WO2020066262A1 - ニッケル粒子の製造方法、硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法 - Google Patents
ニッケル粒子の製造方法、硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法 Download PDFInfo
- Publication number
- WO2020066262A1 WO2020066262A1 PCT/JP2019/029396 JP2019029396W WO2020066262A1 WO 2020066262 A1 WO2020066262 A1 WO 2020066262A1 JP 2019029396 W JP2019029396 W JP 2019029396W WO 2020066262 A1 WO2020066262 A1 WO 2020066262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nickel
- producing
- particles
- nickel particles
- metal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/02—Carbonyls
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/10—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
- B22F2009/0828—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to a method for producing nickel particles, a method for producing nickel sulfate, and a method for producing a positive electrode active material for a secondary battery.
- xEV electric vehicles
- hybrid vehicles electric vehicles
- secondary batteries such as lithium-ion batteries serving as power sources
- NCM lithium nickel cobalt manganate
- NCA lithium nickel cobalt aluminate
- a composite oxide containing nickel is generally prepared by using a nickel salt such as nickel sulfate or nickel nitrate to prepare a nickel-containing hydroxide by a crystallization method, and then adding a lithium compound to the hydroxide. It can be manufactured by mixing and firing at high temperature. Since a nickel salt is obtained by dissolving a high-purity nickel metal in sulfuric acid or the like, it is preferable to use a nickel metal that is easily dissolved in an acid such as sulfuric acid for producing a positive electrode active material.
- An object of the present disclosure is to provide a method for producing nickel metal (nickel particles) suitable as a raw material of a positive electrode active material for a secondary battery.
- a method for producing nickel particles according to an aspect of the present disclosure includes a step of obtaining a molten metal by melting a nickel source, and atomizing a molten nickel contained in the molten metal by an atomizing method in which a gas or an aqueous medium is sprayed on the molten metal. Obtaining nickel particles having a purity of 90% by mass or more.
- nickel sulfate produced by dissolving nickel particles produced by the above production method in an aqueous sulfuric acid solution is obtained.
- a method for producing a positive electrode active material for a secondary battery according to an embodiment of the present disclosure includes a step of obtaining a nickel-containing hydroxide by a crystallization method using nickel sulfate produced by the above-described production method; Mixing the oxide and the lithium compound and firing the mixed particles.
- nickel particles suitable for a raw material of a positive electrode active material for a secondary battery can be produced.
- securing nickel metal suitable for the raw material of the positive electrode active material is an important issue in the production of secondary batteries.
- high-purity nickel metal that can be used as a raw material of a positive electrode active material there are mainly a briquette obtained by compression-molding nickel particles and a plate-shaped cathode.
- Briquettes have a higher solubility in sulfuric acid than cathodes, and thus briquettes are preferably used in the production of positive electrode active materials.
- the production of briquettes is limited, and it is expected that it will become difficult to obtain the production of secondary batteries in the future as the production of secondary batteries increases.
- the cathode has a larger production volume than the briquette, it has a slower dissolution rate for acids such as sulfuric acid, and it is not easy to use the cathode to produce a cathode active material efficiently.
- the present inventors have conducted intensive studies on the above problems, and as a result, have found that a nickel source is pulverized by spraying a gas or an aqueous medium onto a molten metal obtained by melting a nickel source, and that high-purity nickel particles can be produced. . Since the nickel particles have high solubility in acids such as sulfuric acid, they are suitable as a raw material for a positive electrode active material.
- the cathode can be used as the nickel source.
- FIG. 1 is a diagram for explaining an example of a method for producing nickel particles.
- the manufacturing process of the nickel particles 12 as one example of the embodiment includes a process of melting the nickel source 10 to obtain the molten metal 11 (hereinafter, may be referred to as a “first process”) and a process of melting the molten metal.
- a step of pulverizing molten nickel contained in the molten metal 11 by an atomizing method in which a gas or an aqueous medium is sprayed on the molten metal 11 (hereinafter, may be referred to as a “second step”).
- a melting furnace 20 for melting the nickel source 10 a nozzle 21 for blowing a high-pressure gas or an aqueous medium to the molten metal 11, and a chamber (not shown) for storing the powdered nickel particles 12 are used. .
- a nickel cathode is used as the nickel source 10.
- the nickel cathode is obtained by using a nickel plate (seed plate) as a cathode and electrodepositing nickel on the surface thereof.
- the nickel cathode is a plate-like body having a thickness of, for example, 5 mm to 15 mm, and is also called electric nickel.
- the cathode hardly dissolves in an acid such as sulfuric acid, and is unsuitable as a raw material for the positive electrode active material as it is.
- nickel particles 12 having high purity and high solubility in acid and suitable for a raw material of a positive electrode active material can be obtained.
- the nickel source 10 is not limited to the nickel cathode.
- low-purity nickel metal such as ferro nickel or nickel pig iron (NPI), ore containing nickel, or the like may be used for the nickel source 10.
- NPI nickel pig iron
- a raw material mainly composed of a hydrate such as crude nickel hydroxide or a positive electrode mixture separated and concentrated from recycling of a secondary battery may be used.
- the nickel source 10 is melted in a melting furnace 20, whereby a molten metal 11 containing molten nickel is obtained.
- a melting furnace 20 for example, an induction furnace is used.
- the melting furnace 20 heats the nickel source 10 to a temperature at least equal to or higher than the melting point of nickel, and causes the molten metal 11 to drop (flow out) from a tap hole 20a provided on the bottom surface.
- a heat-resistant ceramic material for the inner wall material of the melting furnace 20 in order to prevent impurities from being mixed.
- the ceramic material at least one selected from SiO 2 , Al 2 O 3 , MgO 2 , and ZrO 2 is particularly preferable.
- the metal 13 that is more easily oxidized than nickel may be melted together with the nickel source 10 to remove the generated oxide of the metal 13.
