WO2020071190A1 - 熱間設置用定形目地材 - Google Patents

熱間設置用定形目地材

Info

Publication number
WO2020071190A1
WO2020071190A1 PCT/JP2019/037465 JP2019037465W WO2020071190A1 WO 2020071190 A1 WO2020071190 A1 WO 2020071190A1 JP 2019037465 W JP2019037465 W JP 2019037465W WO 2020071190 A1 WO2020071190 A1 WO 2020071190A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
joint material
fixed joint
raw material
hot
Prior art date
Application number
PCT/JP2019/037465
Other languages
English (en)
French (fr)
Inventor
大内 龍哉
山本 正樹
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Priority to CN201980065134.2A priority Critical patent/CN112805101B/zh
Priority to EP19869657.7A priority patent/EP3862108A4/en
Priority to KR1020217002509A priority patent/KR20210024604A/ko
Priority to CA3115033A priority patent/CA3115033C/en
Priority to US17/282,059 priority patent/US11925980B2/en
Priority to AU2019353307A priority patent/AU2019353307B2/en
Publication of WO2020071190A1 publication Critical patent/WO2020071190A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • B22D41/023Apparatus used for making or repairing linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/502Connection arrangements; Sealing means therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a fixed joint material for joining between two nozzles, a joint portion of equipment, and the like in equipment for continuous casting and refining of molten metal, and more particularly, to a hot joint of about 200 ° C. to about 1000 ° C. Regarding what is installed.
  • joints between the lower nozzle and the long nozzle and between the lower nozzle and the immersion nozzle should be jointed with gaskets or fixed joints to prevent air from entering or leakage of molten steel. Wood is used.
  • the gasket is a formed body of an alumina-silica inorganic fiber, and is mainly used for long nozzle joining which requires a nozzle exchange for each charge of continuous casting. This is because the gasket does not ignite during hot installation, can be securely installed, does not fuse with the long nozzle during use, and has good peelability after use.
  • the gasket is a porous material having a porosity of 80% or more, and cannot provide sufficient hot sealing (hereinafter referred to as "hot sealing"). There is a problem in the durability and the like of the nozzle.
  • the fixed joint material is a mixture mainly containing various inorganic raw materials, to which an organic (resin-based) binder, a plasticizer, a solvent, etc. are added, kneaded, molded and dried.
  • Such a fixed joint material is a refractory joint material which has been previously processed into a shape close to the shape of a target portion to be joined, has particularly high hot sealing properties with respect to the gasket, and is widely applied to joints between nozzles. I have.
  • a fixed joint material for example, in Patent Document 1, 20 to 40% by mass of an acrylic emulsion is externally added as a binder to 100% by mass of a raw material mixture composed of a refractory material, and Texanol is used as a plasticizer. Is added by 1 to 3% by mass, kneaded, molded, and dried, to disclose a fixed joint material.
  • the fixed joint material to be installed between the nozzles for continuous casting is about 200 ° C to 1000 ° C during continuous molten steel discharge (for example, during charging of continuous casting such as when replacing a pot) or after preheating and before starting casting. May be installed at high temperatures.
  • organic additives such as resin binders and plasticizers contained in the fixed joint material are mainly flammable, the organic additives are gasified when rapidly installed and become hot. May burn, producing flaming and smoking. Flame and smoke reduce the visibility of joints and fixed joints. If the visibility decreases, the fixed joint material cannot be installed at the proper position, and a gap is created between the nozzles. This reduces the sealing performance due to the suction of the atmosphere, thereby oxidizing the vicinity of the nozzle joint or the inner hole. Oxidation or the like of molten steel is likely to occur, or the risk of leakage of steel is increased.
  • the problem to be solved by the present invention is to suppress flame emission and smoke emission due to burning of combustibles in the fixed joint while maintaining the hot sealing property of the fixed joint.
  • the present invention is a fixed form joint described in any one of 1 to 9 below.
  • Aluminum hydroxide raw material as gibbsite is not less than 50% by mass and not more than 90% by mass; 1% to 9% by mass of clay, Containing 9% by mass to 23% by mass of graphite; The balance is based on 100% by mass of a composition mainly composed of other refractory raw materials.
  • a fixed joint material for hot installation which is obtained by kneading, adding, and shaping the total amount of organic additives in a range of 26% by mass to 50% by mass, molding and drying. 2.
  • the remaining refractory raw material in the composition is one or more selected from alumina raw materials, spinel raw materials, zircon raw materials, zirconia raw materials, magnesia raw materials, and silica raw materials.
  • For fixed joint material. 4 The fixed joint material for hot installation according to any one of 1 to 3, wherein the graphite is flaky graphite having a particle size of 0.2 mm or more. 5.
  • the outer organic additive contains a binder and a plasticizer, and the amount of the binder is 25% by mass or more and 45% by mass or less, and the amount of the plasticizer is 1% by mass or more and 5% by mass or less.
  • Aluminum hydroxide a type of metal hydroxide, emits nonflammable gas such as water molecules when heated to a high temperature, at the same time as absorbing a significant amount of heat.
  • the cooling effect resulting from the generation of water vapor by heat absorption and decomposition and the effect of shutting off air, that is, oxygen, by the water vapor layer formed in the surroundings impart flame retardancy to the shaped joint material containing the organic additive.
  • Combustion of fixed joints generally follows the process of heat supply ⁇ flammable gas generation ⁇ ignition by combining with oxygen in the air ⁇ combustion expansion ⁇ fire suppression. From these, to control combustion or flaming and smoking, (a) suppression of flammable gas emission, (b) dilution of flammable gas, (c) suppression of air or oxygen supply or reduction of oxygen concentration, ( D) suppression of temperature rise or cooling, and (e) suppression of heat transfer contribute.
  • the quantitative balance between the organic additive that generates gas by burning and the water vapor released from the aluminum hydroxide and the timing between the gas generation and the water vapor release are important. That is, in order for the above-described process of imparting flame retardancy to work efficiently, the following three are required.
  • the thermal decomposition behavior of aluminum hydroxide matches the thermal decomposition behavior of organic additives, such as temperature and timing.
  • organic additives such as temperature and timing.
  • gibbsite Al (OH) 3
  • This gibbsite has a large amount of a steaming component, that is, an (OH) component, and the total endothermic amount accompanying the dehydration reaction is 2000 J / g, which is the largest among metal hydroxides.
  • the dehydration start temperature is about 200 ° C, which is low temperature among metal hydroxides, and is stable at about 200 ° C or less without change.
  • ⁇ -alumina with heat resistance exceeding the molten steel temperature is used. It has properties such as becoming.
  • the water vapor release temperature due to the dehydration of such gibbsite is close to the temperature at which the combustion (pyrolysis) of the residual components after drying of the organic additives (binders, plasticizers, etc.) in the fixed joint material is close to 200 ° C.
  • the combustion of the combustible gas generated from the organic additive in the joint material can be suppressed with good timing.
  • the released steam has a function of lowering the temperature of the fixed joint material.
  • Aluminum hydroxide, which is gibbsite, is relatively inexpensive and can be stably obtained on an industrial scale.
  • diaspore AlO (OH)
  • AlO (OH) diaspore
  • the temperature of water vapor release is about 500 ° C, which is higher than the temperature range of flammable gas generation from fixed joints. No smoke suppression effect can be expected.
  • magnesium hydroxide can be used, the decomposition temperature is about 350 ° C., which is slightly higher than that of gibbsite, and the heat absorption is 380 cal / g, which is smaller than that of gibbsite. Based on the above, it is desirable to use gibbsite in order to obtain sufficient flame and smoke suppression effects.
  • the fixed joint material of this invention while maintaining a hot sealing property, it is possible to significantly reduce the generation of flames and smoke during hot installation. As a result, even when installed in a continuous casting nozzle such as a long nozzle in a high temperature state, it can be reliably installed at a predetermined position without lowering the visibility due to flaming and smoking. As a result, it is possible to maintain good hot-sealing performance during operation (casting using a fixed joint material), damage due to oxidation near the inner holes and joints of the continuous casting nozzle, and melting due to iron oxide. Loss can be suppressed, steel leakage can be prevented, and quality deterioration of molten steel can be prevented.
  • the dehydration reaction of gibbsite aluminum hydroxide (hereinafter simply referred to as "aluminum hydroxide”) varies depending on its size. If the particle size is smaller than 1 ⁇ m, the reaction in accordance with the above-mentioned requirements is hard to occur. In addition, from the viewpoint of ensuring the filling property for providing the sealing property among the characteristics of the fixed joint material, and further ensuring the permeability of the combustible gas and the generated water vapor, the particle size is 1 ⁇ m or more. It is preferably 25 mm or less.
  • the content ratio of aluminum hydroxide in the composition excluding the organic additives is selected within the range of 50% by mass to 90% by mass.
  • the content ratio of aluminum hydroxide is less than 50% by mass, the flame retardancy is reduced, and the above problem cannot be solved during hot installation.
  • the content ratio of aluminum hydroxide exceeds 90% by mass, the amount of clay is relatively reduced, so that the shape retention and flexibility are reduced, and the amount of graphite is also relatively reduced.
  • the peelability at the time decreases.
  • the content ratio of the aluminum hydroxide depends on the organic additives (binders, plasticizers, etc.) necessary to obtain the properties such as the flexibility, plasticity, and storability (small change over time) of the fixed joint material.
