WO2020077863A1 - 一种Micro-LED的巨量转移装置及转移方法 - Google Patents
一种Micro-LED的巨量转移装置及转移方法 Download PDFInfo
- Publication number
- WO2020077863A1 WO2020077863A1 PCT/CN2018/124559 CN2018124559W WO2020077863A1 WO 2020077863 A1 WO2020077863 A1 WO 2020077863A1 CN 2018124559 W CN2018124559 W CN 2018124559W WO 2020077863 A1 WO2020077863 A1 WO 2020077863A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flip
- chip
- micro
- led
- solid
- Prior art date
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 144
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 135
- 239000013078 crystal Substances 0.000 claims description 147
- 239000007787 solid Substances 0.000 claims description 133
- 238000003466 welding Methods 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 46
- 230000008602 contraction Effects 0.000 claims description 10
- 229920001971 elastomer Polymers 0.000 claims description 9
- 239000000806 elastomer Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000013013 elastic material Substances 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 229920001746 electroactive polymer Polymers 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000005411 Van der Waals force Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67144—Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
Definitions
- the invention relates to the field of semiconductor manufacturing, and in particular to a micro-LED mass transfer device and transfer method.
- Micro-LED is a display technology that miniaturizes and matrixes the LED structure, drives and addresses each pixel individually. Because Micro-LED technology's various indicators such as brightness, life, contrast, reaction time, energy consumption, viewing angle and resolution are superior to LCD and OLED technology, it is regarded as a new generation of display technology that can surpass OLED and traditional LED. . However, due to the need for extremely high efficiency, 99.9999% yield rate and transfer accuracy within plus or minus 0.5 ⁇ m in the packaging process, the size of Micro-LED components is basically less than 50 ⁇ m and the number is tens of thousands to millions, so Micro-LED One of the core technical problems that still need to be overcome in the process of LED industrialization is the Mass Transfer technology of Micro-LED components. For modern ultra-precision processing technology, the huge transfer of tens of thousands to hundreds of thousands of Micro-LEDs from the wafer to the substrate has itself been a huge challenge, and the processing efficiency, yield and transfer accuracy are even more impossible to guarantee.
- Micro-LED mass transfer methods mainly include electrostatic force adsorption method, van der Waals force transfer method, electromagnetic force adsorption method, patterned laser laser ablation method, fluid assembly method, etc.
- the electrostatic force adsorption method proposed by the American company LuxVue, the van der Waals force transfer method proposed by the American company X-Celeprint, and the electromagnetic force adsorption method proposed by the Taiwan Institute of Industrial Research and Development ITRI through the action of electrostatic force, van der Waals force and electromagnetic force, will Micro-LED is accurately absorbed, then transferred to the target substrate, and released accurately.
- the above three methods cannot solve the problem that the pitch of the Micro-LED on the wafer is not equal to the pitch of the Micro-LED on the substrate.
- the patterned laser laser ablation method laser peels the Micro-LED directly from the wafer, but it requires the use of an expensive excimer laser.
- the fluid assembly method uses a brush barrel to roll on the substrate, so that the Micro-LED is in the liquid suspension, and the LED is dropped into the corresponding well on the substrate by the fluid force.
- this method has a certain randomness and cannot guarantee the yield of self-assembly.
- the US patent US20180053742A1 proposes to adhere the electronic device to the temporary fixing layer, and expand the temporary fixing layer to change the LED pitch to transfer to the carrier substrate.
- the temporary fixed layer expands in both the lateral and vertical directions, it is difficult to ensure the lateral transfer accuracy, and it cannot meet the large amount of transfer with high lateral accuracy requirements, and the temporary fixed layer expansion factor is limited, which cannot meet the large lateral spacing.
- the huge amount of Micro-LED transfer method proposed by Chinese patent CN201711162098 only transfers LEDs with asymmetric upper and lower edges, and the use of pre-designed molds cannot meet the spacing of electronic components.
- the object of the present invention is to provide a mass-transfer device and a transfer method for a Micro-LED that can transfer a large amount of fully controllable pitch on a target substrate such as a panel or a wafer.
- the present invention adopts the following technical solutions:
- a micro-LED mass transfer device including a solid crystal welding arm, a flip chip welding arm, an external physics device and an operating table, the solid crystal welding arm, a flip chip welding arm and an external physics device are all electrically connected to the operation Table, flip chip welding arm is used to pick up the Micro-LED on the operating table and transfer to the solid crystal welding arm, the solid crystal welding arm is used to transfer the Micro-LED to the installation position;
- the solid crystal welding arm includes a solid crystal guide rail, a solid crystal bracket, a solid crystal transfer head and a solid crystal elastic retractable material.
- the solid crystal bracket is slidably arranged on the solid crystal guide rail.
- the solid crystal bracket has a plurality of solid crystal brackets, each solid A solid crystal transfer head is installed at the bottom of the crystal bracket, and a solid crystal elastic stretchable material is provided between two adjacent solid crystal brackets. The expansion and contraction of the solid crystal elastic stretchable material is used to change the distance between the adjacent two solid crystal transfer heads. ;
- the flip-chip welding arm includes a flip-chip rotary motor, a flip-chip guide rail, a flip-chip bracket, a flip-chip transfer head, and a flip-chip elastic stretchable material.
- the flip-chip rotary motor is connected to the flip-chip guide rail to rotate the flip-chip guide rail.
- the bracket is slidably arranged on the flip-chip guide rail.
- There are multiple flip-chip brackets. Each flip-chip bracket is equipped with a flip-chip transfer head. Between the two adjacent flip-chip brackets, a flip-chip elastic expansion and contraction is provided. Material, the expansion and contraction of flip-chip elastic stretch material is used to change the distance between two adjacent flip-chip transfer heads;
- An additional physical field device is used to generate a physical field to deform the solid-crystalline elastic stretchable material or the flip-chip elastic stretchable material.
- the solid crystal welding arm further includes a solid crystal limit device and a solid crystal spring, both ends of the solid crystal guide rail are provided with a solid crystal limit device, the solid crystal spring is provided on the guide rail, and each solid crystal elastic expansion material is Corresponding to the solid crystal spring, there is a solid crystal spring between the solid crystal limiting device and the closest solid crystal bracket;
- the solid crystal spring has a solid crystal pre-tensioning force.
- the solid crystal pre-tensioning force is greater than the elastic force of the solid crystal elastically retractable material when no physical field is added, and is smaller than the elastic force of the solid crystal elastically retractable material when adding a physical field.
- the flip chip welding arm further includes a flip chip limit device and a flip chip spring. Both ends of the flip chip guide rail are provided with a flip chip limit device.
- the flip chip spring is provided on the flip chip guide rail, and each flip chip elastically expands and contracts. The materials all correspond to flip-chip springs, and there is a flip-chip spring between the flip-chip limiting device and the closest flip-chip bracket;
- the flip-chip spring has a flip-chip preloading force, which is greater than the elastic force of the flip-chip elastic stretchable material without adding a physical field, and less than the elastic force of the flip-chip elastic stretchable material when adding a physical field.
- both the flip-chip transfer head and the solid-crystal transfer head have a bipolar structure. When both are applied to a positive voltage, the Micro-LED is grabbed, and when applied to a negative voltage, the Micro-LED is released.
