WO2020066622A1 - スパンボンド不織布 - Google Patents

スパンボンド不織布 Download PDF

Info

Publication number
WO2020066622A1
WO2020066622A1 PCT/JP2019/035697 JP2019035697W WO2020066622A1 WO 2020066622 A1 WO2020066622 A1 WO 2020066622A1 JP 2019035697 W JP2019035697 W JP 2019035697W WO 2020066622 A1 WO2020066622 A1 WO 2020066622A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
spunbonded nonwoven
less
present
bending
Prior art date
Application number
PCT/JP2019/035697
Other languages
English (en)
French (fr)
Inventor
健太郎 梶原
大士 勝田
結香 西口
義嗣 船津
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980062770.XA priority Critical patent/CN112771221A/zh
Priority to KR1020217008542A priority patent/KR102360365B1/ko
Priority to JP2020518746A priority patent/JP7259851B2/ja
Publication of WO2020066622A1 publication Critical patent/WO2020066622A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/02Bandages, dressings or absorbent pads
    • D10B2509/026Absorbent pads; Tampons; Laundry; Towels

Definitions

  • the present invention relates to a spunbonded nonwoven fabric which is excellent in touch and is particularly suitable for use in sanitary materials.
  • Nonwoven fabrics generally used for sanitary materials such as disposable diapers and sanitary napkins are discarded with a small number of uses, so they need to be inexpensive to be widely used, and high productivity has been strongly demanded. .
  • spunbonded nonwoven fabrics produced by combining a spunbond method, which is a method for forming a web with excellent productivity, and an embossing method, which is also a method for bonding fibers with excellent productivity are widely used.
  • sanitary materials often directly touch delicate skin such as infants, excellent touch comfort is strongly required, for example, touch comfort such as underwear using general woven or knitted fabric is required.
  • touch comfort such as underwear using general woven or knitted fabric is required.
  • Patent Document 1 proposes a spunbonded nonwoven fabric made of polyolefin fibers to which a fatty acid amide compound has been added.
  • the fatty acid amide compound softens the raw material polymer as a lubricant, so that the rigidity of the spunbonded nonwoven fabric can be reduced (softened).
  • the preferable touch feeling does not simply mean that the softness is low, and that the touch feeling that fits well with the hand is particularly comfortable.
  • an object of the present invention was made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a spunbonded nonwoven fabric having a comfortable touch (hereinafter, referred to as an excellent softness) that fits well in the hand.
  • the present inventors have made intensive studies to achieve the above object, and as a result, have a specific bending resilience, and, in the case of having a specific tensile modulus of elasticity, feel particularly comfortable. It has been found that by controlling these physical property values, a good soft feeling can be obtained that can be easily blended into hands.
  • the present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
  • the spunbonded nonwoven fabric according to the embodiment of the present invention is a spunbonded nonwoven fabric composed of fibers made of a thermoplastic resin, and the spunbonded nonwoven fabric has a bending return property of 0.2 cm ⁇ 1 or more and 1.0 cm ⁇ 1 or less. And the tensile elastic modulus of the spunbonded nonwoven fabric is 5 MPa or more and 100 MPa or less. According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the bending rigidity of the spunbonded nonwoven is less than 10 ⁇ N ⁇ cm 2 / cm or more 300 ⁇ N ⁇ cm 2 / cm. According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the spunbonded nonwoven fabric has an apparent density of 0.01 g / cm 3 or more and 0.30 g / cm 3 or less.
  • a spunbonded nonwoven fabric having an excellent softness can be obtained.
  • the spunbonded nonwoven fabric of the present invention is suitable for sanitary materials such as disposable diapers and sanitary napkins that are required to have both high productivity and good touch comfort, because of their excellent softness and familiarity with hands. Can be used.
  • the spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric composed of fibers made of a thermoplastic resin, and has a bending return property of not less than 0.2 cm ⁇ 1 and not more than 1.0 cm ⁇ 1 , and has a tensile modulus of elasticity. 5 MPa or more and 100 MPa or less. The details will be described below.
  • thermoplastic resin used in the spunbonded nonwoven fabric of the present invention is not particularly limited, for example, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, aromatic polyester-based polymers such as polyhexamethylene terephthalate and the like.
  • Copolymers polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvalerate copolymer, aliphatic polyester-based polymers such as polycaprolactone and copolymers thereof, Aliphatic polyamide-based polymers such as polyamide 6, polyamide 66, polyamide 610, polyamide 10, polyamide 12, polyamide 6-12 and copolymers thereof, polypropylene, polyethylene , Polybutene, polyolefin-based polymers such as polymethylpentene and copolymers thereof, water-insoluble ethylene-vinyl alcohol copolymer-based polymers containing 25 to 70 mol% of ethylene units, polystyrene-based, polydiene-based, chlorine-based, At least one selected from polyolefin-based, polyester-based, polyurethane-based, polyamide-based, and fluorine-based elastomeric polymers can be used.
  • a polymer obtained by adding a lubricant to a polyolefin-based resin is a preferable embodiment in that low flexural rigidity, low flexural reversion, and an appropriate tensile modulus are easily obtained at the same time.
  • examples of such polymers include polypropylene to which a fatty acid amide compound has been added.
  • fatty acid amide compound examples include a fatty acid monoamide compound, a fatty acid diamide compound, a saturated fatty acid monoamide compound, and an unsaturated fatty acid diamide compound.
  • a polymer obtained by softening a polyester-based polymer by copolymerization or blending with another polymer is preferable because low bending rigidity and low bending reversibility are easily compatible.
  • examples of such polymers include those obtained by copolymerizing or polymer blending polyethylene glycol with a polyester resin, and have low flexural rigidity, low flexural reversion, and moderate tensile strength depending on the molecular weight and copolymerization ratio of polyethylene glycol. This is a particularly preferred embodiment because it is easy to simultaneously obtain an elastic modulus.
  • thermoplastic resins within a range that does not impair the effects of the present invention, such as antioxidants, weather stabilizers, light stabilizers, antistatic agents, antifogging agents, antiblocking agents, nucleating agents, pigments and the like Additives or other polymers can be added as needed.
  • the fibers constituting the spunbonded nonwoven fabric of the present invention preferably have a single fiber diameter of 5 ⁇ m or more and 30 ⁇ m or less. When the single fiber diameter is 30 ⁇ m or less, high uniformity and flexibility are obtained, and when the single fiber diameter is 5 ⁇ m or more, firm touch feeling is obtained.
  • the single fiber diameter is more preferably 25 ⁇ m or less, and further preferably 20 ⁇ m or less. Further, it is more preferably at least 7 ⁇ m, even more preferably at least 9 ⁇ m.
  • the diameter of the single fiber fiber referred to in the present invention refers to the diameter of a single fiber fiber obtained by taking a photograph of a surface of 500 to 1000 times with a microscope, measuring the width of a total of 100 randomly selected fibers, and calculating an arithmetic average value. ( ⁇ m).
  • the spunbonded nonwoven fabric of the present invention has a bending return property of 0.2 cm ⁇ 1 or more and 1.0 cm ⁇ 1 or less.
  • the bending return property is preferably 0.8 cm ⁇ 1 or less, more preferably 0.6 cm ⁇ 1 or less. Further, it is preferably at least 0.3 cm ⁇ 1, more preferably at least 0.4 cm ⁇ 1 .
  • the bending return property can be controlled by the thermoplastic resin, additives, fiber diameter, and / or spinning speed, basis weight, apparent density, bonding method, and the like described later.
  • Spunbonded nonwoven fabric of the present invention preferably has a bending stiffness is less than 10 ⁇ N ⁇ cm 2 / cm or more 300 ⁇ N ⁇ cm 2 / cm.
  • bending stiffness is less than 300 ⁇ N ⁇ cm 2 / cm, pliable soft feeling is obtained, by at 10 ⁇ N ⁇ cm 2 / cm or more, in order to moderate the bending response is obtained.
  • the flexural rigidity more preferably not more than 250 ⁇ N ⁇ cm 2 / cm, more preferably not more than 200 ⁇ N ⁇ cm 2 / cm. Further, more preferably at least 20 ⁇ N ⁇ cm 2 / cm, more preferably more than 30 ⁇ N ⁇ cm 2 / cm.
  • the bending stiffness can be controlled by the thermoplastic resin, additives, fiber diameter, and / or spinning speed, basis weight, apparent density, bonding method, and the like described below.
  • the spunbonded nonwoven fabric of the present invention has a tensile modulus of 5 MPa or more and 100 MPa or less.