  • the specific content of aluminum hydroxide depends on the individual operating conditions, specifically the temperature of the nozzle when the fixed joint is installed, or the flexibility required under the individual operating conditions. May be appropriately determined according to the amount of the organic additive, that is, the combustible material as a result of the adjustment.
  • Clay is used to impart plasticity, and plasticity including montmorillonite such as bentonite can be used.
  • the content ratio of the clay in the composition is from 1% by mass to 9% by mass. If the content of the clay is less than 1% by mass, the plasticity of the kneaded material is insufficient, and the moldability is reduced. On the other hand, if the content of the clay exceeds 9% by mass, the kneaded material becomes hard, and the molding becomes difficult, and the required amount of the organic additive to increase the amount of the compound increases, resulting in an increase in the number of components that are combustible. As a result, flames and smoke during hot installation are likely to occur or increase.
  • Graphite is used at a content of 9% by mass or more and 23% by mass or less in the composition for the purpose of preventing fusion with the installation surface such as a nozzle and improving the releasability from the installation surface after use. If the content of graphite is less than 9% by mass, there is a tendency of fusion to an object to be joined, especially to a refractory nozzle, and the releasability is reduced, which hinders removal of the nozzle, replacement of a fixed joint material, and the like. If the graphite content exceeds 23% by mass, there is no problem in the releasability, but the kneaded material lacks plasticity and molding becomes difficult.
  • the graphite used is preferably flaky graphite having a particle size of 0.2 mm or more. Since the flaky graphite having a particle size of 0.2 mm or more has a large surface area as a continuous body, it is effective in preventing fusion between components in the blend or between them and a binder.
  • the upper limit of the particle size of the flaky graphite is not particularly limited, but those commercially available are approximately 0.5 mm or less.
  • the balance of the formulation mainly consists of other refractory raw materials.
  • the refractory raw material is preferably selected from alumina raw material, spinel raw material, zircon raw material, zirconia raw material and magnesia raw material.
  • these refractory raw materials hardly cause a reaction such as low melting with ⁇ -alumina generated by changing aluminum hydroxide, and can maintain the stability of the fixed joint material.
  • the remaining refractory raw material should have a size (grain size) less than the joint thickness or a size exceeding 0.25 mm if the amount does not hinder the filling of the fixed joint material. It may contain refractory raw materials.
  • the alumina material refers to a material mainly containing alumina such as corundum, sillimanite, mullite
  • the spinel material refers to a positive spinel of alumina and magnesia
  • the zirconia material refers to regardless of the type of stabilizer. Regardless of the degree of stabilization, the material may be stabilized or unstabilized.
  • the magnesia raw material refers to a material mainly composed of periclase and containing about 80% by mass or more of an MgO component.
  • Silica raw material may also generate mullite with ⁇ -alumina if it is a high-purity product, and can be used as a refractory raw material constituting the balance of the blend.
  • a low melt may be formed and cause erosion or wear, etc., and therefore, depending on operating conditions such as operating time and temperature.
  • the type of the raw material may be appropriately selected. When a silica raw material is used in combination with another refractory raw material, a low melt may be generated between the raw material and the magnesia raw material.
  • the refractory raw materials that make up the rest of these compounds are artificial or natural, regardless of the production method.
  • the total amount of the organic additives is externally added to 26% by mass or more and 50% by mass or less with respect to 100% by mass of the above-mentioned compound.
  • This organic additive mainly consists of a binder and a plasticizer.
  • an ethylene vinyl acetate emulsion can be used as the binder.
  • ethylene-vinyl acetate-based emulsion a commercial product having a resin concentration of 40% by mass or more and 60% by mass or less (mainly water except for the resin component) can be used. This resin component becomes a combustible material. If the resin concentration is less than 40% by mass, the film forming mechanism at the time of drying becomes insufficient, and it becomes difficult to shape the joint material. If the resin concentration exceeds 60% by mass, flames and smoke during use become intense and may explode, which is not preferable.
  • the viscosity of the ethylene vinyl acetate emulsion is preferably 100 to 500 cps at 25 ° C.
  • the kneaded material may have insufficient plasticity and may be damaged during molding, making molding difficult. If the viscosity exceeds 500 cps, it may be difficult to knead uniformly because the viscosity is too high.
  • the pH of the ethylene-vinyl acetate-based emulsion is preferably about 4 to 8. If the pH is less than about 4, it is strongly acidic, and therefore harmful to the human body. Therefore, care must be taken during handling.
  • the amount of the ethylene-vinyl acetate-based emulsion to be added is 25% by mass or more and 45% by mass or less in an outer ratio where the above-mentioned composition is 100% by mass. If the addition amount of the ethylene vinyl acetate emulsion is less than 25% by mass or more than 45% by mass, a kneaded product can be obtained, but plasticity and shape retention are difficult. When the added amount of the ethylene vinyl acetate emulsion is 25% by mass or more and 45% by mass or less, a kneaded material having shape retention and good moldability can be obtained.
  • the plasticizer imparts plasticity, but is mainly used for imparting flexibility in the use of the fixed joint material.
  • it is preferable to use one other than phthalic acid. This is because phthalic acid-based plasticizers have safety and environmental problems.
  • a plasticizer other than the phthalic acid-based plasticizer butyl-based texanol monoisobutyrate or texanol diisobutyrate (hereinafter, collectively referred to as “Texanol”) is preferable from the viewpoint of compatibility with the binder. .
  • Texanol has a high ignition point of 390 ° C, does not violate the PRTR law or VOC regulations, and is not suspected of being an endocrine disrupter. Therefore, it is possible to provide an environmentally friendly fixed joint material.
  • the amount of the plasticizer to be added is 1% by mass or more and 5% by mass or less, based on the outer ratio of the compound being 100% by mass. If the amount of the plasticizer is less than 1% by mass, sufficient plasticity cannot be obtained. If the amount exceeds 5% by mass, the excess plasticizer remains in the joint material and deteriorates with time. In the meantime, cracks may occur in the joint material, resulting in poor sealing performance.
  • the shaped joint material of the present invention can be obtained by adding the above-mentioned organic additives to the above-mentioned mixture, kneading, molding and drying.
  • the kneading includes a mixer generally used for kneading refractories. For example, a blade-type spiral mixer, a planetary mixer, a cooking mixer, an Erich mixer or the like can be used.
  • pressure may be applied to the extent that the particles of the blend are not destroyed and the particle size and shape of each raw material are not significantly destroyed.
  • water and other solvents for the convenience of kneading. In this case, those which evaporate and disappear during drying are preferred.
  • a single-shaft hydraulic molding machine or the like generally used for molding refractories can be used.
  • the molding pressure may be arbitrarily set according to the conditions of each operation, such as the shape of the product, the density according to the pressure bonding structure and the strength, and the like.
  • Drying is classified into batch type and continuous type from operating mode, direct and indirect from heating type, hot air drying from heat source, combined use of hot air and wet body directly, infrared drying by electric heating or radiant tube, microwave drying, etc. it can.
  • a direct heating type hot air drying furnace using an electrothermal drying furnace which can be used relatively easily, particularly a batch type electrothermal drying furnace (box type or shelf step type) is used. It is preferable to perform the above.
  • the drying temperature is preferably from 60 ° C to 100 ° C. This is to ensure the flexibility of the joint material by the film formation after drying the organic additive.
  • the drying temperature When the drying temperature is lower than 60 ° C., the film formation becomes insufficient and the film formation tends to be incomplete in the entire fixed joint material. As a result, cracks may occur during handling, resulting in poor flexibility. On the other hand, when the drying temperature exceeds 100 ° C., the film formation becomes too strong, and the standard joint material hardens, so that the flexibility tends to be inferior. The properties of these fixed joints are also affected by the holding time at the drying temperature.
  • the binder ethylene vinyl acetate resin
  • the binder first melts and softens due to the retained heat of the refractory material, so that the fixed joint material itself is used. Softens. While this state is maintained, pressure is applied between the two nozzles to be joined within about one minute, whereby the two nozzles are pressed together, whereby the degree of filling of the internal tissue is increased and sufficient hot sealing properties can be secured. And since it contains graphite, it does not fuse with the joint surface with the nozzle during operation, the joint material after use is easily peeled off, and reaction with molten steel or slag or erosion hardly occurs.
  • Tables 1 and 2 show the compositions of Formulations A to M used in Examples and Comparative Examples of the present invention. The purity of each raw material is 95% or more.
  • Tables 3 and 4 show the composition and evaluation results of the shaped joints prepared using these compounds A to M, respectively.
  • ethylene-vinyl acetate-based emulsion as a binder, a resin having a resin concentration of 58% by mass, a viscosity of 200 cps and a pH of 5 was used.
  • Texanol monoisobutyrate which is 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate, was used as the texanol plasticizer.
  • Tables 3 and 4 Each evaluation shown in Tables 3 and 4 was performed by the following method.
  • the moldability of the kneaded material was evaluated based on the plasticity of the kneaded material and whether a desired shape was obtained after pressure molding.
