WO2020060197A1 - 금속 박막 코팅용 열경화성 수지 조성물, 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판 - Google Patents

금속 박막 코팅용 열경화성 수지 조성물, 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판 Download PDF

Info

Publication number
WO2020060197A1
WO2020060197A1 PCT/KR2019/012087 KR2019012087W WO2020060197A1 WO 2020060197 A1 WO2020060197 A1 WO 2020060197A1 KR 2019012087 W KR2019012087 W KR 2019012087W WO 2020060197 A1 WO2020060197 A1 WO 2020060197A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thin film
weight
metal thin
thermosetting resin
Prior art date
Application number
PCT/KR2019/012087
Other languages
English (en)
French (fr)
Inventor
김영찬
민현성
오유경
심창보
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020539749A priority Critical patent/JP7052185B2/ja
Priority to CN201980010873.1A priority patent/CN111670228B/zh
Publication of WO2020060197A1 publication Critical patent/WO2020060197A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size

Definitions

  • the present invention relates to a thermosetting resin composition for coating a metal thin film, a resin coated metal thin film and a metal foil laminate, and more particularly, has excellent flowability, and has improved mechanical properties such as crack resistance and tensile properties. It relates to a composition and a resin-coated metal thin film and a metal foil laminate using the same.
  • Copper clad laminates used in conventional printed circuit boards are prepregs by impregnating the base of the glass fabric with a varnish of the thermosetting resin and then semi-curing it, which is then heated and pressed together with copper foil. To manufacture. The prepreg is used again to construct a circuit pattern on the copper foil laminate and build-up on it.
  • the thickness of the semiconductor package has also become thinner.
  • the prepreg which is a laminated material among the components of the conventional package, includes a woven glass fabric, it is difficult to reduce the thickness more than a certain amount.
  • the resin coated copper foil which is an alternative material for prepreg, does not contain glass fibers, so it can be made thinner than prepreg.
  • the copper foil coated with resin which is a thinner material than the prepreg, does not enter the glass fiber as a reinforcing substrate, cracks are likely to occur in the package process. If a crack occurs during the process, it leads to a decrease in the overall yield and may adversely affect reliability. Therefore, it is necessary to improve the crack resistance of the resin layer in the resin-coated copper foil.
  • the pattern filling property is the most important of the properties of the laminated material. That is, since the resin-coated copper foil as a laminated material must fill a pattern, the flowability of the resin is an important property. In particular, as the thickness of the resin copper foil laminate becomes thinner, the amount of resin decreases, making it difficult to fill the pattern. If the pattern is not filled properly, voids are generated and reliability and performance of the semiconductor substrate are deteriorated. When the thickness of the resin-coated copper foil becomes thinner, the amount of the resin decreases, so the possibility of empty space after lamination cannot be filled. That is, if the thickness of the resin is made thin for the thinning of the substrate, the pattern fillability is deteriorated.
  • a commonly used method is to use a single molecule type resin.
  • a resin having a low molecular weight the viscosity before curing is low within the temperature range of the lamination process, and thus it is excellent in flowability and pattern filling.
  • a single-molecule-based resin has a disadvantage that it is vulnerable to change over time because the surface has a sticky surface before curing, so a protective film is required, and the curing reaction proceeds slowly when stored at room temperature.
  • the resin does not have sufficient crack resistance, resulting in a decrease in overall yield.
  • the present invention is to provide a thermosetting resin composition for coating a metal thin film having excellent flow properties and improved mechanical properties such as crack resistance and tensile properties.
  • the present invention is to provide a resin-coated metal thin film comprising a cured product of the thermosetting resin composition for coating the metal thin film.
  • the present invention is to provide a metal foil laminate comprising the resin-coated metal thin film.
  • the present specification also provides a resin-coated metal thin film comprising a cured product of the thermosetting resin composition for coating the metal thin film.
  • the present specification also provides a metal foil laminate comprising the resin-coated metal thin film.
  • thermosetting resin composition for metal thin film coating according to a specific embodiment of the present invention and a resin coated metal thin film and metal foil laminate using the same will be described in more detail.
  • a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms ii) a nitro group, a cyano group or a halogen group Or an unsubstituted aryl group having 6 to 20 carbon atoms, iii) a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, or iv) a nitro group, a cyano group or a halogen group, and iv) a nitro group, a cyano group or a halogen group.
  • a thermosetting resin composition for coating a metal thin film having a complex viscosity may be provided.
  • a metal foil laminate has been mainly produced by using a prepreg impregnated with a woven glass fiber in a resin composition, but there is a limit in reducing the thickness and when the thickness decreases, the resin flowability falls during the lamination process of the copper foil to fill the pattern. There was a problem with poor sex. In addition, even if it is possible to thin the copper foil in a resin-coated form, there are many disadvantages in terms of storage properties and stability when a single-molecule type resin is used.
  • thermosetting resin composition after curing, the modulus is high, so it is easy to break, and accordingly, the crack resistance is poor.
  • a resin system composed of an epoxy and an amine curing agent, and a certain amount of a thermoplastic resin are introduced to secure the flowability of the resin as well as to improve the crack resistance of the metal thin film coated with the thermosetting resin composition.
  • the composition of the present invention is characterized by optimizing the resin type and mixing ratio.
  • a specific amine curing agent can be used to easily control the curing reaction of the resin. More specifically, the modulus can be lowered by adjusting the functional group of the amine curing agent to control the number of bonds generated during the curing reaction of the resin. Through this, crack resistance is increased and it is possible to have more stability against the same tensile force or impact.
  • thermosetting resin composition for metal thin film coating used in the present invention is to control the curing reaction and to control the flowability by adding a specific thermoplastic resin to the composition. Accordingly, the rheometer minimum viscosity window is widened, which is advantageous for flowability and pattern filling.
  • the present invention has the effect of improving the flowability of the resin by widening the window (window) that maintains the minimum viscosity within the temperature section of the metal foil lamination process.
  • the temperature range satisfying the viscosity condition is very wide from 120 ° C to 180 ° C. That is, the flow resistance in the lamination process section is high and the pattern filling property is excellent, so that the crack resistance of the metal thin film coated with the thermosetting resin composition can be improved.
  • thermosetting resin composition for coating a metal thin film of the above embodiment may include an amine compound, a thermosetting resin, a thermoplastic resin, and an inorganic filler.
  • the content of the component is not limited significantly, but may include the above-mentioned components in consideration of physical properties of the final product prepared from the thermosetting resin composition for coating a metal thin film of the embodiment, and the content ratio between these components will be described later As it is.
  • thermosetting resin composition of the embodiment is i) a sulfone group, a carbonyl group, a halogen group, a nitro group, a cyano group or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted, ii) a nitro group, a cyano group or An aryl group having 6 to 20 carbon atoms unsubstituted or substituted with a halogen group, iii) a nitro group, a cyano group or a heteroaryl group having 2 to 30 carbon atoms unsubstituted or substituted with a halogen group, and iv) a nitro group, a cyano group or a halogen group It may include an amine compound containing at least one functional group selected from the group consisting of substituted or unsubstituted alkylene groups having 1 to 20 carbon atoms.
  • the amine compound can be used as an amine curing agent.
  • the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, the heteroaryl group having 2 to 30 carbon atoms, and the alkylene group having 1 to 20 carbon atoms included in the amine compound are each independently a nitro group, a cyano group, and a halogen. It may be substituted with one or more functional groups selected from the group consisting of groups.
  • a sulfone group a carbonyl group, a halogen group, a nitro group, a cyano group or an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a halogen group, ii) substituted or unsubstituted with a nitro group, a cyano group or a halogen group
  • At least one functional group selected from the group consisting of alkylene groups having 1 to 20 carbon atoms is a strong electron withdrawing group (EW), and the amine compound containing the electron withdrawing functional group is compared to an
  • the circuit pattern filling property can be improved.
  • the amine compound is i) an alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with a sulfone group, carbonyl group, halogen group, nitro group, cyano group or halogen group, ii) substituted or unsubstituted with a nitro group, cyano group or halogen group
  • It may be an aromatic amine compound containing at least one functional group selected from the group consisting of alkylene groups of 20 to 1, and containing 2 to 5 amine groups.
  • the amine compound may include one or more compounds selected from the group consisting of the following Chemical Formulas 1 to 3.
  • A is a sulfone group, a carbonyl group, or an alkylene group having 1 to 10 carbon atoms
  • X 1 to X 8 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, or an alkyl group having 1 to 6 carbon atoms.
  • R 1, R 1 ′ , R 2 and R 2 ′ are each independently a hydrogen atom, a halogen group, or an alkyl group having 1 to 6 carbon atoms, An aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and n may be an integer of 1 to 10 carbon atoms.
  • the alkylene group having 1 to 10 carbon atoms, the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms are each independently selected from the group consisting of a nitro group, a cyano group, and a halogen group. It may be substituted with the above functional groups.
  • Y 1 to Y 8 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
  • R 3, R 3 ′ , R 4 and R 4 ′ are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
  • m is an integer of 1 to 10
  • the alkyl group having 1 to 6 carbon atoms, aryl group having 6 to 15 carbon atoms, and heteroaryl group having 2 to 20 carbon atoms are each independently selected from the group consisting of a nitro group, a cyano group and a halogen group It may be substituted with one or more functional groups.
  • Z 1 to Z 4 are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
  • R 5, R 5 ′ , R 6 and R 6 ′ are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms may be independently substituted with one or more functional groups selected from the group consisting of a nitro group, a cyano group, and a halogen group. .
  • the alkyl group is a monovalent functional group derived from alkane, for example, as straight, branched or cyclic, methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, Hexyl, and the like.
  • Each of the one or more hydrogen atoms contained in the alkyl group may be substituted with a substituent.
  • the alkylene group is a divalent functional group derived from alkane, for example, as a straight chain, branched or cyclic, methylene group, ethylene group, propylene group, isobutylene group, sec-butylene group, tert-butylene group, pentylene group, hexylene group, and the like.
  • One or more hydrogen atoms contained in the alkylene group may be substituted with substituents similar to those of the alkyl group.
  • the aryl group is a monovalent functional group derived from arene, and may be, for example, monocyclic or polycyclic.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, a stilbenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthryl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • One or more hydrogen atoms among these aryl groups may be substituted with substituents similar to those of the alkyl group.
  • the heteroaryl group is a heteroatom, a heterocyclic group containing O, N, or S, and the number of carbon atoms is not particularly limited, but may be 2 to 30 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrol group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, triazine group, acridil group, pyridazine group , Quinolinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group and dibenzofuran Flags, etc., but are not limited to these.
  • substitution means that other functional groups are bonded instead of the hydrogen atom in the compound, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent is substitutable.
  • the substituents can be the same or different from each other.
  • Chemical Formula 1 may include a compound represented by Chemical Formula 1-1.
  • the contents of A, X 1 to X 8 , R 1, R 1 ′ , R 2 and R 2 ′, n include the contents described in Formula 1 above.
  • a specific example of the above formula 1-1 is 4,4'-diaminodiphenyl sulfone (A in formula 1-1 is a sulfone group, X 1 to X 8, R 1, R 1 ' , R 2 and R 2 ' are each independently A hydrogen atom, n is 1), bis (4-aminophenyl) methanone (A in Formula 1-1 is a carbonyl group, X 1 , X 2, R 1, R 1 ' , R 2 and R 2 ' are each Independently, it is a hydrogen atom, n is 1), 4,4 '-(perfluoropropane-2,2-diyl) dianiline (A in formula 1-1 is perfluoropropane-2,2-diyl, X 1 to X 8, R 1, R 1 ′ , R 2 and R 2 ′ are each independently a hydrogen atom, n is 1), 4,4 '-(2,2,2-trifluoroethane-1,1-diyl
  • Formula 2 may include a compound represented by Formula 2-1.
  • the contents of Y 1 to Y 8 , R 3, R 3 ′ , R 4 and R 4 ′, m include the contents described in Formula 2 above.
  • a specific example of the above Chemical Formula 2-1 is 2,2 ', 3,3', 5,5 ', 6,6'-octafluorobiphenyl-4,4'-diamine
  • Y 1 to Y 8 are halogen As fluorine group
  • R 3, R 3 ' , R 4 and R 4 ' are each independently a hydrogen atom, m is 1.
  • 2,2'-bis (trifluoromethyl) biphenyl-4,4'-diamine (Y 2 and Y 7 are each a trifluoromethyl group, Y 1 , Y 3 , Y 4 , Y 5 , Y 6 , Y 8 are hydrogen atoms
  • R 3, R 3 ' , R 4 and R 4 ' are each independently As a hydrogen atom, m is 1.) and the like.
  • Chemical Formula 3 may include a compound represented by Chemical Formula 3-1.