  • the tensile modulus is preferably 80 MPa or less, more preferably 60 MPa or less, and even more preferably 40 MPa or less.
  • 7 MPa or more is preferable, 9 MPa or more is more preferable, and 11 MPa or more is further preferable.
  • the tensile modulus can be controlled by the thermoplastic resin, additives, fiber diameter, and / or spinning speed, basis weight, apparent density, bonding method, and the like described below.
  • the tensile elastic modulus of the spunbonded nonwoven fabric referred to in the present invention is defined in JIS L1913: 2010 “General nonwoven fabric test method”, “6.3 Tensile strength and elongation (ISO method)”, “6.3.1 Standard time”. It is the arithmetic mean of the tensile modulus in two directions perpendicular to each other, according to a tensile test with a grip distance of at least 5 cm, which is carried out according to the test.
  • This tensile elastic modulus is obtained by obtaining a curve (stress-strain curve) obtained from the load and the elongation rate, obtaining the largest slope (the load increase is larger than the elongation rate) in the region where the elongation rate is 20% or less.
  • the cross-sectional area of the present invention is the product of the sample width and the thickness (T 0 ) under a load of 0.5 g / cm 2 measured by a compression tester (for example, “KES-FB3”, manufactured by Kato Tech). is there.
  • the spunbonded nonwoven fabric of the present invention may have a tensile strength per unit weight of 0.3 (N / 5 cm) / (g / m 2 ) or more and 10 (N / 5 cm) / (g / m 2 ) or less. preferable.
  • the tensile strength per unit weight is 0.3 (N / 5 cm) / (g / m 2 ) or more, it becomes possible to withstand process passability in manufacturing a disposable diaper or the like and to endure use as a product. This is because by being 10 (N / 5 cm) / (g / m 2 ) or less, flexibility can be provided.
  • the tensile strength per unit weight is more preferably 8 (N / 5 cm) / (g / m 2 ) or less, and further preferably 6 (N / 5 cm) / (g / m 2 ) or less. Further, it is more preferably 0.4 (N / 5 cm) / (g / m 2 ) or more, and still more preferably 0.5 (N / 5 cm) / (g / m 2 ).
  • the tensile strength per unit weight can be controlled by the thermoplastic resin, additives, fiber diameter, and / or spinning speed, unit weight, apparent density, and bonding method described later.
  • the tensile strength of the spunbonded nonwoven fabric referred to in the present invention is in accordance with JIS L1913: 2010 “General tensile test method of nonwoven fabric” “6.3 Tensile strength and elongation (ISO method)” “6.3.1 Standard time”. It is a value obtained by dividing the average of the tensile strength (strength when the sample is broken) in two orthogonal directions by the weight per unit area in a tensile test in which a grip interval is at least 5 cm.
  • the spunbonded nonwoven fabric of the present invention preferably has a surface roughness SMD of at least one side determined by a KES method (Kawabata Evaluation System) of 1.0 ⁇ m or more and 2.8 ⁇ m or less.
  • a KES method Kawabata Evaluation System
  • the surface roughness SMD is 1.0 ⁇ m or more, it is possible to prevent the spunbonded nonwoven fabric from being excessively densified, thereby preventing the texture from being deteriorated or the flexibility from being impaired, and being 2.8 ⁇ m or less.
  • the reason for this is that the surface is smooth, the roughness is small, and the feel is excellent.
  • This SMD is more preferably 1.3 ⁇ m or more, and still more preferably 1.6 ⁇ m or more. Further, it is more preferably 2.6 ⁇ m or less, and further preferably 2.4 ⁇ m or less.
  • the surface roughness SMD can be controlled by the fiber diameter and / or the apparent density and the bonding method described later.
  • the surface roughness SMD referred to in the present invention is a value obtained by measuring the surface roughness SMD in two directions perpendicular to each other with a surface tester (for example, KES-FB4, manufactured by Kato Tech Co., Ltd.) and using the following equation.
  • Surface roughness SMD (Surface roughness SMD in direction 1 + Surface roughness SMD in direction 2) / 2
  • the ⁇ MR of the spunbonded nonwoven fabric of the present invention is 0.5% or more and 15% or less.
  • ⁇ MR is a parameter conventionally used as an index of moisture absorption / release properties of fibers, and the feel of a spunbonded nonwoven fabric.
  • the spunbonded nonwoven fabric can have slipperiness and flexibility suitable for high-speed production of a spunbonded nonwoven fabric, and has excellent high-order workability.
  • ⁇ MR can be adjusted by the type of the polyester component, the number average molecular weight of the contained polyethylene glycol, and the copolymerization amount.
  • ⁇ MR in the present invention refers to a value measured and calculated by the following method.
  • the ⁇ MR (%) of the spunbonded nonwoven fabric in the present invention refers to a value measured and calculated by the following method.
  • 3 g of a measurement sample is freeze-pulverized and vacuum-dried at a drying temperature of 110 ° C. for 24 hours to measure its absolute dry mass (W d ).
  • the above sample was prepared at 20 ° C. ⁇ 65% RH. H. Is allowed to stand for 24 hours in a thermo-hygrostat conditioned to the state described above, and the mass (W 20 ) of the equilibrated sample is measured.
  • the setting of the thermo-hygrostat was set at 30 ° C. ⁇ 90% R. H. And the mass (W 30 ) after further standing for 24 hours is measured, and calculated based on the following equation.
  • ⁇ MR (W 30 ⁇ W 20 ) / W d (%).
  • the spunbonded nonwoven fabric of the present invention preferably has a thickness of 0.05 mm or more and 1.50 mm or less.
  • This thickness is more preferably 0.14 mm or less, and still more preferably 0.13 mm or less. Further, it is more preferably 0.07 mm or more, and still more preferably 0.09 mm or more.
  • the thickness of the spunbonded nonwoven fabric in the present invention refers to the thickness (T 0 ) at a load of 0.5 g / cm 2 measured by a compression tester (KES-FB3, manufactured by Kato Tech).
  • the spunbonded nonwoven fabric of the present invention preferably has a basis weight of 10 g / m 2 or more and 100 g / m 2 or less.
  • the basis weight is more preferably 80 g / m 2 or less, and still more preferably 60 g / m 2 or less.
  • the basis weight (g / m 2 ) of the spunbonded nonwoven fabric in the present invention is based on 6.2 “mass per unit area” of JIS L1913: 2010, and a test piece of 20 cm ⁇ 25 cm is three pieces per 1 m of sample width. collected, weighed respective mass in a standard state (g), and to refer to the mass per 1 m 2 calculated from the average value.
  • the spunbonded nonwoven fabric of the present invention preferably has an apparent density of 0.01 g / cm 3 or more and 0.30 g / cm 3 or less.
  • it is 0.01 g / cm 3 or more, practically usable morphological stability is easily obtained, and the bending return rate is easily reduced.
  • it is 0.30 g / cm 3 or less, air permeability and flexibility are improved. This is because it is easy to obtain.
  • This apparent density is more preferably 0.25 g / cm 3 or less, and further preferably 0.20 g / cm 3 or less. Further, 0.03 g / cm 3 or more, more preferably, 0.05 g / cm 3 or more is more preferable.
  • the apparent density of the spunbonded nonwoven fabric in the present invention is a value obtained by dividing the above-mentioned basis weight by the thickness.
  • the spunbond method for producing spunbond nonwoven fabric is to melt the resin, spin from a spinneret, then pull and stretch the yarn obtained by cooling and solidifying with an ejector, onto a moving net.
  • This is a method for producing a nonwoven fabric which requires a step of heat bonding after collecting and forming a nonwoven fiber web.
  • Various shapes such as a round shape and a rectangular shape can be adopted as the shape of the spinneret and the ejector to be used.
  • the raw material polymer is vacuum-dried if necessary, and then melted and spun.
  • the spinning temperature is preferably 200 ° C. or more and 270 ° C. or less for polyolefins, and 240 ° C. or more and 320 ° C. or less for polyesters.
  • thermoplastic resin as a raw material is melted and measured in an extruder, supplied to a spinneret, and spun as a long fiber.
  • two or more raw material polymers are selected and supplied from a chip blend or a different extruder to form a composite fiber during spinning.
  • the spun filaments are then cooled.
  • How to cool the spun yarns include, for example, a method in which cold air is forcibly blown onto the yarns, an ambient temperature around the yarns. And a method of adjusting the distance between the spinneret and the ejector, or a method of combining these methods.
  • the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the ambient temperature, and the like.
  • the spinning speed is preferably at least 2,000 m / min, more preferably at least 3,000 m / min, even more preferably at least 4,000 m / min.
  • the spinning speed in the present invention is a single fiber fineness, which is a value calculated by rounding off the second decimal place to the single fiber fiber diameter and the mass per 10,000 m length as a single fiber fineness from the solid density of the raw material polymer.