  • the shape retention at room temperature was evaluated by using a spring-type hardness test described in JIS-K6301 vulcanized rubber physical test method, and the degree of penetration of the indenter from the joint material surface was indicated by an index of 0 to 100. The larger the index value, the harder the joint material, and the smaller the index value, the softer the joint material.
  • flame retardancy a fixed joint was placed on a refractory brick heated to 800 ° C., and the presence or absence of burning or flaming and smoking was observed.
  • the hot sealability is measured by measuring the time from the state where the refractory brick heated to 600 ° C. is installed between fixed refractory bricks and the pressure is reduced to 0.5 atm to the time when it returns to the atmospheric pressure of 1 atm as the return time. evaluated. The longer the return time, the higher the hot sealing property.
  • Evaluation of peelability after use was performed by placing a standard joint material on a refractory brick heated to 800 ° C (hereinafter referred to as “800 ° C heated brick”) and covering another 800 ° C heated brick one minute later. The jointing material was sandwiched, put into a furnace at 1100 ° C., applied with a load of 5 kg / cm 2 for 15 minutes, taken out, and evaluated for ease of peeling the brick. Based on each of the above evaluations, the overall evaluation as a standard joint material was evaluated in three stages of ⁇ (good), ((acceptable), and ⁇ (impossible), and ⁇ and ⁇ were accepted.
  • Example 1 25% by mass of an ethylene vinyl acetate emulsion (binder) and 1% of texanol (plasticizer) were used for Formulation A comprising 90% by mass of aluminum hydroxide, 1% by mass of clay, and 9% by mass of black smoke.
  • % By mass, kneaded using a desktop mixer, press-molded into a 3 mm thick sheet, dried at about 80 ° C, and evaporated to form a film of the emulsion by evaporation of water. It was fabricated and evaluated. The flame retardancy was evaluated as good without flame generation, and the value measured with a spring hardness tester described in JIS-K6301 vulcanized rubber physical test method was 50 to 60. The sealability and the peelability after use were also good.
  • Example 2 35% by mass of an ethylene-vinyl acetate-based emulsion (binder) and 3% of texanol (plasticizer) were used with respect to a blend B composed of 82% by mass of aluminum hydroxide, 9% by mass of clay, and 9% by mass of black smoke.
  • a mass of a fixed joint material was prepared and evaluated in the same manner as in Example 1 except that the mass% was externally added. In the evaluation of flame retardancy, there was no flaming and the shape was good, and the shape retention at room temperature, hot sealing property, and peelability after use were also good.
  • Example 3 40% by mass of an ethylene-vinyl acetate-based emulsion (binder) and 4% by mass of texanol (plasticizer) were externally added to the same formulation B as in Example 2. Similarly, a fixed joint was prepared and evaluated. In the evaluation of flame retardancy, there was no flaming and the shape was good, and the shape retention at room temperature, hot sealing property, and peelability after use were also good.
  • Example 4 30% by mass of an ethylene-vinyl acetate emulsion (binder) and 2% by mass of texanol (plasticizer) were used with respect to a mixture C composed of 79% by mass of aluminum hydroxide, 4% by mass of clay, and 17% by mass of graphite. % was added on the outside, and a fixed joint material was prepared and evaluated in the same manner as in Example 1. In the evaluation of flame retardancy, there was no flaming and the shape was good, and the shape retention at room temperature, hot sealing property, and peelability after use were also good.
  • binder ethylene-vinyl acetate emulsion
  • texanol plasticizer
  • Example 5 35% by mass of an ethylene vinyl acetate emulsion (binder) and 3% by mass of texanol (plasticizer) were externally added to the same formulation C as in Example 4 to obtain a mixture of Examples 1 and 2. Similarly, a fixed joint was prepared and evaluated. In the evaluation of flame retardancy, there was no flaming and the shape was good, and the shape retention at room temperature, hot sealing property, and peelability after use were also good.
  • Example 6 40% by mass of an ethylene-vinyl acetate-based emulsion (binder) and 2% by mass of texanol (plasticizer) were used for Formulation D composed of 76% by mass of aluminum hydroxide, 1% by mass of clay, and 23% by mass of graphite. % was added on the outside, and a fixed joint material was prepared and evaluated in the same manner as in Example 1. In the evaluation of flame retardancy, there was no flaming and the shape was good, and the shape retention at room temperature, hot sealing property, and peelability after use were also good.
  • binder ethylene-vinyl acetate-based emulsion
  • texanol plasticizer
  • Example 7 45% by mass of an ethylene-vinyl acetate-based emulsion (binder) and 5% by mass of texanol (plasticizer) were used for Formulation E comprising 68% by mass of aluminum hydroxide, 9% by mass of clay, and 23% by mass of graphite. % was added on the outside, and a fixed joint material was prepared and evaluated in the same manner as in Example 1. In the evaluation of flame retardancy, there was no flame generation, and the shape retention at room temperature, the hot sealing property, and the peelability after use were also good.
  • Example 8 an ethylene vinyl acetate emulsion (binder) 30 was added to a compound F composed of 50% by mass of aluminum hydroxide, 40% by mass of alumina (aluminum oxide) raw material, 1% by mass of clay, and 9% by mass of graphite.
  • a fixed-size joint material was prepared by adding 1% by mass of texanol (plasticizer) and 1% by mass of Texanol, and evaluated. In the evaluation of flame retardancy, there was no flame generation, and the shape retention at room temperature, the hot sealing property, and the peelability after use were also good.
  • Example 9 an ethylene vinyl acetate emulsion (binder) 45 was added to a compound G consisting of 50% by mass of aluminum hydroxide, 18% by mass of alumina (aluminum oxide) raw material, 9% by mass of clay, and 23% by mass of graphite.
  • a fixed-size joint material was prepared and evaluated by externally adding 5% by mass and 5% by mass of Texanol (plasticizer). In the evaluation of flame retardancy, there was no flame generation, and the shape retention at room temperature, the hot sealing property, and the peelability after use were also good.
  • Comparative Example 1 45% by mass of an ethylene vinyl acetate emulsion (binder) and 4% by mass of texanol (plasticizer) were used for Formulation H in which the content ratio of aluminum hydroxide was 46% by mass and lower than the lower limit of the present invention. %, And kneaded using a tabletop mixer in the same manner as in Example 1. The moldability of the kneaded product was good, and the shape retention at room temperature after drying was also good, but flame generation was observed because the content ratio of aluminum hydroxide was too low. For this reason, the evaluation did not proceed to the evaluation of the hot sealing property and the evaluation of the peeling property after use, and the overall evaluation was “ ⁇ ”.
  • Comparative Example 2 showed that ethylene hydroxide was added to Formula I having a content of aluminum hydroxide of 92% by mass exceeding the upper limit of the present invention and a graphite content of 7% by mass below the lower limit of the present invention. 38% by mass of a system emulsion (binder) and 4% by mass of Texanol (plasticizer) were externally added and kneaded using a table mixer in the same manner as in Example 1. The moldability of the kneaded product was good, and the shape retention at room temperature after drying was also good. However, since the content of aluminum hydroxide was too high, the content of graphite was relatively excessively low, so that seizure to refractory bricks occurred and the peelability after use was reduced.
  • Comparative Example 3 was the same as Example 1 except that 25% by mass of ethylene vinyl acetate emulsion (binder) and 2% by mass of texanol (plasticizer) were externally added to Formulation J containing no clay. However, since no clay was present, the kneaded product was not plastic and could not be molded. For this reason, the evaluation did not proceed to the evaluation of the hot sealability, the evaluation of the peelability after use, etc., and the overall evaluation was evaluated as x.
  • binder ethylene vinyl acetate emulsion
  • texanol plasticizer
  • Comparative Example 4 45% by mass of an ethylene-vinyl acetate-based emulsion (binder) and 5% by mass of texanol (plasticizer) were used for Formulation K having a clay content of 10% by mass and exceeding the upper limit of the present invention.
  • the mixture was kneaded in the same manner as in Example 1 except that it was added over the outside, but the kneaded product was too hard to form because the clay content was too high. For this reason, the evaluation did not proceed to the evaluation of the hot sealability, the evaluation of the peelability after use, etc., and the overall evaluation was evaluated as x.
  • Comparative Example 5 35% by mass of an ethylene-vinyl acetate-based emulsion (binder) and 3% by mass of texanol (plasticizer) were used for Formulation L having a graphite content of 7% by mass and lower than the lower limit of the present invention.
  • the mixture was kneaded in the same manner as in Example 1 except that it was added over the outside.
  • the moldability of the kneaded material was good, the shape retention at room temperature after drying was good, there was no flame, and the hot sealability was good, but the content of graphite was too low, so the refractory brick Seizure occurred, and the peelability after use decreased.
  • Comparative Example 6 45% by mass of an ethylene-vinyl acetate-based emulsion (binder) and 5% by mass of texanol (plasticizer) were used for Formulation M having a graphite content of 26% by mass and exceeding the upper limit of the present invention.
  • the kneaded product was added outside and kneaded in the same manner as in Example 1, but the kneaded product was not plastic and could not be molded because the content ratio of graphite was too high. For this reason, the evaluation did not proceed to the evaluation of the hot sealability, the evaluation of the peelability after use, etc., and the overall evaluation was evaluated as x.
  • Comparative Example 7 a similar evaluation was performed on a commercially available gasket currently used as a joint material between the lower nozzle and the long nozzle.
  • the results, as shown in Table 4, showed that although there was no seizure to the refractory brick, it was inferior in hot sealability, and was therefore judged unsuitable as a joint material. The result is the same as the actual furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Sealing Material Composition (AREA)
  • Mold Materials And Core Materials (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

