WO2020067089A1 - セラミックグリーンシート製造用離型フィルム - Google Patents

セラミックグリーンシート製造用離型フィルム Download PDF

Info

Publication number
WO2020067089A1
WO2020067089A1 PCT/JP2019/037456 JP2019037456W WO2020067089A1 WO 2020067089 A1 WO2020067089 A1 WO 2020067089A1 JP 2019037456 W JP2019037456 W JP 2019037456W WO 2020067089 A1 WO2020067089 A1 WO 2020067089A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
green sheet
ceramic green
film
layer
Prior art date
Application number
PCT/JP2019/037456
Other languages
English (en)
French (fr)
Inventor
有加 松尾
明紀 寺田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020504250A priority Critical patent/JP6693614B1/ja
Priority to KR1020217010181A priority patent/KR102321398B1/ko
Priority to CN201980063863.4A priority patent/CN112789146B/zh
Priority to SG11202102848RA priority patent/SG11202102848RA/en
Priority to MYPI2021001657A priority patent/MY194551A/en
Publication of WO2020067089A1 publication Critical patent/WO2020067089A1/ja
Priority to PH12021550641A priority patent/PH12021550641A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • the present invention relates to a release film for manufacturing an ultra-thin ceramic green sheet, and more particularly, to a method for suppressing the occurrence of process defects due to pinholes and thickness unevenness or peeling failure during the production of an ultra-thin ceramic green sheet.
  • the present invention relates to a release film for producing an ultra-thin ceramic green sheet which can be produced.
  • a release film in which a release layer is laminated on a polyester film as a base material has been used for forming a ceramic green sheet such as a multilayer ceramic capacitor (hereinafter referred to as MLCC) and a ceramic substrate.
  • MLCC multilayer ceramic capacitor
  • the ceramic green sheet is formed by applying a slurry containing a ceramic component such as barium titanate and a binder resin to a release film and drying the slurry. After printing an electrode on the molded ceramic green sheet and peeling it from the release film, the ceramic green sheet is laminated, pressed, cut, fired, and coated with an external electrode to produce a multilayer ceramic capacitor.
  • Patent Document 1 various techniques for realizing a release layer surface having excellent flatness have been developed.
  • ceramic green sheets have been further reduced in thickness, and ceramic green sheets having a thickness of 1.0 ⁇ m or less, more specifically, a thickness of 0.2 ⁇ m to 1.0 ⁇ m have been required. Therefore, higher smoothness has been required for the surface of the release layer.
  • the strength of the ceramic green sheet decreases, so not only the surface of the release layer is smoothed, but also the peeling force when the ceramic green sheet is peeled off from the release film is reduced and uniform. It is preferable to minimize the load applied to the ceramic green sheet when the ceramic green sheet is peeled from the release film so as not to damage the ceramic green sheet.
  • the release layer of the release film is formed by using an active energy ray-curable component.
  • an active energy ray-curable component In order to increase the cross-linking density and improve the elastic modulus of the ceramic green sheet, measures for suppressing the elastic deformation of the release layer at the time of peeling the ceramic green sheet and reducing the peeling force have been studied (for example, Patent Documents 2 and 3).
  • Patent Documents 2 and 3 measures for suppressing the elastic deformation of the release layer at the time of peeling the ceramic green sheet and reducing the peeling force have been studied (for example, Patent Documents 2 and 3).
  • Patent Documents 2 and 3 measures for suppressing the elastic deformation of the release layer at the time of peeling the ceramic green sheet and reducing the peeling force have been studied.
  • Patent Documents 2 and 3 measures for suppressing the elastic deformation of the release layer at the time of peeling the ceramic green sheet and reducing the peeling force have been studied.
  • Patent Documents 2 and 3 measures for suppressing the elastic deformation of the release layer at the time of
  • JP 2000-117899 A International Publication No. WO 2013/145864 International Publication No. 2013/145865 International Publication No. WO 2014/203702 JP 2016-127120 A JP-A-2017-081805
  • An object of the present invention is to provide a release film for molding a ceramic green sheet which is excellent in light peelability and hardly causes damage such as cracks in a half-cut test on a molded ultra-thin ceramic green sheet.
  • the present invention has the following configurations.
  • the ceramic according to the first aspect wherein the release layer has a phase separation structure in which the energy ray-curable compound (I) is a sea component and the polyester resin or the polyester urethane resin (II) is an island component, and has surface irregularities.
  • Release film for manufacturing green sheets 3.
  • the peeling force is not too heavy, the workability is excellent, and the projections on the release layer are large, as compared with the conventional release film for manufacturing a ceramic green sheet.
  • the polyester constituting the polyester film used as the base material in the release film of the present invention is not particularly limited, and it is possible to use a polyester film that is generally used as a release film base film-formed.
  • a polyester film that is generally used as a release film base film-formed is a crystalline linear saturated polyester composed of an aromatic dibasic acid component and a diol component.
  • examples thereof include polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, and these.
  • a copolymer containing the resin component as a main component is more preferable, and a polyester film formed from polyethylene terephthalate is particularly preferable.
  • the repeating unit of ethylene terephthalate is preferably at least 90 mol%, more preferably at least 95 mol%, and other dicarboxylic acid components and diol components may be copolymerized in small amounts, but from the viewpoint of cost. And those produced only from terephthalic acid and ethylene glycol.
  • Known additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, and a crystallization agent may be added as long as the effects of the film of the present invention are not impaired.
  • the polyester film is preferably a biaxially stretched polyester film because of its high bidirectional elastic modulus.
  • the intrinsic viscosity of the polyethylene terephthalate film is preferably 0.50 to 0.70 dl / g, more preferably 0.52 to 0.62 dl / g.
  • the intrinsic viscosity is 0.50 dl / g or more, it is preferable that breakage hardly occurs in the stretching step.
  • it is 0.70 dl / g or less it is preferable because the cutability when cutting into a predetermined product width is good and dimensional defects do not occur. Further, it is preferable that the raw material is sufficiently dried in vacuum.
  • the method for producing the polyester film in the present invention is not particularly limited, and a method generally used conventionally can be used.
  • the polyester can be melted by an extruder, extruded into a film, and obtained by cooling with a rotary cooling drum to obtain an unstretched film, and uniaxially or biaxially stretching the unstretched film. I can do it.
  • a biaxially stretched film can be obtained by a method of sequentially biaxially stretching a longitudinally or transversely uniaxially stretched film in the transverse or longitudinal direction, or a method of simultaneously biaxially stretching an unstretched film in the longitudinal and transverse directions. I can do it.
  • the stretching temperature at the time of stretching the polyester film is preferably equal to or higher than the secondary transition point (Tg) of the polyester. It is preferable that the film is stretched 1 to 8 times, particularly 2 to 6 times in each of the longitudinal and transverse directions.
  • the polyester film preferably has a thickness of 12 to 50 ⁇ m, more preferably 12 to 38 ⁇ m, and still more preferably 15 to 31 ⁇ m.
  • the thickness of the film is 12 ⁇ m or more, there is no possibility of being deformed by heat at the time of film production, processing of a release layer, and molding of a ceramic green sheet, which is preferable.
  • the thickness of the film is 50 ⁇ m or less, the amount of the film to be discarded after use is not extremely large, which is preferable in reducing the environmental load. Further, the material per area of the release film to be used is small. Therefore, it is preferable from an economic viewpoint.
  • the polyester film substrate may be a single layer or a multilayer of two or more layers, but may be a laminated polyester film having a surface layer A substantially free of inorganic particles on at least one surface. preferable.
  • a laminated polyester film having a multilayer structure of two or more layers it is preferable to have a surface layer B capable of containing particles and the like on the surface opposite to the surface layer A substantially containing no inorganic particles.
  • the layer on the side on which the release layer is applied is the surface layer A
  • the layer on the opposite side is the surface layer B
  • the other core layers are the core layer C.
  • the core layer C may have a plurality of layer configurations.
  • the surface layer B may not contain particles. In that case, it is preferable to provide a coat layer (D) containing particles and a binder on the surface layer B in order to provide slipperiness for winding the film into a roll.
  • the surface layer A forming the surface on which the release layer is applied preferably contains substantially no inorganic particles.
  • the average surface roughness (Sa) of the surface layer A is preferably 7 nm or less.
  • Sa is 7 nm or less, even if the release layer has a film thickness of 2.0 ⁇ m or less, and even a thin film having a thickness of 0.5 ⁇ m or less, pinholes or the like occur when molding the super-thin ceramic green sheets to be laminated. It is difficult and preferable. It can be said that the smaller the area surface average roughness (Sa) of the surface layer A is, the more preferable it is, but it may be 0.1 nm or more.
  • the coat layer contains substantially no inorganic particles, and the area average surface roughness (Sa) after the coat layer is laminated is within the above range.
  • Sa area average surface roughness
  • "substantially free of inorganic particles” is defined as being 50 ppm or less when the inorganic element is quantified by fluorescent X-ray analysis, preferably 10 ppm or less, most preferably the detection limit or less. Content. This is because even if the inorganic particles are not positively added to the film, the contamination components derived from the foreign matter and the dirt attached to the raw material resin or the line or the device in the manufacturing process of the film are separated and mixed into the film. This is because there are cases.
  • the surface layer B forming the opposite surface to the surface layer A on which the release layer is applied has a particle size in view of the slipperiness of the film and the ease of air release. , And particularly preferably silica particles and / or calcium carbonate particles.
  • the content of the particles contained in the surface layer B is preferably 5000 to 15000 ppm in total.
  • the average surface roughness (Sa) of the surface layer B is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm.
  • the total of the silica particles and / or calcium carbonate particles of the surface layer B is 5000 ppm or more and Sa is 1 nm or more, when the film is wound up into a roll, air can be uniformly released and the wound appearance is good. Good flatness makes it suitable for the production of ultra-thin ceramic green sheets.
  • the total of the silica particles and / or calcium carbonate particles is 15000 ppm or less and Sa is 40 nm or less, the aggregation of the lubricant hardly occurs, and coarse projections cannot be formed. In this case, it is preferable because defects such as pinholes do not occur in the ceramic green sheet.
  • silica particles and / or calcium carbonate particles from the viewpoint of transparency and cost.
  • Inert inorganic particles and / or heat-resistant organic particles other than silica and / or calcium carbonate can be used, and examples of other inorganic particles that can be used include alumina-silica composite oxide particles and hydroxyapatite particles.
  • the heat-resistant organic particles include crosslinked polyacrylic particles, crosslinked polystyrene particles, and benzoguanamine particles.
  • porous colloidal silica is preferable, and when using calcium carbonate particles, light calcium carbonate surface-treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the lubricant from falling off. .
  • the average particle diameter of the particles added to the surface layer B is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, particularly preferably 0.5 ⁇ m or more and 1.0 ⁇ m or less.
  • the average particle diameter of the particles is measured by observing the particles on the cross section of the processed film with a scanning electron microscope, observing 100 particles, and using the average value as the average particle diameter. Can be.
  • the shape of the particles is not particularly limited as long as the object of the present invention is satisfied, and spherical particles and irregular non-spherical particles can be used.
  • the particle diameter of the amorphous particles can be calculated as a circle equivalent diameter.
  • the equivalent circle diameter is a value obtained by dividing the area of the observed particle by the pi ( ⁇ ), calculating the square root, and doubling the square root.
  • the surface layer B may contain two or more kinds of particles made of different materials. Further, particles of the same kind but having different average particle diameters may be contained.
  • the coat layer containing the particles on the surface layer B has lubricity.
  • Means for providing the present coat layer is not particularly limited, but is preferably provided by a so-called in-line coating method for applying during the production of a polyester film.
  • the polyester film does not need to have the surface layers A and B, and inorganic particles are substantially contained. It may be composed of a single-layered polyester film which is not contained in the film.
  • the average surface roughness (Sa) of the surface layer B is preferably 40 nm or less, more preferably 35 nm or less, even more preferably 30 nm or less.
  • the surface Sa is measured by measuring the surface on which the coating layer is laminated.
  • the average surface roughness (Sa) of the surface layer B is preferably in the same range as that described above.
  • Coat layer D It is preferable that at least the binder resin and the particles are contained in the coat layer D on the surface of the polyester film on which the release layer is not laminated.
  • the binder resin constituting the slippery coating layer is not particularly limited, but specific examples of the polymer include a polyester resin, an acrylic resin, a urethane resin, a polyvinyl resin (eg, polyvinyl alcohol), a polyalkylene glycol, a polyalkyleneimine, and methylcellulose. , Hydroxycellulose, starch and the like. Among these, it is preferable to use a polyester resin, an acrylic resin, or a urethane resin from the viewpoint of retaining particles and adhesion. Further, in consideration of compatibility with the polyester film, a polyester resin is particularly preferable.