  • a discharge amount of the resin discharged from the single hole of the spinneret set in each condition hereinafter, referred to as a single hole discharge amount).
  • ⁇ Spinning speed (10000 ⁇ single hole ejection amount) / single fiber fineness
  • the obtained long fibers are collected on a moving net to form a nonwoven fiber web.
  • a nonwoven fabric can be a spunbonded nonwoven fabric using only one web.
  • the raw materials and process conditions can be changed for each web.
  • laminating a melt blown nonwoven fabric is also one of the preferred embodiments. In the present invention, these laminates are also collectively referred to as a nonwoven fabric web.
  • the intended spunbonded nonwoven fabric can be obtained by integrating the obtained nonwoven fiber web by thermal bonding.
  • a hot embossing roll in which a pair of upper and lower roll surfaces are respectively engraved (irregular portions), a roll in which one roll surface is flat (smooth), and another roll
  • a method of thermally bonding with various rolls such as a hot embossing roll composed of a combination of a roll having an engraved (uneven portion) on the roll surface and a thermal calender roll composed of a combination of a pair of upper and lower flat (smooth) rolls.
  • the emboss bonding area ratio at the time of thermal bonding is preferably 5% or more and 30% or less.
  • the bonding area By setting the bonding area to preferably 5% or more, more preferably 10% or more, it is possible to obtain a practically usable strength as a spunbonded nonwoven fabric.
  • the bonding area By setting the bonding area to preferably 30% or less, more preferably 20% or less, sufficient flexibility can be obtained particularly when used as a spunbonded nonwoven fabric for sanitary materials.
  • the term "adhesive area" as used herein means that, when thermally bonding with a pair of rolls having irregularities, the convex portion of the upper roll and the convex portion of the lower roll overlap and occupy the entire nonwoven fabric in contact with the nonwoven fiber web. Say the percentage. In the case where the flat roll and the roll having irregularities are thermally bonded, the ratio of the convex portion of the roll having irregularities to the entire nonwoven fabric in a portion in contact with the nonwoven fiber web is referred to.
  • the linear pressure of the hot embossing roll during thermal bonding is preferably 5 N / cm or more and 70 N / cm or less.
  • the linear pressure of the roll is preferably 5 N / cm or more, more preferably 10 N / cm or more, and still more preferably 20 N / cm or more, it is possible to obtain sufficient strength for heat bonding and practical use as a nonwoven fabric.
  • the linear pressure of the roll is preferably 70 N / cm or less, more preferably 60 N / cm or less, and still more preferably 50 N / cm or less, sufficient flexibility is obtained, particularly when used as a nonwoven fabric for sanitary materials. Obtainable.
  • the present invention will be specifically described based on examples. However, the present invention is not limited to only these examples. In addition, in the measurement of each physical property, those not particularly described are those measured based on the above-described method. However, the present invention is not limited only to the description of these examples.
  • Thickness T 0 (mm) As a compression tester, "KES-FB3" manufactured by Kato Tech Co., Ltd. was used for the measurement.
  • Soft feeling Ten randomly selected persons touched the spunbonded nonwoven fabric by hand, and evaluated each spunbonded nonwoven fabric according to the following criteria. The average score of the evaluation results for each nonwoven fabric was taken as the softness of the nonwoven fabric.
  • ⁇ 5 Very comfortable and very favorite soft feeling
  • ⁇ 4 Somewhat comfortable and somewhat favorite soft feeling
  • ⁇ 3 Not uncomfortable but not comfortable, not dislike but not like soft feeling
  • ⁇ 2 Slightly unpleasant and slightly dislike soft feeling
  • ⁇ 1 Very unpleasant and very dislike soft feeling
  • thermoplastic resin copolymerized polyethylene terephthalate having a number average molecular weight of 5500 and a copolymerization amount of 8% by weight of the contained polyethylene glycol was used (in Table 1, which will be referred to as "PET-PEG” in Table 1).
  • PET-PEG copolymerized polyethylene terephthalate having a number average molecular weight of 5500 and a copolymerization amount of 8% by weight of the contained polyethylene glycol was used (in Table 1, which will be referred to as "PET-PEG” in Table 1).
  • PET-PEG copolymerized polyethylene terephthalate having a number average molecular weight of 5500 and a copolymerization amount of 8% by weight of the contained polyethylene glycol was used (in Table 1, which will be referred to as "PET-PEG” in Table 1).
  • this thermoplastic resin was melted by an extruder and spun from a rectangular die having a spinning temperature of 290 ° C
  • the spun yarn After the spun yarn is cooled and solidified, it is drawn and stretched by a compressed air with a pressure of 0.10 MPa in a rectangular ejector in a rectangular ejector, and is collected on a moving net to be made of a copolyester filament.
  • a nonwoven fibrous web was obtained.
  • the obtained nonwoven fiber web was thermally bonded with a pair of upper and lower hot embossing rolls composed of an upper roll and a lower roll.
  • an embossing roll made of metal and engraved with a polka dot pattern with a depth of 0.5 mm and having an adhesion area ratio of 16% was used.
  • the lower roll a pair of upper and lower hot emboss rolls composed of a metal flat roll was used.
  • the linear pressure of the hot embossing roll was 50 N / cm, and the thermal bonding temperature was 230 ° C.
  • Table 1 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • Example 2 By increasing the moving speed of the net, except with a reduced basis weight of the spunbond nonwoven fabric from 27 g / m 2 to 15 g / m 2 was obtained spunbonded nonwoven fabric in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • Example 3 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the engraving depth of the upper roll of the hot embossing roll was changed from 0.5 mm to 0.2 mm. Table 1 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • Example 4 The engraving of the upper roll of the hot embossing roll is a polka dot pattern, the engraving depth is 0.5 mm, the adhesive area ratio is 16%, the diagonal lattice pattern of 10 mm square (10 mm square on one side), the depth is 1 mm, the adhesive area A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the ratio was changed to 10%. Table 1 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • thermoplastic resin polypropylene to which 0.5% by mass of ethylene bisstearic acid amide having 38 carbon atoms was added as a lubricant was used (in Table 1, which will be described later, expressed as “PP-EBA”).
  • PP-EBA polypropylene to which 0.5% by mass of ethylene bisstearic acid amide having 38 carbon atoms was added as a lubricant
  • the spun yarn After the spun yarn is cooled and solidified, it is drawn and stretched by a compressed air with a pressure of 0.10 MPa in a rectangular ejector in a rectangular ejector, and is collected on a moving net to be made of a copolyester filament.
  • a nonwoven fibrous web was obtained.
  • the obtained nonwoven fiber web was thermally bonded with a pair of upper and lower hot embossing rolls composed of an upper roll and a lower roll.
  • an embossing roll made of metal and engraved with a polka dot pattern with a depth of 0.5 mm and having an adhesion area ratio of 16% was used.
  • the lower roll a pair of upper and lower hot emboss rolls composed of a metal flat roll was used.
  • the linear pressure of the hot embossing roll was 50 N / cm, and the thermal bonding temperature was 130 ° C.
  • Table 1 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • Example 6 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1, except that polyethylene terephthalate in which polyethylene glycol was not copolymerized was used as the thermoplastic resin (hereinafter, referred to as “PET” in Table 1 shown below). Table 1 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • Example 1 A spunbonded nonwoven fabric was obtained in the same manner as in Example 5, except that the thermoplastic resin was changed to polypropylene to which ethylene bisstearic acid amide was not added (in Table 1, which will be referred to as “PP” in Table 1). Table 1 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • Example 2 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1, except that the single hole discharge rate was changed from 0.4 g / min to 0.2 g / min, and the pressure of the compressed air at the ejector was changed from 0.10 MPa to 0.05 MPa. Table 1 shows the evaluation results of the obtained spunbonded nonwoven fabric.
  • a spunbonded nonwoven fabric having a comfortable touch (excellent softness) that fits well in the hand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