本発明は定形目地材の熱間シール性は維持した上で,定形目地材中の可燃物の燃焼による発炎及び発煙を抑制することを目的とする。すなわち本発明の熱間設置用定形目地材は,ギブサイトである水酸化アルミニウム原料を50質量%以上90質量%以下,粘土を1質量%以上9質量%以下,黒鉛を9質量%以上23質量%以下含み,残部が主としてその他耐火原料からなる配合物100質量%に対して,有機質添加剤の合量を外掛けで26質量%以上50質量%以下添加して混練し,成形及び乾燥して得られるものである。

Description

熱間設置用定形目地材
 本発明は,溶融金属の連続鋳造や精錬等用の設備において2つのノズル間,設備の接合部分等を接合するための定形目地材に関し,特に,約200℃~約1000℃程度の熱間で設置されるものに関する。
 例えば鋼の連続鋳造用設備においては,下部ノズルとロングノズル間や下部ノズルと浸漬ノズル間の接合面には,空気の侵入や溶鋼の漏れなどを防止するため,ガスケットや定形目地材などの目地材が使用されている。
 ガスケットはアルミナ-シリカ質無機ファイバーの成形体であり,主として連続鋳造のチャージ毎にノズル交換が必要なロングノズル接合用に使用されている。これはガスケットが熱間での設置時に発炎せず,確実に設置でき,使用中はロングノズルと融着せず,使用後の剥離性が良好なためである。
 しかしガスケットは気孔率80%以上の多孔性材質であり,十分な熱間でのシール性(以下「熱間シール性」という。)が得られず,そのため鋼の品質やノズル接合部の保護,ノズルの耐用性等に問題がある。
 定形目地材は,各種無機原料を主として含む配合物に主として有機質(樹脂系)の結合剤,可塑剤,溶剤等を添加して混練し,成形及び乾燥したものである。このような定形目地材は予め接合する対象部分の形状に近い形に加工された耐火性目地材であり,前記ガスケットに対し特に熱間シール性が高く,ノズル間の接合部に広く適用されている。
 このような定形目地材として,例えば特許文献1には,耐火原料からなる原料混合物100質量%に対して,結合剤としてアクリル系エマルジョンを外掛けで20~40質量%加え,さらに可塑剤としてテキサノールを外掛けで1~3質量%加え,混練し,成形後乾燥させた定形目地材が開示されている。
特開2009-227538号公報
 連続鋳造用のノズル間に設置する定形目地材は,連続的な溶鋼排出の途中(例えば鍋交換時等の連続鋳造のチャージ間),又は予熱後鋳造開始前等の約200℃~1000℃程度の高温状態で設置される場合がある。
 この場合,定形目地材に含まれる主として樹脂系結合剤,可塑剤等の有機質添加剤が可燃性であることから,熱間で設置されて急激に高温になる際に有機質添加剤がガス化して燃焼し,発炎及び発煙を生じることがある。発炎及び発煙が生じると,接合部分や定形目地材の視認性が低下する。視認性が低下すると,定形目地材が適正な位置に設置できずにノズル間に隙間が生じて,大気の吸引によりシール性が低下したり,それによるノズル接合部付近ないし内孔部の酸化,溶鋼の酸化等が生じ易くなり,又は漏鋼を生じる危険性が高まる。
 そこで本発明が解決しようとする課題は,定形目地材の熱間シール性は維持した上で,定形目地材中の可燃物の燃焼による発炎及び発煙を抑制することにある。
 本発明は,次の1~9に記載の定形目地材である。
1.
 ギブサイトである水酸化アルミニウム原料を50質量%以上90質量%以下,
 粘土を1質量%以上9質量%以下,
 黒鉛を9質量%以上23質量%以下含み,
 残部が主としてその他耐火原料からなる配合物100質量%に対して,
 有機質添加剤の合量を外掛けで26質量%以上50質量%以下添加して混練し,成形及び乾燥して得られる,熱間設置用定形目地材。
2.
 前記水酸化アルミニウム原料の粒径は1μm以上0.25mm以下である,前記1に記載の熱間設置用定形目地材。
3.
 前記配合物内の残部の耐火原料が,アルミナ原料,スピネル原料,ジルコン原料,ジルコニア原料,マグネシア原料及びシリカ原料から選択する1種又は複数種である,前記1又は前記2に記載の熱間設置用定形目地材。
4.
 前記黒鉛は粒径0.2mm以上の鱗片状黒鉛である,前記1から前記3のいずれか1項に記載の熱間設置用定形目地材。
5.
 前記の外掛けの有機質添加剤は結合剤及び可塑剤を含み,結合剤の添加量が25質量%以上45質量%以下,可塑剤の添加量が1質量%以上5質量%以下である,前記1から前記4のいずれか1項に記載の熱間設置用定形目地材。
6.
 前記結合剤はエチレン酢ビ系エマルジョンであり,その樹脂濃度は40質量%以上60質量%以下である,前記5に記載の熱間設置用定形目地材。
7.
 前記可塑剤はテキサノールモノイソブチレート又はテキサノールジイソブチレートである,前記5又は前記6に記載の熱間設置用定形目地材。
8.
 前記乾燥の温度は,60℃以上100℃以下である,前記1から前記7のいずれか1項に記載の熱間設置用定形目地材。
9.
 少なくとも一方が200℃以上の温度である2つの鋼の連続鋳造用のノズル間に設置される,前記1から前記8のいずれか1項に記載の熱間設置用定形目地材。
 以下,本発明の特徴を説明する。
 金属水酸化物の一種である水酸化アルミニウムは,高温に加熱されたときに著しい吸熱と同時に水分子などの不燃性ガスを放出する。この際の吸熱及び分解による水蒸気の発生に起因する冷却効果と同時に周囲に形成される水蒸気層による空気すなわち酸素を遮断する効果により,有機質添加剤を含む定形目地材に難燃性を付与する。
 定形目地材の燃焼は概ね,熱供給→可燃性ガス発生→空気中の酸素との結合による発火→燃焼拡大→鎮火のプロセスをたどる。これらから,燃焼ないしは発炎及び発煙の抑制には,(ア)可燃性ガスの放出の抑制,(イ)可燃性ガスの希釈,(ウ)空気すなわち酸素の供給抑制ないし酸素濃度の低下,(エ)温度上昇の抑制又は冷却,(オ)伝熱の抑制,等が寄与することになる。
 そして,燃焼してガスを発生する有機質添加剤と水酸化アルミニウムから放出される水蒸気との量的なバランスや前記ガス発生と水蒸気放出とのタイミングが重要である。すなわち,前述の難燃性付与のプロセスを効率よく作用させるためには次の3つが必要である。
(1)温度,タイミング等,有機質添加剤の熱分解挙動に水酸化アルミニウムの熱分解挙動がマッチしていること。
(2)前記(1)の条件下において可燃性ガス発生量に対し十分な量の水蒸気を放出すること。
(3)安全性を備え,安価かつ安定的に産業上入手可能であること。
 本発明では,金属水酸化物として水酸化アルミニウムを使用する。さらに,水酸化アルミニウムのうちギブサイト(Al(OH))を使用する。
 このギブサイトは,水蒸気化成分すなわち(OH)成分が多く,また脱水反応に伴う総吸熱量は2000J/gと金属水酸化物の中では最も大きい。またその脱水開始温度が約200℃と金属水酸化物の中では低温度であって,約200℃以下では変化せず安定なこと,また脱水後には溶鋼温度を超える耐熱性を備えるαアルミナとなる等の性質を有している。
 このギブサイトについてその性質と難燃機構についてさらに述べる。
 ギブサイトの熱分解特性より,その吸熱ピークは3ヵ所ありそれぞれ次の脱水反応に相当するピークとなる。
245℃ : 
 2Al(OH)→Al・HO+2HO(一部ベーマイト転移)
320℃ : 
 2Al(OH)→Al+3HO(ギブサイトの脱水反応)