  • a polyester resin is particularly preferable.
  • the polyester of the binder is preferably a copolymer polyester.
  • the polyester resin may be modified with polyurethane.
  • Another preferred binder resin that forms the easy-to-lubricate coating layer on the polyester base film is urethane resin.
  • the urethane resin include a polycarbonate polyurethane resin.
  • a polyester resin and a polyurethane resin may be used in combination, and the above-mentioned other binder resins may be used in combination.
  • the slippery coating layer in order to form a crosslinked structure in the slippery coating layer, may be formed to contain a crosslinking agent.
  • a crosslinking agent By including a crosslinking agent, it is possible to further improve the adhesion under high temperature and high humidity.
  • Specific examples of the crosslinking agent include urea-based, epoxy-based, melamine-based, isocyanate-based, oxazoline-based, carbodiimide-based, and aziridine.
  • a catalyst or the like can be appropriately used as needed to promote the crosslinking reaction.
  • the slippery coating layer preferably contains lubricant particles in order to impart slipperiness to the surface.
  • the particles may be inorganic particles or organic particles, and are not particularly limited.
  • the average particle size of the particles is preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more. It is preferable that the average particle diameter of the particles is 10 nm or more, since the particles are hardly aggregated and the slipperiness can be secured.
  • the average particle size of the particles is preferably 1000 nm or less, more preferably 800 nm or less, and further preferably 600 nm or less.
  • the average particle diameter of the particles is 1000 nm or less, the transparency is maintained, and the particles do not fall off, which is preferable.
  • mixing small particles having an average particle diameter of about 10 to 270 nm and large particles having an average particle diameter of about 300 to 1000 nm can be achieved by the following method. It is preferable to reduce the average length (RSm) of the roughness curve element while keeping Rp) small, and to achieve both smoothness and smoothness. Particularly preferable are small particles of 30 nm or more and 250 nm or less, Large particles having a diameter of 350 to 600 nm are used in combination. When the small particles and the large particles are mixed, it is preferable that the mass content of the small particles is larger than the mass content of the large particles with respect to the entire solid content of the coating layer.
  • the surface layer A which is the layer on which the release layer is provided, in order to prevent particles such as a lubricant from being mixed.
  • the thickness ratio of the surface layer A on the side where the release layer is provided is preferably 20% or more and 50% or less of the total thickness of the base film. If it is 20% or more, the influence of the particles contained in the surface layer B and the like is hardly affected from the inside of the film, and it is easy to satisfy the above-mentioned range of the area average surface roughness Sa, which is preferable.
  • the thickness is not more than 50% of the thickness of all the layers of the base film, the usage ratio of the recycled material in the surface layer B can be increased and the environmental load is preferably small.
  • the layers other than the surface layer A can use 50 to 90% by mass of film scraps or recycled materials for PET bottles. Even in this case, it is preferable that the type and amount of lubricant contained in the surface layer B, the particle diameter, and the average surface roughness (Sa) satisfy the above ranges.
  • a film before or after uniaxial stretching in the film forming process is applied to the surface of the surface layer A and / or the surface layer B in order to improve the adhesion of a release layer or the like to be applied later or to prevent electrification.
  • (Sa) of each layer is substituted with the measured value of the coat layer surface.
  • the release layer in the present invention is preferably formed by curing a coating film containing at least the energy ray-curable compound (I), the polyester resin or the polyester urethane resin (II), and the release component (III).
  • the energy ray-curable compound (I) and the polyester resin or polyester urethane resin (II) phase-separate to form a sea-island structure. No pinholes are formed in the green sheet to be molded.
  • point peeling small peeling of the end naturally occurs
  • the energy ray-curable compound (I) used in the present invention preferably has a hydroxyl value of 45 mgKOH / g or less.
  • the hydroxyl value is 45 mgKOH / g or less, the compatibility with the polyester resin or the polyester urethane resin (II) is reduced, and it is easy to form surface irregularities due to an appropriate sea-island structure in the release layer, which is preferable. More preferably, it is 35 mgKOH / g or less.
  • the hydroxyl value of the energy ray-curable compound (I) is preferably small, but may be 1 mgKOH / g or more, or may be 3 mgKOH / g or more.
  • Examples of the method for setting the hydroxyl value of the energy ray-curable compound (I) to 45 mgKOH / g or less include a method using an energy ray-curable compound having a hydroxyl value of 45 mgKOH / g or less, or a method using two or more energy ray-curable compounds. Is mixed to adjust the hydroxyl value to 45 mgKOH / g or less, but there is no particular limitation.
  • an energy ray-curable compound having three or more reactive groups in one molecule can be used. Having three or more reactive groups in one molecule is preferable because a release layer having a high modulus of elasticity can be obtained, deformation of the release layer at the time of peeling the green sheet can be suppressed, and heavy release can be suppressed. In addition, since the solvent resistance of the release layer can be improved, erosion of the release layer by a solvent at the time of slurry application can be prevented, which is preferable.
  • the energy ray-curable compound having three or more reactive groups in one molecule is not particularly limited as to whether it reacts directly with an energy ray or reacts with an indirectly generated active species.
  • the content of the energy ray-curable compound (I) in the solid content in the coating liquid for forming a release layer is preferably from 60 to 98% by mass, and more preferably from 75 to 97% by mass. By adding 60% by mass or more, the degree of crosslinking can be maintained and a high elastic modulus can be obtained.
  • Examples of the reactive group of the energy ray-curable compound (I) include a (meth) acryloyl group, an alkenyl group, an acrylamide group, a maleimide group, an epoxy group, and a cyclohexene oxide group. Among them, an energy ray-curable compound having a (meth) acryloyl group having excellent workability is preferable.
  • the energy ray-curable compound having a (meth) acryloyl group can be used without being limited to a monomer, oligomer, or polymer. Further, it is preferable to contain at least one compound having three or more reactive groups in one molecule. However, two or more compounds such as compounds having one to two reactive groups in a molecule are used as a mixture. You can also. By mixing these compounds having a small number of reactive groups, curling and the like can be suppressed.
  • Examples of energy ray-curable monomers having three or more (meth) acryloyl groups in the molecule include isocyanuric acid triacrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, Methylolpropane tri (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meta) ) Polyfunctional (meth) acrylates such as acrylates and their ethylene oxide modified products, propylene oxide modified products, caprolactone modified products, etc. That.
  • Examples of the energy ray-curable monomer having 1 to 2 reactive groups in the molecule include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, cyclopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, Nonyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, isobornyl (meth) acrylate, cyclic tri
  • Examples of energy ray-curable oligomers having three or more (meth) acryloyl groups in the molecule include urethane acrylate, polyester acrylate, polyether acrylate, epoxy acrylate, and silicone-modified acrylate, and those commercially available are generally available. Can be used. For example, beam set (registered trademark) series manufactured by Arakawa Chemical Industry Co., Ltd., NK oligo series manufactured by Shin-Nakamura Chemical Co., EBECRYL series manufactured by Daicel Ornex, Biscoat series manufactured by Osaka Organic Chemical Industry Co., Ltd., urethane acrylate series manufactured by Kyoeisha Chemical Co., Ltd., DIC's Unidick series.
  • Examples of the energy ray-curable polymers having three or more (meth) acryloyl groups in the molecule include a graft polymer obtained by grafting a (meth) acryloyl group to a polymer and a block polymer obtained by adding a polyfunctional acrylic monomer to a polymer terminal.
  • a graft polymer obtained by grafting a (meth) acryloyl group to a polymer and a block polymer obtained by adding a polyfunctional acrylic monomer to a polymer terminal.
  • an acrylic resin, an epoxy resin, a polyester resin, a polyorganosiloxane, or the like can be used, and is not particularly limited.
  • polyester resin or polyester urethane resin (II) As the polyester resin or polyester urethane resin (II) used in the present invention, a single polyester resin or polyester urethane resin may be used, or two or more polyester resins and / or polyester urethane resins may be used simultaneously.
  • the content of the polyester resin or the polyester urethane resin (II) in the solid content in the coating liquid for forming a release layer is preferably 1 to 40% by mass, more preferably 1 to 10% by mass. When the content is 1% by mass or more, sufficient surface irregularities can be formed. When the content is 40% by mass or less, the degree of crosslinking of the release layer by the energy ray-curable compound (I) increases, and the temperature at the time of peeling is increased. Dependence is low and is preferable.
  • the polyester resin or polyester urethane resin is not particularly limited, and commercially available ones can be used. Examples include the Byron (registered trademark) series manufactured by Toyobo and the Nichigo Polyester (registered trademark) series manufactured by Nippon Synthetic Chemical Industry.
  • the release component (III) used in the present invention is not particularly limited as long as it is a material such as polyorganosiloxane, a fluorine compound, a long-chain alkyl compound, and waxes that can exhibit release properties with a green sheet. Further, a material having a functional group which can react with and bond to the energy ray-curable compound (I) having a (meth) acryloyl group or the like is preferable. Further, two or more kinds of materials can be mixed and used.
  • the content of the release component (III) in the solid content in the coating liquid for forming a release layer is preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass. Addition of 0.05% by mass or more is preferred because the peeling force can be reduced and 10% by mass or less can suppress the transfer of the release component to the ceramic green sheet or the like.
  • polyorganosiloxane examples include polydimethylsiloxane, polydiethylsiloxane, polyphenylsiloxane, a partially organically modified siloxane-based compound, a block polymer having a polyorganosiloxane, and a polymer obtained by grafting a polyorganosiloxane.
  • BYK registered trademark
  • Modiper registered trademark
  • the fluorine compound is not particularly limited, and a commercially available one can be used.
  • a commercially available one can be used.
  • Examples of the long-chain alkyl compound include an acrylic polymer obtained by copolymerizing a long-chain alkyl acrylate, a graft polymer obtained by grafting a long-chain alkyl, and a block polymer having a long-chain alkyl added to a terminal.
  • an acrylic polymer obtained by copolymerizing a long-chain alkyl acrylate a graft polymer obtained by grafting a long-chain alkyl
  • a block polymer having a long-chain alkyl added to a terminal There is no particular limitation, and commercially available products can be used. Examples include the Tesfine (registered trademark) series manufactured by Hitachi Chemical Co., Ltd., and Peiroyl (registered trademark) manufactured by Lion Specialty Chemicals.
  • the energy ray examples include infrared rays, visible light, ultraviolet rays, electromagnetic waves such as X-rays, electron beams, ion beams, neutron rays, and particle rays such as ⁇ -rays. Among them, the production cost is excellent. Preferably, ultraviolet light is used.
  • the atmosphere for irradiating the energy ray may be general air or nitrogen gas atmosphere.
  • the radical reaction can proceed smoothly by reducing the oxygen concentration and the elastic modulus of the release layer can be improved. It is preferable to do so from an economic viewpoint.
  • Photopolymerization initiator When a radical polymerization compound is used in the release layer of the present invention, it is preferable to add a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, and 2,4.
  • 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methylpropan-1-one which is considered to have excellent surface curability
  • 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -One is preferable
  • 2-hydroxy-2-methyl-1-phenyl-propan-1-one and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one are particularly preferable. preferable.
  • These may be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator to be added is not particularly limited, but is preferably, for example, about 0.1 to 20% by mass as a solid content in the coating solution for forming a release layer.
  • the release layer according to the invention may contain particles having a particle diameter of 1 ⁇ m or less, but it is preferable not to contain particles that form projections such as particles from the viewpoint of generating pinholes.
  • an additive such as an adhesion improver or an antistatic agent may be added to the release layer in the present invention as long as the effect of the present invention is not impaired. Further, in order to improve the adhesion to the base material, it is also preferable to perform a pretreatment such as an anchor coat, a corona treatment, a plasma treatment, or an atmospheric pressure plasma treatment on the polyester film surface before providing the release coating layer.
  • the thickness of the release layer may be set according to the purpose of use, and is not particularly limited, but is preferably in the range of 0.2 to 3.5 ⁇ m after curing. More preferably, it is 0.5 to 3.0 ⁇ m.
  • the thickness of the release layer is 0.2 ⁇ m or more, the curability of the energy ray-curable copolymer is good, and the elasticity of the release layer is improved, so that good release performance is obtained, which is preferable.