本発明は、曲げ戻り性が0.2cm-1以上1.0cm-1以下であり、かつ、引張弾性率が5MPa以上100MPa以下であるスパンボンド不織布に関する。

Description

スパンボンド不織布
 本発明は、触り心地に優れ、特に衛生材料用途に好適なスパンボンド不織布に関するものである。
 一般に紙おむつや生理用ナプキン等の衛生材料に用いられる不織布は、少ない使用回数で廃棄されるため、広く使用されるためには安価である必要があり、生産性の高さが強く求められてきた。そのため、生産性に優れたウェブの形成方法であるスパンボンド法と、同じく生産性に優れた繊維同士の接着方法であるエンボス法を組み合わせて製造される、スパンボンド不織布が広く用いられている。
 一方、衛生材料は乳児などの繊細な肌に直接触れることが多いことから、優れた触り心地を強く要求されており、例えば一般的な織編物を用いた肌着のような触り心地が求められているが、そのような触り心地のスパンボンド不織布は実現できておらず、触り心地向上のために、種々の検討が行われている。
 例えば、特許文献1には脂肪酸アミド化合物を添加したポリオレフィン繊維からなるスパンボンド不織布が提案されている。
日本国特開2018-119247号公報
 特許文献1で開示されている技術によると、脂肪酸アミド化合物が滑剤として原料ポリマーを柔軟にするため、スパンボンド不織布の剛軟度を小さく(柔軟に)することができる。しかし、本発明者らによるパネルテストの結果、好ましい触り心地とは、単純に剛軟度が低いことを指すわけではなく、手に良く馴染む触り心地も、特に心地良いと感じることが分かってきた。そこで本発明の目的は、上記の事情に鑑みてなされたものであって、手に良く馴染む触り心地(以下、優れたソフト感と呼称する)を有するスパンボンド不織布を提供することにある。
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、特定の曲げ戻り性を有し、かつ、特定の引張弾性率を有している場合に特に心地良いと感じる触り心地が得られることを見出し、これらの物性値を制御することで手に良く馴染む、優れたソフト感が得られるという知見を得た。
 本発明は、これら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
 本発明の実施形態に係るスパンボンド不織布は、熱可塑性樹脂からなる繊維で構成されたスパンボンド不織布であって、前記スパンボンド不織布の曲げ戻り性が0.2cm-1以上1.0cm-1以下であり、かつ、前記スパンボンド不織布の引張弾性率が5MPa以上100MPa以下である。
 本発明のスパンボンド不織布の好ましい態様によれば、前記のスパンボンド不織布の曲げ剛性が10μN・cm/cm以上300μN・cm/cm以下である。
 本発明のスパンボンド不織布の好ましい態様によれば、前記のスパンボンド不織布の見掛け密度が0.01g/cm以上0.30g/cm以下である。
 本発明によれば、優れたソフト感を有するスパンボンド不織布を得ることができる。特に、本発明のスパンボンド不織布は、手に良く馴染む、優れたソフト感を有するという特徴から、高い生産性と触り心地の両立を強く求められる紙おむつや生理用ナプキン等の衛生材料に対し、好適に用いることができる。
 本発明のスパンボンド不織布は、熱可塑性樹脂からなる繊維で構成されたスパンボンド不織布であって、曲げ戻り性が0.2cm-1以上1.0cm-1以下であり、かつ、引張弾性率が5MPa以上100MPa以下である。以下に、この詳細について説明する。
 [熱可塑性樹脂]
 本発明のスパンボンド不織布に用いられる熱可塑性樹脂は、特に限定されるものではないが、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の芳香族ポリエステル系ポリマーおよびその共重合体、ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート共重合体、ポリカプロラクトン等の脂肪族ポリエステル系ポリマーおよびその共重合体、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド10、ポリアミド12、ポリアミド6-12等の脂肪族ポリアミド系ポリマーおよびその共重合体、ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系ポリマーおよびその共重合体、エチレン単位を25モル%から70モル%含有する水不溶性のエチレン-ビニルアルコール共重合体系ポリマー、ポリスチレン系、ポリジエン系、塩素系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系、フッ素系のエラストマー系ポリマー等の中から少なくとも一種類を選んで用いることができる。
 ここで、ポリオレフィン系樹脂に滑剤を添加したポリマーは、低い曲げ剛性と、低い曲げ戻り性、適度な引張弾性率を同時に得やすい点で好ましい態様である。このようなポリマーの例として、脂肪酸アミド化合物を添加したポリプロピレンを挙げることができる。
 脂肪酸アミド化合物としては、脂肪酸モノアミド化合物、脂肪酸ジアミド化合物、飽和脂肪酸モノアミド化合物、不飽和脂肪酸ジアミド化合物が挙げられる。具体的には、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、エチレンビスステアリン酸アミド、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド、モンタン酸アミド、N,N’-メチレン-ビス-ラウリン酸アミド、N,N’-メチレン-ビス-ミリスチン酸アミド、N,N’-メチレン-ビス-パルミチン酸アミド、N,N’-メチレン-ビス-ベヘン酸アミド、N,N’-メチレン-ビス-オレイン酸アミド、N,N’-メチレン-ビス-エルカ酸アミド、N,N’-エチレン-ビス-オレイン酸アミド、N,N’-エチレン-ビス-エルカ酸アミドなどが挙げられ、これらを複数種を組み合わせて用いることも好ましい態様である。
 また、ポリエステル系ポリマーを共重合または他ポリマーとのブレンドによって柔軟化したポリマーは、低い曲げ剛性と、低い曲げ戻り性を両立しやすい点で好ましい。このようなポリマーの例として、特に、ポリエステル系樹脂にポリエチレングリコールを共重合するか、ポリマーブレンドしたものは、ポリエチレングリコールの分子量や共重合比率によって低い曲げ剛性と、低い曲げ戻り性、適度な引張弾性率を同時に得やすい点で、特に好ましい態様である。
 また、これら熱可塑性樹脂には、本発明の効果を損なわない範囲で、酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、紡曇剤、ブロッキング防止剤、核剤、および顔料等の添加物、あるいは他の重合体を必要に応じて添加することができる。
 [繊維]
 本発明のスパンボンド不織布を構成する繊維は、単繊維繊維径が5μm以上30μm以下であることが好ましい。単繊維繊維径が30μm以下であることによって、高い均一性と柔軟性が得られ、5μm以上であることによって、しっかりとした触り心地が得られるためである。この単繊維繊維径は、25μm以下がより好ましく、20μm以下がさらに好ましい。また、7μm以上がより好ましく、9μm以上がさらに好ましい。
