WO2020059710A1 - ビスフルオレン化合物の結晶体 - Google Patents

ビスフルオレン化合物の結晶体 Download PDF

Info

Publication number
WO2020059710A1
WO2020059710A1 PCT/JP2019/036374 JP2019036374W WO2020059710A1 WO 2020059710 A1 WO2020059710 A1 WO 2020059710A1 JP 2019036374 W JP2019036374 W JP 2019036374W WO 2020059710 A1 WO2020059710 A1 WO 2020059710A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
crystals
reaction
fluorene
bis
Prior art date
Application number
PCT/JP2019/036374
Other languages
English (en)
French (fr)
Inventor
中嶋 淳
祐樹 橋本
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to CN201980056020.1A priority Critical patent/CN112638852A/zh
Priority to KR1020217006589A priority patent/KR20210063323A/ko
Priority to JP2020548514A priority patent/JP7379770B2/ja
Publication of WO2020059710A1 publication Critical patent/WO2020059710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to a crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having a specific endothermic peak by differential scanning calorimetry, and a method for producing the crystal.
  • thermoplastic synthetic resin raw materials such as polycarbonate resin, epoxy resin and the like.
  • thermosetting resin materials such as thermosetting resin materials, antioxidant materials, thermosensitive recording material materials, and photosensitive resist materials.
  • a resin produced from 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having a chemical structure represented by the following chemical formula (1) has been noted as having excellent optical properties.
  • the method for producing 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1) is represented by the following chemical formula (2) as shown in the following reaction formula.
  • a method of reacting 9-fluorenone with an alcohol represented by the chemical formula (3) to obtain a target product (Patent Document 3).
  • an aromatic hydrocarbon and methanol are added to a reaction solution containing 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1).
  • a method is known in which after separating crystals precipitated by heating, the crystals are heated to 60 ° C. or higher to remove methanol (Patent Document 4).
  • the crystals obtained by the crystallization are clathrates of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene and methanol. Energy and time by heating are indispensable.
  • Mixing an inclusion body of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1) with toluene and a specific solvent without dissolving There is known a method of removing toluene by performing the method (Patent Document 5).
  • Patent Document 5 a method of removing toluene by performing the method.
  • the obtained crystal has almost a high melting point, much energy and time are required for melting and dissolving.
  • a low melting point crystal can be obtained, but since the crystal forms an inclusion, energy for removing the solvent from the inclusion is required, and the bulk density is also low. Low.
  • a method for producing a crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1) having a high bulk density is known (Patent Document 6).
  • the obtained crystals are clathrates, and the solvent cannot be removed while holding the crystals from the clathrate by heating, or even if they can be removed, energy for removing the solvent from the clathrate is required. There was a problem.
  • Patent Document 7 A method for producing 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1) which is not an inclusion complex is also known (Patent Document 7).
  • the crystal having the highest melting point is used after melting, a lot of energy is required.
  • crystals having a low melting point have a poor hue, and thus have a problem in use for optical applications, and also have a problem in that a large amount of a residual solvent is used for crystallization.
  • a group of compounds having a fluorene skeleton such as 9,9-bis (4-hydroxyphenyl) fluorene is known to form an inclusion complex with a reaction solvent or a solvent used for purification.
  • a reaction solvent or a solvent used for purification In order to remove the contacted solvent, high temperature and a large amount of time are required, so that it is difficult to apply on an industrial scale. It is also known that there is a problem in industrially using such raw materials and other applications.
  • the present invention has been made in view of the above-mentioned circumstances, and has been made based on the background of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having a specific endothermic peak by differential scanning calorimetry. It is an object to provide a crystal and a method for producing the crystal.
  • the present inventors have conducted intensive studies to solve the above-described problems, and as a result, by crystallization using a specific solvent, 9,9-bis [4- () having a specific endothermic peak by differential scanning calorimetry.
  • the present inventors have found that a crystal of [2-hydroxyethoxy) -3-phenylphenyl] fluorene can be obtained, thereby completing the present invention.