  • the thickness is 3.5 ⁇ m or less, curling hardly occurs even when the thickness of the release film is reduced, and the running property is not deteriorated in the process of molding and drying the ceramic green sheet, which is preferable.
  • the release layer surface preferably has moderate irregularities. Therefore, it is preferable that the average surface roughness (Sa) of the release layer surface is 5 to 40 nm. Further, it is more preferable that the above-mentioned Sa is satisfied and the maximum projection height (Rp) of the surface of the release layer is 60 nm or less.
  • the average surface roughness (Sa) of the region is preferably 5 to 20 nm, and at the same time, the maximum projection height (Rp) is more preferably 50 nm or less.
  • the average surface roughness (Sa) of the region is particularly preferably from 8.1 to 18 nm, most preferably from 8.5 to 17 nm.
  • the area surface average roughness (Sa) is 5 nm or more, zipping is reduced when the ceramic green sheet is peeled off, and even an ultrathin green sheet can be easily peeled off without damage.
  • the average surface roughness (Sa) is 40 nm or less, it is sufficiently smaller than the particle size of the ceramic and does not affect the surface shape of the green sheet. It is preferable that the above-mentioned Sa is satisfied and the maximum protrusion height (Rp) of the release layer surface is 60 nm or less, since the possibility of causing pinhole defects is further reduced.
  • the maximum protrusion height (Rp) is preferably small, the maximum protrusion height (Rp) may be 5 nm or more, or may be 10 nm or more, because the average surface roughness (Sa) is adjusted to 5 nm or more. It does not matter.
  • Various factors are involved in adjusting the release layer in the range of the average surface roughness (Sa) and the maximum protrusion height (Rp) of the release layer as described above. Since the layer A or the single-layered polyester film does not substantially contain inorganic particles, the surface of the release layer has a small surface roughness and the release layer has three or more reactive groups in one molecule.
  • the method for adjusting the average surface roughness (Sa) and the maximum protrusion height (Rp) of the release layer to the appropriate ranges as described above is not particularly limited, but mainly includes the energy ray-curable compound (I) and the It can be achieved preferably by adjusting the combination and content of the resin (II).
  • the method for forming the release layer is not particularly limited, and a coating liquid in which a release compound is dissolved or dispersed is spread on one surface of a polyester film of a base material by coating or the like, and a solvent or the like is developed. Is removed and then cured.
  • the drying temperature of solvent drying is preferably 50 ° C or more and 120 ° C or less, and is preferably 60 ° C or more and 100 ° C or less. More preferred.
  • the drying time is preferably 30 seconds or less, more preferably 20 seconds or less.
  • the curing reaction proceeds by irradiating with an active energy ray.
  • the energy rays used at this time ultraviolet rays, electron beams, X-rays and the like can be used.
  • the amount of ultraviolet light to be irradiated is preferably 30 to 300 mJ / cm 2 in terms of light quantity, and more preferably 30 to 200 mJ / cm 2 . 30mJ / c
  • the curing of the composition proceeds sufficiently, and by setting it to 300 mJ / cm 2 or less, the speed at the time of processing can be improved.
  • the surface tension of the coating liquid when applying the release layer is not particularly limited, but is preferably 30 mN / m or less.
  • any known coating method can be applied, for example, a roll coating method such as a gravure coating method or a reverse coating method, a bar coating method such as a wire bar, a die coating method, a spray coating method, and an air knife.
  • a roll coating method such as a gravure coating method or a reverse coating method
  • a bar coating method such as a wire bar
  • a die coating method such as a die coating method
  • a spray coating method such as a spray coating method
  • an air knife a coating method
  • a conventionally known method such as a coating method can be used.
  • the present invention will be described in detail with reference to examples below, but the present invention is not limited to these examples.
  • the characteristic values used in the present invention were evaluated using the following methods.
  • the weight average molecular weight may be simply referred to as Mw.
  • Area surface average roughness (Sa), maximum protrusion height (Rp) It is a value measured under the following conditions using a non-contact surface shape measuring system (VertScan R550H-M100, manufactured by Ryoka Systems Inc.). The average value of five measurements was adopted as the average surface roughness of the area (Sa), and the maximum protrusion height (Rp) was measured seven times, and the maximum value of five times excluding the maximum value and the minimum value was used.
  • Measurement condition ⁇ Measurement mode: WAVE mode ⁇ Objective lens: 50 ⁇ ⁇ 0.5 ⁇ Tube lens (Analysis conditions) ⁇ Surface correction: 4th order correction ⁇ Interpolation processing: Complete interpolation
  • the obtained release film with ceramic green sheet was 16 mm ⁇ 32 mm from both sides of the ceramic green sheet at 50 ° on both edges. It was half-cut so as to have a corner and a depth of 3 ⁇ m. With respect to the portion where the green sheet was peeled off, the distance from the edge of the film to the portion where the green sheet was peeled off was measured with a laser microscope and judged according to the following criteria. The measurement was performed five times and the average value was adopted.
  • an acetylating agent a solution in which 25 g of acetic anhydride was dissolved in pyridine to make the volume 100 ml
  • the hydroxyl value was determined by the following equation.
  • the hydroxyl value was a value in a dry state of the resin (unit: mgKOH / g).
  • Hydroxyl value (mgKOH / g) [ ⁇ (ba) ⁇ F ⁇ 28.05 ⁇ / S] / (nonvolatile concentration / 100)
  • S Sample collection amount (g) a: consumption of 0.5N alcoholic potassium hydroxide solution (ml) b: consumption of 0.5N alcoholic potassium hydroxide solution in blank experiment (ml)
  • F titer of 0.5N alcoholic potassium hydroxide solution
  • PET (1) Preparation of polyethylene terephthalate pellet (PET (1))
  • a continuous esterification reactor consisting of a three-stage complete mixing tank having a stirrer, a decomposer, a raw material inlet, and a product outlet was used.
  • TPA terephthalic acid
  • EG ethylene glycol
  • antimony trioxide was used in such an amount that Sb atoms became 160 ppm with respect to generated PET, and these slurries were esterified.
  • the mixture was continuously supplied to the first esterification reactor of the conversion reaction apparatus, and reacted at 255 ° C. at ordinary pressure for 4 hours on average.
  • the reaction product in the first esterification reactor is continuously taken out of the system and supplied to the second esterification reactor, and is distilled from the first esterification reactor into the second esterification reactor.
  • An EG solution containing the following amount of TMPA (trimethyl phosphate) was added and reacted at 260 ° C. for 1 hour at an average residence time at normal pressure.
  • the reaction product of the second esterification reaction vessel was continuously taken out of the system, supplied to the third esterification reaction vessel, and subjected to 39 MPa (400 kg / cm2) using a high-pressure disperser (manufactured by Nippon Seiki Co., Ltd.).
  • a high-pressure disperser manufactured by Nippon Seiki Co., Ltd.
  • the esterification reaction product generated in the third esterification reaction vessel was continuously supplied to a three-stage continuous polycondensation reaction apparatus to perform polycondensation, and sintered a stainless steel fiber having a 95% cut diameter of 20 ⁇ m. After filtration with a filter, ultrafiltration was performed and the mixture was extruded into water. After cooling, the mixture was cut into chips to obtain a PET chip having an intrinsic viscosity of 0.60 dl / g (hereinafter abbreviated as PET (1)). .
  • PET (1) intrinsic viscosity of 0.60 dl / g
  • the lubricant content in the PET chip was 0.6% by mass.
  • PET (2) polyethylene terephthalate pellet
  • PET (1) has a surface layer B (anti-release surface side layer) and PET (2) has a surface.
  • the layer A release side layer
  • extruded casted
  • a speed of 45 m / min into a sheet
  • electrostatically adhered and cooled on a casting drum at 30 ° C.
  • An unstretched polyethylene terephthalate sheet having an intrinsic viscosity of 0.59 dl / g was obtained.
  • the unstretched sheet was heated by an infrared heater, and then stretched 3.5 times in the longitudinal direction at a roll temperature of 80 ° C. due to a speed difference between the rolls.
  • Example 1 A coating solution 1 having the following composition is applied on the surface layer A of the laminated film X1 using reverse gravure so that the thickness of the release layer after drying is 2.5 ⁇ m, and dried at 90 ° C. for 30 seconds.
  • Ultraviolet rays were irradiated to 200 mJ / cm 2 using a mercury lamp to obtain a release film for producing an ultra-thin ceramic green sheet.
  • the resulting release film was evaluated for release layer thickness, area average surface roughness Sa, maximum projection height Rp, surface irregularities due to the phase separation structure, and the trigger for peeling of the ceramic green sheet during half-cutting.
  • Example 2 The following coating solution 2 in which the hydroxyl value of compound (I) was increased as compared with Example 1 was used.
  • a release film was obtained in the same manner as in Example 1 except that the coating liquid 2 was used.
  • the resulting release film was evaluated for release layer thickness, area average surface roughness Sa, maximum projection height Rp, surface irregularities due to the phase separation structure, and the trigger for peeling of the ceramic green sheet during half-cutting.
  • Example 3 Compared with Example 1, the resin (II) was changed to a polyester urethane resin (manufactured by Toyobo Co., Ltd., Byron (registered trademark) UR1400, solid content concentration: 30% by mass), and the following coating solution 3 was used. The solid content concentration of the coating solution 3 was reduced as compared with the coating solution 1 of Example 1. Coating was performed so that the thickness of the release layer after drying was 1.3 ⁇ m. A release film was obtained in the same manner as in Example 1, except that the coating liquid 3 was used and the coating was performed so that the thickness of the release layer after drying was 1.3 ⁇ m.
  • the resulting release film was evaluated for release layer thickness, area average surface roughness Sa, maximum projection height Rp, surface irregularities due to the phase separation structure, and the trigger for peeling of the ceramic green sheet during half-cutting.
  • Coating liquid 3 Compound (I) dipentaerythritol hexaacrylate 100.00 parts by mass (NK ester (registered trademark) A-DPH manufactured by Shin-Nakamura Chemical Co., Ltd., hydroxyl value 10 mgKOH / g, hexafunctional acrylate, solid content concentration 100%)
  • Resin (II) Polyester urethane resin 52.60 parts by mass (Toyobo Co., Ltd.
  • Example 4 The following coating solution 4 in which the hydroxyl value of compound (I) was increased as compared with Example 3 was used.
  • a release film was obtained in the same manner as in Example 1 except that the coating liquid 4 was used.
  • the resulting release film was evaluated for release layer thickness, area average surface roughness Sa, maximum projection height Rp, surface irregularities due to the phase separation structure, and the trigger for peeling of the ceramic green sheet during half-cutting.
  • Coating liquid 4 Compound (I) dipentaerythritol hexaacrylate 100.00 parts by mass (Aronix (registered trademark) M-402 manufactured by Toagosei Co., Ltd., hydroxyl value 30 mgKOH / g, hexafunctional acrylate, solid content concentration 100%) Resin (II) Polyester urethane resin 52.60 parts by mass (Toyobo Co., Ltd.
  • Example 5 The following coating liquid 5 in which the type of the release agent (III) was changed was used. A release film was obtained in the same manner as in Example 2 except that the coating liquid 5 was used. The resulting release film was evaluated for release layer thickness, area average surface roughness Sa, maximum projection height Rp, surface irregularities due to the phase separation structure, and the trigger for peeling of the ceramic green sheet during half-cutting.
  • Example 6 The following coating liquid 6 in which the type of the release agent (III) was changed was used. A release film was obtained in the same manner as in Example 1 except that the coating liquid 6 was used. The resulting release film was evaluated for release layer thickness, area average surface roughness Sa, maximum projection height Rp, surface irregularities due to the phase separation structure, and the trigger for peeling of the ceramic green sheet during half-cutting.
  • Example 1 The following coating solution 7 in which the hydroxyl value of compound (I) was increased as compared to Example 2 was used.
  • a release film was obtained in the same manner as in Example 1 except that the coating liquid 7 was used.
  • the resulting release film was evaluated for release layer thickness, area average surface roughness Sa, maximum projection height Rp, surface irregularities due to the phase separation structure, and the trigger for peeling of the ceramic green sheet during half-cutting.
  • Example 2 The following coating solution 8 in which the hydroxyl value of compound (I) was increased as compared with Example 4 was used.
  • a release film was obtained in the same manner as in Example 1 except that the coating liquid 8 was used.
  • the obtained release film was evaluated for release layer thickness, area average surface roughness Sa maximum protrusion height Rp, surface irregularities due to the phase separation structure, and the trigger for peeling during half-cut of the ceramic green sheet.
  • (Coating liquid 8) Compound (I) dipentaerythritol hexaacrylate 100.00 parts by mass (NK ester (registered trademark) A-9550 manufactured by Shin-Nakamura Chemical Co., Ltd., hydroxyl value 50 mg KOH / g, hexafunctional acrylate, solid content concentration 100%) Resin (II) Polyester urethane resin 52.60 parts by mass (Toyobo Co., Ltd.
  • FIGS. 1 to 6 show electron micrographs of the surface of the release layer of Examples 1 to 4 and Comparative Examples 1 and 2 used for evaluating the state of the surface unevenness of the release layer by the phase separation structure.
  • the release film for producing a ceramic green sheet of the present invention the release force does not become too heavy, the workability is excellent, and the release layer is large as compared with the conventional release film for producing a ceramic green sheet. Since there are no protrusions, it has become possible to provide a release film for producing a ceramic green sheet which can reduce defects such as pinholes in an ultra-thin ceramic green sheet having a thickness of 1 ⁇ m or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