  • contents of Z 1 to Z 4 , R 5, R 5 ′ , R 6 and R 6 ′ include the contents described in Chemical Formula 3 above.
  • Chemical Formula 3-1 are 2,3,5,6-tetrafluorobenzene-1,4-diamine (In Formula 3-1, Z 1 to Z 4 are halogen groups , R 5, R 5 ' , R 6 And R 6 ′ are each independently a hydrogen atom.).
  • the content of the amine compound with respect to the total weight of the amine compound and the resin component may be 5% to 50% by weight, or 10% to 20% by weight.
  • the content of the amine compound is excessively reduced to less than 5% by weight, uncuring may occur, and when the content of the amine compound is excessively increased to more than 50 parts by weight, the curing rate is increased to decrease the fluidity of the thermosetting resin composition.
  • the mechanical properties of a metal thin film using a thermosetting resin composition may be deteriorated by an unreacted amine compound.
  • thermosetting resin composition for coating a metal thin film of the one embodiment may include a thermosetting resin.
  • the thermosetting resin may include dicyclopentadiene-based epoxy resin and biphenyl-based epoxy resin. Specifically, the content of the biphenyl-based epoxy resin compared to 100 parts by weight of the dicyclopentadiene-based epoxy resin is less than 100 parts by weight, or 1 part to 90 parts by weight, or 5 parts to 80 parts by weight, or 10 parts by weight Parts to 70 parts by weight, or 20 parts to 50 parts by weight.
  • the biphenyl-based epoxy resin may be an epoxy resin represented by Formula 11 below
  • the dicyclopentadiene-based epoxy resin may be an epoxy resin represented by Formula 12 below.
  • n is 0 or an integer from 1 to 50.
  • n is 0 or an integer from 1 to 50.
  • Nippon kayaku company XD-1000 may be mentioned, and a specific example of the biphenyl-based epoxy resin may include Nippon kayaku company NC-3000H.
  • thermosetting resin may further include at least one resin selected from the group consisting of bismaleimide resin, cyanate ester resin, and bismaleimide-triazine resin.
  • the bismaleimide resin may be used without limitation, which is usually used in a thermosetting resin composition for coating a metal thin film, and the type is not limited.
  • the bismaleimide resin is a diphenylmethane type bismaleimide resin represented by the following Chemical Formula 13, a phenylene type bismaleimide resin represented by the following Chemical Formula 14, and a bisphenol A type diphenyl represented by the following Chemical Formula 15 It may be at least one selected from the group consisting of an ether bismaleimide resin, and a bismaleimide resin composed of oligomers of diphenylmethane type bismaleimide and phenylmethane type maleimide resin represented by Chemical Formula 16 below.
  • R 1 and R 2 are each independently H, CH 3 or C 2 H 5 .
  • n is 0 or an integer from 1 to 50.
  • cyanate-based resin may include a cyanate ester resin, it can be used without limitation, usually used in the thermosetting resin composition for metal thin film coating, the type is not limited.
  • the cyanate ester resin is a novolak-type cyanate resin represented by the following formula 17, a dicyclopentadiene-type cyanate resin represented by the following formula 18, a bisphenol-type cyanate resin represented by the following formula 19 And some of these triazine prepolymers, which may be used alone or in combination of two or more.
  • n is 0 or an integer from 1 to 50.
  • n is 0 or an integer from 1 to 50.
  • R is or to be.
  • the cyanate resin of Chemical Formula 19 may be a bisphenol A cyanate resin, a bisphenol E cyanate resin, a bisphenol F type cyanate resin, or a bisphenol M type cyanate resin, depending on the type of R, respectively. .
  • the bismaleimide resin includes bismaleimide-triazine resin, and the like, and the bismaleimide-triazine resin can be used without limitation, which is usually used in a thermosetting resin composition for metal thin film coating.
  • the type is not limited.
  • Preferred examples of the bismaleimide resin include DAIWA KASEI BMI-2300.
  • the resin composition for coating a metal thin film of the one embodiment includes the content of the thermosetting resin in an amount of 400 parts by weight or less based on 100 parts by weight of the amine compound, and prevents a change in physical properties of the thermosetting resin due to a filler injected at a high content, By inducing that the thermosetting resin can be uniformly cured to a more sufficient level without the influence of filler, the reliability of the final product can be improved, mechanical properties such as toughness can also be increased, and the glass transition temperature is sufficiently Can be lowered.
  • thermosetting resin As the content of the thermosetting resin is contained in an amount of 400 parts by weight or less based on 100 parts by weight of the amine curing agent, there is a limit that the flowability and moldability decrease due to excessive curing of the thermosetting resin when a relatively large amount of the amine curing agent is added. there was. However, even if a specific amine curing agent having a reduced reactivity, including an electron withdrawing group (EWG), as described above, is added in excess, the curing rate of the thermosetting resin is suppressed from rapidly increasing due to a decrease in reactivity of the curing agent. It can exhibit a high flowability even during long-term storage in a metal thin film coating resin composition or a metal thin film obtained therefrom can have excellent fluidity.
  • EWG electron withdrawing group
  • thermosetting resin composition for coating a metal thin film of the embodiment has a content of the thermosetting resin of 400 parts by weight or less, or 150 parts by weight to 400 parts by weight, or 180 parts by weight to 300 parts by weight based on 100 parts by weight of the amine curing agent. , Or 180 parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight, or 240 parts by weight to 260 parts by weight.
  • the content of the thermosetting resin mixture with respect to 100 parts by weight of the amine curing agent mixture is also 400 parts by weight or less, or 150 parts by weight to 400 parts by weight, or 180 parts by weight to 300 parts by weight, Or it may be 180 parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight, or 240 parts by weight to 260 parts by weight.
  • thermosetting resin When the content of the thermosetting resin is excessively increased to more than 400 parts by weight based on 100 parts by weight of the amine curing agent, it is difficult to uniformly cure the thermosetting resin to a more sufficient level under the influence of the filler injected at a high content, and the reliability of the final manufactured product This can be reduced, and mechanical properties such as toughness can also be reduced.
  • the content of the epoxy resin is 30% by weight to 80% by weight, and the content of bismaleimide resin by weight based on the total weight of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin) % To 20% by weight.
  • the content of the epoxy resin may be 35% to 70% by weight with respect to the sum of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin).
  • the content of the bismaleimide resin may be 1% to 10% by weight relative to the sum of the amine compound and the resin component (specifically, the total of the thermosetting resin and the thermoplastic resin).
  • the amount of the epoxy resin used is less than 30% by weight, there is a problem in that high Tg is difficult to implement, and when it exceeds 80% by weight, there is a problem in that flowability deteriorates.
  • the use amount of the bismaleimide resin is less than 1% by weight, there is a problem that desired physical properties are not realized, and if it exceeds 20% by weight, there are many unreacted groups, which may adversely affect properties such as chemical resistance.
  • the resin composition for coating a metal thin film has an equivalent ratio of 1.4 or more, or 1.4 to 2.5, or 1.45 to 2.5, or 1.45 to 2.1, or 1.45 to 1.8, or 1.49 to 1.75, or 1.6 to 1.7.
  • the total active hydrogen equivalent contained in the amine curing agent is the total weight (unit: g) of the amine curing agent divided by the active hydrogen unit equivalent (g / eq) of the amine curing agent Means
  • the weight (unit: g) for each compound is determined by dividing it by the unit equivalent of active hydrogen (g / eq), and the sum thereof is included in the amine curing agent of Equation (1).
  • the total amount of active hydrogen equivalent can be determined.
  • the active hydrogen contained in the amine curing agent means a hydrogen atom contained in the amino group (-NH 2 ) present in the amine curing agent, and the active hydrogen can form a curing structure through reaction with the curable functional group of the thermosetting resin. have.
  • the total curable functional group equivalent contained in the thermosetting resin means a value obtained by dividing the total weight of the thermosetting resin (unit: g) by the equivalent of the curable functional group of the thermosetting resin (g / eq) do.
  • thermosetting resin is a mixture of two or more types
  • a value obtained by dividing the weight (unit: g) for each compound by the unit equivalent weight of the curable functional group (g / eq) is obtained, and the sum thereof is included in the thermosetting resin of Equation (1).
  • the total equivalent curable functional group equivalent can be obtained.
  • the curable functional group contained in the thermosetting resin means a functional group that forms a cured structure through reaction with the active hydrogen of the amine curing agent, and the type of the curable functional group may also vary depending on the type of the thermosetting resin.
  • the curable functional group contained in the epoxy resin may be an epoxy group
  • the curability contained in the bismaleimide resin can be a maleimide group
  • the equivalent ratio of the resin composition for coating a thin metal film calculated by Equation 1 satisfies 1.4 or more.
  • the amine curing agent is contained in a sufficient level so that the curable functional groups contained in all thermosetting resins can cause a curing reaction. It means there is. Therefore, when the equivalent ratio calculated by Equation 1 in the resin composition for coating a metal thin film decreases to less than 1.4, it is difficult for the thermosetting resin to be uniformly cured to a more sufficient level under the influence of the filler injected at a high content, resulting in final production There is a disadvantage that the reliability of the product can be reduced and the mechanical properties can also be reduced.
  • thermosetting resin composition for coating a metal thin film of the above embodiment may include a thermoplastic resin.
  • thermoplastic resin After curing, the thermoplastic resin has an effect of increasing toughness, and may lower the thermal expansion coefficient and elastic modulus to alleviate warpage of the metal thin film.
  • specific examples of the thermoplastic resin include (meth) acrylate-based polymers.
  • Examples of the (meth) acrylate-based polymer are not particularly limited, and include, for example, an acrylic ester copolymer containing a repeating unit derived from a (meth) acrylate monomer and a repeating unit derived from (meth) acrylonitrile; Or it may be an acrylic acid ester copolymer containing a repeating unit derived from butadiene.
  • the (meth) acrylate-based polymer is a monomer such as butyl acrylate, ethyl acrylate, acrylonitrile, methyl methacrylate, glycidyl methacrylate, respectively, in the range of 1% by weight to 40% by weight It may be a copolymer that is used in (in comparison to the total weight of the whole monomer) copolymerized.
  • the (meth) acrylate-based polymer may have a weight average molecular weight of 500,000 to 1,000,000. If the weight-average molecular weight of the (meth) acrylate-based polymer is too small, the effect may be technically disadvantageous due to an increase in toughness after curing or a decrease in thermal expansion and elastic modulus. In addition, if the weight average molecular weight of the (meth) acrylate-based polymer is too large, fluidity may be reduced.
  • the weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by GPC method.
  • detectors and analytical columns such as a commonly known analytical device and a differential index detector, can be used, and the temperature is usually applied.
  • Conditions, solvents and flow rates can be applied.
  • the evaluation temperature is 160 ° C. and 1,2,4-trichlorobenzene is used as a solvent.
  • the flow rate was 1 mL / min, the sample was prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 ⁇ L, and the value of Mw can be obtained by using an assay curve formed using a polystyrene standard.
  • the molecular weight of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • thermoplastic resin examples include Negami chemical industrial Co., LTD. PARACRON KG-3015P.
  • the thermoplastic resin may include 40 parts by weight to 90 parts by weight.
  • the thermoplastic resin may include 41 parts by weight to 80 parts by weight, or 42 parts by weight to 70 parts by weight, or 42.7 parts by weight to 67 parts by weight based on 100 parts by weight of the total of the amine compound and the thermosetting resin.
  • the content of the thermoplastic resin is less than 40 parts by weight, there is a problem in that the flowability of the resin is too large, resulting in an increase in thickness variation.
  • thermosetting resin composition for coating a metal thin film of one embodiment may include an inorganic filler.
  • the inorganic filler may be used without limitation that is usually used in a thermosetting resin composition for metal thin film coating, and specific examples include silica, aluminum trihydroxide, magnesium hydroxide, molybdenum oxide, zinc molybdate, and zinc Borate, zinc stannate, alumina, clay, kaolin, talc, calcined kaolin, calcined talc, mica, short glass fibers, glass fine powder and hollow glass may be one or more selected from the group consisting of these.
  • the thermosetting resin composition for coating a metal thin film has an inorganic filler content of 200 parts by weight to 500 parts by weight, or 205 parts by weight to 450 parts by weight, or 210 parts by weight to 400 parts by weight based on the total of 100 parts by weight of the amine compound and the thermosetting resin It may include parts by weight, or 210 parts by weight to 300 parts by weight, or 210 parts by weight to 250 parts by weight, or 210 parts by weight to 220 parts by weight. If the content of the inorganic filler is too small, the thermal expansion coefficient increases, which increases the warpage during the reflow process, and there is a problem that the rigidity of the printed circuit board decreases.
  • the packing density can be increased by using a small size of the nanoparticle size and a large size of the microparticle size to increase the packing density.
  • the inorganic filler may include two or more inorganic fillers having different average particle diameters. Specifically, at least one of the two or more inorganic fillers may be an inorganic filler having an average particle diameter of 0.1 ⁇ m to 100 ⁇ m, and another one may be an inorganic filler having an average particle diameter of 1 nm to 90 nm.
  • the inorganic filler content of the average particle diameter of 1 nm to 90 nm with respect to 100 parts by weight of the inorganic filler having an average particle diameter of 0.1 ⁇ m to 100 ⁇ m may be 1 part by weight to 30 parts by weight.