- the metal 13 is preferably charged into the melting furnace 20 together with the nickel source 10.
- the metal 13 is oxidized preferentially over nickel in the first step, so that the oxidation of nickel can be suppressed.
- the oxide of the metal 13 floats on the molten metal 11 stored in the melting furnace 20, for example, and can be separated from the molten metal 11 containing molten nickel.
- the metal 13 a metal located below nickel in the Ellingham diagram of the oxide.
- Specific examples include chromium (Cr), manganese (Mn), silicon (Si), titanium (Ti), aluminum (Al), magnesium (Mg), calcium (Ca), iron (Fe), and the like.
- Cr, Mn, Si, Ti, Al, and Mg are preferable since they hardly affect battery characteristics and safety even when mixed into the battery. These function as deoxidizers, react with dissolved oxygen to form oxides, and suppress oxidation of nickel.
- the molten metal 11 containing molten nickel obtained in the first step flows out of tap hole 20a and is supplied to the second step.
- the molten metal 11 may be at a temperature equal to or higher than the melting point of nickel.
- the molten metal 11 is subjected to constant cooling before being pulverized by the atomizing method, in consideration of the cooling, it is necessary to prevent a significant increase in the viscosity of the molten metal 11 or the like. It is preferable to set the temperature to a low temperature.
- the content of the molten nickel in the molten metal 11 flowing out from the tap hole 20a is, for example, substantially 100% (the molten metal 11 ⁇ the molten nickel).
- a nozzle 21 for injecting a gas or an aqueous medium is provided below the tap hole 20a.
- the pressure of the gas or the aqueous medium injected from the nozzle 21 increases, the shearing force acting on the molten metal 11 generally increases, and the particle size of the nickel particles 12 decreases.
- the nozzle 21 injects a high-pressure gas or an aqueous medium obliquely downward, and sprays it substantially uniformly over the entire outer periphery of the molten metal 11 falling from the tap hole 20a.
- the nozzles 21 are arranged concentrically, for example, so as to surround the falling molten metal 11.
- a method of blowing gas onto the molten metal 11 to powderize the molten metal 11 is generally called a gas atomizing method.
- a method using an aqueous medium is generally called a water atomizing method.
- an inert gas such as argon, helium, or nitrogen is used.
- the atomizing method is performed, for example, under an air atmosphere or an inert gas atmosphere such as argon.
- the water atomization method in which the aqueous medium is sprayed on the molten metal 11 to pulverize the molten metal 11 has higher productivity and is easier to produce the nickel particles 12 having a small particle size than the gas atomizing method.
- the aqueous medium is, for example, high-pressure water having a water pressure of 90 MPa or more. By blowing high-pressure water onto the molten metal 11 (molten nickel), the molten nickel is rapidly solidified and the nickel particles 12 having a small particle size are obtained by a large shear force.
- a slurry in which nickel particles 12 are dispersed in water is obtained and stored in the chamber. The slurry may be filtered to collect the nickel particles 12 and then subjected to treatment such as washing with water, drying, crushing, and classification.
- the aqueous medium may be water containing a surfactant.
- a surfactant By using high-pressure water containing a surfactant, surface oxidation of the nickel particles 12 can be suppressed.
- the concentration of the surfactant is, for example, 0.01 to 5% by mass, or 0.05 to 1% by mass, based on the mass of the aqueous medium.
- the surfactant may be any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant, but is preferably a nonionic surfactant.
- the aqueous medium may be a sulfuric acid aqueous solution.
- the surface oxidation of the nickel particles 12 can be suppressed as in the case where the surfactant is used.
- a sulfuric acid aqueous solution for example, a slurry in which the nickel particles 12 are dispersed in the sulfuric acid aqueous solution and a part of the nickel particles 12 is dissolved is obtained.
- the slurry can be used as nickel sulfate used in the production of the positive electrode active material by appropriately adjusting the concentration without solid-liquid separation.
- the concentration of sulfuric acid is, for example, 0.05 to 5 mol / L or 0.1 to 1 mol / L with respect to the mass of the aqueous medium.
- the entire amount of the obtained nickel particles 12 may be dissolved, or only a part thereof may be dissolved as described above. If the nickel particles 12 remain undissolved, an aqueous sulfuric acid solution may be added in a later step to dissolve the entire nickel particles 12.
- an aqueous sulfuric acid solution is used for the water atomization method, the nickel particles 12 are dissolved in the aqueous sulfuric acid solution immediately after the water atomization, and the particle diameter of the nickel particles 12 is reduced, so that the nozzle diameter of the tap hole 20a can be increased. It is possible to increase productivity.
- the volume-based median diameter of the nickel particles 12 is preferably 500 ⁇ m or less, particularly preferably 100 ⁇ m or less, from the viewpoint of improving solubility in acids and the like.
- the volume-based median diameter of the nickel particles 12 is a particle diameter at which a volume integrated value becomes 50% in a particle size distribution measured by a laser diffraction scattering method, and is also called a 50% particle diameter (D50) or a median diameter.
- the particle size of the nickel particles 12 can be controlled by the viscosity of the molten metal 11 falling from the tap hole 20a, the pressure of gas or an aqueous medium injected from the nozzle 21, and the like.
- the oxygen concentration on the surface of the nickel particles 12 is 10% or less, preferably 6% or less, more preferably 3% or less.
- the purity of the nickel particles 12 is 90% by mass or more. That is, the content of nickel is 90% by mass or more with respect to all components contained in the nickel particles 12.
- Nickel particles 12 having a purity of 90% by mass or more are suitable as a raw material of a positive electrode active material.
- the nickel particles 12 may contain metal elements such as Si, Ti, Fe, Mg, and Al, oxides thereof, and the like in an amount of less than 5% by mass, and may contain oxygen in an amount of less than 3% by mass. It may be.