【課題】軽剥離性に優れ、成型される極薄のセラミックグリーンシートについて、ハーフカット試験におけるクラック等のダメージを生じ難いセラミックグリーンシート成型用離型フィルムを提供すること。 【解決手段】ポリエステルフィルムの少なくとも片面に直接又は他の層を介して離型層が積層された離型フィルムであって、前記離型層は、エネルギー線硬化型化合物(I)、ポリエステル樹脂またはポリエステルウレタン樹脂(II)、及び離型成分(III)を少なく とも含む塗膜が硬化されてなり、前記エネルギー線硬化型化合物(I)の水酸基価が45mgKOH/g以下であるセラミックグリーンシート製造用離型フィルム。

Description

セラミックグリーンシート製造用離型フィルム
 本発明は、超薄層のセラミックグリーンシート製造用離型フィルムに関するものであり、詳しくは超薄層のセラミックグリーンシート製造時にピンホール及び厚みムラや剥離不良による工程不良の発生を抑制したものを製造し得る、超薄層のセラミックグリーンシート製造用離型フィルムに関するものである。
 従来ポリエステルフィルムを基材とし、その上に離型層を積層した離型フィルムは、積層セラミックコンデンサ(以下MLCCとする)、セラミック基板等のセラミックグリーンシート成型用に使用されている。近年、積層セラミックコンデンサの小型化・大容量化に伴い、セラミックグリーンシートの厚みも薄膜化する傾向にある。セラミックグリーンシートは、離型フィルムに、チタン酸バリウムなどのセラミック成分とバインダー樹脂を含有したスラリーを塗工し乾燥することで成型される。成型したセラミックグリーンシートに電極を印刷し離型フィルムから剥離したのち、セラミックグリーンシートを積層、プレスし裁断後、焼成、外部電極を塗布することで積層セラミックコンデンサが製造される。これまで、ポリエステルフィルムの離型層表面にセラミックグリーンシートを成型する場合、離型層表面の微小な突起が成型したセラミックグリーンシートに影響を与え、ハジキやピンホール等の欠点が生じやすくなるといった問題点があった。そのため、優れた平坦性を有する離型層表面を実現するための手法が種々開発されてきた(例えば、特許文献1)。
 しかしながら近年、さらなるセラミックグリーンシートの薄膜化が進み、1.0μm以下、より詳しくは0.2μm~1.0μmの厚みのセラミックグリーンシートが要求されるようになってきた。そのため、離型層表面により高い平滑性が求められるようになってきている。また、セラミックグリーンシートの薄膜化に伴い、セラミックグリーンシートの強度が低下するため、離型層表面の平滑化だけではなく、セラミックグリーンシートを離型フィルムから剥離するときの剥離力を低くかつ均一にすることが好ましく、離型フィルムからセラミックグリーンシートを剥離するときにセラミックグリーンシートにかかる負荷を極力少なくし、セラミックグリーンシートにダメージを与えないようにすることが好ましくなってきている。
 離型層表面の平滑化と剥離時のセラミックグリーンシートへの負荷を抑制する離型層側からの方法としては、離型フィルムの離型層に活性エネルギー線硬化成分を用いることで離型層の架橋密度を高め、弾性率を向上させることで、セラミックグリーンシート剥離時における離型層の弾性変形を抑制し剥離力を軽くする方策が検討されている(例えば、特許文献2、3)。しかしながらこの方法では、平滑性が高すぎるため面剥離となり、剥離力が重くなり、グリーンシートにクラックが入ることがあった。さらに超薄膜のセラミックグリーンシートを加工時に、平滑面が塗工設備の張力制御するための平滑ロールやゴムロールに接すると、ロールと平滑面のすべり性が不十分で張力制御が不安定になり、グリーンシート塗布面の平滑性が低下する問題があった。
 そこで、剥離開始時のきっかけ(剥離開始点)となる適度な大突起を有するポリエステルフィルムとすることで、平滑性と均一な剥離性とのバランスに優れた離型フィルムが報告されている(例えば、特許文献4)。しかしながら、PETに練りこまれたフィラーの場合、フィラー凝集による粗大突起が完全に無くすことができず、製品の欠点要因となる問題があった。特に、超薄層セラミックグリーンシートでは、セラミック材料として用いられる無機フィラーは60nm~800nm程度の粒径であるため(特許文献5、6)、特許文献4に記載されるようなフィルムを用いると、剥離面で局所的な穴が発生する問題があった。
特開2000-117899号公報 国際公開第2013/145864号 国際公開第2013/145865号 国際公開第2014/203702号 特開2016-127120号公報 特開2017-081805号公報
 そこで、本発明者らは、鋭意検討を行った結果、離型層表面に低突起による表面凹凸を形成させることで、上記重剥離化、加工適性低下と欠点要因の発生を同時に抑制できることを見極めた。そして、本発明の課題は、軽剥離性に優れ、成型される極薄のセラミックグリーンシートにハーフカット試験におけるクラック等のダメージを生じ難いセラミックグリーンシート成型用離型フィルムを提供することである。
 即ち、本発明は以下の構成よりなる。
1. ポリエステルフィルムの少なくとも片面に直接又は他の層を介して離型層が積層された離型フィルムであって、前記離型層は、エネルギー線硬化型化合物(I)、ポリエステル樹脂またはポリエステルウレタン樹脂(II)、及び離型成分(III)を少なくとも含む塗膜が硬化されてなり、前記エネルギー線硬化型化合物(I)の水酸基価が45mgKOH/g以下であるセラミックグリーンシート製造用離型フィルム。
2. 離型層が、エネルギー線硬化型化合物(I)を海成分とし、ポリエステル樹脂またはポリエステルウレタン樹脂(II)を島成分とする相分離構造を有し、表面凹凸を有する上記第1に記載のセラミックグリーンシート製造用離型フィルム。
3. 離型層が実質的に無機粒子を含有しない上記第1又は第2に記載のセラミックグリーンシート製造用離型フィルム。
4. 前記エネルギー線硬化型化合物(I)が、1分子内に3以上のアクリロイル基を有する(メタ)アクリル酸エステルである上記第1~第3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
5. 離型層の厚みが、0.2~3.5μmである上記第1~第4のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
6. 離型層の領域表面平均粗さ(Sa)が、5~40nmである上記第1~第5のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
7. 離型層表面の最大突起高さ(Rp)が、60nm以下である上記第1~第6のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
8. 上記第1~第7のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm~1.0μmの厚みであるセラミックグリーンシートの製造方法。
 本発明のセラミックグリーンシート製造用離型フィルムによれば、従来のセラミックグリーンシート製造用離型フィルムと比較して、剥離力が重過ぎることがなく、加工性に優れ、離型層に大突起が無いため、成型される厚み1μm以下といった超薄膜セラミックグリーンシートについて、ハーフカット試験におけるクラック等のダメージを生じ難いセラミックグリーンシート製造用離型フィルムの提供が可能となった。
本発明品(実施例1)離型層表面の電子顕微鏡写真である。 本発明品(実施例2)離型層表面の電子顕微鏡写真である。 本発明品(実施例3)離型層表面の電子顕微鏡写真である。 本発明品(実施例4)離型層表面の電子顕微鏡写真である。 比較対照品(比較例1)離型層表面の電子顕微鏡写真である。 比較対照品(比較例2)離型層表面の電子顕微鏡写真である。
 以下、本発明について詳細に説明する。
(ポリエステルフィルム)
 本発明の離型フィルムにおいて基材として用いるポリエステルフィルムを構成するポリエステルは、特に限定されず、離型フィルム基材として通常一般に使用されているポリエステルをフィルム成型したものを使用することが出来るが、好ましくは、芳香族二塩基酸成分とジオール成分からなる結晶性の線状飽和ポリエステルであるのが良く、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート又はこれらの樹脂の構成成分を主成分とする共重合体がさらに好適であり、とりわけポリエチレンテレフタレートから形成されたポリエステルフィルムが好適である。ポリエチレンテレフタレートは、エチレンテレフタレートの繰り返し単位が好ましくは90モル%以上、より好ましくは95モル%以上であり、他のジカルボン酸成分、ジオール成分が少量共重合されていてもよいが、コストの点から、テレフタル酸とエチレングリコールのみから製造されたものが好ましい。また、本発明のフィルムの効果を阻害しない範囲内で、公知の添加剤、例えば、酸化防止剤、光安定剤、紫外線吸収剤、結晶化剤などを添加してもよい。ポリエステルフィルムは双方向の弾性率の高さ等の理由から二軸延伸されたポリエステルフィルムであることが好ましい。
 上記ポリエチレンテレフタレートフィルムの固有粘度は0.50~0.70dl/gが好ましく、0.52~0.62dl/gがより好ましい。固有粘度が0.50dl/g以上の場合、延伸工程で破断が発生しづらく好ましい。逆に、0.70dl/g以下の場合、所定の製品幅に裁断するときの裁断性が良く、寸法不良が発生しないので好ましい。また、原料は十分に真空乾燥することが好ましい。
 本発明におけるポリエステルフィルムの製造方法は特に限定されず、従来一般に用いられている方法を用いることが出来る。例えば、前記ポリエステルを押出機にて溶融して、フィルム状に押出し、回転冷却ドラムにて冷却することにより未延伸フィルムを得て、該未延伸フィルムを一軸又は二軸延伸することにより得ることが出来る。二軸延伸フィルムは、縦方向あるいは横方向の一軸延伸フィルムを横方向または縦方向に逐次二軸延伸する方法、或いは未延伸フィルムを縦方向と横方向に同時二軸延伸する方法で得ることが出来る。
 本発明において、ポリエステルフィルム延伸時の延伸温度はポリエステルの二次転移点(Tg)以上とすることが好ましい。縦、横各々の方向に1~8倍、特に2~6倍の延伸をすることが好ましい。
 上記ポリエステルフィルムは、厚みが12~50μmであることが好ましく、さらに好ましくは12~38μmであり、より好ましくは、15μm~31μmである。フィルムの厚みが12μm以上であれば、フィルム生産時や離型層の加工工程、セラミックグリーンシートの成型の時に、熱により変形するおそれがなく好ましい。一方、フィルムの厚みが50μm以下であれば、使用後に廃棄するフィルムの量が極度に多くならず、環境負荷を小さくする上で好ましく、さらには、使用する離型フィルムの面積当たりの材料が少なくなるため経済的観点からも好ましい。
 上記ポリエステルフィルム基材は、単層であっても2層以上の多層であっても構わないが、少なくとも片面には実質的に無機粒子を含まない表面層Aを有する積層ポリエステルフィルムであることが好ましい。2層以上の多層構成からなる積層ポリエステルフィルムの場合は、実質的に無機粒子を含有しない表面層Aの反対面には、粒子などを含有することができる表面層Bを有することが好ましい。積層構成としては、離型層を塗布する側の層を表面層A、その反対面の層を表面層B、これら以外の芯層を芯層Cとすると、厚み方向の層構成は離型層/表面層A/表面層B、あるいは離型層/表面層A/芯層C/表面層B等の積層構造が挙げられる。当然ながら芯層Cは複数の層構成であっても構わない。また、表面層Bには粒子を含まないこともできる。その場合、フィルムをロール状に巻き取るための滑り性を付与するため、表面層B上には粒子とバインダーを含んだコート層(D)を設けることが好ましい。
 本発明におけるポリエステルフィルム基材において、離型層を塗布する面を形成する表面層Aは、実質的に無機粒子を含有しないことが好ましい。このとき、表面層Aの領域表面平均粗さ(Sa)は、7nm以下が好ましい。Saが7nm以下であると、離型層の膜厚が2.0μm以下、更に薄く0.5μm以下のような薄膜でも、積層する超薄層セラミックグリーンシートの成型時にピンホールなどの発生が起こりにくく好ましい。表面層Aの領域表面平均粗さ(Sa)は小さいほど好ましいと言えるが、0.1nm以上であって構わない。但し表面層A上に後述のアンカーコート層などを設ける場合は、コート層に実質的に無機粒子を含まないことが好ましく、コート層積層後の領域表面平均粗さ(Sa)が前記範囲内であることが好ましい。本発明において「無機粒子を実質的に含有しない」とは、ケイ光X線分析で無機元素を定量した場合に50ppm以下であることにより定義され、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量である。これは積極的に無機粒子をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。