  • the inorganic filler may use silica surface-treated with a silane coupling agent from the viewpoint of improving moisture resistance and dispersibility.
  • a method of treating silica particles by dry or wet using a silane coupling agent as a surface treatment agent may be used.
  • silica may be surface-treated by a wet method using 0.01 to 1 part by weight of a silane coupling agent based on 100 parts by weight of silica particles.
  • silane coupling agent 3-aminopropyl triethoxysilane, N-phenyl-3-aminopropyl trimethoxysilane and N-2- (aminoethyl) -3-aminopropyl trimethoxysilane.
  • Aminosilane coupling agents epoxy silane coupling agents such as 3-glycidoxypropyl trimethoxysilane, vinyl silane coupling agents such as 3-methacryloxypropyl trimethoxysilane, N-2- (N-vinylbenzylaminoethyl ) -3-aminopropyltrimethoxysilane hydrochloride, and cationic silane coupling agents such as phenyl silane coupling agents, and silane coupling agents may be used alone, or at least two silane coupling agents may be combined as necessary. Can be used.
  • the silane compound may include an aromatic amino silane or (meth) acrylic silane, and as the inorganic filler having an average particle diameter of 0.1 ⁇ m to 100 ⁇ m, silica treated with an aromatic amino silane may be used.
  • silica treated with an aromatic amino silane may be used as the inorganic filler having an average particle diameter of 1 nm to 90 nm.
  • (meth) acrylic silane-treated silica may be used.
  • Specific examples of the aromatic amino silane-treated silica include SC2050MTO (Admantechs), and specific examples of the (meth) acrylsilane-treated silica include AC4130Y (Nissan chemical).
  • the (meth) acrylic was used to mean both acrylic or methacrylic.
  • thermosetting resin composition for coating a metal thin film of the above embodiment may be used as a solution by adding a solvent if necessary.
  • the solvent is not particularly limited as long as it exhibits good solubility with respect to the resin component, and alcohols, ethers, ketones, amides, aromatic hydrocarbons, esters, nitriles, etc. can be used.
  • a mixed solvent used in combination of two or more kinds can also be used.
  • thermosetting resin composition for coating a thin metal film may further include various polymer compounds such as other thermosetting resins, thermoplastic resins, and oligomers and elastomers, and other flame retardant compounds or additives, as long as the properties of the resin composition are not impaired. have. These are not particularly limited as long as they are selected from those commonly used.
  • additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, pigments, dyes, thickeners, lubricants, antifoaming agents, dispersants, There are leveling agents, varnishes, etc., and it is also possible to mix and use them to meet the purpose.
  • thermosetting resins examples include epoxy resins, and the epoxy resins are not limited in their types, but bisphenol A type epoxy resins, phenol novolac epoxy resins, phenyl aralkyl epoxy resins, and tetraphenyl ethane epoxy resins. , Naphthalene-based epoxy resins, or mixtures thereof.
  • the epoxy resin is a bisphenol-type epoxy resin represented by the following formula (5), a novolac-type epoxy resin represented by the following formula (6), a phenyl aralkyl epoxy resin represented by the following formula (7), tetraphenyl represented by the following formula (8)
  • Ethane type epoxy resin one or more selected from the group consisting of naphthalene type epoxy resins represented by the following formulas 9 and 10 may be used.
  • n is 0 or an integer from 1 to 50.
  • the epoxy resin of Formula 5 may be a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol M type epoxy resin, or a bisphenol S type epoxy resin, depending on the type of R.
  • R is H or CH 3 ,
  • n is 0 or an integer from 1 to 50.
  • the novolac-type epoxy resin of Chemical Formula 3 may be a phenol novolac-type epoxy resin or a cresol novolac-type epoxy resin, depending on the type of R, respectively.
  • thermosetting resin composition for coating a metal thin film of the embodiment may include the amine compound described above, and may further include an additional curing agent other than the amine compound.
  • thermosetting resin composition for coating a metal thin film according to an embodiment of the present invention having such a configuration may satisfy a complex viscosity condition of 2000 Pa ⁇ s or less in a range of a minimum rheometer viscosity range of 120 ° C. to 180 ° C.
  • the temperature range satisfying the viscosity condition is very wide from 120 ° C. to 180 ° C. That is, since the flowability in the lamination process section is high, no empty space is generated after lamination of the resin, so that the pattern filling property is excellent.
  • thermosetting resin composition for coating a metal thin film of the present invention has excellent resin flow properties as described above, it is possible to make a metal thin film and a metal laminated plate using the same or secure flow properties in a build-up process, thereby facilitating fine patterns. It can be filled and can also improve the crack resistance of the thin film.
  • thermosetting resin composition for coating a metal thin film of the above-described embodiment may be provided.
  • the contents of the thermosetting resin composition for coating a metal thin film include all of the contents described above in one embodiment.
  • An amine compound containing at least one functional group selected from the group consisting of alkylene groups of 20; Thermosetting resins; And a thermoplastic resin; a resin-coated metal thin film including a cured product of the liver and an inorganic filler dispersed between the cured products may be
  • the present invention can provide a resin-coated metal thin film that exhibits excellent thermal and mechanical properties as a simple method of directly coating a resin composition having excellent flowability and pattern fillability on a metal foil.
  • a thermosetting resin including a filler may be formed on a metal thin film, and specifically, a filler may be uniformly dispersed in a cured product formed on the resin coated metal thin film.
  • the filler dispersed between the cured product and the cured product includes the steps of coating the thermosetting resin composition on a metal thin film; And curing the thermosetting resin composition coated on the metal thin film.
  • a resin coating metal thin film can be produced by a simple method by mixing each of the above-described components to prepare a coating varnish, coating the metal on the metal foil, and curing and drying the coating varnish.
  • the curing conditions may be performed for 1 hour to 4 hours at a temperature of 180 ° C to 250 ° C.
  • thermosetting resin composition on the metal foil is not particularly limited, and a coating method well known in the art may be used.
  • thermosetting resin composition of the present invention in a metal foil into a coater device and coating it to a certain thickness
  • the coater device may use a comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater or spray coater.
  • a carrier film may be used for evaluation of flowability, and the carrier film may include plastic films such as polyethylene terephthalate (PET), polyester film, polyimide film, polyamideimide film, polypropylene film, and polystyrene film. Can be used.
  • PET polyethylene terephthalate
  • polyester film polyimide film
  • polyamideimide film polyamideimide film
  • polypropylene film polystyrene film.
  • the varnish used for the coating may be in a state in which a solvent is added to the thermosetting resin composition.
  • the solvent for the resin varnish is not particularly limited as long as it can be mixed with the resin component and has good solubility. Specific examples of these include ketones such as acetone, methyl ethyl ketone, methylisobutyl ketone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene and xylene, and amides such as dimethylformamide and dimethylacetamide, methylcello And alcohol alcohols such as sorb and butyl cellosolve.
  • ketones such as acetone, methyl ethyl ketone, methylisobutyl ketone and cyclohexanone
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • amides such as dimethylformamide and dimethylacetamide
  • methylcello And alcohol alcohols such as sorb and but
  • the thickness of the cured product may be 5 ⁇ m to 90 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m. Even if the cured product has a thin thickness on the metal foil, it is possible to exhibit excellent thermal and mechanical properties with respect to the metal foil. When the thickness of the cured product increases or decreases by a specific value, physical properties measured in the resin-coated metal thin film may also change by a certain value.
  • the glass transition temperature (Tg) of the cured coating of the thermosetting resin composition for coating a metal thin film of the above embodiment is 220 ° C to 240 ° C.
  • the coating cured product of the thermosetting resin composition for coating a metal thin film of the above embodiment has a tensile elongation in the MD direction of 1% measured using Universal Testing Machine (Instron 3365) equipment according to IPC-TM-650 (2.4.18.3). Or more, or 1% to 10%, or 2% to 5%, or 3% to 4%, or 3.6% to 3.8%.
  • the present invention is excellent in crack resistance when compared at the same thickness compared to a resin-coated copper foil made of a conventional single-molecule series, thereby contributing to improving the performance of a semiconductor device.
  • the metal foil is copper foil; Aluminum foil; A composite foil of a three-layer structure comprising nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead or lead-tin alloy as an intermediate layer, and including copper layers of different thicknesses on both sides; Or it includes a composite foil of a two-layer structure in which aluminum and copper foil are combined.
  • the metal foil used in the present invention is a copper foil or an aluminum foil is used, it can be used having a thickness of about 2 ⁇ m to 200 ⁇ m, the thickness is preferably about 2 ⁇ m to 35 ⁇ m.
  • copper foil is used as the metal foil.
  • copper layers having a thickness of 0.5 ⁇ m to 15 ⁇ m on both sides thereof and 10 It is also possible to use a three-layer structured composite foil provided with a copper layer of ⁇ m to 300 ⁇ m or a two-layer structure composite foil obtained by combining aluminum and copper foil.
  • a metal foil laminate plate including the resin-coated metal thin film of the other embodiment may be provided.
  • the contents of the resin-coated metal thin film include all of the contents described above in the other embodiments.
  • the metal foil laminate may be a metal foil laminate in which one or more resin-coated metal thin films obtained in the other embodiments are manufactured.
  • the present invention can be used for the production of double-sided or multi-layer printed circuit boards after laminating one or more sheets of the resin-coated metal thin film.
  • the metal foil laminate can be circuit-processed to produce a double-sided or multi-layer printed circuit board, and the circuit processing can be applied to a method performed in a general double-sided or multi-layer printed circuit board manufacturing process.
  • thermosetting resin composition for coating a metal thin film having excellent flow properties, improved mechanical properties such as crack resistance and tensile properties, and a resin coated metal thin film and metal foil laminate using the same can be provided.
  • Example 1 is a graph showing rheometer viscosity according to the temperature of Example 1 and Comparative Example 3.
  • each component was added to methyl ethyl ketone in accordance with 40% of solid content and mixed, followed by stirring at room temperature at a rate of 400 rpm for 1 day and viscosity using a rotary evaporator.
  • resin compositions for coating metal thin films of Examples and Comparative Examples were prepared.
  • the specific composition of the resin composition prepared in the above Example is as described in Table 1 below
  • the specific composition of the resin composition prepared in the Comparative Example is as described in Table 2 below.
  • thermosetting resin composition for coating a metal thin film obtained in the above Examples and Comparative Examples, and the resin coated copper foil were measured by the following methods, and the results are shown in Tables 1 and 2.
  • thermosetting resin composition of Example 1 and Comparative Example 3 After coating the metal thin film coating thermosetting resin composition of Example 1 and Comparative Example 3 on a PET substrate, and laminated through a laminator to prepare a sample of an appropriate thickness to measure the rheometer viscosity (viscosity measurement conditions according to temperature, temperature increase rate 5 ° C./min, frequency: 10 Hz).
  • a resin copper foil coating sample obtained through the above examples or comparative examples was laminated thereon.
  • the circuit pattern fillability was evaluated under the following criteria.
  • the resin layer was laminated so as to face each other using two resin-coated copper foils of the above example, and curing was performed for 100 minutes at 220 ° C. and 35 kg / cm 2 under vacuum heat press. .
  • the peak temperature of tan delta was measured as a glass transition temperature by measuring from 25 ° C to 300 ° C under a temperature increase condition of 5 ° C / min in tensile mode using DMA (TA Instruments, Q800).
  • TMA TA Instruments, Q400
  • the temperature was measured from 30 ° C to 260 ° C under a heating rate of 10 ° C / min, and the measured value in the range of 50 ° C to 150 ° C was recorded as a coefficient of thermal expansion.
  • the storage modulus was measured from 25 ° C to 300 ° C in a tensile mode at a temperature increase of 5 ° C / min.
  • IPC-TM-650 2.4.18.3
  • tensile elongation in the MD direction was measured using a Universal Testing Machine (Instron 3365) equipment.
  • BMI-2300 bismaleimide resin (DAIWA KASEI, maleimide equivalent 179 g / eq)
  • the total active hydrogen equivalent of DDS is the total weight (g) of DDS divided by the unit equivalent of active hydrogen (62 g / eq) of DDS,
  • the total epoxy equivalent of XD-1000 is the total weight (g) of XD-1000 divided by the epoxy unit equivalent of XD-1000 (253 g / eq),
  • the total epoxy equivalent of NC-3000H is the total weight (g) of NC-3000H divided by the epoxy unit equivalent of NC-3000H (290 g / eq),
  • the total maleimide equivalent of BMI-2300 is the total weight (g) of BMI-2300 divided by the male equivalent of BMI-2300 (179 g / eq).
  • the resin-coated copper foil containing an amine compound having an electron withdrawing group has a glass transition temperature of 230 ° C to 235 ° C, and is less than 21 ppm / ° C It has been confirmed that, while having a thermal expansion coefficient of, the complex viscosity in the temperature range of 120 ° C. to 180 ° C. is 2000 Pa.s or less and has excellent circuit pattern filling properties.
  • EWG electron withdrawing group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은, 특정 작용기를 포함한 아민 화합물, 열경화성 수지, 열가소성 수지, 및 무기 충진재를 포함하고 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함하며, 120 ℃ 내지 180 ℃의 범위에서 2000Pa·s 이하의 복소점도를 갖는, 금속 박막 코팅용 열경화성 수지 조성물과 상기 조성물을 이용한 수지 코팅 금속 박막 및 금속박 적층판에 관한 것이다.