  • the present invention is as follows. 1. 9.9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having at least one endothermic peak by differential scanning calorimetry in a temperature range from 158 ° C. to less than 161 ° C. Crystal. 2. It is characterized in that it is not an inclusion body. The crystal according to any one of the above. 3. The method comprises the step of crystallizing using acetonitrile. Or 2. The method for producing a crystal according to the above. 4. 2. The method according to claim 1, further comprising a step of drying the crystals obtained by the crystallization under a temperature condition of 45 ° C. or higher and lower than the melting point. The production method described in 1.
  • a crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having a specific endothermic peak by differential scanning calorimetry and not being an inclusion body, and A method for producing the crystal can be provided.
  • 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene includes a compound such as an organic solvent
  • the clathrate and, for example, (meth) acrylic acid or the like are used.
  • a compound such as an organic solvent included therein inhibits the reaction, causing a problem that the reaction does not proceed.
  • FIG. 2 is a diagram showing a differential thermogravimetric analysis (DTG) curve of an acetonitrile clathrate obtained by removing an adherent solvent in a drying step of Example 1.
  • FIG. 3 is a view showing a differential scanning calorimetry (DSC) curve of a crystal (crystal of the present invention) which is not an inclusion body and is obtained by the drying step of Example 1.
  • FIG. 9 is a view showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Example 2 (crystal of the present invention).
  • FIG. 9 is a view showing a differential thermogravimetric analysis (DTG) curve of a crystal obtained by removing an attached solvent in Example 2.
  • FIG. 1 is a diagram showing a differential thermogravimetric analysis (DTG) curve of an acetonitrile clathrate obtained by removing an adherent solvent in a drying step of Example 1.
  • FIG. 3 is a view showing a differential scanning calorimetry (DSC) curve of
  • FIG. 5 is a diagram showing a differential thermogravimetric analysis (DTG) curve of the crystal obtained in Comparative Example 1.
  • FIG. 9 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Comparative Example 2.
  • FIG. 9 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Comparative Example 3.
  • FIG. 9 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal obtained in Comparative Example 4.
  • FIG. 9 is a diagram showing a differential thermogravimetric analysis (DTG) curve of the crystal obtained in Comparative Example 6.
  • FIG. 14 is a diagram illustrating a differential thermogravimetric analysis (DTG) curve of a crystal before drying in Comparative Example 7.
  • FIG. 14 is a diagram showing a differential scanning calorimetry (DSC) curve of the dried crystal of Comparative Example 7.
  • the 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene of the present invention is a compound represented by the following chemical formula (1).
  • the method for synthesizing 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene in the present invention is not particularly limited, and for example, the known production method described in Patent Document 3 described above. Can be applied.
  • the reaction between 9-fluorenone represented by the chemical formula (2) and alcohols represented by the chemical formula (3) shown in the following reaction formula will be described.
  • the charged molar ratio of the alcohol represented by the chemical formula (3) to 9-fluorenone represented by the chemical formula (2) is not particularly limited as long as it is not less than the theoretical value (2.0). It is used in a molar amount of 20 times, preferably 3 to 10 times.
  • an acid catalyst can be used.
  • the acid catalyst to be used is not particularly limited, and a known acid catalyst can be used.
  • Specific acid catalysts include, for example, inorganic acids such as hydrochloric acid, hydrogen chloride gas, 60 to 98% sulfuric acid and 85% phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid or trichloroacetic acid.
  • Organic acids such as fluoroacetic acid and solid acids such as heteropolyacid can be exemplified.
  • Preferred is a heteropolyacid such as phosphotungstic acid. The preferred amount of such an acid catalyst varies depending on the reaction conditions.
  • a heteropolyacid such as phosphotungstic acid
  • it is in the range of 1 to 70 parts by weight, preferably 100 parts by weight of 9-fluorenone. It is used in the range of 5 to 40 parts by weight, more preferably in the range of 10 to 30 parts by weight.
  • a co-catalyst such as thiols may be used together with the acid catalyst, if necessary. Use can accelerate the reaction rate.