 本発明におけるポリエステルフィルム基材が積層フィルムである場合において、離型層を塗布する表面層Aと反対面を形成する表面層Bは、フィルムの滑り性や空気の抜けやすさの観点から、粒子を含有することが好ましく、特にシリカ粒子及び/又は炭酸カルシウム粒子を含有することが好ましい。含有される粒子含有量は、表面層B中に粒子の合計で5000~15000ppmであることが好ましい。このとき、表面層Bの領域表面平均粗さ(Sa)は、1~40nmの範囲であることが好ましい。より好ましくは、5~35nmの範囲である。表面層Bのシリカ粒子及び/又は炭酸カルシウム粒子の合計が5000ppm以上、Saが1nm以上の場合には、フィルムをロール状に巻き上げるときに、空気を均一に逃がすことができ、巻き姿が良好で平面性良好により、超薄層セラミックグリーンシートの製造に好適なものとなる。また、シリカ粒子及び/又は炭酸カルシウム粒子の合計が15000ppm以下、Saが40nm以下の場合には、滑剤の凝集が生じにくく、粗大突起ができないため、超薄層のセラミックグリーンシートを成型後に巻き取った場合でもセラミックグリーンシートにピンホールなどの欠点を発生させることがなく好ましい。
 上記表面層Bに含有する粒子としては、透明性やコストの観点からシリカ粒子及び/又は炭酸カルシウム粒子を用いることがより好ましい。シリカ及び/又は炭酸カルシウム以外に不活性な無機粒子及び/又は耐熱性有機粒子などを用いることができ、他に使用できる無機粒子としては、アルミナ-シリカ複合酸化物粒子、ヒドロキシアパタイト粒子などが挙げられる。また、耐熱性有機粒子としては、架橋ポリアクリル系粒子、架橋ポリスチレン粒子、ベンゾグアナミン系粒子などが挙げられる。またシリカ粒子を用いる場合、多孔質のコロイダルシリカが好ましく、炭酸カルシウム粒子を用いる場合は、ポリアクリル酸系の高分子化合物で表面処理を施した軽質炭酸カルシウムが、滑剤の脱落防止の観点から好ましい。
 上記表面層Bに添加する粒子の平均粒子径は、0.1μm以上2.0μm以下が好ましく、0.5μm以上1.0μm以下が特に好ましい。粒子の平均粒子径が0.1μm以上であれば、離型フィルムの滑り性が良好であり好ましい。また、平均粒子径が2.0μm以下であれば、離型層表面に粗大粒子によるピンホールが発生するおそれがなく好ましい。なお、粒子の平均粒子径の測定方法は、加工後のフィルムの断面の粒子を走査型電子顕微鏡で観察を行い、粒子100個を観察し、その平均値をもって平均粒子径とする方法で行うことができる。本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒子径は円相当径として計算することができる。円相当径は、観察された粒子の面積を円周率(π)で除し、平方根を算出し2倍した値である。
 表面層Bには素材の異なる粒子を2種類以上含有させてもよい。また、同種の粒子で平均粒子径の異なるものを含有させてもよい。
 表面層Bに粒子を含まない場合は、表面層B上に粒子を含んだコート層で易滑性を持たせることも好ましい。本コート層を設ける手段は、特に限定されないが、ポリエステルフィルムの製膜中に塗工する所謂インラインコート法で設けることが好ましい。また、ポリエステルフィルムの離型層を積層しない側の表面に易滑性を持たせるコート層を設ける場合には、ポリエステルフィルムは表面層A及びBを有している必要はなく、無機粒子を実質的に含有しない単層のポリエステルフィルムからなっていてもよい。
 表面層Bの領域表面平均粗さ(Sa)は、40nm以下が好ましく、35nm以下がより好ましく、さらに好ましくは30nm以下である。また、表面層Bあるいは単層ポリエステルフィルムの離型層を積層しない側の表面にコート層(D)で易滑性を持たせる場合は、その表面のSaは、コート層を積層した表面を測定するものとし、前記の表面層Bの領域表面平均粗さ(Sa)と同等範囲であることが好ましい。
(コート層D)
 前記のポリエステルフィルムについて離型層を積層しない側の表面のコート層D中には、少なくともバインダー樹脂及び粒子が含まれていることが好ましい。
(コート層Dのバインダー樹脂)
 易滑塗布層を構成するバインダー樹脂としては特に限定されないが、ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル系樹脂(ポリビニルアルコール等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でも粒子の保持、密着性の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂を使用することが好ましい。また、ポリエステルフィルムとのなじみを考慮した場合、ポリエステル樹脂が特に好ましい。溶剤への溶解性、分散性、さらには基材フィルムや他の層との接着性を達成させるため、バインダーのポリエステルは共重合ポリエステルであることが好ましい。なお、ポリエステル樹脂はポリウレタン変性されていても良い。また、ポリエステル基材フィルム上の易滑塗布層を構成する他の好ましいバインダー樹脂としてはウレタン樹脂が挙げられる。ウレタン樹脂としてはポリカーボネートポリウレタン樹脂が挙げられる。さらに、ポリエステル樹脂、ポリウレタン樹脂は併用しても良く、上記の他のバインダー樹脂を併用してもよい。
(コート層Dの架橋剤)
 本発明において、易滑塗布層中に架橋構造を形成させるために、易滑塗布層は架橋剤が含まれて形成されていてもよい。架橋剤を含有させることにより、高温高湿下での密着性を更に向上させることが可能になる。具体的な架橋剤としては、尿素系、エポキシ系、メラミン系、イソシアネート系、オキサゾリン系、カルボジイミド系、アジリジン等が挙げられる。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。
(コート層D中の粒子)
 易滑塗布層は、表面にすべり性を付与するために、滑剤粒子を含むことが好ましい。粒子は、無機粒子であっても、有機粒子であってもよく、特に限定されるものではないが、(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、酸化ジルコニウム、二酸化チタン、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、水酸化マグネシウム、硫酸バリウム等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられるが、塗布層に適度な滑り性を与えるために、シリカが特に好ましく使用される。
 粒子の平均粒径は10nm以上であることが好ましく、より好ましくは20nm以上であり、さらに好ましくは30nm以上である。粒子の平均粒径は10nm以上であると、凝集しにくく、滑り性が確保できて好ましい。
 粒子の平均粒径は1000nm以下であることが好ましく、より好ましくは800nm以下であり、さらに好ましくは600nm以下である。粒子の平均粒径が1000nm以下であると、透明性が保たれ、また、粒子が脱落することがなく好ましい。
 また、例えば、平均粒径が10~270nm程度の小さい粒子と、平均粒径が300~1000nm程度の大きい粒子を混用することも、後述の領域表面平均粗さ(Sa)、最大突起高さ(Rp)を小さく保ちながら、粗さ曲線要素の平均長さ(RSm)を小さくして、すべり性と平滑性を両立させる上で好ましく、特に好ましくは、30nm以上250nm以下の小さい粒子と、平均粒径が350~600nmの大きい粒子を併用することである。小さい粒子と大きい粒子を混用する場合、塗布層固形分全体に対して、小さい粒子の質量含有率を大きい粒子の質量含有率より大きくしておくことが好ましい。
 上記離型層を設ける側の層である表面層Aには、ピンホール低減の観点から、滑剤などの粒子の混入を防ぐため、再生原料などを使用しないことが好ましい。
 上記離型層を設ける側の層である表面層Aの厚み比率は、基材フィルムの全層厚みの20%以上50%以下であることが好ましい。20%以上であれば、表面層Bなどに含まれる粒子の影響をフィルム内部から受けづらく、領域表面平均粗さSaが上記の範囲を満足することが容易であり好ましい。基材フィルムの全層の厚みの50%以下であると、表面層Bにおける再生原料の使用比率を増やすことができ、環境負荷が小さく好ましい。
 また、経済性の観点から上記表面層A以外の層(表面層Bもしくは前述の芯層C)には、50~90質量%のフィルム屑やペットボトルの再生原料を使用することができる。この場合でも、表面層Bに含まれる滑剤の種類や量、粒子径ならびに領域表面平均粗さ(Sa)は、上記の範囲を満足することが好ましい。
 また、後に塗布する離型層などの密着性を向上させたり、帯電を防止するなどのために表面層A及び/または表面層Bの表面に製膜工程内の延伸前または一軸延伸後のフィルムにコート層を設けてもよく、コロナ処理などを施すこともできる。コート層も設ける場合は、各層の(Sa)はコート層表面の測定値で代用する。また、表面層Aの表面にこれらコート層を設ける場合は、粒子を含有しないことが好ましい。
(離型層)
 本発明における離型層は、エネルギー線硬化型化合物(I)、ポリエステル樹脂またはポリエステルウレタン樹脂(II)、及び離型成分(III)を少なくとも含む塗膜を硬化されてなることが好ましい。エネルギー線硬化型化合物(I)とポリエステル樹脂またはポリエステルウレタン樹脂(II)が相分離して海島構造を形成することで、低突起による適度な高さの凹凸を簡便に形成でき、粗大突起が発生しないことから、成型されるグリーンシートにピンホールなどが発生しない。また、適度な凹凸により平面部分が少なくなるので、グリーンシートのハーフカット試験時に、カット時の応力が逃げやすく、カット端部にて点剥離(端部の自然に生じる小剥離)となり、端部のクラックや変形などのダメージを抑制することができるとともに、次工程の剥離工程の剥離きっかけとなり剥離がスムーズに行える。
(エネルギー線硬化型化合物(I))
 本発明で用いるエネルギー線硬化型化合物(I)は、水酸基価が45mgKOH/g以下であることが好ましい。水酸基価が45mgKOH/g以下であるとポリエステル樹脂またはポリエステルウレタン樹脂(II)との相溶性が低下し離型層に適度な海島構造による表面凹凸を形成が容易となるため好ましい。より好ましくは35mgKOH/g以下である。エネルギー線硬化型化合物(I)の水酸基価は小さいことが好ましいが、1mgKOH/g以上であってよく、3mgKOH/g以上であっても構わない。
 エネルギー線硬化型化合物(I)の水酸基価を45mgKOH/g以下とする方法としては、水酸基価が45mgKOH/g以下のエネルギー線硬化型化合物を使用する方法や、2種類以上のエネルギー線硬化型化合物を混合し水酸基価を45mgKOH/g以下に調整する方法があるが、特に限定されない。
 また、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物を用いることができる。1分子内に3以上の反応性基を有することで、高弾性率の離型層となり、グリーンシート剥離時の離型層の変形を抑制し、重剥離化を抑制することができて好ましい。また、離型層の耐溶剤性を向上させることができるためスラリー塗工時に溶剤による離型層の浸食なども防げるため好ましい。また、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物としては、エネルギー線により直接的に反応するか、または間接的に発生した活性種により反応するかは特に限定しない。エネルギー線硬化型化合物(I)の離型層形成用塗布液中の固形分中の含有量としては、60~98質量%が好ましく、75~97質量%が好ましい。60質量%以上添加することで架橋度を維持し、高弾性率を得ることができる。
 エネルギー線硬化型化合物(I)の反応性基としては、(メタ)アクリロイル基、アルケニル基、アクリルアミド基、マレイミド基、エポキシ基、シクロヘキセンオキシド基などが挙げられる。その中でも、加工性に優れる(メタ)アクリロイル基を有するエネルギー線硬化型化合物が好ましい。
 (メタ)アクリロイル基を有するエネルギー線硬化型化合物としては、モノマー、オリゴマー、ポリマーに限定されず使用できる。また、少なくとも1分子内に3以上の反応性基を有する化合物を含有していることが好ましいが、分子内に1~2の反応性基を有する化合物など2以上の化合物を混合して使用することもできる。これら反応基数が少ない化合物を混合することで、カールなどを抑制することができる。