Description

금속 박막 코팅용 열경화성 수지 조성물, 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판
관련 출원(들)과의 상호 인용
본 출원은 2018년 9월 20일자 한국 특허 출원 제 10-2018-0113252호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 금속 박막 코팅용 열경화성 수지 조성물, 수지 코팅 금속 박막 및 금속박 적층판에 관한 것으로, 보다 상세하게는 우수한 흐름성을 가지며, 내크랙성 및 인장특성 등의 기계적 물성이 향상된 금속 박막 코팅용 열경화성 수지 조성물 및 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판에 관한 것이다.
종래의 인쇄회로기판에 사용되는 동박적층판(copper clad laminate)은 유리 섬유(Glass Fabric)의 기재를 상기 열경화성 수지의 바니시에 함침한 후 반경화시키면 프리프레그가 되고, 이를 다시 동박과 함께 가열 가압하여 제조한다. 이러한 동박 적층판에 회로 패턴을 구성하고 이 위에 빌드업(build-up)을 하는 용도로 프리프레그가 다시 사용되게 된다.
최근 전자 기기, 통신기기, 개인용 컴퓨터, 스마트폰 등의 고성능화, 박형화, 경량화가 가속되면서 반도체 패키지 또한 박형화가 요구됨에 따라, 동시에 반도체 패키지용 인쇄회로기판도 박형화의 필요성이 커지고 있다.
다시 말해, 최근 전자기기의 폼팩터가 줄어들면서 반도체 패키지의 두께도 점점 얇아지고 있다. 그런데, 종래 패키지 구성 성분 중 적층 소재인 프리프레그 (prepreg)는 직조된 유리 섬유(glass fabric)를 포함하고 있기 때문에 두께를 일정 이상 줄이기가 어렵다.
한편, 프리프레그 대안 소재인 수지 코팅 동박 (RCC, resin coated copper)은 유리섬유를 포함하지 않기 때문에 프리프레그에 비해 두께를 더 얇게 만들 수 있다.
그러나, 기존 프리프레그 보다 얇은 소재인 수지가 코팅된 동박은 보강 기재로 유리섬유가 들어가지 않으므로 패키지 공정 과정에서 크랙이 발생하기 쉽다. 공정 과정에서 크랙이 발생하면 전체 수율 감소로 이어지게 되며, 신뢰성에도 악영향을 미칠 수 있다. 따라서, 수지 코팅 동박 내 수지 층의 내크랙성 향상이 필요하다.
또한, 적층 소재의 특성 중 가장 중요한 것은 패턴 채움성 (매립성)이다. 즉, 적층 소재로서 수지 코팅 동박은 패턴을 채워야 하므로 수지의 흐름성은 중요한 특성이다. 특히, 수지 동박 적층의 두께가 얇아질수록 수지량이 적어져 패턴을 채우기 어렵다. 패턴이 제대로 채워지지 않는 경우, 빈 공간 (void)가 발생하게 되고 반도체 기판의 신뢰성, 성능 등이 떨어지게 된다. 수지 코팅 동박의 두께가 얇아지면 수지의 양도 줄어들기 때문에 패턴을 채우지 못하고 적층 후 빈 공간이 발생할 가능성이 높아진다. 즉, 기판의 박막화를 위해 수지 두께를 얇게 하면 패턴 채움성이 떨어지게 되는 것이다.
따라서, 두께를 얇게 하면서도 동시에 패턴 채움성을 높이고 크랙을 방지하기 위해서는 수지의 흐름성과 내크랙성을 동시에 높이는 것이 필요하다.
통상적으로 사용되는 방법은 단분자 계열의 수지를 사용하는 것이다. 분자량이 낮은 수지의 경우, 적층 공정 온도 구간 내에서 경화 전 점도가 낮기 때문에 흐름성 및 패턴 채움성이 우수하다. 하지만 단분자 계열의 수지는 경화 전 표면 끈적임이 있으므로 보호 필름이 필요하며, 상온 보관 시 경화 반응이 서서히 진행되므로 경시 변화에 취약한 단점을 가지고 있다. 또한, 상기 수지는 내크랙성이 충분치 못하여, 전체 수율 감소를 야기하는 문제가 있다.
본 발명은 우수한 흐름성을 가지며, 내크랙성 및 인장특성 등의 기계적 물성이 향상된 금속 박막 코팅용 열경화성 수지 조성물을 제공하기 위한 것이다.
또한, 본 발명은 상기 금속 박막 코팅용 열경화성 수지 조성물의 경화물을 포함하는 수지 코팅 금속 박막을 제공하기 위한 것이다.
또한, 본 발명은 상기 수지 코팅 금속 박막을 포함하는 금속박 적층판을 제공하기 위한 것이다.
본 명세서에서는, i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 열가소성 수지; 및 무기 충진재;를 포함하고, 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함하며, 120 ℃ 내지 180 ℃의 범위에서 2000 Pa·s 이하의 복소점도를 갖는 금속 박막 코팅용 열경화성 수지 조성물이 제공된다.
본 명세서에서는 또한, 상기 금속 박막 코팅용 열경화성 수지 조성물의 경화물을 포함하는 수지 코팅 금속 박막을 제공한다.
본 명세서에서는 또한, 상기 수지 코팅 금속 박막을 포함하는 금속박 적층판을 제공한다.
이하 발명의 구체적인 구현예에 따른 금속 박막 코팅용 열경화성 수지 조성물과 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판에 대하여 보다 상세하게 설명하기로 한다.
Ⅰ. 금속 박막 코팅용 열경화성 수지 조성물
발명의 일 구현예에 따르면, i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 열가소성 수지; 및 무기 충진재;를 포함하고, 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함하며, 120 ℃ 내지 180 ℃의 범위에서 2000 Pa·s 이하의 복소점도를 갖는 금속 박막 코팅용 열경화성 수지 조성물이 제공될 수 있다.
기존에는 주로, 수지 조성물을 직조된 유리 섬유에 함침한 프리프레그를 이용하여 금속박 적층판을 제조하여 왔지만, 두께를 줄이는데 한계가 있을 뿐 아니라 두께가 줄어들면 동박의 적층 공정 중에 수지 흐름성이 떨어져 패턴 채움성이 불량한 문제가 있었다. 또한, 수지가 코팅된 형태의 동박의 박막화가 가능해도, 단분자 계열의 수지가 사용되는 경우 보관성 및 안정성의 측면에서 불리한 점이 많았다.
한편, 기존 열경화성 수지 조성물에서는 경화 후 모듈러스가 높아 깨지기 쉽고 이에 따라 내크랙성은 떨어진다는 단점이 있었다.
따라서, 본 발명에서는 에폭시와 아민 경화제 등으로 구성된 수지 시스템 및 일정 함량의 열가소성 수지를 도입하여 수지의 흐름성이 확보할 뿐 아니라 상기 열경화성 수지 조성물이 코팅된 금속 박막의 내크랙성을 향상시키고자 한다. 또한, 본 발명의 조성물은 수지 종류 및 혼합 비율을 최적화하는 특징이 있다.
보다 구체적으로, 본 발명에 따르면, 특정 아민 경화제를 사용해서, 수지의 경화 반응을 용이하게 제어할 수 있다. 좀 더 구체적으로는 아민 경화제의 작용기를 조절하여 수지의 경화 반응 시 생기는 결합의 수를 조절함으로써 모듈러스를 낮출 수 있다. 이를 통해 내크랙성은 증가하게 되며 같은 인장력 또는 충격에 대해 보다 안정성을 가질 수 있게 된다.
또한, 본 발명에 사용된 금속 박막 코팅용 열경화성 수지 조성물은 경화 반응의 제어와 함께, 상기 조성물에 특정 열가소성 수지를 첨가하여 흐름성을 조절하게 된다. 이에 따라 레오미터 최저 점도 구간(window)이 넓어져서 흐름성 및 패턴 채움성에 유리하게 된다. 바람직하게, 본 발명은 금속박 적층 공정의 온도 구간 내에서, 최소 점도를 유지하는 구간 (window)을 넓힘으로써, 수지의 흐름성을 향상시키는 효과가 있다.
예를 들어, 패턴을 채우는데 적합한 복소 점도를 2000 Pa.s 이하라고 가정할 때, 본 발명에서 제시하는 수지 조성물의 경우, 상기 점도 조건을 만족하는 온도 구간이 120 ℃ 내지 180 ℃로 매우 넓다. 즉, 적층 공정 구간 내 흐름성이 높고 패턴 채움성이 우수해져서, 열경화성 수지 조성물이 코팅된 금속 박막의 내크랙성을 향상시킬 수 있다.
상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물은 아민 화합물, 열경화성 수지, 열가소성 수지, 및 무기 충진재를 포함할 수 있다.
상기 성분의 함량이 크게 한정되는 것은 아니나, 상기 구현예의 금속 박막 코팅용 열경화성 수지 조성물로부터 제조되는 최종 제품의 물성 등을 고려하여 상술한 성분들을 포함할 수 있으며, 이들 성분간의 함량 비율 등은 후술하는 바와 같다.
구체적으로, 상기 일 구현예의 열경화성 수지 조성물은 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물을 포함할 수 있다. 상기 아민 화합물은 아민 경화제로 사용될 수 있다.
이때, 상기 아민 화합물에 포함된 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 30의 헤테로아릴기 및 탄소수 1 내지 20의 알킬렌기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 있다.
상기 아민 화합물에 포함된 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기는 강력한 전자 끌개 작용기(Electron Withdrawing Group, EWG)로서, 상기 전자 끌개 작용기를 포함한 아민 화합물은 전자 끌개 작용기를 포함지 않은 아민 화합물에 비해 반응성이 감소하여 이로부터 수지 조성물의 경화 반응을 용이하게 제어할 수 있다.
따라서, 상기 아민 화합물에 의해 조성물의 경화반응 정도를 조절하여 유동성을 향상시켜 회로 패턴 채움성이 향상될 수 있다.
상기 아민 화합물은 i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1 이상 포함하고, 2 내지 5개의 아민기를 포함하는 방향족 아민 화합물일 수 있다.
보다 구체적으로, 상기 아민 화합물은 하기 화학식 1 내지 3으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다.
[화학식1]
Figure PCTKR2019012087-appb-I000001
상기 화학식1에서, A는 술폰기, 카보닐기, 또는 탄소수 1 내지 10의 알킬렌기이며, X1 내지 X8는 각각 독립적으로 니트로기, 시아노기, 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며, n은 1 내지 10의 정수일 수 있다.
상기 탄소수 1 내지 10의 알킬렌기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 있다.
[화학식2]
Figure PCTKR2019012087-appb-I000002
상기 화학식2에서, Y1 내지 Y8는 각각 독립적으로 니트로기, 시아노기, 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, R3, R3', R4 및 R4'는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며, m은 1 내지 10의 정수이고, 상기 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 있다.
[화학식3]
Figure PCTKR2019012087-appb-I000003
상기 화학식3에서, Z1 내지 Z4는 각각 독립적으로 니트로기, 시아노기, 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, R5, R5', R6 및 R6'는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며, 상기 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 있다.
상기 알킬기는, 알케인(alkane)으로부터 유래한 1가의 작용기로, 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸, 에틸, 프로필, 이소부틸, sec-부틸, tert-부틸, 펜틸, 헥실 등이 될 수 있다. 상기 알킬기에 포함되어 있는 하나 이상의 수소 원자는 각각 치환기로 치환가능하다.
상기 알킬렌기는, 알케인(alkane)으로부터 유래한 2가의 작용기로, 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸렌기, 에틸렌기, 프로필렌기, 이소부틸렌기, sec-부틸렌기, tert-부틸렌기, 펜틸렌기, 헥실렌기 등이 될 수 있다. 상기 알킬렌기에 포함되어 있는 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
상기 아릴기는 아렌(arene)으로부터 유래한 1가의 작용기로, 예를 들어, 단환식 또는 다환식일 수 있다. 구체적으로, 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기, 스틸베닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 다환식 아릴기로는 나프틸기, 안트릴기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 이러한 아릴기 중 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