- the solid crystal elastic stretchable material is a thermostrictive material, an electrostrictive material, a magnetostrictive material or a magnetorheological elastomer;
- the flip-chip elastic stretchable material is a thermostrictive material, an electrostrictive material, a magnetostrictive material or a magnetorheological elastomer; the physical field generated by the external physical field device is a temperature field, an electric field or a magnetic field.
- thermostrictive material is a titanium alloy memory material
- the electrostrictive material is a material that shrinks due to power expansion and electro-active polymer expansion
- the magnetostrictive material is an exciting deformation material composed of silicon rubber and iron polymer
- Magnetorheological elastomer is a hardening and demagnetizing flowing material.
- both the solid-crystal elastic stretchable material and the flip-chip elastic stretchable material have a response time of -ms.
- a transfer method using a Micro-LED mass transfer device includes the following steps:
- the Micro-LEDs to be transferred are arranged on the substrate, and the distance between the two adjacent Micro-LEDs on the substrate is L1.
- Field device the external physical field is applied to deform the flip-chip elastic stretchable material to drive the flip-chip transfer head to accurately align with the substrate Micro-LED, and the Micro-LED is grabbed when a positive voltage is applied to the flip-chip transfer head;
- the flip-chip rotary motor flips the flip-chip transfer head, while the solid-chip transfer head is close to the flip-chip transfer head and clamps the Micro-LED with the flip-chip transfer head, applying a positive voltage to the solid-chip transfer head to grab the Micro-LED.
- the flip chip transfer head applies negative voltage to release the Micro-LED;
- the required Micro-LED spacing calculate the value of the applied physical field applied to the solid-crystalline elastic stretchable material to change the longitudinal deformation of the solid-crystalline elastic stretchable material.
- the longitudinal length of the solid-crystalline elastic stretchable material before deformation is c11.
- the longitudinal length of the elastically stretchable material after deformation is c2, and the required target substrate Micro-LED spacing is L2;
- the Micro-LED grabbed by the solid crystal transfer head is positioned at the target position, and the Micro-LED is placed when the solid crystal transfer head is moved down to the target substrate and a negative voltage is applied;
- the longitudinal length after deformation is calculated as c2.
- a huge amount of Micro-LED transfer device and transfer method innovatively overcome the limitation that the distance between the target substrate Micro-LED can only depend on the distance between the transfer head template, and replace the original with elastic stretchable material There is a rigid structure between the transfer heads, and the longitudinal deformation of the elastically stretchable material is changed by the addition of a physical field to achieve a huge amount of controllable transfer of electronic components.
- the device of the present invention is simple, assuming that the existing transfer device has only one solid crystal transfer head with an efficiency of 1, and the transfer device of the present invention has a 2 solid crystal transfer heads, which simultaneously expand and contract by c times to grab on the wafer / blue film The efficiency of taking LEDs is increased by a 2 c times.
- the pitch of electronic components is completely controllable and the huge amount is transferred to the target substrate, which has great application value in the field of semiconductor manufacturing.
- FIG. 1 is a schematic structural diagram of a Micro-LED mass transfer device according to an embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view of the flip-chip welding arm shown in FIG. 1 adsorbing the Micro-LED;
- FIG. 3 is a schematic cross-sectional view of flipping of the flip-chip transfer head and docking exchange of the solid-state transfer head shown in FIG. 1;
- FIG. 4 is a schematic cross-sectional view of the solid crystal transfer head shown in FIG. 1 after absorbing the Micro-LED and aligning with the target substrate;
- FIG. 5 is a schematic cross-sectional view of the solid-crystal elastic-stretchable material of the solid-crystal transfer head shown in FIG. 4 after being deformed by a physical field;
- FIG. 6 is a schematic cross-sectional view of the Micro-LED with the solid crystal transfer head shown in FIG. 5;
- FIG. 7 is a schematic cross-sectional view of the solid crystal transfer head shown in FIG. 6 away from the target substrate;
- FIG. 8 is a schematic diagram of the arrangement of Micro-LEDs on the substrate
- FIG. 9 is a schematic diagram of the Micro-LED picking point on the substrate, where the black square is the Micro-LED at the picking point;
- FIG. 10 is a schematic diagram of a picking point when the Micro-LED is grabbed once after being grabbed on the substrate;
- FIG. 11 is a schematic diagram of a picking point when the Micro-LED is grabbed twice after being grabbed on the substrate;
- Micro-LED11 substrate 12, target substrate 13, solid crystal welding arm 2, flip chip welding arm 3, solid crystal limiting device 21, solid crystal spring 22, solid crystal rail 23, solid crystal bracket 24, solid crystal Crystal transfer head 25, solid crystal elastic stretchable material 26, flip chip rotary motor 31, flip chip limiter 32, flip chip rail 33, flip chip spring 34, flip chip bracket 35, flip chip transfer head 36, flip chip elastic Stretchable material 37, substrate Micro-LED pitch L1, target substrate Micro-LED pitch L2, gripping point pitch a, longitudinal coefficient of elastic stretch material c, longitudinal length before elastic stretch material deformation c1, longitudinal after elastic stretch material deformation Length c2
- a Micro-LED mass transfer device includes a solid crystal welding arm 2, a flip chip welding arm 3, an additional physical field device and an operating table, a solid crystal welding arm 2, a flip chip welding arm 3 and the external physics device are electrically connected to the operation table.
- the flip chip welding arm 3 is used to pick up the Micro-LED on the operation table and transferred to the solid crystal welding arm.
- the solid crystal welding arm 2 is used to transfer the Micro-LED to the installation. Bit.
- the operation platform includes a visual PLC screen and an integrated PLC control system. As an integrated control platform, it controls the actions of the solid crystal welding arm 2, flip chip welding arm 3 and the external physics device.
- the transfer device of the present invention also includes a working platform, the solid crystal welding arm 2 and the flip chip welding arm 3 are installed above the working platform, and the two welding arms can be moved in the vertical direction under the driving of the motor. -Both the LED and the target substrate are placed on the working platform, the flip chip welding arm 3 absorbs the Micro-LED to be transferred and transfers it to the solid crystal welding arm 2, and the solid crystal welding arm 2 transfers the Micro-LED to the target substrate to realize Micro -Mass transfer of LEDs.
- the solid crystal welding arm 2 includes a solid crystal guide rail 23, a solid crystal bracket 24, a solid crystal transfer head 25 and a solid crystal elastic stretchable material 26.
- the solid crystal bracket 24 is slidably arranged on the solid crystal guide rail 23, the solid crystal bracket There are a plurality of 24, each solid crystal bracket 24 is equipped with a solid crystal transfer head 25 at the bottom, between two adjacent solid crystal brackets 24 is provided with a solid crystal elastic expansion material 26, the solid crystal elastic expansion material 26 expansion It is used to change the distance between two adjacent solid crystal transfer heads 25.
- the solid crystal elastic stretchable material 26 is in the form of a strip or a block, and its two ends are connected to the solid crystal bracket 24 respectively. When the solid crystal elastic stretchable material 26 is deformed by the physical field, it can drive the solid crystal transfer head 25 to move and change. The distance between two adjacent solid crystal transfer heads 25.
- the flip chip welding arm 3 includes a flip chip rotary motor 31, a flip chip guide 33, a flip chip bracket 35, a flip chip transfer head 36 and a flip chip elastic stretchable material 37.