- the nickel particles 12 include, for example, 98% by mass or more of a metal component. Particularly preferably, the nickel content of the metal component contained in the nickel particles 12 is 98% by mass or more.
- the nickel particles 12 preferably do not substantially contain lanthanum (La) as an impurity.
- a positive electrode active material for a secondary battery can be manufactured using the nickel particles 12 obtained by the above-described manufacturing method.
- nickel sulfate is obtained by dissolving the nickel particles 12 in an aqueous sulfuric acid solution.
- the concentration of sulfuric acid is, for example, 3 to 15 mol / L. Since the nickel particles 12 are small particles having a small particle size, they have high solubility in an aqueous sulfuric acid solution, and nickel sulfate can be easily produced using the nickel particles 12.
- the step of producing the positive electrode active material includes a step of obtaining a hydroxide containing nickel by a crystallization method using nickel sulfate, a step of mixing the hydroxide and the lithium compound, and a step of firing the mixed particles. Including.
- nickel sulfate can be prepared by adding an aqueous solution of sulfuric acid to the slurry of the nickel particles 12 stored in the chamber without solid-liquid separation.
- nickel particles 12 may be completely dissolved in a sulfuric acid aqueous solution to obtain nickel sulfate.
- the positive electrode active material is a composite oxide containing lithium (Li) in addition to nickel (Ni), and further containing a metal element such as cobalt (Co), manganese (Mn), and aluminum (Al).
- a metal element such as cobalt (Co), manganese (Mn), and aluminum (Al).
- Other composite oxides include Mg, Ti, Cr, Fe, copper (Cu), zinc (Zn), gallium (Ga), strontium (Sr), zirconium (Zr), niobium (Nb), and indium (In). ), Tin (Sn), tantalum (Ta), tungsten (W), boron (B), vanadium (V), and the like.
- NCM composite oxide
- a nickel cobalt manganese hydroxide is produced by a coprecipitation method using nickel sulfate, cobalt sulfate, and manganese sulfate.
- the positive electrode active material is obtained by mixing a hydroxide containing at least Ni (for example, nickel cobalt manganese hydroxide) and a lithium compound, firing the mixed particles at a temperature of 500 to 1000 ° C., and pulverizing the fired material. , Obtained by classification.
- a hydroxide containing at least Ni for example, nickel cobalt manganese hydroxide
- a lithium compound for example, lithium carbonate.
- D50 of the positive electrode active material is, for example, 1 ⁇ m to 30 ⁇ m, and preferably 3 ⁇ m to 10 ⁇ m.
- Example 1 A 101.6 mm square nickel cathode was put into a high frequency induction furnace and melted at a temperature of 1600 ° C. The molten nickel was caused to flow out (fall) from the induction furnace, and powdered by a water atomizing method in which high-pressure water was sprayed on the molten nickel to obtain nickel particles having a D50 of 100 ⁇ m. The surface of the nickel particles was observed with a scanning electron microscope (SEM), and the composition was analyzed by energy dispersive X-ray analysis (EDS). As a result, the oxygen concentration on the particle surface was 6% by mass.
- SEM scanning electron microscope
- EDS energy dispersive X-ray analysis
- Example 2 Except that 0.1 mass% of Si with respect to the nickel cathode was put into the induction furnace, and oxides floating on the surface of the molten nickel were removed as slag, and D50 of 100 ⁇ m was obtained in the same manner as in Example 1. Nickel particles were obtained. In this case, the oxygen concentration on the particle surface was 3% by mass.
- Example 3 In the water atomization method, a treatment was performed in the same manner as in Example 1 except that a sulfuric acid aqueous solution (0.3 mol / L) was used instead of water. In this case, an aqueous sulfuric acid solution (an aqueous solution of nickel sulfate) in which the entire amount of the nickel particles was dissolved was obtained.
- Example 4 In the water atomizing method, nickel particles having a D50 of 100 ⁇ m were obtained in the same manner as in Example 1, except that a 0.1% by mass aqueous nonionic surfactant solution was used instead of water. In this case, the oxygen concentration on the particle surface was 1.5% by mass.
- a nickel source such as a nickel cathode is used to produce nickel particles having high purity and high solubility in an acid such as sulfuric acid, which are suitable as a raw material for a positive electrode active material.
- an acid such as sulfuric acid
- a metal such as Si, which is more easily oxidized than Ni
- water containing a surfactant is used as an aqueous medium of the water atomization method (Example 4), thereby obtaining a particle surface.