상기 헤테로아릴기는 이종원자로 O, N 또는 S를 포함하는 헤테로 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 30일 수 있다. 헤테로 고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 트리아진기, 아크리딜기, 피리다진기, 퀴놀리닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기 및 디벤조퓨란기 등이 있으나, 이들에만 한정되는 것은 아니다. 이러한 헤테로아릴기 중 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
상기 "치환"이라는 용어는 화합물 내의 수소 원자 대신 다른 작용기가 결합하는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정되지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
보다 구체적으로, 상기 화학식1은 하기 화학식1-1로 표시되는 화합물을 포함할 수 있다.
[화학식1-1]
Figure PCTKR2019012087-appb-I000004
상기 화학식1-1에서, A, X1 내지 X8, R1, R1', R2 및 R2', n에 대한 내용은 상기 화학식1에서 상술한 내용을 포함한다.
상기 화학식1-1의 구체적인 예로는 4,4'-diaminodiphenyl sulfone(화학식1-1에서 A는 술폰기, X1 내지 X8, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.), bis(4-aminophenyl)methanone(화학식1-1에서 A는 카보닐기, X1, X2, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.), 4,4'-(perfluoropropane-2,2-diyl)dianiline(화학식1-1에서 A는 perfluoropropane-2,2-diyl, X1 내지 X8, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.), 4,4'-(2,2,2-trifluoroethane-1,1-diyl)dianiline (화학식1-1에서 A는 2,2,2-trifluoroethane-1,1-diyl, X1 내지 X8, R1, R1', R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.) 등을 들 수 있다.
또한, 상기 화학식2는 하기 화학식2-1로 표시되는 화합물을 포함할 수 있다.
[화학식2-1]
Figure PCTKR2019012087-appb-I000005
상기 화학식2-1에서, Y1 내지 Y8, R3, R3', R4 및 R4', m에 대한 내용은 상기 화학식2에서 상술한 내용을 포함한다.
상기 화학식2-1의 구체적인 예로는 2,2',3,3',5,5',6,6'-octafluorobiphenyl-4,4'-diamine (화학식2-1에서 Y1 내지 Y8은 할로겐으로 플루오르기, R3, R3', R4 및 R4'는 각각 독립적으로 수소원자이며, m은 1 이다.), 2,2'-bis(trifluoromethyl)biphenyl-4,4'-diamine (Y2 및 Y7은 각각 트리플루오로메틸기이며, Y1, Y3, Y4, Y5, Y6, Y8은 수소원자, R3, R3', R4 및 R4'는 각각 독립적으로 수소원자이며, m은 1 이다.) 등을 들 수 있다.
또한, 상기 화학식3는 하기 화학식3-1로 표시되는 화합물을 포함할 수 있다.
[화학식3-1]
Figure PCTKR2019012087-appb-I000006
상기 화학식3-1에서, Z1 내지 Z4, R5, R5', R6 및 R6'에 대한 내용은 상기 화학식3에서 상술한 내용을 포함한다.
상기 화학식3-1의 구체적인 예로는 2,3,5,6-tetrafluorobenzene-1,4-diamine (화학식3-1에서 Z1 내지 Z4는 할로겐으로 플루오르기, R5, R5', R6 및 R6'는 각각 독립적으로 수소원자이다.)등을 들 수 있다.
상기 아민 화합물과 수지성분(구체적으로, 열경화성 수지와 열가소성 수지 합계)의 전체 중량에 대하여 아민 화합물의 함량이 5 중량% 내지 50 중량%, 또는 10 중량% 내지 20 중량%일 수 있다. 상기 아민 화합물의 함량이 5 중량% 미만으로 지나치게 감소할 경우, 미경화가 발생할 수 있으며, 상기 아민 화합물의 함량이 50 중량부 초과로 지나치게 증가할 경우, 경화속도가 증가되어 열경화성 수지 조성물의 유동성이 감소될 수 있으며, 또한, 미반응된 아민 화합물에 의해 열경화성 수지 조성물을 이용한 금속 박막의 기계적 물성이 저하될 수 있다.
한편, 상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물은 열경화성 수지를 포함할 수 있다.
상기 열경화성 수지는 디시클로펜타디엔계 에폭시 수지 및 바이페닐계 에폭시 수지를 포함할 수 있다. 구체적으로, 상기 디시클로펜타디엔계 에폭시 수지 100 중량부 대비 상기 바이페닐계 에폭시 수지의 함량이 100 중량부 미만, 또는 1 중량부 내지 90 중량부, 또는 5 중량부 내지 80 중량부, 또는 10 중량부 내지 70 중량부, 또는 20 중량부 내지 50 중량부일 수 있다.
보다 구체적으로, 상기 바이페닐계 에폭시 수지는 하기 화학식 11로 표시되는 에폭시 수지일 수 있고, 상기 디시클로펜타디엔계 에폭시 수지는 하기 화학식 12로 표시되는 에폭시 수지일 수 있다.
[화학식 11]
Figure PCTKR2019012087-appb-I000007
상기 화학식 11에서,
n은 0 또는 1 내지 50의 정수이다.
[화학식 12]
Figure PCTKR2019012087-appb-I000008
상기 화학식 12에서, n은 0 또는 1 내지 50의 정수이다.
상기 디시클로펜타디엔계 에폭시 수지의 구체적인 예로는, Nippon kayaku사 XD-1000을 들 수 있고, 상기 바이페닐계 에폭시 수지의 구체적인 예로는, Nippon kayaku사 NC-3000H 을 들 수 있다.
또한, 상기 열경화성 수지는 비스말레이미드 수지, 시아네이트 에스터 수지 및 비스말레이미드-트리아진 수지로 이루어진 군으로부터 선택되는 1종 이상의 수지를 더 포함할 수 있다.
상기 비스말레이미드 수지는 통상 금속 박막 코팅용 열경화성 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다. 바람직한 일례를 들면, 상기 비스말레이미드 수지는 하기 화학식 13으로 표시되는 디페닐메탄형 비스말레이미드 수지, 하기 화학식 14로 표시되는 페닐렌형 비스말레이미드 수지, 하기 화학식 15로 표시되는 비스페놀 A형 디페닐 에테르 비스말레이미드 수지, 및 하기 화학식 16으로 표시되는 디페닐메탄형 비스말레이미드 및 페닐메탄형 말레이미드 수지의 올리고머로 구성된 비스말레이미드 수지로 이루어진 군에서 선택된 1종 이상일 수 있다.
[화학식 13]
Figure PCTKR2019012087-appb-I000009
상기 화학식 13에서,
R1 및 R2는 각각 독립적으로, H, CH3 또는 C2H5이다.
[화학식 14]
Figure PCTKR2019012087-appb-I000010
[화학식 15]
Figure PCTKR2019012087-appb-I000011
[화학식 16]
Figure PCTKR2019012087-appb-I000012
상기 화학식 16에서,
n은 0 또는 1 내지 50의 정수이다.
또한, 상기 시아네이트계 수지의 구체적인 예로 시아네이트 에스터 수지를 들 수 있으며, 통상 금속 박막 코팅용 열경화성 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다.
바람직한 일례를 들면, 상기 시아네이트 에스터 수지는 하기 화학식 17로 표시되는 노볼락형 시아네이트 수지, 하기 화학식 18로 표시되는 디시클로펜타디엔계형 시아네이트 수지, 하기 화학식 19로 표시되는 비스페놀형 시아네이트 수지 및 이들의 일부 트리아진화된 프리폴리머를 들 수 있고, 이들은 단독 혹은 2종 이상 혼합하여 사용할 수 있다.
[화학식 17]
Figure PCTKR2019012087-appb-I000013
상기 화학식 17에서,
n은 0 또는 1 내지 50의 정수이다.
[화학식 18]
Figure PCTKR2019012087-appb-I000014
상기 화학식 18에서,
n은 0 또는 1 내지 50의 정수이다.
[화학식 19]
Figure PCTKR2019012087-appb-I000015
상기 화학식 19에서,
R은
Figure PCTKR2019012087-appb-I000016
또는
Figure PCTKR2019012087-appb-I000017
이다.
보다 구체적으로, 상기 화학식 19의 시아네이트 수지는 R의 종류에 따라, 각각 비스페놀 A형 시아네이트 수지, 비스페놀 E형 시아네이트 수지, 비스페놀 F형 시아네이트 수지, 또는 비스페놀 M형 시아네이트 수지일 수 있다.
그리고, 상기 비스말레이미드 수지로는 비스말레이미드-트리아진 수지 등을 들 수 있고, 상기 비스말레이미드-트리아진 수지는 통상 금속 박막 코팅용 열경화성 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다. 상기 비스말레이미드 수지의 바람직한 예로는 DAIWA KASEI사 BMI-2300 등을 들 수 있다.
특히, 상기 일 구현예의 금속 박막 코팅용 수지 조성물은 상기 아민 화합물 100 중량부에 대하여 상기 열경화성 수지 함량을 400 중량부 이하로 포함하여, 높은 함량으로 투입된 필러에 의한 열경화성 수지의 물성 변화를 방지하고, 필러의 영향없이 열경화성 수지가 보다 충분한 수준으로 균일하게 경화 가능하도록 유도하여, 최종 제조되는 제품의 신뢰성이 향상될 수 있고, 인성(Toughness)와 같은 기계적 물성 또한 증가시킬 수 있으며, 유리전이온도를 충분히 낮출 수 있다.
종래에는 상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량을 400 중량부 이하로 포함시키는 것과 같이, 아민 경화제를 상대적으로 과량으로 첨가시 열경화성 수지의 과도한 경화로 인해 유동성 및 성형성이 감소하는 한계가 있었다. 그러나, 상술한 바와 같이 전자 끌개 작용기(Electron Withdrawing Group, EWG)를 포함하여 반응성이 감소한 특정 아민 경화제를 과량으로 첨가하더라도, 경화제의 반응성 감소로 인해, 열경화성 수지의 경화속도가 급격히 상승하는 것을 억제할 수 있어, 금속 박막 코팅용 수지 조성물이나 이로부터 얻어지는 금속 박막에서의 장기간 보관시에도 높은 흐름성을 나타내어 우수한 유동성을 가질 수 있다.
구체적으로, 상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물은 상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량이 400 중량부 이하, 또는 150 중량부 내지 400 중량부, 또는 180 중량부 내지 300 중량부, 또는 180 중량부 내지 290 중량부, 또는 190 중량부 내지 290 중량부, 또는 240 중량부 내지 260 중량부일 수 있다. 상기 아민 경화제 또는 열경화성 수지가 2종 이상의 혼합물인 경우, 아민 경화제 혼합물 100 중량부에 대하여 열경화성 수지 혼합물 함량 또한 400 중량부 이하, 또는 150 중량부 내지 400 중량부, 또는 180 중량부 내지 300 중량부, 또는 180 중량부 내지 290 중량부, 또는 190 중량부 내지 290 중량부, 또는 240 중량부 내지 260 중량부 일 수 있다.
상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량을 400 중량부 초과로 지나치게 증가할 경우, 고함량으로 투입된 필러의 영향으로 열경화성 수지가 보다 충분한 수준까지 균일하게 경화되기 어려워, 최종 제조되는 제품의 신뢰성이 감소할 수 있고, 인성(Toughness)와 같은 기계적 물성 또한 감소될 수 있다.
또한, 본 발명에서 상기 아민 화합물 및 수지성분(구체적으로, 열경화성 수지와 열가소성 수지 합계)의 전체 중량에 대하여 에폭시 수지의 함량이 30 중량% 내지 80 중량%이고, 비스말레이미드 수지의 함량이 1 중량% 내지 20 중량%일 수 있다. 바람직하게, 상기 에폭시 수지의 함량은 상기 아민 화합물 및 수지성분(구체적으로, 열경화성 수지와 열가소성 수지 합계)의 총합에 대하여 35 중량% 내지 70 중량%일 수 있다. 또한, 상기 비스말레이미드 수지의 함량은 상기 아민 화합물 및 수지성분(구체적으로, 열경화성 수지와 열가소성 수지 합계)의 총합에 대하여 1 중량% 내지 10 중량%일 수 있다.
상기 에폭시 수지의 사용량이 30 중량% 미만이면 높은 Tg의 구현이 어려운 문제가 있고, 80 중량%를 초과하면 흐름성이 나빠지는 문제가 있다.
상기 비스말레이미드 수지의 사용량이 1 중량% 미만이면 원하는 물성 구현이 안되는 문제가 있고, 20 중량%를 초과하면 미반응기가 많아 내화학성 등의 특성에 악영향을 끼칠 수 있다.
한편, 상기 금속 박막 코팅용 수지 조성물은 하기 수학식1로 계산되는 당량비가 1.4 이상, 또는 1.4 내지 2.5, 또는 1.45 내지 2.5, 또는 1.45 내지 2.1, 또는 1.45 내지 1.8, 또는 1.49 내지 1.75, 또는 1.6 내지 1.7일 수 있다.
[수학식1]
당량비 = 상기 아민 경화제에 함유된 총 활성수소 당량 / 상기 열경화성 수지에 함유된 총 경화성 작용기 당량