 なお、本発明でいう単繊維繊維径とは、マイクロスコープで500~1000倍の表面写真を撮影し、ランダムに選択した計100本の繊維の幅を測定し、算術平均値から単繊維繊維径(μm)を算出した値である。
 [スパンボンド不織布]
 本発明のスパンボンド不織布は、曲げ戻り性が0.2cm-1以上1.0cm-1以下である。曲げ戻り性が1.0cm-1以下であることによって、曲げ戻し時に手にフィットする感触が得られ、0.2cm-1以上であることによって、適度な戻り難さが得られ、自然な風合いになるためである。この曲げ戻り性は、0.8cm-1以下が好ましく、0.6cm-1以下がさらに好ましい。また、0.3cm-1以上が好ましく、0.4cm-1以上がより好ましい。
 曲げ戻り性は、前記の熱可塑性樹脂、添加物、繊維径、および/または、後述する紡糸速度、目付、見掛け密度、ボンディングの方法等によって制御することができる。
 本発明でいうスパンボンド不織布の曲げ戻り性とは、曲げ試験機(例えば「KES-FB2」、カトーテック社製)により、直交する2つの方向の曲げ剛性(B)と曲げヒステリシス(2HB)を測定し、以下の式により求めた値である。
・曲げ剛性=(方向1のB+方向2のB)/2
・曲げヒステリシス=(方向1の2HB+方向2の2HB)/2
・曲げ戻り性=曲げヒステリシス/曲げ剛性
 本発明のスパンボンド不織布は、曲げ剛性が10μN・cm/cm以上300μN・cm/cm以下であることが好ましい。曲げ剛性が300μN・cm/cm以下であることによって、曲げやすく柔軟な感触が得られ、10μN・cm/cm以上であることによって、適度な曲げ応えが得られるためである。この曲げ剛性は、250μN・cm/cm以下がより好ましく、200μN・cm/cm以下が更に好ましい。また、20μN・cm/cm以上がより好ましく、30μN・cm/cm以上が更に好ましい。曲げ剛性は、前記の熱可塑性樹脂、添加物、繊維径、および/または、後述する紡糸速度、目付、見掛け密度、ボンディングの方法等によって制御することができる。
 本発明でいうスパンボンド不織布の曲げ剛性とは、曲げ試験機(例えば、「KES-FB2」、カトーテック社製)により、直交する2つの方向の曲げ剛性(B)を測定し、以下の式により求めた値である。
・曲げ剛性=(方向1のB+方向2のB)/2
 本発明のスパンボンド不織布は、引張弾性率が5MPa以上100MPa以下である。引張弾性率が100MPa以下であることによって、変形が容易になるため手に追随する感触が得られ、5MPa以上であることによって、適度な抵抗感が得られるためである。この引張弾性率は、80MPa以下が好ましく、60MPa以下がより好ましく、40MPa以下が更に好ましい。また、7MPa以上が好ましく、9MPa以上がより好ましく、11MPa以上が更に好ましい。引張弾性率は、前記の熱可塑性樹脂、添加物、繊維径、および/または、後述する紡糸速度、目付、見掛け密度、ボンディングの方法等によって制御することができる。
 本発明でいうスパンボンド不織布の引張弾性率とは、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」の「6.3.1 標準時」に準じて実施する、つかみ間隔が少なくとも5cmの引張試験により、直交する2つの方向の、引張弾性率の算術平均である。この引張弾性率は、荷重と伸長率によって得られる曲線(応力-歪曲線)を求め、伸長率20%以下の領域で最も大きい(伸長率に対して荷重の増加が大きい)傾きを求め、断面積で除した値のことをいう。なお、本発明の断面積はサンプル幅と、圧縮試験機(例えば「KES-FB3」、カトーテック社製)で測定した0.5g/cmの荷重下における厚み(T)との積である。
 本発明のスパンボンド不織布は、単位目付当たりの引張強度が、0.3(N/5cm)/(g/m)以上10(N/5cm)/(g/m)以下であることが好ましい。単位目付当たりの引張強度が、0.3(N/5cm)/(g/m)以上であることによって、紙おむつ等を製造する際の工程通過性や製品としての使用に耐え得るものとなり、10(N/5cm)/(g/m)以下であることによって、柔軟性を兼ね備えられるためである。
 この単位目付当たりの引張り強度は、8(N/5cm)/(g/m)以下がより好ましく、6(N/5cm)/(g/m)以下が更に好ましい。また、0.4(N/5cm)/(g/m)以上がより好ましく、0.5(N/5cm)/(g/m)以上が更に好ましい。単位目付当たりの引張強度は、前記の熱可塑性樹脂、添加物、繊維径、および/または、後述する紡糸速度、目付、見掛け密度、ボンディングの方法によって制御することができる。
 本発明でいうスパンボンド不織布の引張強度は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」の「6.3.1 標準時」に準じて実施する、つかみ間隔が少なくとも5cmの引張試験により、直交する2つの方向の、引張強度(サンプルが破断したときの強度)の平均を、目付で除した値である。
 本発明のスパンボンド不織布は、少なくとも片面のKES法(Kawabata Evaluation System)による表面粗さSMDが、1.0μm以上2.8μm以下であることが好ましい。表面粗さSMDが1.0μm以上であることによって、スパンボンド不織布が過度に緻密化して風合いが悪化したり、柔軟性が損なわれたりすることを防ぐことができ、2.8μm以下であることによって、表面が滑らかでざらつき感が小さく、肌触りに優れるためである。このSMDは、1.3μm以上がより好ましく、1.6μm以上が更に好ましい。また、2.6μm以下がより好ましく、2.4μm以下が更に好ましい。表面粗さSMDは、前記の繊維径、および/または、後述する見掛け密度、ボンディングの方法によって制御することができる。
 本発明でいう表面粗さSMDは表面試験機(例えば、KES-FB4、カトーテック社製)により、直交する2つの方向の表面粗さSMDを測定し、以下の式により求めた値である。
・表面粗さSMD=(方向1の表面粗さSMD+方向2の表面粗さSMD)/2
 本発明のスパンボンド不織布のΔMRは、0.5%以上15%以下であることが重要である。本発明者らは鋭意検討の結果、従来は繊維の吸放湿性の指標として用いられるパラメータであるΔMRと、スパンボンド不織布の触感に高い相関があることを見出した。ΔMRを0.5%以上、より好ましくは2%以上とすることで、スパンボンド不織布の表面が適度に吸湿した状態となり、表面に触れた時のしっとり感を持つ良好な触感となる。一方、ΔMRを15%以下、より好ましくは10%以下、さらに好ましくは7%以下とすることで、べたつきのない触感となる。また、ΔMRを前記範囲とした場合、スパンボンド不織布の高速生産に適した滑り性と柔軟性を有することができ、優れた高次加工性を有するスパンボンド不織布となる。
 ΔMRは、ポリエステル成分の種類や、含有ポリエチレングリコールの数平均分子量、および共重合量によって調整することができる。本発明におけるΔMRとは、以下の方法で測定、算出される値を指すこととする。