- the flip chip rotary motor 31 is connected to the flip chip guide for The flip-chip guide rail rotates, and the flip-chip bracket 35 is slidably arranged on the flip-chip guide rail 33.
- the flip-chip bracket 35 has a plurality of flip-chip brackets 35. Each flip-chip bracket 35 is provided with a flip-chip transfer head 36 at the bottom, adjacent to each other A flip-chip elastic stretchable material 37 is provided between the flip-chip bracket 35.
- the expansion and contraction of the flip-chip elastic stretchable material 37 is used to change the distance between two adjacent flip-chip transfer heads 36; the flip-chip elastic stretchable material 37 is in the form of a strip or a block The two ends are respectively connected to the flip chip bracket 35.
- the flip chip elastic stretch material 37 When the flip chip elastic stretch material 37 is deformed by the physical field, it can drive the flip chip transfer head 36 to move, thereby changing the distance between the two adjacent flip chip transfer heads 36.
- An external physical field device is used to generate a physical field to deform the solid-crystalline elastic stretchable material 26 or the flip-chip elastic stretchable material 37.
- Both the solid crystal guide rail 23 and the flip chip guide rail 33 are precision guide rails, and the bracket can perform precise movement along the guide rails.
- Both the solid crystal guide rail 23 and the flip-chip guide rail 33 are provided with grooves for guiding the deformation of the elastic stretchable material, so as to further accurately adjust the deformation of the elastic stretchable material and improve the accuracy.
- the solid crystal welding arm further includes a solid crystal limiting device 21 and a solid crystal spring 22. Both ends of the solid crystal guide rail 23 are provided with a solid crystal limiting device 21, and the solid crystal spring 22 is provided on the guide rail.
- the crystal elastic stretchable materials 26 each correspond to a solid crystal spring 22, and a solid crystal spring 22 is provided between the solid crystal limiting device 21 and the closest solid crystal bracket 24;
- the die-bonding spring 22 has a die-bonding pretension, which is greater than the elastic force of the die-bonding elastic stretchable material 26 when no physical field is added, and is smaller than the elastic force of the die-bonding elastic stretchable material 26 when adding a physical field.
- the setting of the solid crystal limiting device 21 can limit the movement of the solid crystal bracket 24 within the length range of the solid crystal guide rail 23, can limit the contraction of the solid crystal spring 22, and can limit the deformation of the solid crystal elastic stretchable material 26.
- the setting of the pre-tightening force of the solid crystal spring 22 can make the solid crystal bracket 24 move smoothly. When the physical field is applied and disconnected, the movement speed of the solid crystal bracket 24 can be prevented from changing too fast to ensure its stability. Sex.
- the flip-chip welding arm further includes a flip-chip limiting device 32 and a flip-chip spring 34, both ends of the flip-chip guide 33 are provided with a flip-chip limiting device 32, and the flip-chip spring 34 is disposed on the flip-chip guide 33,
- Each flip-chip elastic stretchable material 37 corresponds to a flip-chip spring 34, and a flip-chip limiter 32 has a flip-chip spring 34 between it and the closest flip-chip bracket 35;
- the flip-chip spring 34 has a flip-chip preload force, which is greater than the elastic force of the flip-chip elastic stretchable material 37 when no physical field is added, and is smaller than the elastic force of the flip-chip elastic stretchable material 37 when a physical field is added.
- the setting of the flip-chip limiting device 32 can limit the movement of the flip-chip bracket 35 within the length of the flip-chip guide rail 34, can limit the contraction of the flip-chip spring 33, and can limit the deformation of the flip-chip elastic stretchable material 37.
- the setting of the flip-chip preload force of the flip-chip spring 33 can realize the smooth movement of the flip-chip bracket 35. When the physical field is applied and disconnected, the movement speed of the flip-chip bracket 35 can be prevented from changing too fast to ensure its stability. Sex.
- both the flip-chip transfer head and the solid-crystal transfer head have a bipolar structure.
- the Micro-LED When both are applied to a positive voltage, the Micro-LED is grabbed, and when applied to a negative voltage, the Micro-LED is released.
- This application of positive and negative voltages to achieve the capture and release of the Micro-LED not only can place the damage to the Micro-LED during the transfer process, but also simplify the device structure, and the capture and release action is reliable.
- the solid crystal elastic stretchable material is a thermostrictive material, an electrostrictive material, a magnetostrictive material or a magnetorheological elastomer;
- the flip-chip elastic stretchable material is a thermostrictive material, an electrostrictive material, a magnetostrictive material or a magnetorheological elastomer; the physical field generated by the external physical field device is a temperature field, an electric field or a magnetic field.
- both the solid-crystalline elastic stretchable material and the flip-chip elastic stretchable material can use the same elastic stretchable material, or different types of elastic stretchable materials can be selected.
- the two elastic materials are the same, the same external physics device can be used together. At this time, the deformation actions of the two need to be performed separately; when the two elastic materials are different, the two external magnetic fields need to be set separately. In the device, the deformation actions of the two can be performed at the same time, with higher efficiency.
- thermostrictive material is a titanium alloy memory material; the electrostrictive material is an electroactive polymer and other materials that expand due to power expansion and contraction; the magnetostrictive material is an exciting deformation material composed of silicon rubber and iron polymer; magnetorheological elastomer Demagnetizing flowing material for hardening by excitation.
- Both solid-crystal elastic stretchable materials and flip-chip elastic stretchable materials have a response time of 10-100 ms. By setting the response time of the elastically stretchable material, the transfer efficiency can be improved.
- a transfer method using the above-mentioned Micro-LED mass transfer device includes the following steps:
- the flip-chip transfer head 36 Before the transfer, the flip-chip transfer head 36 is kept at a certain distance from the Micro-LED to be transferred through the operating table.
- the Micro-LEDs to be transferred are arranged on the substrate, and the distance between the two adjacent Micro-LEDs on the substrate is L1.
- the physics device applies external physics to deform the flip-chip elastic stretchable material and drives the flip-chip transfer head 36 to precisely align with the substrate Micro-LED.
- the Micro-LED is grabbed (as shown in FIG. 2 Shown);
- the flip-chip rotary motor 31 reverses the flip-chip transfer head 36, and the die-mount transfer head 25 is close to the flip-chip transfer head 36 and clamps the Micro-LED with the flip-chip transfer head 36 (as shown in FIG. 3) to transfer the die-mount
- the head 25 is applied to the positive voltage to grab the Micro-LED, and the flip-chip transfer head 36 is applied to the negative voltage to release the Micro-LED;
- the Micro-LED captured by the solid crystal transfer head 25 is positioned at the target position, and the Micro-LED is placed when the solid crystal transfer head 25 is moved down to the target substrate and a negative voltage is applied (Figure 6);
- steps 1) -4) to realize the massive transfer of Micro-LED.
- steps 1) -4) to realize the massive transfer of Micro-LED.
- the solid-crystal transfer head 25 places the Micro-LED on the target substrate, away from the target substrate, follow the flip chip welding arm Transfer the Micro-LED again.
- the longitudinal length c1 before the deformation of the solid-crystalline elastically-stretchable material is determined according to the required micro-LED spacing to determine the applied external physical field conditions, and the longitudinal linear deformation coefficient c of the solid-crystalline elastically-stretchable material is obtained.