  • thiols include alkyl mercaptans and mercapto carboxylic acids, preferably alkyl mercaptans having 1 to 12 carbon atoms and mercapto carboxylic acids having 1 to 12 carbon atoms.
  • alkyl mercaptans having 1 to 12 carbon atoms examples include alkali metal salts such as methyl mercaptan, ethyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, and sodium salts thereof.
  • Examples of the 12 mercaptocarboxylic acids include thioacetic acid, ⁇ -mercaptopropionic acid and the like. These can be used alone or in combination of two or more.
  • the amount of thiols used as a cocatalyst is usually in the range of 1 to 30 mol%, preferably 2 to 10 mol%, based on 9-fluorenone as a raw material.
  • a reaction solvent may not be used, but may be used for reasons such as improvement in operability and reaction rate in industrial production.
  • the reaction solvent is not particularly limited as long as it does not distill from the reactor at the reaction temperature and is inert to the reaction. Examples thereof include aromatic hydrocarbons such as toluene and xylene, methanol, ethanol, 1-propanol, 2-propanol, and the like. Organic solvents such as lower aliphatic alcohols such as propanol, saturated aliphatic hydrocarbons such as hexane, heptane and cyclohexane, water, and mixtures thereof. Of these, aromatic hydrocarbons are preferably used.
  • the reaction temperature varies depending on the type of the acid catalyst used.
  • the reaction temperature is usually 20 to 200 ° C, preferably 40 to 170 ° C, more preferably 50 to 120 ° C. Range.
  • the reaction may be performed under increased or reduced pressure so that the reaction temperature falls within the above range, or the reaction may be performed while removing generated water.
  • the reaction time varies depending on the type of the acid catalyst used and the reaction conditions such as the reaction temperature, but is usually completed in about 1 to 30 hours.
  • the end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis. It is preferable that the time when the unreacted 9-fluorenone disappears and the increase in the target substance is not observed is determined as the end point of the reaction.
  • a known post-treatment method can be applied. For example, an alkali aqueous solution such as an aqueous sodium hydroxide solution or an aqueous ammonia solution is added to the reaction termination solution to neutralize the acid catalyst. The neutralized reaction mixture is allowed to stand, and if necessary, a solvent that separates from water is added, and the aqueous layer is separated and removed. If necessary, distilled water is added to the obtained oil layer, and the mixture is stirred and washed with water. The operation of separating and removing the aqueous layer is repeated once or more times to remove the neutralized salt, and the obtained oil layer is cooled as it is.
  • an alkali aqueous solution such as an aqueous sodium hydroxide solution or an aqueous ammonia solution is added to the reaction termination solution to neutralize the acid catalyst.
  • the neutralized reaction mixture is allowed to stand, and if necessary, a solvent that separates from water is added, and the aqueous layer is separated and removed. If necessary,
  • the separated crystals can be separated to obtain a crude crystal. Further, the solvent and excess alcohol represented by the chemical formula (3) are removed from the obtained oil layer by distillation, and a solvent such as an aromatic hydrocarbon is added to the obtained residue to form a uniform solution, which is then cooled. The separated crystals may be separated to obtain coarse crystals.
  • the crude crystals and the residue have at least one endothermic peak by differential scanning calorimetry in the temperature range of 158 ° C. or more and less than 161 ° C. through the crystallization step of the present invention, and are not clathrates.
  • a crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene can be obtained.
  • the production method of the present invention is characterized by including a step of crystallizing using acetonitrile (hereinafter, also referred to as a crystallization step).
  • acetonitrile is not particularly limited, and generally commercially available acetonitrile can be used.
  • the amount of acetonitrile used in the crystallization step was determined to be 100 parts by weight of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene contained in the residue obtained by post-treatment of the reaction or in the crude crystals.
  • acetonitrile when a solvent other than acetonitrile is used, it has at least one endothermic peak by differential scanning calorimetry in the temperature range of 158 ° C. or more and less than 161 ° C., and is not an inclusion complex. Bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene cannot be obtained, which is not preferable.