 本発明におけるスパンボンド不織布のΔMR(%)とは、以下の方法で測定、算出される値を指すこととする。
(1)測定試料3gを凍結粉砕し、乾燥温度110℃で24時間、真空乾燥してその絶乾質量(W)を測定する。
(2)上記試料を20℃×65%R.H.の状態に調湿された恒温恒湿機中に24時間放置し、平衡状態となった試料の質量(W20)を測定する。
(3)次いで、恒温恒湿機の設定を30℃×90%R.H.に変更し、更に24時間放置後の質量(W30)測定し、次の式に基づき算出する。
・ΔMR=(W30-W20)/W(%)。
 本発明のスパンボンド不織布は、厚みが0.05mm以上1.50mm以下であることが好ましい。厚みが0.05mm以上であることによって適度なクッション性が得られ、1.50mm以下であることによって曲げ柔軟性が得られるためである。この厚みは、0.14mm以下がより好ましく、0.13mm以下が更に好ましい。また、0.07mm以上がより好ましく、0.09mm以上が更に好ましい。
 本発明におけるスパンボンド不織布の厚みとは、圧縮試験機(KES-FB3、カトーテック社製)で測定した0.5g/cmの荷重での厚み(T)をいう。
 本発明のスパンボンド不織布は、目付が10g/m以上100g/m以下であることが好ましい。目付が10g/m以上であることによって、衛生材料用途に適した厚みや、実用に供し得る機械強度が得やすく、100g/m以下であることによって、通気性や柔軟性を得やすいためである。この目付は、80g/m以下がより好ましく、60g/m以下が更に好ましい。
 本発明におけるスパンボンド不織布の目付(g/m)とは、JIS L1913:2010の6.2「単位面積当たりの質量」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m当たりの質量を指すこととする。
 本発明のスパンボンド不織布は、見掛け密度が0.01g/cm以上0.30g/cm以下であることが好ましい。0.01g/cm以上であることで実用に供し得る形態安定性が得やすく、かつ、曲げ戻り率を小さくしやすく、0.30g/cm以下であることで、通気性や柔軟性を得やすいためである。この見掛け密度は0.25g/cm以下がより好ましく、0.20g/cm以下が更に好ましい。また、0.03g/cm以上がより好ましく、0.05g/cm以上が更に好ましい。
 本発明でいうスパンボンド不織布の見掛け密度とは、前記の目付を厚みで除した値である。
 [スパンボンド不織布の製造方法]
 次に、本発明のスパンボンド不織布を製造する好ましい態様を、具体的に説明する。
 スパンボンド不織布を製造するためのスパンボンド法は、樹脂を溶融し、紡糸口金から紡糸した後、冷却固化して得られた糸条に対し、エジェクターで牽引し延伸して、移動するネット上に捕集して不織繊維ウェブ化した後、熱接着する工程を要する不織布の製造方法である。
 用いられる紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくいという観点から、矩形口金と矩形エジェクターの組み合わせを用いることが好ましい態様である。
 本発明において、原料ポリマーを必要に応じて真空乾燥した後、溶融し紡糸する。紡糸温度は、ポリオレフィン系では、200℃以上270℃以下、ポリエステル系では240℃以上320℃以下とすることが好ましい。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができるためである。
 原料である熱可塑性樹脂を、押出機において溶融し計量して、紡糸口金へと供給し、長繊維として紡出する。このとき、原料ポリマーを2成分以上選び、チップブレンドや異なる押出機から供給して紡糸時に複合繊維にすることも、好ましい態様である。
 紡出された長繊維の糸条は、次に冷却されるが、紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度および雰囲気温度等を考慮して適宜調整して採用することができる。
 次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。
 紡糸速度は、2000m/分以上であることが好ましく、より好ましくは3000m/分以上であり、さらに好ましくは4000m/分以上である。紡糸速度を2000m/分以上とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み高い強度の長繊維を得ることができる。本発明における紡糸速度とは、前記単繊維繊維径と、原料ポリマーの固形密度から長さ10000m当たりの質量を単繊維繊度として、小数点以下第二位を四捨五入して算出した値である単繊維繊度と、各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と呼称する)から、次の式で算出した値である。
・紡糸速度=(10000×単孔吐出量)/単繊維繊度
 続いて、得られた長繊維を、移動するネット上に捕集して不織繊維ウェブ化する。本発明においては、高い紡糸速度で延伸するため、エジェクターから出た繊維は、高速の気流で制御された状態でネットに捕集されることとなり、繊維の絡みが少なく均一性の高い不織布を得ることができる。このような不織布は、1枚のウェブだけでスパンボンド不織布とすることもできるが、複数の紡糸設備を工程方向に並べて複数のウェブを重ねることも生産性を高めることができる点で好ましい態様である。また、このときウェブごとに原料や工程条件を変えることができる。さらに、メルトブロー不織布を積層することも好ましい態様の一つである。本発明において、これらの積層体もまとめて不織布繊維ウェブと呼称する。
 続いて、得られた不織繊維ウェブを、熱接着により一体化することにより、意図するスパンボンド不織布を得ることができる。
 上記の不織繊維ウェブを熱接着により一体化する方法としては、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど各種ロールにより、熱接着する方法が挙げられる。
 熱接着時のエンボス接着面積率は、5%以上30%以下であることが好ましい。接着面積を好ましくは5%以上、より好ましくは10%以上とすることにより、スパンボンド不織布として実用に供し得る強度を得ることができる。一方、接着面積を好ましくは30%以下、より好ましくは20%以下とすることにより、特に衛生材料用のスパンボンド不織布として用いる場合に、十分な柔軟性を得ることができる。
 ここでいう接着面積とは、一対の凹凸を有するロールにより熱接着する場合は、上側ロールの凸部と下側ロールの凸部とが重なって不織繊維ウェブに当接する部分の不織布全体に占める割合のことを言う。また、凹凸を有するロールとフラットロールにより熱接着する場合は、凹凸を有するロールの凸部が不織繊維ウェブに当接する部分の不織布全体に占める割合のことを言う。
 熱エンボスロールに施される彫刻の形状としては、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などを用いることができる。