- a higher purity nickel raw material having a lower oxygen concentration When an aqueous sulfuric acid solution was used as the aqueous medium (Example 3), the entire amount of the nickel particles was dissolved in the aqueous sulfuric acid solution, and nickel sulfate was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Powder Metallurgy (AREA)
Abstract
ニッケル粒子の製造工程は、ニッケル源を溶融させて溶湯を得る工程と、当該溶湯にガス又は水系媒体を吹き付けるアトマイズ法により、当該溶湯に含まれる溶融ニッケルを粉末化して純度が90%以上のニッケル粒子を得る工程とを含む。本製造工程において、ニッケル源と共に、ニッケルよりも酸化され易い金属を溶融させ、生成した当該金属の酸化物を除去してもよい。
Description
本開示は、ニッケル粒子の製造方法、硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法に関する。
燃費規制、環境保全の対策として、電気自動車、ハイブリッド自動車等の電動車両(xEV)に対する期待は大きく、今後、電動車両の生産量の増加が見込まれる。それに伴い、動力源となるリチウムイオン電池等の二次電池の生産量も増加するものと想定される。ところで、二次電池の正極活物質には、例えばニッケルコバルトマンガン酸リチウム(NCM)、ニッケルコバルトアルミン酸リチウム(NCA)等のニッケルを含有する複合酸化物が用いられている(例えば、特許文献1参照)。
ニッケルを含有する複合酸化物は、一般的に、硫酸ニッケル、硝酸ニッケル等のニッケル塩を用いて、晶析法によりニッケルを含有する水酸化物を作製した後、当該水酸化物にリチウム化合物を混合し、高温焼成を行うことで製造できる。ニッケル塩は、高純度のニッケル地金を硫酸等に溶解することで得られるため、正極活物質の製造には、硫酸等の酸に溶解し易いニッケル地金を用いることが好ましい。
しかしながら、今後、二次電池の生産量が増加すると、正極活物質の原料に適したニッケル地金の入手が困難になることが予測される。本開示の目的は、二次電池用正極活物質の原料に好適なニッケル地金(ニッケル粒子)の製造方法を提供することである。
本開示の一態様であるニッケル粒子の製造方法は、ニッケル源を溶融させて溶湯を得る工程と、前記溶湯にガス又は水系媒体を吹き付けるアトマイズ法により、前記溶湯に含まれる溶融ニッケルを粉末化して純度が90質量%以上のニッケル粒子を得る工程とを備える。
本開示の一態様である硫酸ニッケルの製造方法では、上記製造方法により製造されるニッケル粒子を硫酸水溶液に溶解して硫酸ニッケルを得る。
本開示の一態様である二次電池用正極活物質の製造方法は、上記製造方法により製造される硫酸ニッケルを用いた晶析法により、ニッケルを含有する水酸化物を得る工程と、前記水酸化物とリチウム化合物を混合し、混合した粒子を焼成する工程とを備える。
本開示の一態様であるニッケル粒子の製造方法によれば、二次電池用正極活物質の原料に好適なニッケル粒子を製造できる。
上述のように、正極活物質の原料に適したニッケル地金を確保することは、二次電池の生産において重要な課題である。現在、正極活物質の原料に使用可能な高純度のニッケル地金として、主に、ニッケル粒子を圧縮成形したブリケット、及び板状のカソードが存在する。ブリケットは、カソードと比べて硫酸に対する溶解性が高いため、正極活物質の製造にはブリケットが好んで使用される。しかし、ブリケットの生産量は限られており、今後、二次電池の生産量が増加すると、その入手が困難になると予測される。なお、カソードはブリケットよりも生産量は多いが、硫酸等の酸に対する溶解速度が遅く、カソードを使いこなして正極活物質を効率良く製造することは容易ではない。
したがって、正極活物質の原料に適した新たなニッケル地金の製造技術、或いはニッケルカソードを加工して効率良く正極活物質を製造する技術が求められる。硫酸に対するニッケルカソードの溶解速度を上げるには、粉末化やペレット化により原料の表面積を大きくすることが有効であるが、カソードは強度が高いため、粉砕装置を用いて粉砕すると、装置由来の不純物が混入して品質(純度)が低下する。このように、カソードの加工は容易ではない。
本発明者らは、上記課題について鋭意検討した結果、ニッケル源を溶融させて得た溶湯にガス又は水系媒体を吹き付けることでニッケル源が微粉化され、純度が高いニッケル粒子を製造できることを見出した。該ニッケル粒子は、硫酸等の酸に対する溶解性が高いため、正極活物質の原料に好適である。当該ニッケル源には、上記カソードを使用することができる。
以下、図面を参照しながら、本開示の実施形態の一例であるニッケル粒子の製造方法、当該ニッケル粒子を用いた硫酸ニッケル及び二次電池用正極活物質の製造方法について詳細に説明する。図1は、ニッケル粒子の製造方法の一例を説明するための図である。
図1に例示するように、実施形態の一例であるニッケル粒子12の製造工程は、ニッケル源10を溶融させて溶湯11を得る工程(以下、「第1工程」という場合がある)と、溶湯11にガス又は水系媒体を吹き付けるアトマイズ法により、溶湯11に含まれる溶融ニッケルを粉末化する工程(以下、「第2工程」という場合がある)とを含む。本製造工程には、ニッケル源10を溶融させる溶融炉20、溶湯11に高圧のガス又は水系媒体を吹き付けるノズル21、及び粉末化されたニッケル粒子12を貯留するチャンバー(図示せず)が用いられる。
本実施形態では、ニッケル源10として、ニッケルカソードを用いる。ニッケルカソードは、ニッケル板(種板)をカソードとして用い、その表面にニッケルを電着させて得られる。ニッケルカソードは、例えば5mm~15mmの厚みを有する板状体であって、電気ニッケルとも呼ばれる。カソードは、上述の通り、硫酸等の酸に溶解し難く、このままでは正極活物質の原料として不適である。ニッケル源10にニッケルカソードを用いて粉末化することにより、高純度で、かつ酸に対する溶解性が高い、正極活物質の原料に好適なニッケル粒子12が得られる。
但し、ニッケル源10は、ニッケルカソードに限定されない。例えば、フェローニッケル、ニッケル銑鉄(NPI)等の純度の低いニッケル地金、或いはニッケルを含む鉱石などをニッケル源10に用いてもよい。また、粗水酸化ニッケルのような水和物や、二次電池のリサイクルから分離濃縮された正極合材を主成分とする原料を用いてもよい。