  • acetonitrile is added to the residue or crude crystals after the post-reaction treatment to be used, and the mixture is completely dissolved by heating to a boiling point of acetonitrile or lower under normal pressure or pressure to form a uniform solution.
  • crystals After that, it can be cooled to obtain crystals that precipitate.
  • crystals are precipitated by cooling at 1 to 10 ° C per hour, preferably 3 to 7 ° C per hour.
  • the temperature for crystal precipitation is preferably in the range of 40 to 58 ° C, more preferably in the range of 45 to 55 ° C, and a temperature of about 50 ° C is particularly suitable as the crystal deposition temperature.
  • a seed crystal may be used.
  • the temperature is maintained at the same temperature for 0 to 5 hours, and at the above-mentioned cooling rate, the temperature is reduced to 0 to 40 ° C, preferably 10 to 35 ° C, more preferably 20 to 30 ° C, and 0 to 3 hours. After maintaining at the same temperature for a time, it is preferable to separate the precipitated crystals by a filtration operation or the like.
  • acetonitrile used in the crystallization step of the present invention can be completely removed.
  • the drying step of the present invention can be carried out at a temperature of 45 ° C. or higher and lower than the melting point of the crystals obtained by the crystallization step, but is preferably 70 ° C. or higher, more preferably 90 ° C. or higher, Particularly preferred is 100 ° C. or higher. Further, the hue of the crystal may be deteriorated by heat depending on other conditions and the like, so that the temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower.
  • the temperature is lower than 45 ° C., acetonitrile used in the crystallization step cannot be removed, or even if it can be removed, much time is required, which is not preferable.
  • it may be under normal pressure or under reduced pressure, but when performing industrially, it is more preferable to perform under reduced pressure because it can remove the acetonitrile used in the crystallization step. It is.
  • the drying step is more preferably performed in an atmosphere of an inert gas such as nitrogen.
  • the crystalline form of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene of the present invention has at least one endothermic peak in a temperature range of 158 ° C. or more and less than 161 ° C. by differential scanning calorimetry. It is characterized by having.
  • the endothermic peak by differential scanning calorimetry is more preferably in a temperature range of 159 ° C or more and less than 161 ° C, and further preferably in a temperature range of 160 ° C or more and less than 161 ° C.
  • the crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene of the present invention is not an inclusion, that is, a crystal which does not include a compound such as an organic solvent. is there.
  • a crystal not including a compound such as an organic solvent a crystal having a residual organic solvent content of 1% by weight or less is preferable, and a crystal having a content of 0.5% by weight or less is more preferable. Crystals having a content of 0.3% by weight or less are more preferred, and those having a content of 0.1% by weight or less are particularly preferred.
  • the crystal which does not include a compound such as an organic solvent preferably has a loose bulk density in the range of 0.35 to 0.45 g / cm 3 .
  • the analysis method is as follows. ⁇ Analysis method> 1. Differential scanning calorimetry (DSC) 5 mg of the crystal was weighed into an aluminum pan, and measured using a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation) with aluminum oxide as a control under the following operating conditions. (Operating conditions) Heating rate: 10 ° C / min Measurement temperature range: 30 to 200 ° C 1.
  • Measurement atmosphere open, nitrogen 50 mL / min
  • Differential thermal and thermogravimetric analysis (DTG) 8 mg of the crystal was weighed in an aluminum pan and measured using a differential thermogravimetric analyzer (DTG-60A, manufactured by Shimadzu Corporation) under the following operating conditions. (Operating conditions) Heating rate: 10 ° C / min Measurement temperature range: 30 to 300 ° C Measurement atmosphere: open, nitrogen 50 mL / min
  • HS-GC residual solvent analysis
  • HS-GC is a method of introducing a gas phase portion (head space, HS) into a gas chromatograph (GC) for analysis.
  • the amount of the solvent remaining in the crystal was measured by keeping the sample sealed in the vial for a certain period of time to make the gas phase and the sample in an equilibrium state and analyzing the gas phase portion.
  • 0.5 g of the crystal is weighed, and N-methylpyrrolidone is added thereto while being precisely weighed to make the whole 10 g.