550℃ : 
 Al・HO→Al+HO(ベーマイトの脱水反応)
 このようなギブサイトの脱水による水蒸気放出温度は,定形目地材中の有機質添加剤(結合剤,可塑剤等)の乾燥後残留成分の燃焼(熱分解)開始温度200℃に近いことから,これら定形目地材中の有機質添加剤から発生した可燃性ガスの燃焼をタイミングよく抑制することができる。
 さらには放出される水蒸気が定形目地材の温度を低下させる機能をも有する。
 またギブサイトである水酸化アルミニウムは産業上比較的安価で安定的に入手できる。
 なお,ギブサイト以外に比較的産業上入手が容易な水酸化アルミニウムとしてダイアスポア(AlO(OH))がある。しかし,ダイアスポアは発生する水蒸気量がギブサイトの1/2以下と少なく,その分解すなわち水蒸気放出の温度が約500℃と定形目地材からの可燃性ガス発生温度域よりも高く,十分な発炎及び発煙抑制効果が期待できない。
 また水酸化マグネシウムも使用可能であるものの,分解温度が約350℃とギブサイトよりはやや高く,吸熱量は380cal/gと,ギブサイトよりは小さいので,発炎及び発煙抑制効果はギブサイトより劣る。
 以上より,十分な発炎及び発煙抑制効果を得るためにはギブサイトの適用が望ましい。
 因みに,例えば特開平6-272191号公報に開示されている難燃性シート材料等,建材関係の分野では難燃化材又は不燃化材として水酸化アルミニウムを使用することは公知であるが,高温状態の対象部位に設置するような条件はなく,ガス発生ないしは燃焼成分と水酸化アルミニウムから放出される水蒸気との量的なバランスや前記ガス発生と水蒸気放出とのタイミング等が考慮されることはない。
 本発明の定形目地材によれば,熱間シール性は維持した上で,熱間での設置時に発炎及び発煙を大幅に減じることができる。
 ひいては高温状態のロングノズル等の連続鋳造用ノズルへの設置においても,発炎及び発煙による視認性を低下させることなく,所定の位置に確実に設置することができる。この結果,操業(定形目地材を使用した鋳造)中には良好な熱間シール性を維持することができ,連続鋳造用ノズルの内孔や接合部付近の酸化による損傷や鉄酸化物による溶損を抑制することができ,漏鋼をも防止することができ,さらには溶鋼の品質劣化をも防止することができる。
 ギブサイトである水酸化アルミニウム(以下,単に「水酸化アルミニウム」という。)の脱水反応はその大きさによって変化し,粒径が1μmよりも小さい場合は,前述の要件に沿った反応が生じ難く,また定形目地材としての具備特性のうち,特にシール性をもたらすための充填性を確保するため,さらには可燃性ガスと発生した水蒸気の通気性を確保する観点から,粒径は1μm以上0.25mm以下であることが好ましい。
 有機質添加剤を除く配合物(以下,単に「配合物」という。)中の水酸化アルミニウムの含有割合は50質量%以上90質量%以下の範囲内で選択する。
 水酸化アルミニウムの含有割合が50質量%未満であると難燃性が低下し,熱間設置時に前記課題を解決できない。水酸化アルミニウムの含有割合が90質量%を超えると相対的に粘土の量が減少することで保形性や可撓性等が低下し,また黒鉛量も相対的に減少するので定形目地材除去時の剥離性が低下する。
 但し,この水酸化アルミニウムの含有割合は,定形目地材の可撓性,可塑性,保存性(経時変化が小さいこと)等の具備特性を得るために必要な有機質添加剤(結合剤や可塑剤等)の量とのバランスにより決定される。すなわち水酸化アルミニウムの具体的な含有割合は,個別の操業条件に応じて,具体的には定形目地材設置時のノズルの温度等,又は個々の操業条件において要求される可撓性等に応じて調整された結果としての有機質添加剤すなわち可燃物の量に応じて適宜決定すればよい。
 粘土は可塑性を付与するために使用し,ベントナイト等のモンモリロナイトを含み可塑性を有するものを使用することができる。
 粘土の配合物中の含有割合は1質量%以上9質量%以下とする。粘土の含有割合が1質量%未満であると混練物の可塑性が不足し,成形性が低下する。一方で粘土の含有割合が9質量%を超えると混練物が硬くなり,成形が困難になると共にそれを緩和するために有機質添加剤の必要添加量も増え,結果として可燃物となる成分が増えるため,熱間設置時の発炎及び発煙が生じ易くなり又は多くなる。
 黒鉛は,ノズル等設置面との融着防止,使用後の設置面からの剥離性向上を目的に,配合物中,9質量%以上23質量%以下の含有割合で使用する。
 黒鉛の含有割合が9質量%未満では接合対象物,特に耐火物製ノズルへの融着傾向が生じ,剥離性が低下してノズルの取り外し,定形目地材の交換作業等に支障をきたす。黒鉛の含有割合が23質量%を超えると剥離性には問題ないものの,混練物に可塑性がなくなり成形が困難になる。また,使用中の目地材の強度が低下して熱間シール性が低下し,又は溶鋼中への溶出や摩耗を生じ易くなり,接合部の保護機能にも問題が生じる。
 使用する黒鉛は粒径0.2mm以上の鱗片状黒鉛であることが好ましい。この粒径0.2mm以上の鱗片状黒鉛は,連続体としての表面積が大きいため配合物中の構成物同士又はそれらと結合剤との融着防止に効果がある。鱗片状黒鉛の粒径の上限は特に制限はないが産業上入手可能なものは概ね0.5mm以下である。
 配合物の残部は,主としてその他耐火原料からなる。この耐火原料としては,アルミナ原料,スピネル原料,ジルコン原料,ジルコニア原料及びマグネシア原料から選択することが好ましい。
 定形目地材においては,これら耐火原料は水酸化アルミニウムが変化して生じたαアルミナとの間で低融化等の反応を生じ難く,定形目地材の安定性を維持することができる。これら残部の耐火原料としては,目地厚以下の大きさ(粒径)であれば,また当該定形目地材の充填性を阻害しない程度の量であれば,粒径0.25mmを超える大きさの耐火原料を含んでもよい。
 ここでアルミナ原料とはコランダム,シリマナイト族,ムライト等のアルミナを主とするものを指し,スピネル原料とはアルミナとマグネシアとの正スピネルを指し,ジルコニア原料とは安定化剤の種類にかかわらずまた安定化度にかかわらず安定化又は未安定化のいずれでもよく,マグネシア原料とはペリクレースを主体としMgO成分を概ね80質量%以上含むものを指す。
 シリカ原料も,高純度品であればαアルミナとの間でムライトを生成することもあり,配合物の残部を構成する耐火原料として使用することは可能である。
 但し,外来スラグ成分やシリカ原料中に不純物が多い場合には,低融物が生成して溶損や摩耗等を惹き起こす可能性があるので,例えば使用時間,温度等の操業条件に応じて,原料の種類等を適宜選択すればよい。またシリカ原料を他の耐火原料と併用する場合は,マグネシア原料との間では低融物を生成する可能性があるので,マグネシア原料以外の原料と併用することが好ましい。
 なお,これら配合物の残部を構成する耐火原料は人工か天然かを問わず,製法も問わない。
 本発明の定形目地材では,前述の配合物100質量%に対して,有機質添加剤の合量を外掛けで26質量%以上50質量%以下添加する。この有機質添加剤は,主として結合剤及び可塑剤からなる。