보다 구체적으로, 상기 수학식1에서, 상기 아민 경화제에 함유된 총 활성수소 당량은, 상기 아민 경화제의 총 중량(단위: g)을 상기 아민 경화제의 활성수소 단위당량(g/eq)로 나눈 값을 의미한다.
상기 아민 경화제가 2종 이상의 혼합물인 경우, 각각의 화합물 별로 중량(단위:g)을 활성수소 단위당량(g/eq)로 나눈 값을 구하고, 이를 합한 값으로 상기 수학식1의 아민 경화제에 함유된 총 활성수소 당량을 구할 수 있다.
상기 아민 경화제에 함유된 활성수소는, 아민 경화제에 존재하는 아미노기(-NH2)에 포함된 수소원자를 의미하며, 상기 활성수소가 열경화성 수지의 경화성 작용기와의 반응을 통해 경화구조를 형성할 수 있다.
또한, 상기 수학식1에서, 상기 열경화성 수지에 함유된 총 경화성 작용기 당량은, 상기 열경화성 수지의 총 중량(단위: g)을 상기 열경화성 수지의 경화성 작용기 단위당량(g/eq)로 나눈 값을 의미한다.
상기 열경화성 수지가 2종 이상의 혼합물인 경우, 각각의 화합물 별로 중량(단위:g)을 경화성 작용기 단위당량(g/eq)로 나눈 값을 구하고, 이를 합한 값으로 상기 수학식1의 열경화성 수지에 함유된 총 경화성 작용기 당량을 구할 수 있다.
상기 열경화성 수지에 함유된 경화성 작용기는, 상기 아민 경화제의 활성수소와의 반응을 통해 경화구조를 형성하는 작용기를 의미하며, 상기 열경화성 수지 종류에 따라 경화성 작용기의 종류 또한 달라질 수 있다.
예를 들어, 상기 열경화성 수지로 에폭시 수지를 사용할 경우, 상기 에폭시 수지에 함유된 경화성 작용기는 에폭시기가 될 수 있고, 상기 열경화성 수지로 비스말레이미드수지를 사용할 경우, 상기 비스말레이미드 수지에 함유된 경화성 작용기는 말레이미드기가 될 수 있다.
즉, 상기 금속 박막 코팅용 수지 조성물이 상기 수학식1로 계산되는 당량비가 1.4 이상을 만족한다는 것은, 모든 열경화성 수지에 함유된 경화성 작용기가 경화반응을 일으킬 수 있을 정도로 충분한 수준의 아민 경화제가 함유되어있음을 의미한다. 따라서, 상기 금속 박막 코팅용 수지 조성물에서 상기 수학식1로 계산되는 당량비가 1.4 미만으로 감소하는 경우, 고함량으로 투입된 필러의 영향으로 열경화성 수지가 보다 충분한 수준까지 균일하게 경화되기 어려워, 최종 제조되는 제품의 신뢰성이 감소할 수 있고, 기계적 물성 또한 감소할 수 있는 단점이 있다.
한편, 상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물은 열가소성 수지를 포함할 수 있다.
상기 열가소성 수지는 경화 후, 인성(Toughness)을 증가시키는 효과가 있으며, 열팽창계수 및 탄성률을 낮게 하여 금속 박막의 휨(Warpage)를 완화시키는 역할을 할 수 있다. 상기 열가소성 수지의 구체적인 예로는 (메트)아크릴레이트계 고분자를 들 수 있다.
상기 (메트)아크릴레이트계 고분자의 예가 크게 한정되는 것은 아니며, 예를 들어 (메트)아크릴레이트계 단량체 유래의 반복단위와 (메트)아크릴로니트릴 유래의 반복 단위가 포함되는 아크릴산 에스테르 공중합체; 또는 부타디엔 유래의 반복 단위가 포함되는 아크릴산 에스테르 공중합체일 수 있다. 예를 들어, 상기 (메트)아크릴레이트계 고분자는 부틸아크릴레이트, 에틸아크릴레이트, 아크릴로니트릴, 메틸메타크릴레이트, 글리시딜메타크릴레이트 등의 단량체를 각각 1 중량% 내지 40 중량%의 범위내(단량체 전체의 총 중량 대비)에서 사용하여 공중합한 공중합체일 수 있다.
상기 (메트)아크릴레이트계 고분자는 500,000 내지 1,000,000의 중량평균분자량을 가질 수 있다. 상기 (메트)아크릴레이트계 고분자의 중량평균분자량이 너무 작으면, 경화 후의 인성(Toughnes)증가나 열팽창률 및 탄성률 감소에 효과가 감소하여 기술적으로 불리할 수 있다. 또한, 상기 (메트)아크릴레이트계 고분자의 중량평균분자량이 너무 크면, 유동성을 감소시킬 수 있다.
본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예를 들면, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여, 평가 온도는 160 ℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로, 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
상기 열가소성 수지의 바람직한 예로는 Negami chemical industrial Co.,LTD사 PARACRON KG-3015P 등을 들 수 있다.
한편, 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함할 수 있다. 바람직하게, 상기 열가소성 수지는 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해 41 중량부 내지 80 중량부, 또는 42 중량부 내지 70 중량부, 또는 42.7 중량부 내지 67 중량부를 포함할 수 있다. 상기 열가소성 수지의 함량이 40 중량부 미만이면 수지의 흐름성이 너무 많아 두께 편차가 증가되는 문제가 있고, 90 중량부 초과이면 흐름성이 너무 적어 패턴 채움성이 떨어지는 문제가 있다.
또한, 상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물은 무기 충진재를 포함할 수 있다.
상기 무기 충진재는 통상 금속 박막 코팅용 열경화성 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 구체적인 예로는 실리카, 알루미늄 트리하이드록사이드, 마그네슘 하이드록사이드, 몰리브데늄 옥사이드, 징크 몰리브데이트, 징크 보레이트, 징크 스타네이트, 알루미나, 클레이, 카올린, 탈크, 소성 카올린, 소성 탈크, 마이카, 유리 단섬유, 글라스 미세 파우더 및 중공 글라스를 들 수 있으며 이들로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 금속 박막 코팅용 열경화성 수지 조성물은 상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대하여 상기 무기 충진재 함량이 200 중량부 내지 500 중량부, 또는 205 중량부 내지 450중량부, 또는 210 중량부 내지 400 중량부, 또는 210 중량부 내지 300 중량부, 또는 210 중량부 내지 250 중량부, 또는 210 중량부 내지 220 중량부를 포함할 수 있다. 상기 무기 충진재의 함량이 너무 작으면 열팽창계수가 증가하여 리플로우(reflow) 공정시 휨 현상이 심화되며, 인쇄회로기판의 강성이 감소하는 문제가 있다.
또한, 상기 표면 처리된 충진재를 사용시, 나노 입경의 작은 사이즈와 마이크로 입경의 큰 사이즈를 함께 사용하여 팩킹 밀도 (packing density)를 높여 충진률을 높일 수 있다.
상기 무기 충진재는 평균 입경이 상이한 2종 이상의 무기 충진재를 포함할 수 있다. 구체적으로, 상기 2종 이상의 무기 충진재 중 적어도 1종이 평균 입경이 0.1 ㎛ 내지 100 ㎛인 무기 충진재고, 다른 1종이 평균 입경이 1 ㎚ 내지 90 ㎚인 무기 충진재일 수 있다.
상기 평균 입경이 0.1 ㎛ 내지 100 ㎛인 무기 충진재 100 중량부에 대하여 상기 평균 입경이 1 ㎚ 내지 90 ㎚인 무기 충진재 함량이 1 중량부 내지 30 중량부일 수 있다.
상기 무기 충진재는 내습성, 분산성을 향상시키는 관점에서 실란 커플링제로 표면 처리된 실리카를 사용할 수 있다.
상기 무기 충진재를 표면 처리하는 방법은, 실란 커플링제를 표면 처리제로 이용하여 실리카 입자를 건식 또는 습식으로 처리하는 방법이 사용될 수 있다. 예를 들어, 실리카 입자 100 중량부를 기준으로 0.01 중량부 내지 1 중량부의 실란 커플링제를 사용하여 습식방법으로 실리카를 표면처리하여 사용할 수 있다.
구체적으로, 상기 실란 커플링제로는 3-아미노프로필트리에톡시실란, N-페닐-3-아미노프로필트리메톡시실란 및 N-2-(아미노에틸)-3-아미노프로필트리메톡시실란과 같은 아미노실란 커플링제, 3-글리시독시프로필트리메톡시실란과 같은 에폭시 실란커플링제, 3-메타크릴옥시프로필 트리메톡시실란과 같은 비닐 실란커플링제, N-2-(N-비닐벤질아미노에틸)-3-아미노프로필트리메톡시실란 하이드로클로라이드와 같은 양이온 실란커플링제 및 페닐 실란커플링제를 들 수 있으며, 실란 커플링제는 단독으로 사용될 수 있으며, 또는 필요에 따라 적어도 두 개의 실란 커플링제를 조합하여 사용할 수 있다.
보다 구체적으로, 상기 실란 화합물은 방향족 아미노 실란 또는 (메트)아크릴실란을 포함할 수 있으며, 상기 평균 입경이 0.1 ㎛ 내지 100 ㎛인 무기 충진재로는 방향족 아미노 실란이 처리된 실리카를 사용할 수 있고, 상기 평균 입경이 1 ㎚ 내지 90 ㎚인 무기 충진재로는 (메트)아크릴 실란이 처리된 실리카를 사용할 수 있다. 상기 방향족 아미노 실란이 처리된 실리카의 구체적인 예로는 SC2050MTO(Admantechs사)를 들 수 있고, 상기 (메트)아크릴실란이 처리된 실리카의 구체적인 예로는 AC4130Y (Nissan chemical사)를 들 수 있다. 상기 (메트)아크릴은 아크릴 또는 메타크릴을 모두 포함하는 의미로 사용되었다.
그리고, 상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물은 필요에 따라 용제를 첨가하여 용액으로 사용할 수 있다. 상기 용제로는 수지 성분에 대해 양호한 용해성을 나타내는 것이면 그 종류가 특별히 한정되지 않으며, 알코올계, 에테르계, 케톤계, 아미드계, 방향족 탄화수소계, 에스테르계, 니트릴계 등을 사용할 수 있고, 이들은 단독 또는 2종 이상 병용한 혼합 용제를 이용할 수도 있다.
또한 상기 금속 박막 코팅용 열경화성 수지 조성물은, 수지 조성물 고유의 특성을 손상시키지 않는 한, 기타 열경화성 수지, 열가소성 수지 및 이들의 올리고머 및 엘라스토머와 같은 다양한 고분자 화합물, 기타 난연성 화합물 또는 첨가제를 더 포함할 수도 있다. 이들은 통상적으로 사용되는 것으로부터 선택되는 것이라면 특별히 한정하지 않는다.예를 들어 첨가제로는 자외선흡수제, 산화방지제, 광중합개시제, 형광증백제, 광증감제, 안료, 염료, 증점제, 활제, 소포제, 분산제, 레벨링제, 광택제 등이 있고, 목적에 부합되도록 혼합하여 사용하는 것도 가능하다.
상기 기타 열경화성 수지의 예로는 에폭시 수지를 들 수 있고, 상기 에폭시 수지로는 그 종류가 한정되지는 않으나, 비스페놀 A 형 에폭시 수지, 페놀 노볼락 에폭시 수지, 페닐 아랄킬계 에폭시 수지, 테트라페닐 에탄 에폭시 수지, 나프탈렌계 에폭시 수지, 또는 이들의 혼합물 등을 사용할 수 있다.
구체적으로, 상기 에폭시 수지는 하기 화학식 5로 표시되는 비스페놀형 에폭시 수지, 하기 화학식 6로 표시되는 노볼락형 에폭시 수지, 하기 화학식 7로 표시되는 페닐 아랄킬계 에폭시 수지, 하기 화학식 8로 표시되는 테트라페닐에탄형 에폭시 수지, 하기 화학식 9 및 10으로 표시되는 나프탈렌형 에폭시 수지로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
[화학식 5]
Figure PCTKR2019012087-appb-I000018
상기 화학식 5에서,
R은
Figure PCTKR2019012087-appb-I000019
또는
Figure PCTKR2019012087-appb-I000020
이고,
n은 0 또는 1 내지 50의 정수이다.
보다 구체적으로, 상기 화학식 5의 에폭시 수지는 R의 종류에 따라, 각각 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 M형 에폭시 수지, 또는 비스페놀 S형 에폭시 수지일 수 있다.
[화학식 6]
Figure PCTKR2019012087-appb-I000021
상기 화학식 2에서,
R은 H 또는 CH3이고,
n은 0 또는 1 내지 50의 정수이다.
보다 구체적으로, 상기 화학식 3의 노볼락형 에폭시 수지는 R의 종류에 따라, 각각 페놀 노볼락형 에폭시 수지 또는 크레졸 노볼락형 에폭시 수지일 수 있다.
[화학식 7]
Figure PCTKR2019012087-appb-I000022
[화학식 8]
Figure PCTKR2019012087-appb-I000023
[화학식 9]
Figure PCTKR2019012087-appb-I000024
[화학식 10]
Figure PCTKR2019012087-appb-I000025
한편, 상기 구현예의 금속 박막 코팅용 열경화성 수지 조성물은 상술한 아민 화합물을 포함할 수 있으며, 상기 아민 화합물 이외의 추가적인 경화제를 더 포함할 수도 있다.
이러한 구성을 갖는 본 발명의 일 구현예에 따른 금속 박막 코팅용 열경화성 수지 조성물은 레오미터 최저 점도 구간이 120 ℃ 내지 180 ℃의 범위에서 2000Pa·s 이하의 복소 점도 조건을 만족할 수 있다.
즉, 패턴을 채우는데 적합한 복소 점도를 2000 Pa·s 이하라고 가정할 때, 본 발명에서 제시하는 수지 조성물의 경우, 상기 점도 조건을 만족하는 온도 구간이 120 ℃ 내지 180 ℃로 매우 넓다. 즉, 적층 공정 구간 내 흐름성이 높아서 수지 적층 후 빈 공간이 발생되지 않아 패턴 채움성이 우수해지는 것이다.
