株式会社 クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板
JP2017075358A (ja) 2015-10-14 2017-04-20 新日鐵住金株式会社 方向性電磁鋼板の絶縁皮膜及びその形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398010A (en) * 1964-08-17 1968-08-20 United States Steel Corp Masking composition for galvanized metal
JPS6065755A (ja) * 1983-09-20 1985-04-15 電気化学工業株式会社 水中コンクリ−ト組成物
JPS6287764A (ja) * 1985-10-14 1987-04-22 株式会社日立製作所 空気調和機
JP2769730B2 (ja) * 1989-11-24 1998-06-25 日新製鋼株式会社 電磁鋼板絶縁皮膜形成用組成物及び電磁鋼板絶縁皮膜形成方法
JP2664325B2 (ja) * 1993-03-31 1997-10-15 新日本製鐵株式会社 低鉄損方向性電磁鋼板
JP3169500B2 (ja) * 1994-01-14 2001-05-28 新日本製鐵株式会社 低鉄損一方向性電磁鋼板
JP3162570B2 (ja) * 1994-04-13 2001-05-08 新日本製鐵株式会社 低鉄損一方向性珪素鋼板およびその製造方法
JP3098691B2 (ja) * 1995-04-12 2000-10-16 新日本製鐵株式会社 被膜耐水性、耐置錆性にすぐれた低鉄損一方向性珪素鋼板
JP3406799B2 (ja) * 1997-04-14 2003-05-12 新日本製鐵株式会社 ほう酸アルミニウム被膜を有する一方向性珪素鋼板の製造方法
RU2386725C2 (ru) * 2005-07-14 2010-04-20 Ниппон Стил Корпорейшн Текстурированный электротехнический стальной лист, имеющий изолирующую пленку, не содержащую хром, и агент изолирующей пленки
RU2607374C2 (ru) * 2009-10-30 2017-01-10 Новозаймс Байофарма Дк А/С Варианты альбумина
CN104876530A (zh) * 2015-05-13 2015-09-02 成都市和乐门业有限公司 一种防火涂料及其制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5237934A (en) * 1975-09-04 1977-03-24 Nippon Steel Corp Electrical iron plate
JPS5348946A (en) * 1976-10-18 1978-05-02 Nippon Steel Corp Electric steel
JPS54143737A (en) 1978-04-28 1979-11-09 Kawasaki Steel Co Formation of chromiummfree insulating top coating for directional silicon steel plate
JPH0665754A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板の製造方法
JPH0665755A (ja) 1992-08-21 1994-03-08 Nippon Steel Corp 低鉄損方向性電磁鋼板
JPH06306628A (ja) 1993-04-19 1994-11-01 Nippon Steel Corp 低鉄損一方向性珪素鋼板
JPH08325745A (ja) 1995-05-26 1996-12-10 Nippon Steel Corp 低鉄損一方向性珪素鋼板およびその製造方法
JPH09256164A (ja) 1996-03-21 1997-09-30 Nippon Steel Corp 低鉄損一方向性珪素鋼板およびその製造方法
JPH09272983A (ja) * 1996-04-09 1997-10-21 Nippon Steel Corp 耐食性に優れた低鉄損一方向性珪素鋼板の製造方法
JP2000169972A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2000178760A (ja) 1998-12-08 2000-06-27 Nippon Steel Corp クロムを含まない表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP2003171773A (ja) * 2001-12-04 2003-06-20 Nippon Steel Corp 張力皮膜を有する一方向性珪素鋼板
WO2010146821A1 (ja) 2009-06-17 2010-12-23 新日本製鐵株式会社 絶縁被膜を有する電磁鋼板及びその製造方法
WO2015115036A1 (ja) 2014-01-31 2015-08-06 Jfeスチール株式会社 クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板
JP2017075358A (ja) 2015-10-14 2017-04-20 新日鐵住金株式会社 方向性電磁鋼板の絶縁皮膜及びその形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872227A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191327A1 (ja) 2021-03-11 2022-09-15 日本製鉄株式会社 方向性電磁鋼板およびその製造方法
KR20230138515A (ko) 2021-03-11 2023-10-05 닛폰세이테츠 가부시키가이샤 방향성 전자 강판, 및 그 제조 방법
WO2024096068A1 (ja) * 2022-11-02 2024-05-10 日本製鉄株式会社 塗布液、塗布液の製造方法、及び方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
EP3872227A4 (en) 2022-08-10
BR112021005578A2 (pt) 2021-06-29
JPWO2020085024A1 (ja) 2021-10-14
EP3872227A1 (en) 2021-09-01
KR20210022060A (ko) 2021-03-02
KR102599445B1 (ko) 2023-11-08
CN112867810A (zh) 2021-05-28
JP7047932B2 (ja) 2022-04-06
US20210381072A1 (en) 2021-12-09
RU2764099C1 (ru) 2022-01-13

Similar Documents

Publication Publication Date Title
US20160281186A1 (en) Grain Oriented Electrical Steel Flat Product Comprising an Insulation Coating
JP6547835B2 (ja) 方向性電磁鋼板、及び方向性電磁鋼板の製造方法
US11499059B2 (en) Electrical steel sheet
WO2020085024A1 (ja) 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、方向性電磁鋼板、及び方向性電磁鋼板の製造方法
JP5320898B2 (ja) 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法
CN111868303B (zh) 方向性电磁钢板的制造方法及方向性电磁钢板
JP5422937B2 (ja) 方向性電磁鋼板に用いる絶縁皮膜塗布液及び絶縁皮膜形成方法
JP7014231B2 (ja) 方向性電磁鋼板用絶縁皮膜を形成するための塗布液、および方向性電磁鋼板の製造方法
WO2024096068A1 (ja) 塗布液、塗布液の製造方法、及び方向性電磁鋼板の製造方法
WO2022191327A1 (ja) 方向性電磁鋼板およびその製造方法
JP2664335B2 (ja) 酸化アルミニウム−酸化けい素系複合被膜を有する低鉄損一方向性珪素鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217001402

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020553041

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021005578

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021111388

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019875492

Country of ref document: EP

Effective date: 20210525

ENP Entry into the national phase

Ref document number: 112021005578

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210323