 結合剤としてはエチレン酢ビ系エマルジョンを使用することができる。このエチレン酢ビ系エマルジョンとしては,樹脂濃度が40質量%以上60質量%以下(樹脂分以外は主として水である)の市販品を使用することができる。この樹脂分は可燃物となる。この樹脂濃度が40質量%未満であると,乾燥時の成膜機構が不十分となり目地材の定形化が困難となる。樹脂濃度が60質量%を超えると使用時の発炎及び発煙が激しくなり,爆裂を起こす場合もあり,好ましくない。
 また,エチレン酢ビ系エマルジョンの粘度は25℃において100~500cpsであることが好ましい。粘度が100cps未満であれば混練物に可塑性が不足し,成形時に破損して成形が困難になることがある。粘度が500cpsを超えると粘性が高すぎて均一に混練することが困難になることがある。
 さらに,エチレン酢ビ系エマルジョンのpHは,概ね4~8であることが好ましい。pHが約4未満であると,強酸性なので人体への有害性が高くなり作業時の取扱いに注意が必要となる。pHが約8を超える高いアルカリ性になると,やはり人体への有害性が高くなり作業時の取扱いに注意が必要となると共に,耐火原料との反応による混練物の経時変化(硬化現象)が大きくなる可能性が生じる。したがって安定領域であるpH概ね4~8のものが好ましい。
 エチレン酢ビ系エマルジョンの添加量は,前述の配合物を100質量%とする外掛け割合で,25質量%以上45質量%以下とする。エチレン酢ビ系エマルジョンの添加量が25質量%未満であると,また45質量%を超えると,混練物は得られるものの,可塑性や保形性等に難が生じる。エチレン酢ビ系エマルジョンの添加量が25質量%以上45質量%以下であれば保形性のある良好な成形性をも備えた混練物が得られる。
 可塑剤は,可塑性を付与するものであるが,定形目地材の用途上は主として可撓性を付与するために使用する。本発明ではフタル酸系以外のものを使用することが好ましい。フタル酸系の可塑剤は安全面,環境面での問題があるためである。
 フタル酸系以外の可塑剤としてはブチル系のテキサノールモノイソブチレート又はテキサノールジイソブチレート(以下,総称して「テキサノール」という。)が,前記の結合剤との相溶性の点から好ましい。また,テキサノールは,発火点が390℃と高い上,PRTR法やVOC規制に抵触せず,環境ホルモン物質の疑いもない。このため環境に配慮した定形目地材を提供することができる。
 可塑剤の添加量は,配合物を100質量%とする外掛け割合で,1質量%以上5質量%以下とする。可塑剤の添加量が1質量%未満では十分な可塑性が得られず,5質量%を超えると過剰な可塑剤が目地材中に残留し時間と共に変質するため,成形品の乾燥後や使用されるまでの間に目地材に亀裂が発生し,シール性が乏しくなることがある。
 本発明の定形目地材は,前述の配合物に前述の有機質添加剤を添加して混練し,成形及び乾燥して得られるが,混練には,耐火物の混練に一般的に使用されるミキサー,例えばブレード形のスパイラルミキサーやプラネタリーミキサーやクッキングミキサー,アイリッヒミキサー等を使用することができる。混練においては,配合物の粒子を破壊して各原料の粒度や形態を大きく破壊しない程度であれば,加圧してもよい。
 なお,前述の配合物,有機質添加剤の他,混練の便のために,適宜,水その他の溶剤を添加することも可能である。この場合,乾燥時に気化して消失するものが好ましい。
 成形は,耐火物の成形に一般的に使用される,例えば一軸油圧成形機等を使用することができる。成形圧力は,製品の形状,圧着構造や強さに応じた密度等,個別の操業ごとの具備条件等に応じて任意に設定すればよい。
 乾燥は,操作方式から回分式と連続式に,加熱方式からは直接と間接に,熱源からは熱風乾燥,熱風と湿潤体直接通電併用,電熱又はラジアントチューブによる赤外線乾燥,マイクロ波乾燥などに分類できる。
 本発明における成形体の乾燥は,これらのうち,比較的容易に利用できる電熱乾燥炉による直熱加熱式熱風乾燥炉,中でも回分式の電熱乾燥炉(箱型や棚段質型)を使用することを用いて行うことが好ましい。
 乾燥温度は60℃以上100℃以下が好ましい。これは,前述の有機質添加剤の乾燥後の成膜による目地材の柔軟性をより確実に得るためである。
 乾燥温度が60℃未満の場合,この成膜が不充分となって成膜が定形目地材全体において不完全になり易く,その結果ハンドリング時に亀裂が発生するなど柔軟性に劣ることもある。一方,乾燥温度が100℃を超えると成膜が強固となり過ぎて定形目地材が硬化するため柔軟性に劣る傾向となる。
 なお,これら定形目地材の性状は,それら乾燥温度での保持時間等にも影響を受ける。
 本発明の定形目地材は,例えば予熱された耐火物製ノズルの上に設置されると,耐火物の保有熱によりまず結合剤(エチレン酢ビ系樹脂)が溶融軟化することで定形目地材自体が軟らかくなる。この状態が維持されている間,約1分間以内に接合する2つのノズルの間で加圧されることで圧着され,内部組織の充填度が高まり充分な熱間シール性を確保できる。そして黒鉛を含むため,操業中はノズルとの接合面と融着せず,使用後の目地材の剥離も容易となり,また溶鋼やスラグ等との反応ないしは溶損等も生じ難い。
 本発明の実施例及び比較例で使用した配合物A~Mの各組成を表1,表2に示す。各原料の純度は,いずれも95%以上である。また,これらの配合物A~Mを使用して作製した定形目地材の配合組成及び評価結果を表3及び表4に示す。なお,結合剤であるエチレン酢ビ系エマルジョンとしては,樹脂濃度58質量%,粘度200cps,pH5のものを使用した。また,可塑剤であるテキサノールとしては,2,2,4-トリメチル-1,3-ペンタジオールモノイソブチレートであるテキサノールモノイソブチレートを使用した。
 表3,4に示す各評価は次の方法で行った。
 混練物の成形性は,混練物の可塑性や加圧成形後,所望の形状が得られたか否かで評価を行った。
 常温での保形性は,JIS-K6301加硫ゴム物理試験方法記載のスプリング式硬さ試験を使用して,押針の目地材表面からの侵入程度を0~100の指数表示で評価した。この指数表示の数値が大きいほど目地材が硬く,小さいほど目地材が柔らかいことを示す。
 難燃性の評価は,800℃に加熱した耐火物れんが上に定形目地材を設置して燃焼ないしは発炎及び発煙の有無を観察した。
 熱間シール性は,600℃に加熱した耐火物れんが間に定形目地材を設置して0.5気圧まで減圧した状態から1気圧の大気圧に戻るまでの時間を復帰時間として測定することで評価した。この復帰時間が長いほど熱間シール性が高いことを示す。
 使用後の剥離性の評価は,800℃に加熱した耐火物れんが(以下「800℃加熱れんが」という。)上に定形目地材を置き,1分後にもう一つの800℃加熱れんがを被せて定形目地材を挟み,1100℃の炉内へ入れ5kg/cmの加重を15分間かけた後,取り出し,れんがの剥がし易さで評価した。
 以上の各評価に基づき定形目地材としての総合評価を◎(良),○(可),×(不可)の3段階で評価し,◎,○を合格とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 まず,表3に示す本発明の実施例について説明する。
 実施例1では,水酸化アルミニウム90質量%,粘土1質量%,黒煙9質量%からなる配合物Aに対して,エチレン酢ビ系エマルジョン(結合剤)25質量%,テキサノール(可塑剤)1質量%を外掛けで添加して,卓上ミキサーを用いて混練し,厚み3mmのシート状に加圧成形して約80℃で乾燥させ,水分の蒸発によるエマルジョンの成膜化により定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,JIS-K6301加硫ゴム物理試験方法記載のスプリング式硬さ試験機による測定値も50~60と常温での保形性を有し,熱間シール性や使用後の剥離性も良好であった。