  • About 3 g of this solution was weighed into an HS vial, clamped so as not to leak, and measured under the following conditions.
  • X-Ray Powder Diffraction (XRD) Analysis 0.1 g of the crystal was filled in a sample filling portion of a glass test plate, and the measurement was performed using the following powder X-ray diffraction apparatus under the following conditions.
  • the disappearance of the raw materials was confirmed by liquid chromatography analysis, and the reaction was completed.
  • the reaction solution was cooled to 80 ° C., and 339.1 g of toluene, 26.69 g of a 15% aqueous sodium hydroxide solution, and 250 g of distilled water were added to neutralize the reaction solution, and the mixture was allowed to stand, and the aqueous layer was removed. 250 g of distilled water was added to the obtained oil layer, the mixture was stirred and allowed to stand, and a water washing operation for removing the water layer was performed four times.
  • Example 1 (Crystallization process) In a 200 ml four-necked flask equipped with a thermometer, a stirrer, and a condenser, 10 g of the white crystals obtained in the above "Synthesis Example” and 30 g of acetonitrile were dissolved, and dissolved at 60 ° C. Upon cooling at a rate, crystals precipitated around 50 ° C. Thereafter, the mixture was further cooled to 25 ° C. at the same cooling rate, and the precipitated crystals were filtered. (Drying process) The crystals obtained by the crystallization step were dried at a temperature of 20 ° C. and 1.2 kPa for 2 hours.
  • the obtained crystals were found to have a residual solvent of 0.05% by weight of toluene and 3.6% by weight of acetonitrile as determined by HS-GC analysis. Further, the crystals were dried under the same conditions for 4 hours, but there was no change in the content of the residual solvent. This proved that the crystals obtained in the crystallization step were acetonitrile clathrates. As a result of performing differential thermogravimetric analysis (DTG) on the acetonitrile clathrate, it was confirmed that the amount of heat for removing acetonitrile to be clathrated was about 40 J / g.
  • TMG differential thermogravimetric analysis
  • FIG. 1 shows a diagram showing a differential thermogravimetric analysis (DTG) curve of this acetonitrile clathrate.
  • the acetonitrile clathrate was dried for 4 hours in an environment of a temperature of 100 ° C. and a pressure of 1.2 kPa, to obtain 9.0 g of a non-clathrate crystal. (result of analysis)
  • the crystals obtained by the drying process had a purity of 98.7% by high performance liquid chromatography analysis, and the remaining solvent was confirmed to be 0.05% by weight of toluene and 0.2% by weight of acetonitrile by HS-GC analysis. did it.
  • FIG. 2 shows a diagram showing a differential scanning calorimetry (DSC) curve of a crystal which is not an inclusion and which is subjected to the above analysis.
  • DSC differential scanning calorimetry
  • Example 2 (Crystallization process) In a 1-liter four-necked flask equipped with a thermometer, a stirrer, and a cooling tube, 208.7 g of the white crystal obtained in the above "Synthesis Example” and 626.1 g of acetonitrile were added and dissolved at 60 ° C. After cooling at a cooling rate of 5 ° C. and adding about 0.1 g of the seed crystal obtained in Example 1 at 55 ° C., an increase in precipitated crystals at 50 ° C. was confirmed. The mixture was cooled to 25 ° C. at the same cooling rate, kept at 25 ° C. for 2 hours, and the precipitated crystals were separated by filtration.
  • FIG. 3 is a diagram showing a differential scanning calorimetry (DSC) curve of a crystal which is not an inclusion and which is subjected to the above analysis.
  • FIG. 4 shows a differential thermogravimetric analysis (DTG) curve of the crystal obtained by removing the adhering solvent, and shows a main peak of the powder X-ray (having a relative integrated intensity exceeding 5%).
  • the obtained crystal is a crystal having at least one endothermic peak by differential scanning calorimetry in a temperature range of 158 ° C. or more and less than 161 ° C. It became clear that there was.