- the longitudinal length after deformation is c2.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Device Packages (AREA)
Abstract
一种Micro-LED的巨量转移装置,包括固晶焊臂、覆晶焊臂、外加物理场装置和操作台;固晶焊臂包括固晶导轨、固晶托架、固晶转移头和固晶弹性伸缩材料;覆晶焊臂包括覆晶旋转电机、覆晶导轨、覆晶托架、覆晶转移头和覆晶弹性伸缩材料。相应的还提供了一种Micro-LED的巨量转移方法。
Description
本发明涉及半导体制造领域,尤其涉及一种Micro-LED的的巨量转移装置及转移方法。
Micro-LED是一种将LED结构微小化和矩阵化,对每一个像素点单独驱动和定址控制的显示技术。由于Micro-LED技术的亮度、寿命、对比度、反应时间、能耗、可视角度和分辨率等各种指标均优于LCD和OLED技术,被视为能超越OLED及传统LED的新一代显示技术。但是,由于封装过程中极高效率、99.9999%良品率和正负0.5μm以内转移精度的需要,而Micro-LED元器件尺寸基本小于50μm且数目是几万到几百万个,因此在Micro-LED产业化过程中仍需克服的一个核心技术难题就是Micro-LED元器件的巨量转移(Mass Transfer)技术。对于现代超精密加工技术来说,从晶圆上巨量转移几万到几十万个Micro-LED到基板,本身已经一个巨大的挑战,加工效率、良品率和转移精度更加无法保证。
目前Micro-LED巨量转移方法主要有,静电力吸附方法、范德华力转印方法、电磁力吸附方法、图案化镭射激光烧蚀方法,流体装配方法等。美国公司LuxVue提出的静电力吸附方法、美国公司X-Celeprint提出的范德华力转印方法和台湾工研所ITRI提出的电磁力吸附方法,分别通过静电力、范德华力和电磁力作用,将巨量Micro-LED精确吸附,再转移到目标衬底,并精准释放。然而,上述三种方法无法解决晶圆上Micro-LED间距与衬底上Micro-LED间距不等的问题。图案化镭射激光烧蚀方法直接从晶圆上激光剥离Micro-LED,但其需要使用昂贵的准分子激光器。流体装配方法利用刷桶在衬底上滚动,使得Micro-LED至于液体悬浮液中,通过流体力,让LED落入衬底上的对应井中。然 而,此方法具有一定的随机性,无法确保自组装的良率。
美国专利US20180053742A1提出将电子器件粘附于暂时性固定层,通过扩张该暂时性固定层来改变LED间距从而转移到承载基板上。由于此方法中暂时性固定层在横向和纵向均会扩张,难以确保横向转移精度,无法满足横向精度要求高的巨量转移,且暂时性固定层扩张倍数有限,无法满足大横向间距。中国专利CN201711162098所提出的Micro-LED的巨量转移方法,仅仅对具有上下沿非对称的LED进行转移,且使用预先设计的模具,无法满足电子元件间距。
综上所述,目前仍没有一种电子元件的巨量转移方法与装置,需进一步提出高效、可行的解决方案。
发明内容
本发明的目的在于提出一种能在面板或者晶圆等目标基板上巨量转移完全可控间距的Micro-LED的巨量转移装置及转移方法。
为达此目的,本发明采用以下技术方案:
一种Micro-LED的巨量转移装置,包括固晶焊臂、覆晶焊臂、外加物理场装置和操作台,固晶焊臂、覆晶焊臂和外加物理场装置均通过电气连接于操作台,覆晶焊臂用于拾取操作台上Micro-LED并转交至固晶焊臂,固晶焊臂用于将Micro-LED转移至安装位;
固晶焊臂包括固晶导轨、固晶托架、固晶转移头和固晶弹性伸缩材料,固晶托架可滑动的设置在固晶导轨上,固晶托架具有多个,每个固晶托架的底部均安装有固晶转移头,相邻两固晶托架之间设置有固晶弹性伸缩材料,固晶弹性伸缩材料的伸缩用于改变相邻两固晶转移头间的距离;
覆晶焊臂包括覆晶旋转电机、覆晶导轨、覆晶托架、覆晶转移头和覆晶弹性伸缩材料,覆晶旋转电机与覆晶导轨相连接用于使覆晶导轨旋转,覆晶托架可 滑动的设置在覆晶导轨上,覆晶托架具有多个,每个覆晶托架底部均安装有覆晶转移头,相邻两覆晶托架之间设置有覆晶弹性伸缩材料,覆晶弹性伸缩材料的伸缩用于改变相邻两覆晶转移头间的距离;
外加物理场装置用于产生物理场使固晶弹性伸缩材料或覆晶弹性伸缩材料发生形变。
进一步的,固晶焊臂还包括固晶限位装置和固晶弹簧,固晶导轨的两端均设置有固晶限位装置,固晶弹簧设置于导轨上,每个固晶弹性伸缩材料均对应有固晶弹簧,固晶限位装置与其距离最近的固晶托架之间具有固晶弹簧;
固晶弹簧具有固晶预紧力,固晶预紧力大于固晶弹性伸缩材料未加物理场时的弹力,小于固晶弹性伸缩材料加物理场时的弹力。
进一步的,覆晶焊臂还包括覆晶限位装置和覆晶弹簧,覆晶导轨的两端均设置有覆晶限位装置,覆晶弹簧设置于覆晶导轨上,每个覆晶弹性伸缩材料均对应有覆晶弹簧,覆晶限位装置与其距离最近的覆晶托架之间具有覆晶弹簧;
覆晶弹簧具有覆晶预紧力,覆晶预紧力大于覆晶弹性伸缩材料未加物理场时的弹力,小于覆晶弹性伸缩材料加物理场时的弹力。
进一步的,覆晶转移头和固晶转移头均具有双极结构,两者被施于正电压时抓取Micro-LED,被施于负电压时释放Micro-LED。
进一步的,固晶弹性伸缩材料为热致伸缩材料、电致伸缩材料、磁致伸缩材料或磁流变弹性体;
覆晶弹性伸缩材料为热致伸缩材料、电致伸缩材料、磁致伸缩材料或磁流变弹性体;外加物理场装置产生的物理场为温度场、电场或磁场。
进一步的,热致伸缩材料为钛合金记忆材料;
电致伸缩材料为电活性聚合物等通电膨胀而断电收缩材料;
磁致伸缩材料为硅橡胶与铁聚合物组成的激磁形变材料;
磁流变弹性体为激磁硬化而消磁流动材料。
进一步的,固晶弹性伸缩材料和覆晶弹性伸缩材料均为响应时间为-ms。
一种采用Micro-LED的巨量转移装置的转移方法,包括以下步骤:
1)转移前,通过操作台使覆晶转移头与待转移Micro-LED保持一定距离,待转移Micro-LED排列在衬底上,衬底上相邻两Micro-LED间距为L1,启动外加物理场装置,施加外物理场使覆晶弹性伸缩材料发生形变带动覆晶转移头精确对准衬底Micro-LED,对覆晶转移头施加正电压时抓取Micro-LED;
2)覆晶旋转电机翻转覆晶转移头,同时固晶转移头靠近覆晶转移头并与覆晶转移头夹紧Micro-LED,对固晶转移头施于正电压抓取Micro-LED,对覆晶转移头施于负电压松开Micro-LED;
3)根据所需要放置的Micro-LED间距,计算所需要对固晶弹性伸缩材料施加的外加物理场数值改变固晶弹性伸缩材料纵向形变,固晶弹性伸缩材料形变前纵向长度为c11,固晶弹性伸缩材料形变后纵向长度为c2,得到所需要的目标基板Micro-LED间距为L2;
4)固晶转移头抓取的Micro-LED定位于目标位置,使固晶转移头下移到目标基板后施于负电压时放置Micro-LED;
5)重复步骤1)-4),实现Micro-LED的巨量转移。
进一步的,在步骤3)中,固晶弹性伸缩材料形变前纵向长度c1,根据所需要放置的Micro-LED间距确定施加的外物理场条件,得到固晶弹性伸缩材料纵向线形变系数c,c2=c1*c计算得形变后纵向长度为c2。
进一步的,在步骤3)中,衬底上相邻两Micro-LED间距L,每隔a个Micro-LED记为一个抓取点,目标基板Micro-LED间距L2,L2=L1*a*c。