 分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型モノマーとしては、イソシアヌル酸トリアクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレートとそれらのエチレンオキサイド変性物、プロピレンオキサイド変性物、カプロラクトン変性物等が挙げられる。
 分子内に1~2の反応性基を有するエネルギー線硬化型モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、(メタ)アクリル酸、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、シクロヘキサンジオールジ(メタ)アクリレートなどのモノマー類とそれらのエチレンオキサイド変性物、プロピレンオキサイド変性物、カプロラクトン変性物等が挙げられる。
 分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型オリゴマー類としては、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、エポキシアクリレート、シリコーン変性アクリレートなどが挙げられ、一般に市販されているものが使用できる。例えば、荒川化学工業社製ビームセット(登録商標)シリーズ、新中村化学社製NKオリゴシリーズ、ダイセル・オルネクス社製EBECRYLシリーズ、大阪有機化学工業社製ビスコートシリーズ、共栄社化学社製ウレタンアクリレートシリーズ、DIC社製ユニディックシリーズなどが挙げられる。
 分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型ポリマー類としては、ポリマーに(メタ)アクリロイル基をグラフトしたグラフトポリマーや、多官能アクリルモノマーをポリマー末端に付加させたブロックポリマーなどが挙げられる。前記のようなポリマー類としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリオルガノシロキサンなど使用でき、特に限定されるものではない。
(ポリエステル樹脂またはポリエステルウレタン樹脂(II))
 本発明で用いるポリエステル樹脂またはポリエステルウレタン樹脂(II)としては、単一のポリエステル樹脂またはポリエステルウレタン樹脂であってもよいし、2以上のポリエステル樹脂及び/またはポリエステルウレタン樹脂を同時に用いることもできる。ポリエステル樹脂またはポリエステルウレタン樹脂(II)の離型層形成用塗布液中の固形分中の含有量として、1~40質量%が好ましく、1~10質量%がより好ましい。1質量%以上含有させることで十分な表面凹凸を形成することができ、40質量%以下にすることで離型層のエネルギー線硬化型化合物(I)による架橋度が高くなり、剥離時の温度依存性が低く好ましい。
 ポリエステル樹脂またはポリエステルウレタン樹脂としては、特に限定されず、市販のものを使用することができる。例えば、東洋紡社製バイロン(登録商標)シリーズ、日本合成化学工業社製ニチゴーポリエスター(登録商標)シリーズなどが挙げられる。
(離型成分(III))
 本発明で用いる離型成分(III)としては、ポリオルガノシロキサン、フッ素化合物、長鎖アルキル化合物、ワックス類などグリーンシートとの間で離型性を発揮できる材料であればよく特に限定はない。またこれらの材料に(メタ)アクリロイル基などを有するエネルギー線硬化型化合物(I)と反応して結合できる官能基を有する材料が好ましい。また2種以上の材料を混合して用いることもできる。離型成分(III)の離型層形成用塗布液中の固形分中の含有量としては、0.05~10質量%が好ましく、0.1~5質量%がさらに好ましい。0.05質量%以上添加されていれば剥離力が軽くでき、10質量%以下であれば離型成分のセラミックグリーンシート等への移行が抑えられるため好ましい。
 ポリオルガノシロキサンとしては、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリフェニルシロキサンなどの他、一部を有機変性したシロキサン系化合物や、ポリオルガノシロキサンを有するブロックポリマーや、ポリオルガノシロキサンをグラフトしたポリマーなども使用できる。市販のものとしては、例えば、ビックケミージャパン社製BYK(登録商標)シリーズ、日油社製モディパー(登録商標)シリーズなど使用できる。
 フッ素化合物としては、特に限定されず、市販のものを使用することができる。例えば、DIC社製メガファック(登録商標)シリーズなどが挙げられる。
 長鎖アルキル化合物としては、長鎖アルキルアクリレートを共重合したアクリルポリマーや、長鎖アルキルをグラフトしたグラフトポリマー、長鎖アルキルを末端に付加させたブロックポリマーなどが挙げられる。また特に限定されず、市販のものを使用することができる。例えば、日立化成社製テスファイン(登録商標)シリーズ、ライオン・スペシャリティ・ケミカルズ社製ピーロイル(登録商標)などが挙げられる。
 エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線のような電磁波、電子線、イオンビーム、中性子線およびα線のような粒子線等が挙げられ、これらの中でも、製造コストに優れる紫外線を用いるのが好ましい。
 前記エネルギー線を照射するときの雰囲気は、一般的な空気中でも窒素ガス雰囲気下でも構わない。窒素ガス雰囲気では、酸素濃度を減少させることでラジカル反応がスムーズに進行し離型層の弾性率を向上させることができるが、空気中で照射しても実用上問題なければ、空気中で照射する方が経済的観点から好ましい。
(光重合開始剤)
 本発明の離型層にラジカル重合系化合物を用いる場合は、光重合開始剤を添加することが好ましい。光重合開始剤としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート等が挙げられる。特に、表面硬化性に優れるとされる、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチルプロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンが好ましく、中でも2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンが特に好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 光重合開始剤の添加量は、特に限定されないが、例えば、離型層形成用塗布液中の固形分として0.1から20質量%程度含有させることが好ましい。
 本発明における離型層には、粒子径が1μm以下の粒子などを含有することができるが、ピンホール発生の観点から粒子など突起を形成するものは含有しないほうが好ましい。
 本発明における離型層には、本発明の効果を阻害しない範囲であれば、密着向上剤や、帯電防止剤などの添加剤などを添加してもよい。また、基材との密着性を向上させるために、離型塗布層を設ける前にポリエステルフィルム表面に、アンカーコート、コロナ処理、プラズマ処理、大気圧プラズマ処理等の前処理をすることも好ましい。
 本発明において、離型層の厚みは、その使用目的に応じて設定すれば良く、特に限定されないが、好ましくは、硬化後の離型層が0.2~3.5μmとなる範囲がよく、より好ましくは、0.5~3.0μmである。離型層の厚みが0.2μm以上であるとエネルギー線硬化型共重合ポリマーの硬化性が良く、離型層の弾性率が向上するため良好な剥離性能が得られ好ましい。また、3.5μm以下であると、離型フィルムの厚みが薄くなってもカールを起こしにくくセラミックグリーンシートを成型、乾燥する過程で走行性不良を起こさず好ましい。
 本発明の離型フィルムは、離型層表面が適度な凹凸があることが好ましい。そのため、離型層表面の領域表面平均粗さ(Sa)が5~40nmであることが好ましい。また、前記のSaを満足し、且つ離型層表面の最大突起高さ(Rp)が60nm以下であることが更に好ましい。領域表面平均粗さ(Sa)は5~20nmが好ましく、その際同時に最大突起高さ(Rp)が50nm以下であることが更に好ましい。領域表面平均粗さ(Sa)は8.1~18nmであることが特に好ましく、8.5~17nmであることが最も好ましい。領域表面平均粗さ(Sa)が5nm以上であれば、セラミックグリーンシート剥離時に、ジッピングが軽減され、超薄層のグリーンシートであってもダメージ無く容易に剥離することができる。また領域表面平均粗さ(Sa)が40nm以下であれば、セラミックの粒径よりも十分に小さく、グリーンシートの表面形状に影響を及ぼすことが無い。前記のSaを満足し、且つ離型層表面の最大突起高さ(Rp)が60nm以下であれば、更にピンホール欠点を生じるおそれが少なくなり好ましい。最大突起高さ(Rp)は小さいことが好ましいが、領域表面平均粗さ(Sa)を5nm以上に調節する関係で、最大突起高さ(Rp)も5nm以上であっても構わず、10nm以上であっても構わない。前記のような離型層の領域表面平均粗さ(Sa)や最大突起高さ(Rp)の範囲に調節するためには、種々の要因が関連しているが、主に、ポリエステルフィルムの表面層A又は単層のポリエステルフィルムが無機粒子を実質的に含有しないため、離型層を積層する表面の粗さが小さいことと、離型層が1分子内に3以上の反応性基を有するエネルギー線硬化型化合物(I)と、前記エネルギー線硬化型化合物(I)を海成分とし、前記エネルギー線硬化型化合物(I)と非相溶であり島成分となる樹脂(II)を含有して硬化されていることが関係していると言える。離型層の領域表面平均粗さ(Sa)や最大突起高さ(Rp)を上記のような適度な範囲に調節する方法は特に限定されないが、主に、エネルギー線硬化型化合物(I)と樹脂(II)の材質の組合せや含有割合を調節することにより好ましく達成できる。
 本発明において、離型層の形成方法は、特に限定されず、離型性の化合物を溶解もしくは分散させた塗液を、基材のポリエステルフィルムの一方の面に塗布等により展開し、溶媒等を乾燥により除去後、硬化させる方法が用いられる。
 本発明の離型層を基材フィルム上に溶液塗布により塗布する場合の溶媒乾燥の乾燥温度は、50℃以上、120℃以下であることが好ましく、60℃以上、100℃以下であることがより好ましい。その乾燥時間は、30秒以下が好ましく、20秒以下がより好ましい。さらに溶剤乾燥後、活性エネルギー線を照射し硬化反応を進行させることが好ましい。この時用いるエネルギー線としては、紫外線、電子線、X線などを使用することができるが、紫外線が使用しやすく好ましい。照射する紫外線量としては光量で30~300mJ/cmが好ましく、より好ましくは、30~200mJ/cmである。30mJ/c
以上とすることで組成物の硬化が十分進行し、300mJ/cm以下とすることで加工時の速度を向上させることができるため経済的に離型フィルムを作成することができ好ましい。
 本発明において、離型層を塗布するときの塗液の表面張力は、特に限定されないが30mN/m以下であることが好ましい。表面張力を前記のようにすることで、塗工後の塗れ性が向上し、乾燥後の塗膜表面の凹凸を低減することができる。
 上記塗液の塗布法としては、公知の任意の塗布法が適用出来、例えばグラビアコート法やリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法、等の従来から知られている方法が利用できる。
 本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。本発明で用いた特性値は下記の方法を用いて評価した。なお、以下、重量平均分子量を単にMwと記載することがある。
(1)基材フィルム厚み
 ミリトロン(電子マイクロインジケーター)を用い、測定すべきフィルムの任意の4箇所より5cm角サンプル4枚を切り取り、一枚あたり各5点(計20点)測定して平均値を厚みとした。
(2)離型層厚み
 離型層の厚みは、光干渉式膜厚計(F20、フィルメトリクス社製)を用いて測定した。(離型層の屈折率は1.52として算出)
(3)領域表面平均粗さ(Sa)、最大突起高さ(Rp)
 非接触表面形状計測システム(VertScan R550H-M100、菱化システム社製)を用いて、下記の条件で測定した値である。領域表面平均粗さ(Sa)は、5回測定の平均値を採用し、最大突起高さ(Rp)は7回測定し最大値と最小値を除いた5回の最大値を使用した。
 (測定条件)
  ・測定モード:WAVEモード
  ・対物レンズ:50倍
  ・0.5×Tubeレンズ
 (解析条件)
  ・面補正:  4次補正
  ・補間処理: 完全補間
(4)相分離構造による表面凹凸
 電子顕微鏡(VE-8800、キーエンス社製)を用いて、5000倍にて離型層表面を観察し、相分離構造による表面凹凸の程度を評価した。