  • the obtained crystallization solution was heated to 65 ° C., stirred at the same temperature for 1 hour to completely dissolve the crystals, and then cooled at 0.1 ° C. per minute to precipitate crystals at 50 ° C., The mixture was stirred at the same temperature for 2 hours. After further cooling to 22 ° C., filtration was performed to obtain crystals. The obtained crystal was dried at 55 ° C. for 3 hours under a reduced pressure of 1.3 kPa, and a part of the crystal was analyzed by HS-GC. As a result, it was confirmed that the solvent used in the crystallization step contained 3.5% by weight of methanol.
  • FIG. 5 is a diagram showing a differential thermogravimetric analysis (DTG) curve of the obtained crystal, and each analysis value is shown below.
  • Example 8 of Patent Document 5 isobutyl ketone
  • 5 g of the toluene clathrate crystal obtained in Reference Example 2 and 25 g of diisobutyl ketone were put into a test tube containing a stirrer, stirred at 100 ° C. for 5 hours, and filtered without cooling. Then, it was dried for 2 hours in a nitrogen stream.
  • FIG. 6 shows a differential scanning calorimetry (DSC) curve of the obtained crystal, and each analysis value is shown below.
  • Example 12 of Patent Document 5 heptane
  • 5 g of the toluene clathrate crystals obtained in Reference Example 2 and 25 g of heptane were put into a test tube containing a stirrer, stirred at 100 ° C. for 2 hours, and filtered without cooling. Then, it was dried for 2 hours in a nitrogen stream.
  • FIG. 7 shows a differential scanning calorimetry (DSC) curve of the obtained crystal, and each analysis value is shown below.
  • DSC differential scanning calorimetry
  • Example 1 of Patent Document 6 The inside of a 1-liter four-necked flask equipped with a thermometer, a stirrer, and a condenser was purged with nitrogen, and 18.0 g (0.1 mol) of 9-fluorenone and 53.5 g of 2-[(2-phenyl) phenoxy] ethanol were used. (0.25 mol), 1 g of 3-mercaptopropionic acid and 60 mL of toluene were dissolved at 65 ° C., and then 25 mL of 98% sulfuric acid was added dropwise over 1 hour.
  • FIG. 9 shows a diagram showing a differential thermogravimetric analysis (DTG) curve of the obtained crystal. From FIG. 9, since the weight of the crystal decreased at a temperature equal to or higher than the melting point, it was revealed that the crystal obtained in Example 1 of Patent Document 6 was a toluene clathrate.
  • FIG. 11 shows a differential scanning calorimetry (DSC) curve of the obtained crystal, and each analysis value is shown below.
  • HPLC purity 94.5%
  • Ethanol content 0.14% by weight
  • Toluene content: below detection limit (HS-GC) Melting point: 132 ° C
  • Loose bulk density 0.33 g / cm 3 The loose bulk density is data obtained by a simple test using a test tube.
  • Example 6 does not explain the details such as the sulfuric acid dropping temperature and the like, because the reaction conditions do not completely match. Conceivable.
  • the median diameter (D50) of the obtained crystal was 20.7 ⁇ m, and the mode diameter was 26.1 ⁇ m.