本发明的有益效果:一种Micro-LED的巨量转移装置及转移方法,创新性地克服了目标基板Micro-LED间距只能取决于转移头模板间距的这一限制,通过弹性伸缩材料替代原有转移头之间的刚性结构,并通过外加物理场改变弹性伸缩材料纵向形变,实现电子元件间距完全可控的巨量转移。本发明装置简单,假设现有的转移装置仅有一个固晶转移头其效率为1,本发明的转移装置有a
2个固晶转移头,同时伸缩c倍,在晶圆/蓝膜上抓取LED效率就提高a
2c倍,电子元件的间距完全可控且巨量转移在目标基板,在半导体制造领域具有极大的应用价值。
图1是本发明一个实施例的一种Micro-LED的巨量转移装置的结构示意图;
图2是图1所示覆晶焊臂吸附Micro-LED的截面示意图;
图3是图1所示覆晶转移头翻转和固晶转移头对接交换的截面示意图;
图4是图1所示固晶转移头吸附Micro-LED后对准目标基板的截面示意图;
图5是图4所示固晶转移头的固晶弹性伸缩材料施加物理场发生形变后的截面示意图;
图6是图5所示固晶转移头的放置Micro-LED的截面示意图;
图7是图6所示的固晶转移头远离目标基板的截面示意图;
图8是衬底上Micro-LED排列的示意图;
图9是衬底上Micro-LED抓取点的示意图,其中黑色正方形为抓取点处的Micro-LED;
图10是衬底上Micro-LED被抓取一次后再次抓取时的抓取点示意图;
图11是衬底上Micro-LED被抓取二次后再次抓取时的抓取点示意图;
其中:Micro-LED11、衬底12、目标基板13、固晶焊臂2、覆晶焊臂3、固晶限 位装置21、固晶弹簧22、固晶导轨23、固晶托架24、固晶转移头25、固晶弹性伸缩材料26、覆晶旋转电机31、覆晶限位装置32、覆晶导轨33、覆晶弹簧34、覆晶托架35、覆晶转移头36、覆晶弹性伸缩材料37、衬底Micro-LED间距L1、目标基板Micro-LED间距L2、抓取点间距a、弹性伸缩材料纵向线形变系数c、弹性伸缩材料形变前纵向长度c1、弹性伸缩材料形变后纵向长度c2
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-3所示,一种Micro-LED的巨量转移装置,包括固晶焊臂2、覆晶焊臂3、外加物理场装置和操作台,固晶焊臂2、覆晶焊臂3和外加物理场装置均通过电气连接于操作台,覆晶焊臂3用于拾取操作台上Micro-LED并转交至固晶焊臂,固晶焊臂2用于将Micro-LED转移至安装位。
操作台包括了可视化PLC屏幕和集成PLC控制系统,作为集成控制平台,控制固晶焊臂2、覆晶焊臂3和外加物理场装置的动作。本发明的转移装置还包括的工作平台,固晶焊臂2和覆晶焊臂3均安装在工作平台的上方,且两焊臂在电动机的带动下能在竖直方向上移动,待转移Micro-LED和目标基板均放置在工作平台上,覆晶焊臂3吸附待转移Micro-LED并将其传递给固晶焊臂2,固晶焊臂2将Micro-LED转移至目标基板,实现Micro-LED的巨量转移。
需要说明的是,因为Micro-LED在晶圆上生成,蓝膜覆在晶圆表面把Micro-LED粘起来(这时Micro-LED已经翻转过来,引脚也翻转了),所以需要经过倒装机倒装,就是需要两个焊臂把Micro-LED再翻转一次,所以本发明采 用两个焊臂实现Micro-LED巨量转移。
固晶焊臂2包括固晶导轨23、固晶托架24、固晶转移头25和固晶弹性伸缩材料26,固晶托架24可滑动的设置在固晶导轨23上,固晶托架24具有多个,每个固晶托架24的底部均安装有固晶转移头25,相邻两固晶托架24之间设置有固晶弹性伸缩材料26,固晶弹性伸缩材料26的伸缩用于改变相邻两固晶转移头25间的距离。固晶弹性伸缩材料26呈条状或块状,其两端分别与固晶托架24连接,当固晶弹性伸缩材料26受物理场发生形变时,能带动固晶转移头25移动,进而改变相邻两固晶转移头25的间距。
覆晶焊臂3包括覆晶旋转电机31、覆晶导轨33、覆晶托架35、覆晶转移头36和覆晶弹性伸缩材料37,覆晶旋转电机31与覆晶导轨相连接用于使覆晶导轨旋转,覆晶托架35可滑动的设置在覆晶导轨33上,覆晶托架35具有多个,每个覆晶托架35底部均安装有覆晶转移头36,相邻两覆晶托架35之间设置有覆晶弹性伸缩材料37,覆晶弹性伸缩材料37的伸缩用于改变相邻两覆晶转移头36间的距离;覆晶弹性伸缩材料37呈条状或块状,其两端分别与覆晶托架35连接,当覆晶弹性伸缩材料37受物理场发生形变时,能带动覆晶转移头36移动,进而改变相邻两覆晶转移头36的间距。
外加物理场装置用于产生物理场使固晶弹性伸缩材料26或覆晶弹性伸缩材料37发生形变。固晶导轨23和覆晶导轨33均为精密导轨,托架能沿导轨做精密运动。固晶导轨23和覆晶导轨33上均设置有用于为弹性伸缩材料形变导向的槽,以进一步精确弹性伸缩材料形变量,提高精准度。
进一步的,固晶焊臂还包括固晶限位装置21和固晶弹簧22,固晶导轨23的两端均设置有固晶限位装置21,固晶弹簧22设置于导轨上,每个固晶弹性伸缩材料26均对应有固晶弹簧22,固晶限位装置21与其距离最近的固晶托架24 之间具有固晶弹簧22;
固晶弹簧22具有固晶预紧力,固晶预紧力大于固晶弹性伸缩材料26未加物理场时的弹力,小于固晶弹性伸缩材料26加物理场时的弹力。
固晶限位装置21的设定能限定固晶托架24在固晶导轨23的长度范围内移动,能限定固晶弹簧22的收缩,能限定固晶弹性伸缩材料26的形变。固晶弹簧22的固晶预紧力的设定能使固晶托架24实现平稳移动,当施加和断开物理场的瞬间能防止固晶托架24的移动速度变化过快,保证其稳定性。
进一步的,覆晶焊臂还包括覆晶限位装置32和覆晶弹簧34,覆晶导轨33的两端均设置有覆晶限位装置32,覆晶弹簧34设置于覆晶导轨33上,每个覆晶弹性伸缩材料37均对应有覆晶弹簧34,覆晶限位装置32与其距离最近的覆晶托架35之间具有覆晶弹簧34;
覆晶弹簧34具有覆晶预紧力,覆晶预紧力大于覆晶弹性伸缩材料37未加物理场时的弹力,小于覆晶弹性伸缩材料37加物理场时的弹力。
覆晶限位装置32的设定能限定覆晶托架35在覆晶导轨34的长度范围内移动,能限定覆晶弹簧33的收缩,能限定覆晶弹性伸缩材料37的形变。覆晶弹簧33的覆晶预紧力的设定能使覆晶托架35实现平稳移动,当施加和断开物理场的瞬间能防止覆晶托架35的移动速度变化过快,保证其稳定性。
进一步的,覆晶转移头和固晶转移头均具有双极结构,两者被施于正电压时抓取Micro-LED,被施于负电压时释放Micro-LED。这种施加正负电压实现Micro-LED的抓取和释放,不仅能放置转移过程对Micro-LED的损坏,还能简化设备结构,且抓取和释放动作可靠。
进一步的,固晶弹性伸缩材料为热致伸缩材料、电致伸缩材料、磁致伸缩材料或磁流变弹性体;
覆晶弹性伸缩材料为热致伸缩材料、电致伸缩材料、磁致伸缩材料或磁流变弹性体;外加物理场装置产生的物理场为温度场、电场或磁场。
需要说明的是,固晶弹性伸缩材料和覆晶弹性伸缩材料两者可采用相同的弹性伸缩材料,也可选用不同种类的弹性伸缩材料。当两者采用相同的弹性伸缩材料时,可共同同一外加物理场装置,则此时,两者的变形动作需分别进行;当两者采用不同的弹性伸缩材料时,则需分别设置两外加磁场装置,两者的形变动作可同时进行,有较高的效率。
热致伸缩材料为钛合金记忆材料;电致伸缩材料为电活性聚合物等通电膨胀而断电收缩材料;磁致伸缩材料为硅橡胶与铁聚合物组成的激磁形变材料;磁流变弹性体为激磁硬化而消磁流动材料。固晶弹性伸缩材料和覆晶弹性伸缩材料均为响应时间为10-100ms。通过设定弹性伸缩材料的响应时间,能提高转移的效率。
一种采用上述Micro-LED的巨量转移装置的转移方法,包括以下步骤:
1)转移前,通过操作台使覆晶转移头36与待转移Micro-LED保持一定距离,待转移Micro-LED排列在衬底上,衬底上相邻两Micro-LED间距为L1,启动外加物理场装置,施加外物理场使覆晶弹性伸缩材料发生形变带动覆晶转移头36精确对准衬底Micro-LED,对覆晶转移头36施加正电压时抓取Micro-LED(如图2所示);
2)覆晶旋转电机31翻转覆晶转移头36,同时固晶转移头25靠近覆晶转移头36并与覆晶转移头36夹紧Micro-LED(如图3所示),对固晶转移头25施于正电压抓取Micro-LED,对覆晶转移头36施于负电压松开Micro-LED;
3)根据所需要放置的Micro-LED间距,计算所需要对固晶弹性伸缩材料施加的外加物理场数值改变固晶弹性伸缩材料纵向形变,固晶弹性伸缩材料形变 前纵向长度为c1(图4),固晶弹性伸缩材料形变后纵向长度为c2(图5),得到所需要的目标基板Micro-LED间距为L2;
4)固晶转移头25抓取的Micro-LED定位于目标位置,使固晶转移头25下移到目标基板后施于负电压时放置Micro-LED(图6);
5)重复步骤1)-4),实现Micro-LED的巨量转移,如图7所示,当固晶转移头25放置Micro-LED于目标基板后,远离该目标基板,跟覆晶焊臂再次对接转移Micro-LED。
进一步的,固晶弹性伸缩材料形变前纵向长度c1,根据所需要放置的Micro-LED间距确定施加的外物理场条件,得到固晶弹性伸缩材料纵向线形变系数c,c2=c1*c计算得形变后纵向长度为c2。
进一步的,衬底上相邻两Micro-LED间距L1,每隔a个Micro-LED记为一个抓取点,目标基板Micro-LED间距L2,L2=L1*a*c。
如图8-11所示,当衬底上Micro-LED被转移多次后,抓起点的起点发生变化,则需调整覆晶焊臂的抓取定位,实现衬底上Micro-LED依次转移。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。
Claims (10)
- 一种Micro-LED的巨量转移装置,其特征在于:包括固晶焊臂、覆晶焊臂、外加物理场装置和操作台,所述固晶焊臂、覆晶焊臂、外加物理场装置均通过电气连接于操作台,所述覆晶焊臂用于拾取操作台上Micro-LED并转交至固晶焊臂,所述固晶焊臂用于将Micro-LED转移至安装位;所述固晶焊臂包括固晶导轨、固晶托架、固晶转移头和固晶弹性伸缩材料,所述固晶托架可滑动的设置在固晶导轨上,所述固晶托架具有多个,每个所述固晶托架的底部均安装有所述固晶转移头,相邻两所述固晶托架之间设置有所述固晶弹性伸缩材料,所述固晶弹性伸缩材料的伸缩用于改变相邻两固晶转移头间的距离;所述覆晶焊臂包括覆晶旋转电机、覆晶导轨、覆晶托架、覆晶转移头和覆晶弹性伸缩材料,所述覆晶旋转电机与覆晶导轨相连接用于使覆晶导轨旋转,所述覆晶托架可滑动的设置在覆晶导轨上,所述覆晶托架具有多个,每个所述覆晶托架底部均安装有所述覆晶转移头,相邻两所述覆晶托架之间设置有所述覆晶弹性伸缩材料,所述覆晶弹性伸缩材料的伸缩用于改变相邻两覆晶转移头间的距离;所述外加物理场装置用于产生物理场使所述固晶弹性伸缩材料或覆晶弹性伸缩材料发生形变。
- 根据权利要求1所述的一种Micro-LED的巨量转移装置,其特征在于,所述固晶焊臂还包括固晶限位装置和固晶弹簧,所述固晶导轨的两端均设置有所述固晶限位装置,所述固晶弹簧设置于导轨上,每个所述固晶弹性伸缩材料均对应有固晶弹簧,所述固晶限位装置与其距离最近的固晶托架之间具有所述固晶弹簧;所述固晶弹簧具有固晶预紧力,所述固晶预紧力大于固晶弹性伸缩材料未加物理场时的弹力,小于固晶弹性伸缩材料加物理场时的弹力。
- 根据权利要求1所述的一种Micro-LED的巨量转移装置,其特征在于,所述覆晶焊臂还包括覆晶限位装置和覆晶弹簧,所述覆晶导轨的两端均设置有所述覆晶限位装置,所述覆晶弹簧设置于覆晶导轨上,每个所述覆晶弹性伸缩材料均对应有所述覆晶弹簧,所述覆晶限位装置与其距离最近的覆晶托架之间具有所述覆晶弹簧;所述覆晶弹簧具有覆晶预紧力,所述覆晶预紧力大于覆晶弹性伸缩材料未加物理场时的弹力,小于覆晶弹性伸缩材料加物理场时的弹力。
- 根据权利要求1所述的一种Micro-LED的巨量转移装置,其特征在于,所述覆晶转移头和固晶转移头均具有双极结构,两者被施于正电压时抓取Micro-LED,被施于负电压时释放Micro-LED。
- 根据权利要求1所述的一种的巨量转移装置,其特征在于,所述固晶弹性伸缩材料为热致伸缩材料、电致伸缩材料、磁致伸缩材料或磁流变弹性体;所述覆晶弹性伸缩材料为热致伸缩材料、电致伸缩材料、磁致伸缩材料或磁流变弹性体;所述外加物理场装置产生的物理场为温度场、电场或磁场。
- 根据权利要求5所述的一种Micro-LED的巨量转移装置,其特征在于,所述热致伸缩材料为钛合金记忆材料;所述电致伸缩材料为电活性聚合物等通电膨胀而断电收缩材料;所述磁致伸缩材料为硅橡胶与铁聚合物组成的激磁形变材料;所述磁流变弹性体为激磁硬化而消磁流动材料。
- 根据权利要求5所述的一种Micro-LED的巨量转移装置,其特征在于,所 述固晶弹性伸缩材料和覆晶弹性伸缩材料均为响应时间为-ms。
- 一种采用权利要求1-7任一项所述Micro-LED的巨量转移装置的转移方法,其特征在于,包括以下步骤:1)转移前,通过操作台使覆晶转移头与待转移Micro-LED保持一定距离,待转移Micro-LED排列在衬底上,衬底上相邻两Micro-LED间距为L1,启动外加物理场装置,施加外物理场使覆晶弹性伸缩材料发生形变带动覆晶转移头精确对准衬底Micro-LED,对覆晶转移头施加正电压时抓取Micro-LED;2)所述覆晶旋转电机翻转覆晶转移头,同时固晶转移头靠近覆晶转移头并与覆晶转移头夹紧Micro-LED,对所述固晶转移头施于正电压抓取Micro-LED,对所述覆晶转移头施于负电压松开Micro-LED;3)根据所需要放置的Micro-LED间距,计算所需要对固晶弹性伸缩材料施加的外加物理场数值改变固晶弹性伸缩材料纵向形变,固晶弹性伸缩材料形变前纵向长度为c1,固晶弹性伸缩材料形变后纵向长度为c2,得到所需要的目标基板Micro-LED间距为L2;4)所述固晶转移头抓取的Micro-LED定位于目标位置,使所述固晶转移头下移到目标基板后施于负电压时放置Micro-LED;5)重复步骤1)-4),实现Micro-LED的巨量转移。
- 根据权利要求8所述的采用Micro-LED的巨量转移装置的转移方法,其特征在于,在步骤3)中,所述固晶弹性伸缩材料形变前纵向长度c1,根据所需要放置的Micro-LED间距确定施加的外物理场条件,得到固晶弹性伸缩材料纵向线形变系数c,c2=c1*c计算得形变后纵向长度为c2。
- 根据权利要求8所述的采用Micro-LED的巨量转移装置的转移方法,其特征在于,在步骤3)中,所述衬底上相邻两Micro-LED间距L1,每隔a个 Micro-LED记为一个抓取点,所述目标基板Micro-LED间距L2,L2=L1*a*c。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811203703.9A CN109411392B (zh) | 2018-10-16 | 2018-10-16 | 一种Micro-LED的巨量转移装置及转移方法 |