본 발명의 금속 박막 코팅용 열경화성 수지 조성물은 상기와 같은 우수한 수지 흐름성을 가짐에 따라, 금속 박막과 이를 이용해서 금속적층판을 만들거나 빌드업 과정에서 흐름성을 확보할 수 있어 미세 패턴을 용이하게 채울 수 있고 또한 박막의 내크랙성을 향상시킬 수 있다.
Ⅱ. 수지 코팅 금속 박막
본 발명의 다른 구현예에 따르면, 상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물의 코팅 경화물을 포함하는 수지 코팅 금속 박막이 제공될 수 있다. 상기 금속 박막 코팅용 열경화성 수지 조성물에 관한 내용은 상기 일 구현예에서 상술한 내용을 모두 포함한다.
구체적으로, i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 및 열가소성 수지;간의 경화물과, 상기 경화물 사이에 분산된 무기 충진재를 포함하는 수지 코팅 금속 박막이 제공될 수 있다.
상술한 바대로 본 발명은 수지의 흐름성과 패턴 채움성이 우수한 수지 조성물을 금속박에 직접 코팅하는 간단한 방법으로, 우수한 열적 및 기계적 물성을 나타내는 수지 코팅 금속 박막을 제공할 수 있다. 상기 과정에 따라 충진제를 포함한 열경화성 수지가 금속 박막에 형성될 수 있고, 구체적으로 수지 코팅 금속 박막에 형성된 경화물 내에는 충진제가 고르게 분산된 형태가 될 수 있다.
따라서, 상기 경화물 및 경화물 사이에 분산되어 있는 충진제는, 상기 열경화성 수지 조성물을 금속 박막에 코팅하는 단계; 및 상기 금속 박막에 코팅된 열경화성 수지 조성물을 경화하는 단계;를 포함하여 형성될 수 있다.
이러한 본 발명의 일 구현예에 따르면, 상술한 각 성분을 혼합하여 코팅용 바니시를 제조하고, 이를 금속박에 코팅한 후 경화 및 건조하는 과정을 통해 간단한 방법으로 수지 코팅 금속 박막을 제조할 수 있다.
또한, 본 발명에서는 수지의 경화 반응을 조절하여 적층 공정 온도 구간 내 최소 점도가 유지하는 구간을 길게한다.
바람직하게, 상기 경화조건은 180 ℃ 내지 250 ℃의 온도에서 1 시간 내지 4시간 동안 진행될 수 있다.
또한, 상기 열경화성 수지 조성물을 금속박에 코팅하는 방법은 크게 제한되지 않으며, 이 분야에 잘 알려진 코팅 방법이 사용될 수 있다.
일례로, 금속박에 본 발명의 열경화성 수지 조성물을 코터 장치에 넣고, 일정 두께로 코팅하는 방법이 사용될 수 있다. 상기 코터 장치는 콤마 코터, 블레이드 코터, 립 코터, 로드 코터, 스퀴즈 코터, 리버스 코터, 트랜스퍼 롤 코터, 그라비아 코터 또는 분무 코터 등을 이용할 수 있다.
또한, 흐름성 평가를 위해 캐리어 필름을 사용할 수 있으며, 상기 캐리어 필름으로는 폴리에틸렌테레프탈레이트(PET), 폴리에스테르 필름, 폴리이미드 필름, 폴리아미드이미드 필름, 폴리프로필렌 필름, 폴리스티렌 필름 등의 플라스틱 필름을 사용할 수 있다.
한편, 상기 코팅에 사용되는 바니시는 열경화성 수지 조성물에 용제를 첨가한 상태일 수 있다. 상기 수지 바니시용 용제는 상기 수지 성분과 혼합 가능하고 양호한 용해성을 갖는 것이라면 특별히 한정하지 않는다. 이들의 구체적인 예로는, 아세톤, 메틸 에틸 케톤, 메틸이소부틸 케톤 및 시클로헥사논과 같은 케톤, 벤젠, 톨루엔 및 자일렌과 같은 방향족 하이드로카본, 및 디메틸포름아미드 및 디메틸아세트아미드와 같은 아미드, 메틸셀로솔브, 부틸셀로솔브 같은 알리파틱 알코올 등이 있다.
상기 경화물의 두께는 5 ㎛ 내지 90 ㎛, 바람직하게는 5 ㎛ 내지 30 ㎛ 일 수 있다. 이러한 경화물은 금속박 상에 두께가 얇게 형성되어도, 금속박에 대하여 우수한 열적, 기계적 물성을 나타내도록 할 수 있다. 상기 경화물의 두께가 특정 수치만큼 증가하거나 감소하는 경우 수지 코팅 금속 박막에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물의 코팅 경화물의 유리전이온도 (Tg)는 220 ℃ 내지 240 ℃ 를 가지게 된다.
상기 일 구현예의 금속 박막 코팅용 열경화성 수지 조성물의 코팅 경화물은 IPC-TM-650 (2.4.18.3)에 따라, Universal Testing Machine(Instron 3365)장비를 이용하여 측정한 MD방향의 인장신율이 1% 이상, 또는 1 % 내지 10%, 또는 2 % 내지 5%, 또는 3% 내지 4%, 또는 3.6 % 내지 3.8%일 수 있다.
즉, 단분자 계열로 이루어진 수지 조성물과 함께 인장테스트를 한 결과, 동일 두께에서 비교 시 파단 시까지 신율(elongation)이 더 우수한 것을 관찰할 수 있고, 이를 통해 내크랙성이 우수함을 확인할 수 있다.
그러므로, 본 발명은 기존 단분자 계열로 이루어진 수지 코팅 동박에 비해 동일 두께에서 비교 시 내크랙성이 우수하여, 반도체 소자의 성능 향상에 기여할 수 있다.
상기 금속박은 동박; 알루미늄박; 니켈, 니켈-인, 니켈-주석 합금, 니켈-철 합금, 납 또는 납-주석 합금을 중간층으로 하고, 이 양면에 서로 다른 두께의 구리층을 포함하는 3층 구조의 복합박; 또는 알루미늄과 동박을 복합한 2층 구조의 복합박을 포함한다.
바람직한 일 구현예에 따르면, 본 발명에 이용되는 금속박은 동박이나 알루미늄박이 이용되고, 약 2 ㎛ 내지 200 ㎛의 두께를 갖는 것을 사용할 수 있지만, 그 두께가 약 2 ㎛ 내지 35 ㎛인 것이 바람직하다. 바람직하게, 상기 금속박으로는 동박을 사용한다. 또한, 본 발명에 따르면 금속박으로서 니켈, 니켈-인, 니켈-주석 합금, 니켈-철 합금, 납, 또는 납-주석 합금 등을 중간층으로 하고, 이의 양면에 0.5 ㎛ 내지 15 ㎛의 구리층과 10 ㎛ 내지 300 ㎛의 구리층을 설치한, 3층 구조의 복합박 또는 알루미늄과 동박을 복합한 2층 구조 복합박을 사용할 수도 있다.
Ⅲ. 금속박 적층판
본 발명의 또 다른 구현예에 따르면, 상기 다른 구현예의 수지 코팅 금속 박막을 포함하는 금속박 적층판이 제공될 수 있다. 상기 수지 코팅 금속 박막에 관한 내용은 상기 다른 구현예에서 상술한 내용을 모두 포함한다.
구체적으로, 상기 금속박 적층판은 제조된 상기 다른 구현예에서 얻어진 수지 코팅 금속 박막을 1매 이상 적층한 금속박 적층판일 수 있다.
따라서, 본 발명은 상기 수지 코팅 금속 박막을 1매 이상으로 적층한 후, 양면 또는 다층 인쇄 회로 기판의 제조에 사용할 수 있다. 본 발명은 상기 금속박 적층판을 회로 가공하여 양면 또는 다층 인쇄회로기판을 제조할 수 있으며, 상기 회로 가공은 일반적인 양면 또는 다층 인쇄 회로 기판 제조 공정에서 행해지는 방법을 적용할 수 있다.
본 발명에 따르면, 우수한 흐름성을 가지며, 내크랙성 및 인장특성 등의 기계적 물성이 향상된 금속 박막 코팅용 열경화성 수지 조성물 및 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판이 제공될 수 있다.
도 1은 실시예1 및 비교예3의 온도에 따른 레오미터 점도 그래프를 나타낸 것이다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 및 비교예: 금속 박막 코팅용 열경화성 수지 조성물, 및 수지코팅동박>
(1) 금속 박막 코팅용 열경화성 수지 조성물의 제조
하기 표 1 및 표 2의 조성에 따라, 각 성분을 메틸에틸케톤에 고형분 40%에 맞추어 투입하여 혼합한 후, 400 rpm 속도로 하루동안 상온 교반하고, 회전 증발 농축기(rotary evaporator)를 사용해서 점도 조절 및 탈포를 진행하여, 실시예 및 비교예의 금속 박막 코팅용 수지 조성물(수지 바니시)를 제조하였다. 구체적으로 상기 실시예에서 제조된 수지 조성물의 구체적인 조성은 하기 표1에 기재된 바와 같고, 상기 비교예에서 제조된 수지 조성물의 구체적인 조성은 하기 표2에 기재된 바와 같다.
(2) 수지코팅동박의 제조
콤마코터로 상기 실시예 및 비교예의 금속 박막 코팅용 수지 조성물을 동박 (두께 2 ㎛, Mitsui사 제조)에 코팅(코팅 두께: 16 ㎛)한 후, 220 ℃ 및 35 kg/㎠의 조건으로 100 분간 경화시켰다. 이어서, 17 cm Х 15 cm 크기로 재단하여 수지 코팅동박 샘플을 제작하였다.
<실험예: 실시예 및 비교예에서 얻어진 금속 박막 코팅용 열경화성 수지 조성물, 및 수지코팅동박의 물성 측정>
상기 실시예 및 비교예에서 얻어진 금속 박막 코팅용 열경화성 수지 조성물, 및 수지코팅동박의 물성을 하기 방법으로 측정하였으며, 그 결과를 표1 및 표2에 나타내었다.
1. 점도 및 흐름성 분석
(1) 레오미터 점도
실시예1 및 비교예3의 금속 박막 코팅용 열경화성 수지 조성물을 PET 기재에 코팅한 후, 라미네이터를 통해 적층하여 적정 두께의 샘플을 만들어서 레오미터 점도를 측정했다 (온도에 따른 점도 측정 조건, 승온속도 5 ℃/min, 주파수: 10Hz).
(2) 회로패턴 채움성
동박(두께 10㎛, Mitsui사 제조)의 전체 면적의 약 60%가 에칭되어 있는 패턴을 가진 동박 적층판(CCL)을 사용하여 그 위에 상기 실시예 또는 비교예를 통해 얻은 수지 동박 코팅 샘플을 적층하고, 다음 기준 하에 회로패턴 채움성을 평가하였다.
○: 보이드(void)나 디라미네이션(delamination) 발생 없음
X: 보이드(void)나 디라미네이션(delamination) 발생
2. 경화 후 수지 물성
경화 후 수지의 물성을 분석하기 위해, 상기 실시예의 수지 코팅 동박 2매를 이용해서 수지층이 마주하도록 적층하고, 진공 열프레스를 통해 220 ℃ 및 35 kg/㎠의 조건으로 100분간 경화를 진행하였다.
실험 진행시, 동박을 에칭하여 제거한 후, 다음과 같은 방법으로 수지 층의 물성을 측정하였다.
(1) 유리전이온도(Tg)
DMA(TA Instruments, Q800)를 이용하여 인장모드로 5℃/분의 승온조건으로 25℃부터 300℃까지 측정하여 tan delta의 피크 온도를 유리전이온도로 하였다.
(2) 열팽창계수 (CTE)
TMA(TA Instruments, Q400)를 이용하여, 30 ℃에서 260 ℃까지, 승온 속도 10 ℃/min 조건으로 측정한 후, 50 ℃ 에서 150 ℃ 범위의 측정값을 열팽창계수로 기록하였다.
(3) 저장탄성률(Storage Modulus)
DMA(TA Instruments, Q800)를 이용하여 인장모드로 5℃/분의 승온조건으로 25℃부터 300℃까지 저장탄성률을 측정하였다.
(4) 인장신율(Tensile Elongation)
IPC-TM-650 (2.4.18.3)에 따라, Universal Testing Machine(Instron 3365)장비를 이용하여 MD방향의 인장신율을 측정하였다.
Figure PCTKR2019012087-appb-T000001
Figure PCTKR2019012087-appb-T000002
* XD-1000: 에폭시 수지(Nippon kayaku사; 에폭시 당량 253 g/eq)* NC-3000H: 에폭시 수지(Nippon kayaku사; 에폭시 당량 290 g/eq)
* BMI-2300: 비스말레이미드계 수지(DAIWA KASEI사; 말레이미드 당량 179g/eq)
* DDS: 4,4'-diaminodiphenyl sulfone(활성수소 당량 62g/eq)
* Acrylic rubber(Mw 800,000): PARACRON KG-3015P(Negami chemical industrial Co.,LTD사)
* 당량비 : 하기 수학식1을 통해 계산됨
[수학식1]
열경화성 수지 대비 아민 화합물 당량비
= (DDS 의 총 활성수소 당량) / {(XD-1000의 총 에폭시 당량 + NC-3000H의 총 에폭시 당량) + (BMI-2300의 총 말레이미드 당량)}
상기 수학식1에서, DDS의 총 활성수소 당량은 DDS의 총 중량(g)을 DDS의 활성수소 단위당량(62g/eq)으로 나눈 값이고,
XD-1000의 총 에폭시 당량은 XD-1000의 총 중량(g)을 XD-1000의 에폭시 단위당량(253g/eq)으로 나눈 값이고,
NC-3000H의 총 에폭시 당량은 NC-3000H의 총 중량(g)을 NC-3000H의 에폭시 단위당량(290g/eq)으로 나눈 값이고,
BMI-2300의 총 말레이미드 당량은 BMI-2300의 총 중량(g)을 BMI-2300의 말레이미드 단위당량(179g/eq)으로 나눈 값이다.
상기 표1 및 표2를 살펴보면, 본원 실시예의 경우, 전자끌기(Electron Withdrawing Group, EWG)를 갖는 아민 화합물을 포함한 수지코팅동박은 230℃ 내지 235 ℃의 유리 전이 온도를 가지고, 21 ppm/℃ 이하의 열팽창률을 가지면서도, 120 ℃ 내지 180 ℃의 온도범위에서 복소 점도가 2000 Pa.s 이하로 나타나, 우수한 회로패턴 채움성을 갖는다는 점이 확인되었다.
반면, 비교예3의 경우, 지나치게 과량의 열가소성 수지가 첨가됨에 따라, 복소 점도가 2000 Pa.s 이하로 나타나는 온도구간이 아예 없고, 회로패턴 채움성도 매우 불량하게 측정되었다.
한편, 실시예는 인장신율이 3.6 % 내지 3.8%로 높게 측정되어 내크랙성이 우수한 반면, 열가소성 수지가 미첨가된 비교예1과 지나치게 소량의 열가소성 수지가 첨가된 비교예2의 경우, 인장신율이 각각 0.4%와 0.9%로 실시예에 비해 매우 낮게 측정됨을 확인할 수 있었다.