 熱接着時の熱エンボスロールの線圧は、5N/cm以上70N/cm以下であることが好ましい。ロールの線圧を好ましくは5N/cm以上、より好ましくは10N/cm以上、さらに好ましくは20N/cm以上とすることにより、十分に熱接着させ不織布として実用に供しうる強度を得ることができる。一方、ロールの線圧を好ましくは70N/cm以下、より好ましくは60N/cm以下、さらに好ましくは50N/cm以下とすることにより、特に衛生材料用の不織布として用いる場合に、十分な柔軟性を得ることができる。
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。ただし、本発明はこれらの実施例の記載のみに限定されるものではない。
 (1)単繊維繊維径(μm):
 日立ハイテクノロジーズ社製「S-5500」を測定に用いた。
 (2)目付
 JIS L1913:2010の6.2「単位面積当たりの質量」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m当たりの質量を目付(g/m)とした。
 (3)厚みT(mm)
 圧縮試験機として、カトーテック社製「KES-FB3」を測定に用いた。
 (4)見かけ密度
 上記で測定した、目付を厚みで除した値を見かけ密度(g/m)とした。
 (5)曲げ剛性(μN・cm/cm)、曲げ戻り性(cm-1
 曲げ試験機として、カトーテック社製「KES-FB2」を測定に用いた。
 (6)引張弾性率(MPa)
 引張試験機として、島津製作所社製「AGS1KNX」を測定に用いた。なお、サンプルの厚みT(mm)の測定は、前記(3)と同じ装置を用いた。
 (7)ソフト感(級)
 任意に選定した10名がスパンボンド不織布を手で触り、それぞれのスパンボンド不織布に対して、下の基準に従って評価した。各不織布について評価結果の平均点をその不織布のソフト感とした。
・5:非常に快適で、非常に好きなソフト感である
・4:やや快適で、やや好きなソフト感である
・3:不快ではないが快適でもなく、嫌いではないが好きでもないソフト感である
・2:やや不快で、やや嫌いなソフト感である
・1:非常に不快で、非常に嫌いなソフト感である
 (実施例1)
 熱可塑性樹脂として、含有ポリエチレングリコールの数平均分子量が5500で、共重合量が8重量%の、共重合ポリエチレンテレフタレートを用いた(後に示す表1において、「PET-PEG」と表記する)。まず、この熱可塑性樹脂を押出機で溶融し、紡糸温度が290℃で、孔径φが0.30mmの矩形口金から、単孔吐出量が0.4g/分で紡出した。紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.10MPaとした圧縮エアによって、牽引・延伸し、移動するネット上に捕集して共重合ポリエステル長繊維からなる不織繊維ウェブを得た。続いて、得られた不織繊維ウェブを上ロール・下ロールで構成される上下一対の熱エンボスロールで熱接着した。このとき、上ロールには、金属製で水玉柄の彫刻が0.5mmの深さでなされた、接着面積率16%のエンボスロールを用いた。また、下ロールには、金属製フラットロールで構成される上下一対の熱エンボスロールを用いた。また、熱エンボスロールの線圧は50N/cm、熱接着温度は230℃とした。得られたスパンボンド不織布の評価結果を表1に示す。
 (実施例2)
 ネットの移動速度を上げて、スパンボンド不織布の目付を27g/mから15g/mへ小さくした以外は、実施例1と同様にしてスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に示す。
 (実施例3)
 熱エンボスロールの上ロールの彫刻深さを0.5mmから0.2mmにした以外は実施例1と同様にしてスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に示す。
 (実施例4)
 熱エンボスロールの上ロールの彫刻を水玉柄、彫刻深さ0.5mm、接着面積率16%のものから、10mm角(1辺が10mmの正方形)の斜格子柄、深さを1mm、接着面積率が10%のものにした以外は、実施例1と同様にしてスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に示す。
 (実施例5)
 熱可塑性樹脂として、滑剤として炭素数38のエチレンビスステアリン酸アミド0.5質量%を添加したポリプロピレンを用いた(後に示す表1において、「PP-EBA」と表記する)。まず、この熱可塑性樹脂を押出機で溶融し、紡糸温度が230℃で、孔径φが0.30mmの矩形口金から、単孔吐出量が0.4g/分で紡出した。紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.10MPaとした圧縮エアによって、牽引・延伸し、移動するネット上に捕集して共重合ポリエステル長繊維からなる不織繊維ウェブを得た。続いて、得られた不織繊維ウェブを上ロール・下ロールで構成される上下一対の熱エンボスロールで熱接着した。このとき、上ロールには、金属製で水玉柄の彫刻が0.5mmの深さでなされた、接着面積率16%のエンボスロールを用いた。また、下ロールには、金属製フラットロールで構成される上下一対の熱エンボスロールを用いた。また、熱エンボスロールの線圧は50N/cmで、熱接着温度は130℃とした。得られたスパンボンド不織布の評価結果を表1に示す。
 (実施例6)
 熱可塑性樹脂として、ポリエチレングリコールを共重合していないポリエチレンテレフタレート(後に示す表1において、「PET」と表記する)に変更した以外は実施例1と同様にしてスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に示す。
 (比較例1)
 熱可塑性樹脂として、エチレンビスステアリン酸アミドを添加していないポリプロピレン(後に示す表1において、「PP」と表記する)に変更した以外は実施例5と同様にしてスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に示す。
 (比較例2)
 単孔吐出量を0.4g/分から0.2g/分とし、圧縮エアのエジェクターにおける圧力を0.10MPaから0.05MPaに変更した以外は実施例1と同様にしてスパンボンド不織布を得た。得られたスパンボンド不織布の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1~6は、官能評価の結果が3.5~4.5であり、ソフト感に優れる結果であった。
 一方、比較例1および2に示すように、スパンボンド不織布の曲げ戻り性が大きすぎるものや引張弾性率が低すぎるものは、官能評価の結果も3以下と、ソフト感に劣ることを示す結果だった。
 以上、本発明の好ましい実施の形態について説明したが、本発明は、上述した実施の形態に制限されるものではなく、本発明の範囲を逸脱しない範囲において、上述した実施の形態に種々の変形及び置換を加えることができる。
 なお、本出願は、2018年9月28日出願の日本特許出願(特願2018-183754)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明によれば、手に良く馴染む触り心地(優れたソフト感)を有するスパンボンド不織布を提供する。