ニッケル源10は、溶融炉20で溶かされ、これにより溶融したニッケルを含む溶湯11が得られる。溶融炉20には、例えば誘導炉が用いられる。溶融炉20は、ニッケル源10を少なくともニッケルの融点以上の温度に加熱し、底面に設けられた出湯口20aから溶湯11を落下(流出)させる。溶湯11を得る第1工程では、溶融炉20に貯留された溶湯11に浮かび上がるスラグ(不純物)を除去することが好ましい。溶融炉20の内壁材質には、不純物の混入を防ぐため耐熱性のセラミック材を用いることが好ましい。セラミック材としては、SiO2、Al2O3、MgO2、及びZrO2から選択される少なくとも1種が特に好ましい。
本製造工程では、ニッケル源10と共に、ニッケルよりも酸化され易い金属13を溶融させ、生成した金属13の酸化物を除去してもよい。金属13は、ニッケル源10と共に、溶融炉20に投入されることが好ましい。金属13を用いることで、第1工程において金属13がニッケルよりも優先的に酸化するので、ニッケルの酸化を抑制できる。金属13の酸化物は、例えば溶融炉20に貯留された溶湯11に浮き上がるので、溶融ニッケルを含む溶湯11から分離できる。
金属13には、酸化物のエリンガム図でニッケルよりも下方に位置する金属を用いることが好ましい。具体例としては、クロム(Cr)、マンガン(Mn)、ケイ素(Si)、チタン(Ti)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、鉄(Fe)等が挙げられる。中でも、電池に混入したとしても電池特性や安全性に影響を与え難い、Cr、Mn、Si、Ti、Al、及びMgが好ましい。これらは脱酸材として機能し、溶存酸素と反応して酸化物となり、ニッケルの酸化を抑制する。
第1工程で得られた溶融ニッケルを含む溶湯11は、出湯口20aから流出し、第2工程に供給される。溶湯11は、ニッケルの融点以上の温度であればよいが、アトマイズ法で微粉化されるまでに一定の冷却を受けるので、当該冷却を考慮し、溶湯11の大幅な粘度上昇等が起こらないような温度とすることが好ましい。出湯口20aから流出する溶湯11における溶融ニッケルの含有量は、例えば、実質的に100%(溶湯11≒溶融ニッケル)である。
図1に例示するように、出湯口20aの下方には、ガス又は水系媒体を噴射するノズル21が設けられている。ノズル21から噴射されるガス又は水系媒体の圧力を高くするほど、一般的に溶湯11に作用するせん断力が大きくなり、ニッケル粒子12の粒径が小さくなる。ノズル21は、高圧のガス又は水系媒体を斜め下方に噴射し、出湯口20aから落下する溶湯11の外周全体に略均一に吹き付けることが好ましい。ノズル21は、例えば落下する溶湯11を囲むように同心円状に配置される。
第2工程では、上述の通り、出湯口20aから落下する溶湯11に高圧のガス又は水系媒体を吹き付けることで、溶融ニッケルが粉末化し、ニッケル粒子12が得られる。溶湯11にガスを吹き付けて溶湯11を粉末化する方法は、一般的にガスアトマイズ法と呼ばれる。他方、水系媒体を用いる方法は、一般的に水アトマイズ法と呼ばれる。ガスには、アルゴン、ヘリウム、窒素等の不活性ガスが使用される。ガスアトマイズ法によれば、一般的な水アトマイズ法と比較して、ニッケル粒子12の表面酸化を抑制し易い。アトマイズ法は、例えば空気雰囲気下、又はアルゴン等の不活性ガス雰囲気下で行われる。
溶湯11に水系媒体を吹き付けて溶湯11を粉末化する水アトマイズ法では、ガスアトマイズ法と比較して、生産性が高く、粒径の小さなニッケル粒子12を製造することが容易である。水系媒体は、例えば水圧が90MPa以上の高圧水である。溶湯11(溶融ニッケル)に高圧水を吹き付けることで、溶融ニッケルが急冷凝固すると共に、大きなせん断力によって粒径の小さなニッケル粒子12が得られる。水アトマイズ法によれば、ニッケル粒子12が水中に分散したスラリーが得られ、チャンバーに貯留される。スラリーを濾過してニッケル粒子12を回収し、水洗、乾燥、解砕、分級等の処理を行ってもよい。
第2工程で水アトマイズ法を適用する場合、水系媒体は、界面活性剤を含む水であってもよい。界面活性剤を含む高圧水を用いることで、ニッケル粒子12の表面酸化を抑えることができる。界面活性剤の濃度は、水系媒体の質量に対して、例えば0.01~5質量%、又は0.05~1質量%である。界面活性剤は、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤のいずれであってもよいが、好ましくはノニオン界面活性剤である。
また、水系媒体は、硫酸水溶液であってもよい。この場合も、界面活性剤を用いる場合と同様に、ニッケル粒子12の表面酸化を抑えることができる。硫酸水溶液を用いた場合、例えば、硫酸水溶液中にニッケル粒子12が分散し、ニッケル粒子12の一部が溶解したスラリーが得られる。この場合、当該スラリーを固液分離することなく、濃度を適宜調整して正極活物質の製造に使用される硫酸ニッケルとして使用できる。硫酸の濃度は、水系媒体の質量に対して、例えば0.05~5mol/L、又は0.1~1mol/Lである。
硫酸水溶液には、得られるニッケル粒子12の全量が溶解していてもよく、上述の通り一部だけが溶解していてもよい。ニッケル粒子12の溶け残りが存在する場合、後工程で硫酸水溶液を追加してニッケル粒子12を全量溶解させてもよい。水アトマイズ法に硫酸水溶液を用いた場合は、ニッケル粒子12が水アトマイズ直後から硫酸水溶液に溶解し、ニッケル粒子12の粒径が小さくなるため、出湯口20aのノズル径を大きくすることができ、生産性を高めることが可能である。
ニッケル粒子12の体積基準のメジアン径は、酸に対する溶解性向上等の観点から、500μm以下が好ましく、100μm以下が特に好ましい。ニッケル粒子12の体積基準のメジアン径は、レーザ回折散乱法で測定される粒度分布において体積積算値が50%となる粒径であって、50%粒径(D50)又は中位径とも呼ばれる。ニッケル粒子12の粒径は、出湯口20aから落下する溶湯11の粘度、ノズル21から噴射されるガス又は水系媒体の圧力等により制御できる。また、ニッケル粒子12の粒子表面の酸素濃度は、10%以下であり、好ましくは6%以下、より好ましくは3%以下である。
ニッケル粒子12の純度は、90質量%以上である。つまり、ニッケル粒子12に含まれる全成分に対して、ニッケルの含有率が90質量%以上である。純度が90質量%以上のニッケル粒子12は、正極活物質の原料として好適である。ニッケル粒子12には、5質量%未満の量でSi、Ti、Fe、Mg、Al等の金属元素、これらの酸化物等が含有されていてもよく、3質量%未満の量で酸素が含有されていてもよい。ニッケル粒子12は、例えば金属成分を98質量%以上含む。特に好ましくは、ニッケル粒子12に含まれる金属成分のうち、ニッケルの含有率が98質量%以上である。ニッケル粒子12は、不純物として、ランタン(La)を実質的に含まないことが好ましい。
二次電池用の正極活物質は、上述の製造方法により得られるニッケル粒子12を用いて製造できる。まず初めに、ニッケル粒子12を硫酸水溶液に溶解することで硫酸ニッケルを得る。硫酸の濃度は、例えば3~15mol/Lである。ニッケル粒子12は、粒径が小さな小粒子であるから、硫酸水溶液に対する溶解性が高く、ニッケル粒子12を用いて容易に硫酸ニッケルを製造できる。