CN201811203703.9 | 2018-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020077863A1 true WO2020077863A1 (zh) | 2020-04-23 |
Family
ID=65468142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/124559 WO2020077863A1 (zh) | 2018-10-16 | 2018-12-28 | 一种Micro-LED的巨量转移装置及转移方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109411392B (zh) |
WO (1) | WO2020077863A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI800448B (zh) * | 2022-08-23 | 2023-04-21 | 創新服務股份有限公司 | 磁性電子元件的巨量轉移方法及裝置 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109950194B (zh) * | 2019-04-11 | 2021-04-16 | 京东方科技集团股份有限公司 | 一种芯片转移基板和芯片转移方法 |
CN110033704B (zh) * | 2019-04-19 | 2022-07-19 | 京东方科技集团股份有限公司 | 转印装置和转印方法 |
CN110112091B (zh) * | 2019-04-26 | 2021-07-27 | 清华大学深圳研究生院 | 一种批量转移晶片裸片的装置 |
CN111863690B (zh) * | 2019-04-29 | 2023-10-20 | 成都辰显光电有限公司 | 批量转移头及其加工方法 |
CN110246785B (zh) * | 2019-06-25 | 2022-04-15 | 京东方科技集团股份有限公司 | 转印设备和转印方法 |
CN110289240A (zh) * | 2019-06-27 | 2019-09-27 | 上海天马微电子有限公司 | 电子元件巨量转移头及转移方法 |
CN110289234B (zh) * | 2019-07-04 | 2021-08-17 | 京东方科技集团股份有限公司 | 用于发光单元的巨量转移方法,阵列基板以及显示装置 |
CN110379761B (zh) | 2019-07-18 | 2021-08-24 | 京东方科技集团股份有限公司 | 微发光二极管转移基板及装置 |
CN110767582B (zh) * | 2019-11-06 | 2020-05-26 | 广东工业大学 | 一种Micro-LED芯片的转移方法 |
CN110803524A (zh) * | 2019-11-11 | 2020-02-18 | 兰泽(荆门)智能科技有限公司 | 一种电磁变距式元件转移装置 |
TWI749399B (zh) | 2019-11-18 | 2021-12-11 | 錼創顯示科技股份有限公司 | 微型元件轉移頭、微型元件轉移裝置以及微型元件顯示裝置 |
CN111128799B (zh) * | 2019-11-18 | 2023-04-11 | 广东工业大学 | 一种等间距芯片阵列巨量转移的对位装置及方法 |
CN110931392B (zh) * | 2019-11-18 | 2022-12-27 | 錼创显示科技股份有限公司 | 微型组件转移头、微型组件转移装置及微型组件显示设备 |
CN110998822B (zh) * | 2019-11-26 | 2021-07-20 | 重庆康佳光电技术研究院有限公司 | 一种微器件转移装置及方法 |
CN111052342B (zh) * | 2019-11-29 | 2021-11-02 | 重庆康佳光电技术研究院有限公司 | 一种巨量转移的载板、巨量转移装置及其方法 |
CN111490143B (zh) * | 2020-04-20 | 2021-07-13 | 南京中电熊猫液晶显示科技有限公司 | 一种显示背板及其制造方法、微型发光二极管显示器 |
WO2021232315A1 (zh) * | 2020-05-20 | 2021-11-25 | 重庆康佳光电技术研究院有限公司 | 一种转移装置及转移方法 |
CN112967946B (zh) * | 2020-05-28 | 2022-03-01 | 重庆康佳光电技术研究院有限公司 | 一种巨量转移装置及巨量转移方法 |
CN112992758B (zh) * | 2020-07-08 | 2022-02-25 | 重庆康佳光电技术研究院有限公司 | 巨量转移装置、方法、系统及设备 |
CN112997288B (zh) * | 2020-09-22 | 2024-05-24 | 泉州三安半导体科技有限公司 | 一种用于发光二极管转移的压印及其转移方法 |
CN112151437B (zh) * | 2020-09-28 | 2024-03-08 | 江苏穿越光电科技有限公司 | Micro-LED巨量转移方法及装置 |
CN112967988B (zh) * | 2020-11-04 | 2022-07-29 | 重庆康佳光电技术研究院有限公司 | 一种微元件的转移装置及其方法 |
CN114530539B (zh) * | 2020-11-23 | 2024-10-08 | 深圳市洲明科技股份有限公司 | 一种led固晶系统及其固晶方法 |
CN112582308B (zh) * | 2020-12-14 | 2022-10-28 | 福州京东方光电科技有限公司 | 微型发光二极管的转移方法及转移装置 |
CN112635368B (zh) * | 2020-12-29 | 2022-12-06 | Tcl华星光电技术有限公司 | 微型发光二极管转移设备及转移方法 |
CN112994528B (zh) * | 2021-03-01 | 2021-10-22 | 东莞普莱信智能技术有限公司 | 一种mini Led倒装巨量转移控制系统与控制方法 |
CN113517383B (zh) * | 2021-03-17 | 2022-09-20 | 梦幻世界科技(珠海)有限公司 | 一种Micro LED巨量转移装置 |
CN116338414B (zh) * | 2023-05-31 | 2023-08-04 | 哈尔滨工业大学 | 一种Micro-LED巨量转移电性能测试装置及测试方法 |
CN116666508B (zh) * | 2023-06-28 | 2024-04-02 | 深圳市凯意科技有限公司 | Mini/micro led激光巨量转移装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040009803A (ko) * | 2002-07-25 | 2004-01-31 | 삼성전자주식회사 | 진공흡착패드의 피치 조절이 자유로운 반도체 칩 패키지이송 장치 |
JP2004039706A (ja) * | 2002-07-01 | 2004-02-05 | Yokogawa Electric Corp | 搬送装置 |
CN107768487A (zh) * | 2016-08-18 | 2018-03-06 | 新世纪光电股份有限公司 | 巨量转移电子元件的方法 |