Claims (3)

  1.  熱可塑性樹脂からなる繊維で構成されたスパンボンド不織布であって、前記スパンボンド不織布の曲げ戻り性が0.2cm-1以上1.0cm-1以下であり、かつ、前記スパンボンド不織布の引張弾性率が5MPa以上100MPa以下である、スパンボンド不織布。
  2.  前記スパンボンド不織布の曲げ剛性が10μN・cm/cm以上300μN・cm/cm以下である、請求項1に記載のスパンボンド不織布。
  3.  前記スパンボンド不織布の見掛け密度が0.01g/cm以上0.30g/cm以下である、請求項1または2に記載のスパンボンド不織布。
PCT/JP2019/035697 2018-09-28 2019-09-11 スパンボンド不織布 WO2020066622A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980062770.XA CN112771221A (zh) 2018-09-28 2019-09-11 纺粘无纺布
KR1020217008542A KR102360365B1 (ko) 2018-09-28 2019-09-11 스펀본드 부직포
JP2020518746A JP7259851B2 (ja) 2018-09-28 2019-09-11 スパンボンド不織布

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018183754 2018-09-28
JP2018-183754 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066622A1 true WO2020066622A1 (ja) 2020-04-02

Family

ID=69949665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035697 WO2020066622A1 (ja) 2018-09-28 2019-09-11 スパンボンド不織布

Country Status (5)

Country Link
JP (1) JP7259851B2 (ja)
KR (1) KR102360365B1 (ja)
CN (1) CN112771221A (ja)
TW (1) TWI822865B (ja)
WO (1) WO2020066622A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478038B2 (ja) 2020-06-24 2024-05-02 日本製紙クレシア株式会社 吸収性物品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146671A (ja) * 1999-11-16 2001-05-29 Toyobo Co Ltd 長繊維不織布
JP2002540816A (ja) * 1999-02-02 2002-12-03 ザ、プロクター、エンド、ギャンブル、カンパニー 使い捨て衣料品
US20030162459A1 (en) * 2002-02-27 2003-08-28 Osbon Robert Lindsay Method for producing a nonwoven fabric with enhanced characteristics
JP2009056142A (ja) * 2007-08-31 2009-03-19 Daio Paper Corp 使い捨て紙おむつ
JP2014141752A (ja) * 2013-01-22 2014-08-07 Oji Holdings Corp スパンボンド不織布
WO2018139523A1 (ja) * 2017-01-27 2018-08-02 東レ株式会社 スパンボンド不織布

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3868892B2 (ja) * 2002-11-19 2007-01-17 花王株式会社 吸収性物品の表面シート
JP5592168B2 (ja) * 2009-08-31 2014-09-17 ユニ・チャーム株式会社 使い捨て着用物品
JP5973920B2 (ja) * 2011-02-01 2016-08-23 出光興産株式会社 スパンボンド不織布の製造方法及びスパンボンド不織布
JP6043054B2 (ja) * 2011-08-26 2016-12-14 ユニ・チャーム株式会社 使い捨ておむつ
JP5200143B2 (ja) * 2011-08-31 2013-05-15 ユニ・チャーム株式会社 使い捨ておむつ
JP5935327B2 (ja) 2012-01-11 2016-06-15 東洋紡株式会社 カイロ用不織布
WO2017146050A1 (ja) * 2016-02-25 2017-08-31 旭化成株式会社 滅菌用包装材料
JP6907560B2 (ja) * 2017-01-27 2021-07-21 東レ株式会社 スパンボンド不織布

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540816A (ja) * 1999-02-02 2002-12-03 ザ、プロクター、エンド、ギャンブル、カンパニー 使い捨て衣料品
JP2001146671A (ja) * 1999-11-16 2001-05-29 Toyobo Co Ltd 長繊維不織布
US20030162459A1 (en) * 2002-02-27 2003-08-28 Osbon Robert Lindsay Method for producing a nonwoven fabric with enhanced characteristics
JP2009056142A (ja) * 2007-08-31 2009-03-19 Daio Paper Corp 使い捨て紙おむつ
JP2014141752A (ja) * 2013-01-22 2014-08-07 Oji Holdings Corp スパンボンド不織布
WO2018139523A1 (ja) * 2017-01-27 2018-08-02 東レ株式会社 スパンボンド不織布

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478038B2 (ja) 2020-06-24 2024-05-02 日本製紙クレシア株式会社 吸収性物品

Also Published As

Publication number Publication date
JPWO2020066622A1 (ja) 2021-08-30
KR102360365B1 (ko) 2022-02-14
TW202026481A (zh) 2020-07-16
CN112771221A (zh) 2021-05-07
TWI822865B (zh) 2023-11-21
JP7259851B2 (ja) 2023-04-18
KR20210058853A (ko) 2021-05-24

Similar Documents

Publication Publication Date Title
KR102281509B1 (ko) 스펀본드 부직포
KR20140109419A (ko) 유연성 및 내마모성이 우수한 장섬유 부직포 및 그의 용도
JP7283386B2 (ja) スパンボンド不織布
JP2023178500A (ja) スパンボンド不織布、衛生材料、及びスパンボンド不織布の製造方法
WO2021010357A1 (ja) スパンボンド不織布及び積層不織布
WO2021256146A1 (ja) スパンボンド不織布および衛生材料
JP2002069820A (ja) スパンボンド不織布および吸収性物品
JP6907560B2 (ja) スパンボンド不織布
WO2020066622A1 (ja) スパンボンド不織布
JP5276305B2 (ja) 混繊長繊維不織布
JP2019183293A (ja) 積層不織布
CN115003872B (zh) 层叠无纺布及卫生材料
WO2021065446A1 (ja) 積層伸縮不織布、衛生材料、および、積層伸縮不織布の製造方法
JP7172250B2 (ja) スパンボンド不織布
WO2020095910A1 (ja) スパンボンド不織布、スパンボンド繊維、および積層不織布
JP2019148043A (ja) スパンボンド不織布
JP3135054B2 (ja) 伸縮性不織布の製造方法
JP6842340B2 (ja) スパンボンド不織布および衛生材料
JP2019094584A (ja) 不織布
JP6798223B2 (ja) スパンボンド不織布
JP2023131245A (ja) スパンボンド不織布
JP2019183292A (ja) 積層不織布
WO2021200371A1 (ja) スパンボンド不織布
JP2023132020A (ja) 積層不織布および吸収性物品
US20240115432A1 (en) Nonwoven Fabric, Use of Same, and Method for Producing Nonwoven Fabric

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020518746

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2101001726

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866884

Country of ref document: EP

Kind code of ref document: A1