○:相分離による凹凸構造が確認できる
×:相分離による凹凸構造が見られない
(5)セラミックグリーンシートのハーフカット評価
 下記、材料からなる組成物を攪拌混合し、直径0.5mmのジルコニアビーズを分散媒とするビーズミルを用いて60分間分散し、セラミックスラリーを調製した。
 トルエン                     76.3質量部
 エタノール                    76.3質量部
 チタン酸バリウム(富士チタン社製 HPBT-1) 35.0質量部
 ポリビニルブチラール                3.5質量部
 (積水化学工業社製 エスレック(登録商標)BM-S)
 DOP(フタル酸ジオクチル)            1.8質量部
 次いで離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のセラミックグリーンシートが1.0μmになるように塗工し90℃で2分乾燥した。
 得られたセラミックグリーンシート付離型フィルムをロータリーダイカッター(R.D.C(FB)-A4、塚谷刄物製作所社製)を用い、セラミックグリーンシート面側から両刃50°にて16mm×32mm角、深さ3μmになるようハーフカットした。グリーンシートが剥離した部分について、フィルムの端部から剥離した部分までの距離をレーザー顕微鏡にて測定し、下記基準で判定した。測定は5回測定し平均値を採用した。
○:端部にクラック等の欠点がなく、剥離部が十分にあり(目安:剥離が達している距離が端部から4mm以上)
△:端部にクラック等の欠点がなく、剥離部が少しあり(目安:剥離が達している距離が端部から1mm以上、4mmより小さい)
×:端部にクラック等の欠点があるか、又は剥離部がない(目安:剥離が達している距離が端部から1mmより小さい)
(6)水酸基価の測定
 エネルギー線硬化型化合物(I)の水酸基価は、以下の方法で測定した。共栓三角フラスコ中に試料約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解する。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mlとした溶液)を正確に5ml加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、30秒間持続する。その後、溶液が淡紅色を呈するまで0.5Nアルコール性水酸化カリウム溶液で滴定する。
 水酸基価は次式により求めた。水酸基価は樹脂の乾燥状態の数値とした(単位:mgKOH/g)。
水酸基価(mgKOH/g)=[{(b-a)×F×28.05}/S]/(不揮発分濃度/100)
S:試料の採取量(g)
a:0.5Nアルコール性水酸化カリウム溶液の消費量(ml)
b:空実験の0.5Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.5Nアルコール性水酸化カリウム溶液の力価
(ポリエチレンテレフタレートペレット(PET(1))の調製)
 エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm2)の圧力で平均処理回数5パスの分散処理をした平均粒子径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒子径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(1)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
(ポリエチレンテレフタレートペレット(PET(2))の調製)
 一方、上記PETチップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(2)と略す。)
(積層フィルムX1の製造)
 これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流して、PET(1)を表面層B(反離型面側層)、PET(2)を表面層A(離型面側層)となるように積層し、シート状に45m/分のスピードで押出(キャスティング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算でPET(1)/(2)=60%/40%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムX1を得た。得られたフィルムX1の表面層AのSaは2nm、表面層BのSaは29nmであった。
(実施例1)
 積層フィルムX1の表面層A上に以下組成の塗布液1をリバースグラビアを用いて乾燥後の離型層膜厚が2.5μmになるように塗工し、90℃で30秒乾燥後、高圧水銀ランプを用いて200mJ/cmとなるように紫外線を照射することで超薄層セラミックグリーンシート製造用離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造による表面凹凸、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。
(塗布液1) 
  化合物(I)ジペンタエリスリトールヘキサアクリレート
                        100.00質量部  
  (新中村化学工業社製NKエステル(登録商標)A-DPH、水酸基価10mgKOH/g、6官能アクリレート、固形分濃度100%)    
  樹脂(II) ポリエステル樹脂          9.45質量部
  (東洋紡社製バイロン(登録商標)RV280、固形分濃度100質量%)
  離型剤(III)                  1.26質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                  5.25質量部 
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)    431.30質量部
(実施例2)
 化合物(I)の水酸基価を実施例1に比べ増加させた、下記塗布液2を使用した。塗布液2を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造による表面凹凸、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。
(塗布液2)
  化合物(I)ジペンタエリスリトールヘキサアクリレート
                        100.00質量部  
  (東亞合成社製アロニックス(登録商標)M-402、水酸基価30mgKOH/g、6官能アクリレート、固形分濃度100%)    
  樹脂(II) ポリエステル樹脂          9.45質量部
  (東洋紡社製バイロン(登録商標)RV280、固形分濃度100質量%)
  離型剤(III)                  1.26質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                  5.25質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)    431.30質量部
(実施例3)
 実施例1と比べ、樹脂(II)をポリエステルウレタン樹脂(東洋紡社製バイロン(登録商標)UR1400、固形分濃度30質量%)に変更し、下記塗布液3を使用した。塗布液3の固形分濃度は実施例1の塗布液1に比べ減少させた。乾燥後の離型層膜厚が1.3μmになるように塗工した。塗布液3を用いた点と、乾燥後の離型層膜厚が1.3μmになるように塗工した点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造による表面凹凸、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。
(塗布液3) 
  化合物(I)ジペンタエリスリトールヘキサアクリレート
                        100.00質量部
  (新中村化学工業社製NKエステル(登録商標)A-DPH、水酸基価10mgKOH/g、6官能アクリレート、固形分濃度100%)
  樹脂(II) ポリエステルウレタン樹脂     52.60質量部
  (東洋紡社製バイロン(登録商標)UR1400、固形分濃度30質量%)
  離型剤(III)                  1.33質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                  5.56質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)    998.32質量部
(実施例4)
 化合物(I)の水酸基価を実施例3に比べ増加させた、下記塗布液4を使用した。塗布液4を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造による表面凹凸、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。
(塗布液4) 
  化合物(I)ジペンタエリスリトールヘキサアクリレート
                        100.00質量部  
  (東亞合成社製アロニックス(登録商標)M-402、水酸基価30mgKOH/g、6官能アクリレート、固形分濃度100%)
  樹脂(II) ポリエステルウレタン樹脂     52.60質量部
  (東洋紡社製バイロン(登録商標)UR1400、固形分濃度30質量%)
  離型剤(III)                  1.33質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                  5.56質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)    998.32質量部
(実施例5)
 離型剤(III)の種類を変更した、下記塗布液5を使用した。塗布液5を用いた点を除いては、実施例2と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造による表面凹凸、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。
(塗布液5) 
  化合物(I)ジペンタエリスリトールヘキサアクリレート
                       100.00質量部    (東亞合成社製アロニックス(登録商標)M-402、水酸基価30mgKOH/g、6官能アクリレート、固形分濃度100%)    
  樹脂(II) ポリエステル樹脂          9.45質量部
  (東洋紡社製バイロン(登録商標)RV280、固形分濃度100質量%)
  離型剤(III)                  0.50質量部
  (ポリエーテル変性シロキサン、TSF4446、モメンティブ社製、固形分濃100質量%)
  光重合開始剤                  5.25質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)     432.06質量部  
(実施例6)
 離型剤(III)の種類を変更した、下記塗布液6を使用した。塗布液6を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造による表面凹凸、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。
(塗布液6) 
  化合物(I)ジペンタエリスリトールヘキサアクリレート
                       100.00質量部  
  (新中村化学工業社製NKエステル(登録商標)A-DPH、水酸基価10mgKOH/g、6官能アクリレート、固形分濃度100%)    
  樹脂(II) ポリエステル樹脂          9.45質量部
  (東洋紡社製バイロン(登録商標)RV280、固形分濃度100質量%)
  離型剤(III)                  1.26質量部
  (アクリロイル基を有するフッ素系添加剤、メガファック(登録商標)RS-75、DIC社製、固形分濃度40質量%)
  光重合開始剤                  5.25質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)    431.30質量部
(比較例1)
 実施例2に比べて、化合物(I)の水酸基価を増加させた、下記塗布液7を使用した。塗布液7を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造による表面凹凸、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。
(塗布液7) 
  化合物(I)ジペンタエリスリトールヘキサアクリレート
                        100.00質量部  
  (新中村化学工業社製NKエステル(登録商標)A-9550、水酸基価50mgKOH/g、6官能アクリレート、固形分濃度100%)    
  樹脂(II) ポリエステル樹脂          9.45質量部
  (東洋紡社製バイロン(登録商標)RV280、固形分濃度100質量%)
  離型剤(III)                  1.26質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                  5.25質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)    431.30質量部
(比較例2)
 実施例4に比べて、化合物(I)の水酸基価を増加させた、下記塗布液8を使用した。塗布液8を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa最大突起高さRp、相分離構造による表面凹凸、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。
(塗布液8) 
  化合物(I)ジペンタエリスリトールヘキサアクリレート
                        100.00質量部  
  (新中村化学工業社製NKエステル(登録商標)A-9550、水酸基価50mgKOH/g、6官能アクリレート、固形分濃度100%)    
  樹脂(II) ポリエステルウレタン樹脂     52.60質量部
  (東洋紡社製バイロン(登録商標)UR1400、固形分濃度30質量%)
  離型剤(III)                  1.33質量部
  (アクリロイル基を有する変性ポリジメチルシロキサン、BYK-UV3505、ビックケミージャパン社製、固形分濃度40質量%)
  光重合開始剤                  5.56質量部
  (OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
  希釈溶剤(MEK/トルエン=1/1)    998.32質量部
 相分離構造による離型層表面凹凸の状態評価に使用した実施例1~4、比較例1及び2の離型層表面の電子顕微鏡写真を図1~6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のセラミックグリーンシート製造用離型フィルムによれば、従来のセラミックグリーンシート製造用離型フィルムと比較して、剥離力が重くなりすぎることがなく、加工性に優れ、離型層に大突起が無いため、成型される厚み1μm以下といった超薄膜セラミックグリーンシートにピンホールなどの欠点を少なくできるセラミックグリーンシート製造用離型フィルムの提供が可能となった。