CN107910413A (zh) * | 2017-11-21 | 2018-04-13 | 福州大学 | 一种MicroLED的巨量转移装置及转移方法 |
CN108400108A (zh) * | 2018-03-23 | 2018-08-14 | 京东方科技集团股份有限公司 | 一种微器件转印装置及微器件转印系统 |
US20180286739A1 (en) * | 2017-03-28 | 2018-10-04 | Semes Co., Ltd. | Pickup unit and pickup system of semiconductor device including the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107425101B (zh) * | 2017-07-11 | 2019-03-01 | 华灿光电(浙江)有限公司 | 一种微型发光二极管芯片巨量转移的方法 |
CN107863316B (zh) * | 2017-11-06 | 2020-07-28 | 上海天马微电子有限公司 | Micro LED转运装置、转运方法及其制作方法 |
CN108461439B (zh) * | 2018-04-20 | 2020-03-31 | 同辉电子科技股份有限公司 | 一种Micro-LED芯片的制备及转移方法 |
-
2018
- 2018-10-16 CN CN201811203703.9A patent/CN109411392B/zh active Active
- 2018-12-28 WO PCT/CN2018/124559 patent/WO2020077863A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004039706A (ja) * | 2002-07-01 | 2004-02-05 | Yokogawa Electric Corp | 搬送装置 |
KR20040009803A (ko) * | 2002-07-25 | 2004-01-31 | 삼성전자주식회사 | 진공흡착패드의 피치 조절이 자유로운 반도체 칩 패키지이송 장치 |
CN107768487A (zh) * | 2016-08-18 | 2018-03-06 | 新世纪光电股份有限公司 | 巨量转移电子元件的方法 |
US20180286739A1 (en) * | 2017-03-28 | 2018-10-04 | Semes Co., Ltd. | Pickup unit and pickup system of semiconductor device including the same |
CN107910413A (zh) * | 2017-11-21 | 2018-04-13 | 福州大学 | 一种MicroLED的巨量转移装置及转移方法 |
CN108400108A (zh) * | 2018-03-23 | 2018-08-14 | 京东方科技集团股份有限公司 | 一种微器件转印装置及微器件转印系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI800448B (zh) * | 2022-08-23 | 2023-04-21 | 創新服務股份有限公司 | 磁性電子元件的巨量轉移方法及裝置 |
Also Published As
Publication number | Publication date |
---|---|
CN109411392B (zh) | 2019-06-25 |
CN109411392A (zh) | 2019-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020077863A1 (zh) | 一种Micro-LED的巨量转移装置及转移方法 | |
WO2020077865A1 (zh) | 一种电子元件的巨量转移方法及装置 | |
WO2020125201A1 (zh) | 一种温控粘附式Micro-LED巨量转移方法 | |
US20210219476A1 (en) | Variable pitch electronic component mass transfer apparatus and method | |
US20190244846A1 (en) | Transfer device | |
US9289970B2 (en) | Apparatus and method for peeling protective film and method for fabricating stereoscopic image display device | |
TWI821564B (zh) | 利用可選擇表面黏著性轉移元件之轉移基材及轉移方法 | |
US20080025822A1 (en) | Device and method for handling an object of interest using a directional adhesive structure | |
CN112750741B (zh) | 一种微元件的转移基板及转移方法 | |
CN107994063B (zh) | 磁性胶材、磁性胶膜、贴合方法及amoled显示装置 | |
CN109950194A (zh) | 一种芯片转移基板和芯片转移方法 | |
CN105346250A (zh) | 采用并联机构的电流体动力学纳米流体打印方法与装置 | |
TW202119574A (zh) | 基於勁度變化而可選擇地固持及釋放物體的轉移元件 | |
JP3474187B1 (ja) | 画素制御素子の選択転写方法、及び、画素制御素子の選択転写方法に使用される画素制御素子の実装装置 | |
CN110033704B (zh) | 转印装置和转印方法 | |
KR102367265B1 (ko) | 다이 본딩 장치 | |
JP4543688B2 (ja) | 回路基板の製造方法および製造装置 | |
WO2021102877A1 (zh) | 一种巨量转移的载板、巨量转移装置及其方法 | |
JP2021072320A (ja) | 基板保持装置、基板処理装置、基板保持方法、成膜方法、及び電子デバイスの製造方法 | |
JP2004184978A (ja) | 平面ディスプレイ基板 | |
JP7057337B2 (ja) | 基板剥離装置、基板処理装置、及び基板剥離方法 | |
Li et al. | New method for mass transfer of MicroLED | |
JP3492679B1 (ja) | 平面ディスプレイ基板の製造方法 | |
JP2008241888A (ja) | 液晶パネルの製造方法及び製造装置 | |
CN205112671U (zh) | 采用并联机构的电流体动力学纳米流体打印装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18937201 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18937201 Country of ref document: EP Kind code of ref document: A1 |