 実施例2では,水酸化アルミニウム82質量%,粘土9質量%,黒煙9質量%からなる配合物Bに対して,エチレン酢ビ系エマルジョン(結合剤)35質量%,テキサノール(可塑剤)3質量%を外掛けで添加して,実施例1と同様に定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,常温での保形性や熱間シール性,使用後の剥離性も良好であった。
 実施例3では,実施例2と同じ配合物Bに対して,エチレン酢ビ系エマルジョン(結合剤)40質量%,テキサノール(可塑剤)4質量%を外掛けで添加して,実施例1と同様に定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,常温での保形性や熱間シール性,使用後の剥離性も良好であった。
 実施例4では,水酸化アルミニウム79質量%,粘土4質量%,黒鉛17質量%からなる配合物Cに対して,エチレン酢ビ系エマルジョン(結合剤)30質量%,テキサノール(可塑剤)2質量%を外掛けで添加して,実施例1と同様に定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,常温での保形性や熱間シール性,使用後の剥離性も良好であった。
 実施例5では,実施例4と同じ配合物Cに対して,エチレン酢ビ系エマルジョン(結合剤)35質量%,テキサノール(可塑剤)3質量%を外掛けで添加して,実施例1と同様に定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,常温での保形性や熱間シール性,使用後の剥離性も良好であった。
 実施例6では,水酸化アルミニウム76質量%,粘土1質量%,黒鉛23質量%から
なる配合物Dに対して,エチレン酢ビ系エマルジョン(結合剤)40質量%,テキサノール(可塑剤)2質量%を外掛けで添加して,実施例1と同様に定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,常温での保形性や熱間シール性,使用後の剥離性も良好であった。
 実施例7では,水酸化アルミニウム68質量%,粘土9質量%,黒鉛23質量%からなる配合物Eに対して,エチレン酢ビ系エマルジョン(結合剤)45質量%,テキサノール(可塑剤)5質量%を外掛けで添加して,実施例1と同様に定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,常温での保形性や熱間シール性や使用後の剥離性も良好であった。
 実施例8では,水酸化アルミニウム50質量%,アルミナ(酸化アルミニウム)原料40質量%,粘土1質量%,黒鉛9質量%からなる配合物Fに対して,エチレン酢ビ系エマルジョン(結合剤)30質量%,テキサノール(可塑剤)1質量%を外掛けで添加して,実施例1と同様に定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,常温での保形性や熱間シール性や使用後の剥離性も良好であった。
 実施例9では,水酸化アルミニウム50質量%,アルミナ(酸化アルミニウム)原料18質量%,粘土9質量%,黒鉛23質量%からなる配合物Gに対して,エチレン酢ビ系エマルジョン(結合剤)45質量%,テキサノール(可塑剤)5質量%を外掛けで添加して,実施例1と同様に定形目地材を作製し,評価を行った。
 難燃性の評価では発炎はなく良好で,常温での保形性や熱間シール性や使用後の剥離性も良好であった。
 次に,表4に示す比較例について説明する。
 比較例1は,水酸化アルミニウムの含有割合が46質量%と本発明の下限値を下回る配合物Hに対して,エチレン酢ビ系エマルジョン(結合剤)45質量%,テキサノール(可塑剤)4質量%を外掛けで添加して,実施例1と同様に卓上ミキサーを用いて混練したものである。混練物の成形性は良好で,乾燥後の常温での保形性も良好であったが,水酸化アルミニウムの含有割合が低すぎるため発炎が認められた。このため,熱間シール性の評価,使用後の剥離性の評価まで進めず,総合評価は×となった。
 比較例2は,水酸化アルミニウムの含有割合が92質量%と本発明の上限値を上回り,黒鉛の含有量が7質量%と本発明の下限値を下回る配合物Iに対して,エチレン酢ビ系エマルジョン(結合剤)38質量%,テキサノール(可塑剤)4質量%を外掛けで添加して,実施例1と同様に卓上ミキサーを用いて混練したものである。混練物の成形性は良好で,乾燥後の常温での保形性も良好であった。しかし,水酸化アルミニウムの含有割合が高すぎることにより,相対的に黒鉛の含有割合が過度に低くなったため,耐火物れんがへの焼付きが生じ,使用後の剥離性が低下した。
 比較例3は,粘土を含まない配合物Jに対して,エチレン酢ビ系エマルジョン(結合剤)25質量%,テキサノール(可塑剤)2質量%を外掛けで添加して,実施例1と同様に混練したが,粘土が存在しないため混練物に可塑性がなく成形不可であった。このため,熱間シール性の評価,使用後の剥離性の評価等まで進めず,総合評価は×となった。
 比較例4は,粘土の含有割合が10質量%と本発明の上限値を上回る配合物Kに対して,エチレン酢ビ系エマルジョン(結合剤)45質量%,テキサノール(可塑剤)5質量%を外掛けで添加して,実施例1と同様に混練したものであるが,粘土の含有割合が高すぎるため混練物が硬く,成形不可であった。このため,熱間シール性の評価,使用後の剥離性の評価等まで進めず,総合評価は×となった。
 比較例5は,黒鉛の含有割合が7質量%と本発明の下限値を下回る配合物Lに対して,エチレン酢ビ系エマルジョン(結合剤)35質量%,テキサノール(可塑剤)3質量%を外掛けで添加して,実施例1と同様に混練したものである。混練物の成形性は良好で,乾燥後の常温での保形性も良好で,発炎もなく,熱間シール性も良好であったが,黒鉛の含有割合が低すぎるため,耐火物れんがへの焼付きが生じ,使用後の剥離性が低下した。
 比較例6は,黒鉛の含有割合が26質量%と本発明の上限値を上回る配合物Mに対して,エチレン酢ビ系エマルジョン(結合剤)45質量%,テキサノール(可塑剤)5質量%を外掛けで添加して,実施例1と同様に混練したが,黒鉛の含有割合が高すぎるため混練物に可塑性がなく,成形不可であった。このため,熱間シール性の評価,使用後の剥離性の評価等まで進めず,総合評価は×となった。
 比較例7は,現在下部ノズルとロングノズル間の目地材として使用されている市販のガスケットについて同様の評価を行ったものである。
 結果は表4に示す通り,耐火物れんがへの焼付きはないものの熱間シール性に劣り,そのため目地材としては不適格と判定した。実炉と同じ結果である。
 以上の通り,本発明の範囲内にある実施例1~9では,熱間シール性は維持した上で,発炎及び発煙もなく,接合するノズルとの融着もなくなり,ノズルや定形目地材の交換作業が容易かつ確実に実施できるようになる。しかも,熱間でのシール性や接合部の保護が維持できているため操業中の大気(空気)の巻き込みもなく,高品位な鋼を得ることができる。