Claims (8)

  1.  ポリエステルフィルムの少なくとも片面に直接又は他の層を介して離型層が積層された離型フィルムであって、前記離型層は、エネルギー線硬化型化合物(I)、ポリエステル樹脂またはポリエステルウレタン樹脂(II)、及び離型成分(III)を少なくとも含む塗
    膜が硬化されてなり、前記エネルギー線硬化型化合物(I)の水酸基価が45mgKOH/g以下であるセラミックグリーンシート製造用離型フィルム。
  2.  離型層が、エネルギー線硬化型化合物(I)を海成分とし、ポリエステル樹脂またはポリエステルウレタン樹脂(II)を島成分とする相分離構造を有し、表面凹凸を有する請求項1に記載のセラミックグリーンシート製造用離型フィルム。
  3.  離型層が実質的に無機粒子を含有しない請求項1又は2に記載のセラミックグリーンシート製造用離型フィルム。
  4.  前記エネルギー線硬化型化合物(I)が、1分子内に3以上のアクリロイル基を有する(メタ)アクリル酸エステルである請求項1~3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
  5.  離型層の厚みが、0.2~3.5μmである請求項1~4のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
  6.  離型層の領域表面平均粗さ(Sa)が、5~40nmである請求項1~5のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
  7.  離型層表面の最大突起高さ(Rp)が、60nm以下である請求項1~6のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
  8.  請求項1~7のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm~1.0μmの厚みであるセラミックグリーンシートの製造方法。
PCT/JP2019/037456 2018-09-27 2019-09-25 セラミックグリーンシート製造用離型フィルム WO2020067089A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020504250A JP6693614B1 (ja) 2018-09-27 2019-09-25 セラミックグリーンシート製造用離型フィルム
KR1020217010181A KR102321398B1 (ko) 2018-09-27 2019-09-25 세라믹 그린시트 제조용 이형 필름
CN201980063863.4A CN112789146B (zh) 2018-09-27 2019-09-25 陶瓷生片制造用脱模薄膜
SG11202102848RA SG11202102848RA (en) 2018-09-27 2019-09-25 Release film for production of ceramic green sheet
MYPI2021001657A MY194551A (en) 2018-09-27 2019-09-25 Release film for production of ceramic green sheet
PH12021550641A PH12021550641A1 (en) 2018-09-27 2021-03-19 Release film for production of ceramic green sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018181782 2018-09-27
JP2018-181782 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020067089A1 true WO2020067089A1 (ja) 2020-04-02

Family

ID=69950165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037456 WO2020067089A1 (ja) 2018-09-27 2019-09-25 セラミックグリーンシート製造用離型フィルム

Country Status (7)

Country Link
JP (2) JP6693614B1 (ja)
KR (1) KR102321398B1 (ja)
CN (1) CN112789146B (ja)
MY (1) MY194551A (ja)
PH (1) PH12021550641A1 (ja)
SG (1) SG11202102848RA (ja)
WO (1) WO2020067089A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032793A1 (ja) * 2021-08-31 2023-03-09 東洋紡株式会社 樹脂シート成型用離型フィルム
US11736494B2 (en) 2014-05-31 2023-08-22 Apple Inc. Location service authorization and indication
JP7458545B1 (ja) 2023-09-06 2024-03-29 第一工業製薬株式会社 ポリエステル基材用離型コート剤、離型シート及び積層体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683806A (zh) * 2021-08-31 2021-11-23 江苏双星彩塑新材料股份有限公司 一种用于堆叠陶瓷坯片的离型膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060555A (ja) * 2011-09-14 2013-04-04 Lintec Corp 離型フィルム及びその製造方法
WO2014203702A1 (ja) * 2013-06-18 2014-12-24 東レ株式会社 離型用二軸配向積層ポリエステルフィルム
WO2016098779A1 (ja) * 2014-12-18 2016-06-23 東洋紡株式会社 離型層、離型層を備える成形体および離型剤

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169595A (ja) * 1991-12-26 1993-07-09 Mitsubishi Paper Mills Ltd 剥離用シート
JP2000117899A (ja) 1998-10-15 2000-04-25 Teijin Ltd 離形フィルム
JP4737368B2 (ja) * 2003-11-21 2011-07-27 東ソー株式会社 離型フィルム用樹脂組成物及び離型フィルム
JP2012224011A (ja) * 2011-04-21 2012-11-15 Lintec Corp セラミックグリーンシート製造工程用の剥離フィルム
WO2013145865A1 (ja) 2012-03-28 2013-10-03 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルム
KR101997310B1 (ko) 2012-03-28 2019-07-05 린텍 가부시키가이샤 세라믹 그린 시트 제조 공정용 박리 필름
CN104080264B (zh) * 2013-03-29 2018-05-11 日本梅克特隆株式会社 脱模薄膜和柔性印刷电路基板
JP2015071240A (ja) * 2013-10-02 2015-04-16 リンテック株式会社 剥離フィルム
JP6339809B2 (ja) 2014-01-17 2018-06-06 リンテック株式会社 離型フィルム、グリーンシートの製造方法、及び積層セラミック電子部品の製造方法
JP6285777B2 (ja) * 2014-03-31 2018-02-28 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルム
JP6502092B2 (ja) 2014-12-26 2019-04-17 太陽誘電株式会社 積層セラミックコンデンサ
WO2016158592A1 (ja) * 2015-03-27 2016-10-06 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルム
JP6781540B2 (ja) 2015-10-30 2020-11-04 太陽誘電株式会社 チタン酸バリウム系粉末、積層セラミックコンデンサ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060555A (ja) * 2011-09-14 2013-04-04 Lintec Corp 離型フィルム及びその製造方法
WO2014203702A1 (ja) * 2013-06-18 2014-12-24 東レ株式会社 離型用二軸配向積層ポリエステルフィルム
WO2016098779A1 (ja) * 2014-12-18 2016-06-23 東洋紡株式会社 離型層、離型層を備える成形体および離型剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11736494B2 (en) 2014-05-31 2023-08-22 Apple Inc. Location service authorization and indication
WO2023032793A1 (ja) * 2021-08-31 2023-03-09 東洋紡株式会社 樹脂シート成型用離型フィルム
JP7458545B1 (ja) 2023-09-06 2024-03-29 第一工業製薬株式会社 ポリエステル基材用離型コート剤、離型シート及び積層体

Also Published As

Publication number Publication date
CN112789146A (zh) 2021-05-11
MY194551A (en) 2022-12-01
PH12021550641A1 (en) 2021-10-11
JP6973555B2 (ja) 2021-12-01
CN112789146B (zh) 2022-02-25
SG11202102848RA (en) 2021-04-29
KR20210045494A (ko) 2021-04-26
KR102321398B1 (ko) 2021-11-03
JP2020114678A (ja) 2020-07-30
JP6693614B1 (ja) 2020-05-13
JPWO2020067089A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP7017168B2 (ja) セラミックグリーンシート製造用離型フィルム
WO2020067089A1 (ja) セラミックグリーンシート製造用離型フィルム
JP7017184B2 (ja) セラミックグリーンシート製造用離型フィルム
JP6962217B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7427359B2 (ja) セラミックグリーンシート製造用離型フィルム及びその評価方法
JP7367810B2 (ja) セラミックグリーンシート製造用離型フィルム
WO2022163569A1 (ja) 積層フィルムおよび積層フィルムの製造方法
WO2022186184A1 (ja) 積層フィルムおよび積層フィルムの製造方法
WO2020067090A1 (ja) セラミックグリーンシート製造用離型フィルム
JP7180064B2 (ja) セラミックグリーンシート製造用離型フィルム
JP2019116013A (ja) セラミックグリーンシート製造用離型フィルム
JP7188536B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7188537B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7188535B2 (ja) セラミックグリーンシート製造用離型フィルム
WO2023032793A1 (ja) 樹脂シート成型用離型フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504250

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010181

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19864837

Country of ref document: EP

Kind code of ref document: A1