Claims (15)

  1. i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물;
    열경화성 수지;
    열가소성 수지; 및
    무기 충진재;를 포함하고,
    상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대해, 상기 열가소성 수지를 40 중량부 내지 90 중량부로 포함하며,
    120 ℃ 내지 180 ℃의 범위에서 2000Pa·s 이하의 복소점도를 갖는,
    금속 박막 코팅용 열경화성 수지 조성물.
  2. 제1항에 있어서,
    상기 열경화성 수지는 디시클로펜타디엔계 에폭시 수지 및 바이페닐계 에폭시 수지를 포함하는, 금속 박막 코팅용 열경화성 수지 조성물.
  3. 제1항에 있어서,
    상기 디시클로펜타디엔계 에폭시 수지 100 중량부 대비 상기 바이페닐계 에폭시 수지의 함량이 100 중량부 미만인, 금속 박막 코팅용 열경화성 수지 조성물.
  4. 제2항에 있어서,
    상기 열경화성 수지는 비스말레이미드 수지, 시아네이트 에스터 수지 및 비스말레이미드-트리아진 수지로 이루어진 군으로부터 선택되는 1종 이상의 수지를 더 포함하는, 금속 박막 코팅용 열경화성 수지 조성물.
  5. 제1항에 있어서,
    상기 아민 화합물 100 중량부에 대하여 상기 열경화성 수지를 400 중량부 이하로 포함하는, 금속 박막 코팅용 열경화성 수지 조성물.
  6. 제1항에 있어서,
    하기 수학식1로 계산되는 당량비가 1.4 이상인, 금속 박막 코팅용 열경화성 수지 조성물:
    [수학식1]
    당량비 = 상기 아민 화합물에 함유된 총 활성수소 당량 / 상기 열경화성 수지에 함유된 총 경화성 작용기 당량.
  7. 제1항에 있어서,
    상기 아민 화합물은 2 내지 5개의 아미노기를 포함하는 방향족 아민 화합물을 포함하는, 금속 박막 코팅용 열경화성 수지 조성물.
  8. 제1항에 있어서,
    상기 열가소성 수지는 (메트)아크릴레이트계 고분자를 포함하는, 금속 박막 코팅용 열경화성 수지 조성물.
  9. 제8항에 있어서,
    상기 (메트)아크릴레이트계 고분자는,
    (메트)아크릴레이트계 단량체 유래의 반복단위와 (메트)아크릴로니트릴 유래의 반복 단위가 포함된 아크릴산 에스테르 공중합체; 또는 부타디엔 유래의 반복 단위가 포함된 아크릴산 에스테르 공중합체인, 금속 박막 코팅용 열경화성 수지 조성물.
  10. 제8항에 있어서,
    상기 (메트)아크릴레이트계 고분자는 500000 내지 1000000의 중량평균분자량을 갖는, 금속 박막 코팅용 열경화성 수지 조성물.
  11. 제1항에 있어서,
    상기 아민 화합물 및 열경화성 수지의 총합 100 중량부에 대하여 상기 무기 충진재 함량이 200 중량부 내지 500 중량부인, 금속 박막 코팅용 열경화성 수지 조성물.
  12. 제1항에 있어서,
    상기 무기 충진재는 평균 입경이 상이한 2종 이상의 무기 충진재를 포함할 수 있으며,
    상기 2종 이상의 무기 충진재 중 적어도 1종이 평균 입경이 0.1 ㎛ 내지 100 ㎛인 무기 충진재고, 다른 1종이 평균 입경이 1 ㎚ 내지 90 ㎚인 무기 충진재인, 금속 박막 코팅용 열경화성 수지 조성물.
  13. 제1항의 금속 박막 코팅용 열경화성 수지 조성물의 경화물을 포함하는, 수지 코팅 금속 박막.
  14. i) 술폰기, 카보닐기, 할로겐기, 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, ii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, iii) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 및 iv) 니트로기, 시아노기 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 1이상 포함한 아민 화합물; 열경화성 수지; 및 열가소성 수지;간의 경화물과,
    상기 경화물 사이에 분산된 무기 충진재를 포함하는, 수지 코팅 금속 박막.
  15. 제13항 또는 제14항 중 어느 한 항의 수지 코팅 금속 박막을 포함하는, 금속박 적층판.
PCT/KR2019/012087 2018-09-20 2019-09-18 금속 박막 코팅용 열경화성 수지 조성물, 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판 WO2020060197A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020539749A JP7052185B2 (ja) 2018-09-20 2019-09-18 金属箔膜コーティング用熱硬化性樹脂組成物、それを用いた樹脂コーティング金属箔膜および金属箔積層板
CN201980010873.1A CN111670228B (zh) 2018-09-20 2019-09-18 用于涂覆金属薄膜的热固性树脂组合物、使用其的经树脂涂覆的金属薄膜和金属包层层合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0113252 2018-09-20
KR1020180113252A KR102340799B1 (ko) 2018-09-20 2018-09-20 금속 박막 코팅용 열경화성 수지 조성물, 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판

Publications (1)

Publication Number Publication Date
WO2020060197A1 true WO2020060197A1 (ko) 2020-03-26

Family

ID=69888806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012087 WO2020060197A1 (ko) 2018-09-20 2019-09-18 금속 박막 코팅용 열경화성 수지 조성물, 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판

Country Status (5)

Country Link
JP (1) JP7052185B2 (ko)
KR (1) KR102340799B1 (ko)
CN (1) CN111670228B (ko)
TW (1) TWI714265B (ko)
WO (1) WO2020060197A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876946B (zh) * 2021-02-03 2022-07-19 中北大学 一种供热管道内壁耐温防腐粉体涂料及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525452A (ja) * 1990-11-30 1993-02-02 Ube Ind Ltd 耐熱性の接着剤
WO2007032424A1 (ja) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. 樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板、および多層積層板
KR20090071774A (ko) * 2007-12-28 2009-07-02 주식회사 두산 접착제용 수지 조성물 및 이의 이용
KR20170084991A (ko) * 2016-01-13 2017-07-21 주식회사 엘지화학 반도체 패키지용 열경화성 수지 조성물과 이를 이용한 프리프레그
KR20180080208A (ko) * 2016-12-07 2018-07-11 히타치가세이가부시끼가이샤 수지 바니시, 프리프레그, 적층판 및 프린트 배선판

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613367B2 (ja) * 1997-01-17 2005-01-26 ヘンケル コーポレイション 熱硬化性樹脂組成物
JP2003008221A (ja) * 2001-06-19 2003-01-10 Ibiden Co Ltd 多層プリント配線板および多層プリント配線板の製造方法
JP4957552B2 (ja) * 2005-09-30 2012-06-20 住友ベークライト株式会社 プリント配線板用キャリア付きプリプレグの製造方法、プリント配線板用キャリア付きプリプレグ、プリント配線板用薄型両面板の製造方法、プリント配線板用薄型両面板、及び多層プリント配線板の製造方法
DE112013001969T5 (de) * 2012-08-02 2015-01-08 Fuji Electric Co., Ltd. Metallträgerplatine
US9944766B2 (en) * 2014-08-27 2018-04-17 Panasonic Intellectual Property Management Co., Ltd. Prepreg, metal-clad laminated board, and printed wiring board
KR102576010B1 (ko) * 2015-08-11 2023-09-06 가부시끼가이샤 레조낙 다층 프린트 배선판의 제조 방법, 접착층 부착 금속박, 금속장 적층판, 다층 프린트 배선판
CN106480735B (zh) * 2015-08-28 2019-06-14 广东生益科技股份有限公司 电路基板及其制备方法
TWI721024B (zh) * 2015-11-13 2021-03-11 美商Icl Ip美國股份有限公司 用於熱固性樹脂之活性酯類固化劑化合物、包含彼之阻燃劑組成物、及由其所製成之物件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525452A (ja) * 1990-11-30 1993-02-02 Ube Ind Ltd 耐熱性の接着剤
WO2007032424A1 (ja) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. 樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板、および多層積層板
KR20090071774A (ko) * 2007-12-28 2009-07-02 주식회사 두산 접착제용 수지 조성물 및 이의 이용
KR20170084991A (ko) * 2016-01-13 2017-07-21 주식회사 엘지화학 반도체 패키지용 열경화성 수지 조성물과 이를 이용한 프리프레그
KR20180080208A (ko) * 2016-12-07 2018-07-11 히타치가세이가부시끼가이샤 수지 바니시, 프리프레그, 적층판 및 프린트 배선판

Also Published As

Publication number Publication date
JP7052185B2 (ja) 2022-04-12
CN111670228B (zh) 2023-03-10
JP2021511413A (ja) 2021-05-06
CN111670228A (zh) 2020-09-15
TWI714265B (zh) 2020-12-21
KR20200033673A (ko) 2020-03-30
KR102340799B1 (ko) 2021-12-16
TW202018020A (zh) 2020-05-16

Similar Documents

Publication Publication Date Title
WO2018004273A1 (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그 및 기판
WO2015080445A1 (ko) 내열성 및 저유전 손실 특성을 가진 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
JP7286569B2 (ja) 熱硬化性樹脂組成物、熱硬化性接着剤、熱硬化性樹脂フィルム並びに前記熱硬化性樹脂組成物を用いた積層板、プリプレグ、及び回路基板
WO2015046956A1 (ko) 변성 폴리페닐렌 옥사이드 및 이를 이용하는 동박 적층판
WO2012093895A2 (ko) 수지 조성물, 이를 이용한 프리프레그 및 프린트 배선판
WO2020105889A1 (ko) 저흡습 폴리이미드 필름 및 이를 포함하는 연성금속박적층판
TWI765147B (zh) 用於金屬包覆積層板的熱固性樹脂複合物及使用其之金屬包覆積層板
WO2020060197A1 (ko) 금속 박막 코팅용 열경화성 수지 조성물, 이를 이용한 수지 코팅 금속 박막 및 금속박 적층판
WO2015102461A1 (ko) 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법
WO2015088245A1 (ko) 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
WO2015046953A1 (ko) 변성 폴리페닐렌 옥사이드를 이용한 동박적층판
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2022239955A1 (ko) 에폭시용 난연성 경화제 조성물 및 이를 포함하는 에폭시용 난연성 경화제
WO2020162668A1 (ko) 반도체 패키지용 열경화성 수지 조성물, 프리프레그 및 금속박 적층판
WO2020060265A1 (ko) 다층인쇄회로기판, 이의 제조방법 및 이를 이용한 반도체 장치
WO2015099451A1 (ko) 연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판
WO2020075908A1 (ko) 접착력이 우수한 폴리이미드 수지를 제조하기 위한 폴리아믹산 조성물 및 이로부터 제조된 폴리이미드 수지
WO2018004190A1 (ko) 프라이머 코팅-동박 및 동박 적층판
WO2020241983A1 (ko) 고탄성 폴리이미드 필름 및 이를 포함하는 연성금속박적층판
WO2021066480A1 (ko) 커버레이용 접착제 조성물 및 이를 포함하는 fpcb용 커버레이
WO2016052812A1 (ko) 에폭시 수지 조성물, 이방성 도전 필름용 조성물 및 반도체 장치
WO2024010189A1 (ko) (메트)아크릴레이트계 수지, 및 이를 포함하는 드라이 필름 솔더 레지스트
WO2018012775A1 (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
KR102245724B1 (ko) 금속박 적층판용 열경화성 수지 복합체 및 금속박 적층판
WO2016105051A1 (ko) 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863857

Country of ref document: EP

Kind code of ref document: A1