正極活物質の製造工程は、硫酸ニッケルを用いた晶析法により、ニッケルを含有する水酸化物を得る工程と、当該水酸化物とリチウム化合物を混合し、混合した粒子を焼成する工程とを含む。なお、水アトマイズ法で硫酸水溶液を用いる場合、チャンバーに貯留されるニッケル粒子12のスラリーを固液分離することなく、当該スラリーに硫酸水溶液を追加する等して硫酸ニッケルを調製できる。硫酸水溶液を用いた水アトマイズ法において、ニッケル粒子12が硫酸水溶液に完全に溶解して、硫酸ニッケルが得られてもよい。
正極活物質は、ニッケル(Ni)の他に、リチウム(Li)を含有し、さらにコバルト(Co)、マンガン(Mn)、アルミニウム(Al)等の金属元素を含有する複合酸化物である。複合酸化物は、他にも、Mg、Ti、Cr、Fe、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、ジルコニウム(Zr)、ニオブ(Nb)、インジウム(In)、スズ(Sn)、タンタル(Ta)、タングステン(W)、ホウ素(B)、バナジウム(V)等を含有していてもよい。Li、Ni、Co、Mnを含有する複合酸化物(NCM)を製造する場合、硫酸ニッケル、硫酸コバルト、及び硫酸マンガンを用いた共沈法により、ニッケルコバルトマンガン水酸化物を作製する。
正極活物質は、少なくともNiを含有する水酸化物(例えば、ニッケルコバルトマンガン水酸化物)と、リチウム化合物とを混合した後、混合粒子を500~1000℃の温度で焼成し、焼成物を粉砕、分級して得られる。当該リチウム化合物の一例は、炭酸リチウムである。正極活物質のD50は、例えば1μm~30μmであり、好ましくは3μm~10μmである。
以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
<実施例1>
101.6mm角のニッケルカソードを高周波誘導炉に投入して、1600℃の温度で溶解させた。溶融ニッケルを誘導炉から流出(落下)させ、当該溶融ニッケルに高圧水を吹き付ける水アトマイズ法により粉末化し、D50が100μmのニッケル粒子を得た。ニッケル粒子の表面を走査型電子顕微鏡(SEM)で観察し、エネルギー分散型X線分析(EDS)により組成解析した結果、粒子表面の酸素濃度は6質量%であった。
101.6mm角のニッケルカソードを高周波誘導炉に投入して、1600℃の温度で溶解させた。溶融ニッケルを誘導炉から流出(落下)させ、当該溶融ニッケルに高圧水を吹き付ける水アトマイズ法により粉末化し、D50が100μmのニッケル粒子を得た。ニッケル粒子の表面を走査型電子顕微鏡(SEM)で観察し、エネルギー分散型X線分析(EDS)により組成解析した結果、粒子表面の酸素濃度は6質量%であった。
<実施例2>
ニッケルカソードに対して0.1質量%のSiを誘導炉に投入し、溶融ニッケルの表面に浮き上がった酸化物をスラグとして除去したこと以外は、実施例1と同様の方法で、D50が100μmのニッケル粒子を得た。この場合、粒子表面の酸素濃度は3質量%であった。
ニッケルカソードに対して0.1質量%のSiを誘導炉に投入し、溶融ニッケルの表面に浮き上がった酸化物をスラグとして除去したこと以外は、実施例1と同様の方法で、D50が100μmのニッケル粒子を得た。この場合、粒子表面の酸素濃度は3質量%であった。
<実施例3>
水アトマイズ法において、水の代わりに、硫酸水溶液(0.3mol/L)を用いたこと以外は、実施例1と同様の方法で処理を行った。この場合、ニッケル粒子の全量が溶解した硫酸水溶液(硫酸ニッケルの水溶液)が得られた。
水アトマイズ法において、水の代わりに、硫酸水溶液(0.3mol/L)を用いたこと以外は、実施例1と同様の方法で処理を行った。この場合、ニッケル粒子の全量が溶解した硫酸水溶液(硫酸ニッケルの水溶液)が得られた。
<実施例4>
水アトマイズ法において、水の代わりに、0.1質量%のノニオン界面活性剤水溶液を用いたこと以外は、実施例1と同様の方法で、D50が100μmのニッケル粒子を得た。この場合、粒子表面の酸素濃度は1.5質量%であった。
水アトマイズ法において、水の代わりに、0.1質量%のノニオン界面活性剤水溶液を用いたこと以外は、実施例1と同様の方法で、D50が100μmのニッケル粒子を得た。この場合、粒子表面の酸素濃度は1.5質量%であった。
以上のように、上述の製造方法によれば、ニッケルカソード等のニッケル源を用いて、純度が高く、かつ硫酸等の酸に対する溶解性が高い、正極活物質の原料に好適なニッケル粒子を製造できる。特に、Si等のNiよりも酸化し易い金属を溶湯に投入すること(実施例2)、水アトマイズ法の水系媒体として、界面活性剤を含む水を用いること(実施例4)により、粒子表面の酸素濃度が低い、より高純度のニッケル原料を得ることができる。また、水系媒体として硫酸水溶液を用いた場合(実施例3)は、ニッケル粒子の全量が硫酸水溶液に溶解し、硫酸ニッケルが得られた。
10 ニッケル源
11 溶湯
12 ニッケル粒子
13 金属
20 溶融炉
20a 出湯口
21 ノズル
11 溶湯
12 ニッケル粒子
13 金属
20 溶融炉
20a 出湯口
21 ノズル
Claims (7)
- ニッケル源を溶融させて溶湯を得る工程と、
前記溶湯にガス又は水系媒体を吹き付けるアトマイズ法により、前記溶湯に含まれる溶融ニッケルを粉末化して純度が90%以上のニッケル粒子を得る工程と、
を備える、ニッケル粒子の製造方法。 - 前記ニッケル源と共に、ニッケルよりも酸化され易い金属を溶融させ、生成した前記金属の酸化物を除去する、請求項1に記載のニッケル粒子の製造方法。
- 前記ニッケル源は、ニッケルカソードである、請求項1又は2に記載のニッケル粒子の製造方法。
- 前記アトマイズ法は、前記水系媒体を用いる水アトマイズ法であり、
前記水系媒体は、界面活性剤を含む水、又は硫酸水溶液である、請求項1~3のいずれか1項に記載のニッケル粒子の製造方法。 - 前記ニッケル粒子に含まれる金属成分のうち、ニッケルの含有率が98質量%以上である、請求項1~4のいずれか1項に記載のニッケル粒子の製造方法。
- 請求項1~5のいずれか1項に記載の製造方法により製造されるニッケル粒子を硫酸水溶液に溶解して硫酸ニッケルを得る、硫酸ニッケルの製造方法。
- 請求項6に記載の製造方法により製造される硫酸ニッケルを用いた晶析法により、ニッケルを含有する水酸化物を得る工程と、
前記水酸化物とリチウム化合物を混合し、混合した粒子を焼成する工程と、
を備える、二次電池用正極活物質の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980053955.4A CN112584949A (zh) | 2018-09-26 | 2019-07-26 | 镍颗粒的制造方法、硫酸镍的制造方法和二次电池用正极活性物质的制造方法 |
JP2020548068A JP7336749B2 (ja) | 2018-09-26 | 2019-07-26 | ニッケル粒子の製造方法、硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法 |