  • the obtained crystals have a very fine particle size as compared with the crystal mixture of the present invention, and the appearance of improved fluidity as compared with the crystals obtained from the methanol clathrate of “Comparative Example 2” described above. Not confirmed. From the results of Comparative Example 9, it was found that in order to remove ethanol from the ethanol inclusion, approximately 150 J / g of energy was required, and the melting point of the crystal from which the ethanol was removed from the inclusion was 132 ° C. Was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

示差走査熱量分析による特定の吸熱ピークを有する9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体および、その結晶体の製造方法を提供することを課題とする。解決手段として、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有することを特徴とする、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体を提供する。

Description

ビスフルオレン化合物の結晶体
 本発明は、示差走査熱量分析による特定の吸熱ピークを有する9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体および、その結晶体の製造方法に関する。
 従来、9,9-ビス(4-ヒドロキシフェニル)フルオレン等のフルオレン骨格を有する化合物群は、耐熱性や光学特性等において優れていることから、ポリカーボネート樹脂等の熱可塑性合成樹脂原料、エポキシ樹脂等の熱硬化性樹脂原料、酸化防止剤原料、感熱記録体原料、感光性レジスト原料などの用途で用いられている。中でも、以下化学式(1)で表される化学構造を有する9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンから製造される樹脂は、光学特性に優れるとして着目されている(例えば、特許文献1、2等)。
Figure JPOXMLDOC01-appb-C000001
  上記化学式(1)で表される9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの製造方法としては、下記反応式に示すように、化学式(2)で示される9-フルオレノンと化学式(3)で示されるアルコール類とを反応させて、目的物を得る方法が知られている(特許文献3)。
Figure JPOXMLDOC01-appb-C000002
  また、上記化学式(1)で表される9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンを含む反応液中に、芳香族炭化水素類とメタノールとを添加して析出した結晶を分離後、結晶を60℃以上にしてメタノールを除去する方法が知られている(特許文献4)。晶析により得られた結晶は、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンとメタノールとの包接体であり、包接されたメタノールを除去するためには、加温によるエネルギーと時間が不可欠である。
 上記化学式(1)で表される9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンとトルエンとの包接体と、特定の溶媒とを、溶解することなく混合させることにより、トルエンを除去する方法が知られている(特許文献5)が、得られる結晶はほとんど高融点であるため、融解や溶解させるためにエネルギーや時間が多く必要である。また、使用する溶媒によっては低融点の結晶が得られるが、当該結晶は、包接体を形成しているため、包接体から溶媒を除去するためのエネルギーが必要であるほか、嵩密度も低い。
 高嵩密度の上記化学式(1)で表される9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶の製造方法が知られている(特許文献6)が、得られた結晶は包接体であり、加熱により当該包接体から結晶を保持したまま溶媒が除去できないか、あるいは除去できる場合でも包接体から溶媒を除去するためのエネルギーが必要であるという問題があった。
 包接体ではない上記化学式(1)で表される9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンを得る製造方法も知られている(特許文献7)が、最も高融点の結晶は、融解して使用する場合は多くのエネルギーが必要である。また、低融点の結晶を得るには、極めて速い速度で冷却する必要があり、商業スケールでの実施は困難であるか、特殊な装置が必要なため、工業的規模での適用は容易ではない。そのほか、低融点の結晶は色相が悪く、光学用途への使用に問題があるほか、晶析に使用する溶媒の残存量が多いという問題もあった。
 9,9-ビス(4-ヒドロキシフェニル)フルオレン等のフルオレン骨格を有する化合物群は、反応溶媒や精製に使用する溶媒との間で包接体を形成することが知られている一方で、包接された溶媒を除去するためには高温と多大な時間を要するために、工業的規模で適用することは困難であるほか、溶媒が包接されたフルオレン骨格を有する化合物は、エポキシ樹脂、ポリエステル等の製造原料やその他の用途において工業的に使用するには問題があることも知られている。
特開2011-074222号公報 特開2011-168722号公報 特開2001-206863号公報 特開2017-200900号公報 特開2018-076245号公報 中国特許出願公開第106349030号明細書 特開2017-200901号公報
 本発明は、上述した事情を背景としてなされたものであって、示差走査熱量分析による特定の吸熱ピークを有する9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体および、その結晶体の製造方法の提供を課題とする。