Claims (9)

  1.  ギブサイトである水酸化アルミニウム原料を50質量%以上90質量%以下,
     粘土を1質量%以上9質量%以下,
     黒鉛を9質量%以上23質量%以下含み,
     残部が主としてその他耐火原料からなる配合物100質量%に対して,
     有機質添加剤の合量を外掛けで26質量%以上50質量%以下添加して混練し,成形及び乾燥して得られる,熱間設置用定形目地材。
  2.  前記水酸化アルミニウム原料の粒径は1μm以上0.25mm以下である,請求項1に記載の熱間設置用定形目地材。
  3.  前記配合物内の残部の耐火原料が,アルミナ原料,スピネル原料,ジルコン原料,ジルコニア原料,マグネシア原料及びシリカ原料から選択する1種又は複数種である,請求項1又は請求項2に記載の熱間設置用定形目地材。
  4.  前記黒鉛は粒径0.2mm以上の鱗片状黒鉛である,請求項1から請求項3のいずれか1項に記載の熱間設置用定形目地材。
  5.  前記の外掛けの有機質添加剤は結合剤及び可塑剤を含み,結合剤の添加量が25質量%以上45質量%以下,可塑剤の添加量が1質量%以上5質量%以下である,請求項1から請求項4のいずれか1項に記載の熱間設置用定形目地材。
  6.  前記結合剤はエチレン酢ビ系エマルジョンであり,その樹脂濃度は40質量%以上60質量%以下である,請求項5に記載の熱間設置用定形目地材。
  7.  前記可塑剤はテキサノールモノイソブチレート又はテキサノールジイソブチレートである,請求項5又は請求項6に記載の熱間設置用定形目地材。
  8.  前記乾燥の温度は,60℃以上100℃以下である,請求項1から請求項7のいずれか1項に記載の熱間設置用定形目地材。
  9.  少なくとも一方が200℃以上の温度である2つの鋼の連続鋳造用のノズル間に設置される,請求項1から請求項8のいずれか1項に記載の熱間設置用定形目地材。
PCT/JP2019/037465 2018-10-05 2019-09-25 熱間設置用定形目地材 WO2020071190A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980065134.2A CN112805101B (zh) 2018-10-05 2019-09-25 热设置用定形接缝材料
EP19869657.7A EP3862108A4 (en) 2018-10-05 2019-09-25 SHAPED GASKET MATERIAL FOR HEATED INSTALLATION
KR1020217002509A KR20210024604A (ko) 2018-10-05 2019-09-25 열간 설치용 정형 줄눈재
CA3115033A CA3115033C (en) 2018-10-05 2019-09-25 Certain-shaped joint material for hot installation
US17/282,059 US11925980B2 (en) 2018-10-05 2019-09-25 Certain-shaped joint material for hot installation
AU2019353307A AU2019353307B2 (en) 2018-10-05 2019-09-25 Shaped joint material for heated installation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018190429A JP7219577B2 (ja) 2018-10-05 2018-10-05 熱間設置用定形目地材
JP2018-190429 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071190A1 true WO2020071190A1 (ja) 2020-04-09

Family

ID=70055013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037465 WO2020071190A1 (ja) 2018-10-05 2019-09-25 熱間設置用定形目地材

Country Status (9)

Country Link
US (1) US11925980B2 (ja)
EP (1) EP3862108A4 (ja)
JP (1) JP7219577B2 (ja)
KR (1) KR20210024604A (ja)
CN (1) CN112805101B (ja)
AU (1) AU2019353307B2 (ja)
CA (1) CA3115033C (ja)
TW (1) TWI721581B (ja)
WO (1) WO2020071190A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113943148B (zh) * 2021-11-24 2023-06-27 河南熔金高温材料股份有限公司 一种可以长时间保存的含石墨耐火泥及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988002740A1 (en) * 1986-10-07 1988-04-21 Shikoku Kaken Kogyo Co., Ltd. Refractory composition and technique for refractory coating
JPH05163074A (ja) * 1991-12-13 1993-06-29 Kyushu Refract Co Ltd 熱間施工用ジョイント材
JPH06272191A (ja) 1993-03-17 1994-09-27 Mitsubishi Paper Mills Ltd 難燃性シート材料
JP2000117404A (ja) * 1998-10-13 2000-04-25 Shinagawa Refract Co Ltd 耐火パッキング材
JP2009227538A (ja) 2008-03-25 2009-10-08 Kurosaki Harima Corp 耐火物接合用定形目地材
JP2017144478A (ja) * 2016-02-19 2017-08-24 黒崎播磨株式会社 浸漬ノズルの交換方法
JP2018140406A (ja) * 2017-02-27 2018-09-13 黒崎播磨株式会社 モルタル用配合物,モルタル及びモルタルの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042024C (zh) * 1992-11-02 1999-02-10 重庆大学 连铸水口接缝密封材料及其制造工艺
US6258742B1 (en) * 1999-06-10 2001-07-10 George F. Carini Method of manufacture of phosphate-bonded refractories
JP4102065B2 (ja) * 2001-12-28 2008-06-18 黒崎播磨株式会社 流し込み施工用耐火物
AU2009229913B2 (en) * 2008-03-25 2011-12-22 Krosakiharima Corporation Plate brick and manufacturing method therefor
JP2010030177A (ja) * 2008-07-30 2010-02-12 Toray Ind Inc 複合体およびその製造方法
CN101423416B (zh) * 2008-10-31 2012-01-25 江苏苏嘉集团新材料有限公司 一种加氢氧化铝的中间包镁质干式料
CN102167569B (zh) * 2010-12-28 2013-07-31 高树森 矾土基纳米复合氧化物陶瓷结合Al2O3-MgO-C不烧制品及其制备方法
CN104232010B (zh) * 2014-05-16 2016-06-08 武汉理工大学 一种耐烧蚀、防火阻燃密封胶及其制备方法
CN106750850A (zh) 2016-11-24 2017-05-31 宝胜科技创新股份有限公司 一种高氧指数热塑性无卤低烟聚烯烃电缆料及其制备方法
CN108034265A (zh) * 2017-12-07 2018-05-15 常州帝君金属构件厂 一种阻燃防潮型热稳定剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988002740A1 (en) * 1986-10-07 1988-04-21 Shikoku Kaken Kogyo Co., Ltd. Refractory composition and technique for refractory coating
JPH05163074A (ja) * 1991-12-13 1993-06-29 Kyushu Refract Co Ltd 熱間施工用ジョイント材
JPH06272191A (ja) 1993-03-17 1994-09-27 Mitsubishi Paper Mills Ltd 難燃性シート材料
JP2000117404A (ja) * 1998-10-13 2000-04-25 Shinagawa Refract Co Ltd 耐火パッキング材
JP2009227538A (ja) 2008-03-25 2009-10-08 Kurosaki Harima Corp 耐火物接合用定形目地材
JP2017144478A (ja) * 2016-02-19 2017-08-24 黒崎播磨株式会社 浸漬ノズルの交換方法
JP2018140406A (ja) * 2017-02-27 2018-09-13 黒崎播磨株式会社 モルタル用配合物,モルタル及びモルタルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3862108A4

Also Published As

Publication number Publication date
AU2019353307B2 (en) 2022-01-20
US20210339312A1 (en) 2021-11-04
JP2020059033A (ja) 2020-04-16
AU2019353307A1 (en) 2021-05-27
KR20210024604A (ko) 2021-03-05
TWI721581B (zh) 2021-03-11
US11925980B2 (en) 2024-03-12
CN112805101B (zh) 2022-09-20
CN112805101A (zh) 2021-05-14
EP3862108A1 (en) 2021-08-11
TW202019859A (zh) 2020-06-01
EP3862108A4 (en) 2022-06-22
CA3115033A1 (en) 2020-04-09
CA3115033C (en) 2023-03-21
JP7219577B2 (ja) 2023-02-08

Similar Documents

Publication Publication Date Title
CN102452836A (zh) 用于快速烘烤钢包的无水泥铝镁质浇注料
WO2020071190A1 (ja) 熱間設置用定形目地材
JP2020147477A (ja) ムライト質れんがの製造方法
JP2015044734A (ja) セメントを含まない耐火物
WO2013057756A1 (ja) マグネシア質焼成れんが
JP5215698B2 (ja) 耐火物接合用定形目地材
JP3343297B2 (ja) 内張り用焼成耐火れんが
KR20190001767A (ko) 내장재와 결합이 우수한 염기성 턴디쉬 보수재
JP4261638B2 (ja) 熱間セット用定形目地材
JP2018062435A (ja) コージェライト含有アルミナ−シリカれんがの製造方法
JP2001019565A (ja) 耐吸湿性定形目地材
KR100450222B1 (ko) 고로 출선통 신속 보수용 내화물
JP6263208B2 (ja) 溶射材料
KR100314848B1 (ko) 불꽃 용사용 분말재료 및 그 제조방법
KR102331716B1 (ko) 제강용 무수 염기성 보수재
JP5441093B2 (ja) 炉体内張り耐火物保護用のスラグ成分調整剤およびその製造方法
JPH05163074A (ja) 熱間施工用ジョイント材
CN105503222A (zh) 一种含漂珠的复合耐火砖
US1561641A (en) Refractory composition
JP3716445B2 (ja) 火炎溶射補修材料および火炎溶射補修方法
JPH0437030B2 (ja)
JP2018062708A (ja) 溶射材料
JP6005545B2 (ja) 焼成塩基性れんが
PL189443B1 (pl) Sposób wytwarzania ogniotrwałego wyrobu cyrkonowego
US1042844A (en) Refractory material.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217002509

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3115033

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019869657

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019869657

Country of ref document: EP

Effective date: 20210506

ENP Entry into the national phase

Ref document number: 2019353307

Country of ref document: AU

Date of ref document: 20190925

Kind code of ref document: A