US17/275,403 US20220048790A1 (en) | 2018-09-26 | 2019-07-26 | Method for producing nickel particles, method for producing nickel sulfate, and method for producing positive electrode active material for secondary batteries |
JP2023129004A JP2023167015A (ja) | 2018-09-26 | 2023-08-08 | ニッケル粒子の製造方法、硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-180215 | 2018-09-26 | ||
JP2018180215 | 2018-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066262A1 true WO2020066262A1 (ja) | 2020-04-02 |
Family
ID=69952640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/029396 WO2020066262A1 (ja) | 2018-09-26 | 2019-07-26 | ニッケル粒子の製造方法、硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220048790A1 (ja) |
JP (2) | JP7336749B2 (ja) |
CN (1) | CN112584949A (ja) |
WO (1) | WO2020066262A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022209988A1 (ja) | 2021-03-30 | 2022-10-06 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質の製造方法 |
WO2024063152A1 (ja) | 2022-09-22 | 2024-03-28 | 株式会社プロテリアル | リチウムイオン二次電池用正極活物質の前駆体の製造方法、及びその前駆体、並びにリチウムイオン二次電池用正極活物質の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5372768A (en) * | 1976-12-09 | 1978-06-28 | Int Nickel Co | Water atomizer for low oxygen metal powder |
JPS5510623B2 (ja) * | 1977-12-29 | 1980-03-18 | ||
JPH05195024A (ja) * | 1992-01-14 | 1993-08-03 | Nippon Steel Corp | 金属粉末製造における金属粉末の酸化防止方法 |
JP2009519192A (ja) * | 2005-11-08 | 2009-05-14 | オヴォニック バッテリー カンパニー インコーポレイテッド | ニッケル塩溶液の製造方法 |
JP2015059253A (ja) * | 2013-09-20 | 2015-03-30 | 荒川化学工業株式会社 | 易酸化性金属粒子の製造法および該製造法により得られる該金属粒子 |
JP2017186661A (ja) * | 2016-03-31 | 2017-10-12 | Dowaエレクトロニクス株式会社 | 銀被覆ニッケル粉末およびその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5605585A (en) * | 1993-07-15 | 1997-02-25 | Matsushita Electric Industrial Co., Ltd. | Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same |
JP2001196057A (ja) * | 2000-01-11 | 2001-07-19 | Sanyo Special Steel Co Ltd | 水素吸蔵合金粉末の製造方法およびその粉末を用いたNi−水素電池用負極 |
JP4978237B2 (ja) * | 2006-04-27 | 2012-07-18 | 昭栄化学工業株式会社 | ニッケル粉末の製造方法 |
AU2007327573B2 (en) | 2006-11-30 | 2013-07-18 | Impedimed Limited | Measurement apparatus |
CN101195169A (zh) * | 2007-12-20 | 2008-06-11 | 金川集团有限公司 | 一种粒状金属镍的生产方法 |
JP5195024B2 (ja) | 2008-05-26 | 2013-05-08 | 旭硝子株式会社 | 回折素子、光減衰器、光ヘッド装置および投射型表示装置 |
CN102303122B (zh) * | 2011-08-26 | 2013-05-01 | 武汉中磁浩源科技有限公司 | 一种高电阻率铁基合金粉末的制备方法 |
CN102513541A (zh) * | 2012-01-17 | 2012-06-27 | 先进储能材料国家工程研究中心有限责任公司 | 镍钴锰合金粉的制备方法 |
FI124883B (fi) * | 2012-12-20 | 2015-03-13 | Outotec Oyj | Menetelmä ja laitteisto metallikiven happogranuloimiseksi |
JP5510623B1 (ja) | 2013-09-19 | 2014-06-04 | 千住金属工業株式会社 | Niボール、Ni核ボール、はんだ継手、フォームはんだ、はんだペースト |
EP3103566B1 (en) | 2014-02-04 | 2018-11-14 | Senju Metal Industry Co., Ltd | Ni ball, ni core ball, solder joint, solder paste, and solder foam |
WO2016084346A1 (ja) * | 2014-11-28 | 2016-06-02 | 三洋電機株式会社 | 非水電解質二次電池用正極及び非水電解質二次電池 |
CN108555306B (zh) * | 2016-06-02 | 2021-05-14 | 泉州天智合金材料科技有限公司 | 一种铁硅铬软磁粉末及其应用 |
-
2019
- 2019-07-26 CN CN201980053955.4A patent/CN112584949A/zh active Pending
- 2019-07-26 JP JP2020548068A patent/JP7336749B2/ja active Active
- 2019-07-26 US US17/275,403 patent/US20220048790A1/en active Pending
- 2019-07-26 WO PCT/JP2019/029396 patent/WO2020066262A1/ja active Application Filing
-
2023
- 2023-08-08 JP JP2023129004A patent/JP2023167015A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5372768A (en) * | 1976-12-09 | 1978-06-28 | Int Nickel Co | Water atomizer for low oxygen metal powder |
JPS5510623B2 (ja) * | 1977-12-29 | 1980-03-18 | ||
JPH05195024A (ja) * | 1992-01-14 | 1993-08-03 | Nippon Steel Corp | 金属粉末製造における金属粉末の酸化防止方法 |
JP2009519192A (ja) * | 2005-11-08 | 2009-05-14 | オヴォニック バッテリー カンパニー インコーポレイテッド | ニッケル塩溶液の製造方法 |
JP2015059253A (ja) * | 2013-09-20 | 2015-03-30 | 荒川化学工業株式会社 | 易酸化性金属粒子の製造法および該製造法により得られる該金属粒子 |
JP2017186661A (ja) * | 2016-03-31 | 2017-10-12 | Dowaエレクトロニクス株式会社 | 銀被覆ニッケル粉末およびその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022209988A1 (ja) | 2021-03-30 | 2022-10-06 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質の製造方法 |
JP2023145560A (ja) * | 2021-03-30 | 2023-10-11 | 株式会社プロテリアル | リチウムイオン二次電池用正極活物質の製造方法 |
JP7559885B2 (ja) | 2021-03-30 | 2024-10-02 | 株式会社プロテリアル | リチウムイオン二次電池用正極活物質の製造方法 |
WO2024063152A1 (ja) | 2022-09-22 | 2024-03-28 | 株式会社プロテリアル | リチウムイオン二次電池用正極活物質の前駆体の製造方法、及びその前駆体、並びにリチウムイオン二次電池用正極活物質の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220048790A1 (en) | 2022-02-17 |
CN112584949A (zh) | 2021-03-30 |
JPWO2020066262A1 (ja) | 2021-09-24 |
JP7336749B2 (ja) | 2023-09-01 |
JP2023167015A (ja) | 2023-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023167015A (ja) | ニッケル粒子の製造方法、硫酸ニッケルの製造方法、及び二次電池用正極活物質の製造方法 | |
US9695060B2 (en) | Method for the production of an LMO product | |
CA3136875C (en) | Process for the preparation of precursor compounds for lithium battery cathodes | |
WO2020013293A1 (ja) | 合金粉及びその製造方法 | |
WO2020228709A1 (zh) | 一种合金粉体材料的制备方法 | |
WO2014104205A1 (ja) | 希土類元素の回収方法 | |
WO2022044934A1 (ja) | 合金粉及びその製造方法、並びに有価金属の回収方法 | |
WO2022044931A1 (ja) | アトマイズ装置、金属粉体の製造方法、並びに有価金属の製造方法 | |
CN102513541A (zh) | 镍钴锰合金粉的制备方法 | |
JP7559885B2 (ja) | リチウムイオン二次電池用正極活物質の製造方法 | |
TW201448328A (zh) | 鋰離子蓄電池負極活性物質用Si合金粉末及其製造方法 | |
WO2017073392A1 (ja) | コバルト粉の種結晶の製造方法 | |
RU2539593C1 (ru) | Электрохимический способ получения порошка гексаборида кальция | |
US9586822B2 (en) | Size and morphologically controlled nanostructures for energy storage | |
AU2017227207B2 (en) | Nickel powder production method | |
CN115367760A (zh) | 多孔硅材料及其制备方法和应用、碳硅复合材料及其制备方法和应用 | |
JP2022039952A (ja) | アトマイズ装置、金属粉体の製造方法、並びに有価金属の製造方法 | |
JP2022039446A (ja) | 合金粉の製造方法、有価金属の回収方法 | |
JP2014201793A (ja) | アルミニウム粉末製造法およびアルミニウム粉末を用いた無機金属化合物還元方法 | |
EA043847B1 (ru) | Способ получения исходных соединений для катодов литиевых аккумуляторных батарей | |
JPH06306413A (ja) | 水素吸蔵合金粉末の製造法 | |
CN117070773A (zh) | 一种低成本钛系储氢合金的制备方法及其产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19864930 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020548068 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19864930 Country of ref document: EP Kind code of ref document: A1 |