 本発明者らは、上述の課題解決のために鋭意検討した結果、特定の溶媒を用いて晶析することにより、示差走査熱量分析による特定の吸熱ピークを有する9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体が得られることを見出し、本発明を完成した。
 本発明は以下の通りである。
1.示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有することを特徴とする、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体。
2.包接体ではないことを特徴とする、1.に記載の結晶体。
3.アセトニトリルを用いて晶析する工程を含むことを特徴とする、1.または2.に記載の結晶体の製造方法。
4.さらに、晶析により得られた結晶を45℃以上であって融点より低い温度条件下において乾燥する工程を含むことを特徴とする、3.に記載の製造方法。
 本発明によれば、示差走査熱量分析による特定の吸熱ピークを有し、包接体ではない9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体および、その結晶体の製造方法が提供可能である。
 9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンが有機溶媒等の化合物を包接している場合は、当該包接体と、例えば(メタ)アクリル酸等とを反応させる際に、包接している有機溶媒等の化合物が反応を阻害し、反応が進行しないという問題が発生する。また、当該包接体を溶融し樹脂原料として使用する際も、溶融中に発生する包接した有機溶媒等の化合物に由来する蒸気を反応装置から除去する必要があるほか、残存する有機溶媒等の化合物により目的とする樹脂の品質が低下する等の問題もあった。さらに、包接する有機溶媒等の化合物の引火点や発火点によっては、当該包接体の輸送や保管時における防災上の懸念もあった。
 前述のとおり、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有し、包接体ではない9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体は、未だ知られていない。しかも、従来の包接結晶から有機溶媒を除去するより、はるかに低い熱量により包接した有機溶媒を除去できるため、製造における消費エネルギーを抑えることができる。
 すなわち、示差走査熱量分析による特定の吸熱ピークを有し、包接体ではない9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの新規な結晶体とその製造方法の提供は、樹脂原料等の工業的な使用において非常に有用である。
実施例1の乾燥工程における付着溶媒を除去して得られたアセトニトリル包接体の示差熱・熱重量分析(DTG)曲線を示す図である。 実施例1の乾燥工程により得られた包接体ではない結晶(本発明の結晶体)の示差走査熱量測定(DSC)曲線を示す図である。 実施例2で得られた結晶体(本発明の結晶体)の示差走査熱量測定(DSC)曲線を示す図である。 実施例2における付着溶媒を除去して得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。 比較例1により得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。 比較例2により得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。 比較例3により得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。 比較例4により得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。 比較例6により得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。 比較例7の乾燥前の結晶の示差熱・熱重量分析(DTG)曲線を示す図である。 比較例7の乾燥後の結晶の示差走査熱量測定(DSC)曲線を示す図である。
 以下、本発明を詳細に説明する。
 本発明の9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンは下記化学式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
<合成方法について>
 本発明における、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの合成方法については、特に制限はなく、例えば、前述の特許文献3に記載された公知製造方法を適用できる。
 下記反応式に示す、化学式(2)で示される9-フルオレノンと化学式(3)で示されるアルコール類との反応について説明する。
Figure JPOXMLDOC01-appb-C000004
 化学式(2)で示される9-フルオレノンに対する化学式(3)で示されるアルコール類の仕込みモル比は、理論値(2.0)以上であれば、特に限定されるものではないが、通常2~20倍モル量の範囲、好ましくは3~10倍モル量の範囲で用いられる。
 反応に際して、酸触媒を使用することができる。使用する酸触媒は特に制限されず、公知の酸触媒を使用することができる。具体的な酸触媒としては、例えば、塩酸、塩化水素ガス、60~98%硫酸、85%リン酸等の無機酸、p-トルエンスルホン酸、メタンスルホン酸、シュウ酸、蟻酸、トリクロロ酢酸またはトリフルオロ酢酸等の有機酸、ヘテロポリ酸等の固体酸等を挙げることができる。好ましくは リンタングステン酸等のヘテロポリ酸である。このような酸触媒の好適な使用量は反応条件によって異なるが、例えば、リンタングステン酸等のヘテロポリ酸の場合は、9-フルオレノン100重量部に対して、1~70重量部の範囲、好ましくは、5~40重量部の範囲、より好ましくは10~30重量部の範囲で用いられる。
 反応に際して、酸触媒と共に必要に応じてチオール類等の助触媒を使用してもよい。使用により反応速度を加速させることができる。このようなチオール類としては、アルキルメルカプタン類やメルカプトカルボン酸類が挙げられ、好ましくは、炭素数1~12のアルキルメルカプタン類や炭素数1~12のメルカプトカルボン酸類である。炭素数1~12のアルキルメルカプタン類としては、例えば、メチルメルカプタン、エチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン等やそれらのナトリウム塩等のようなアルカリ金属塩が挙げられ、炭素数1~12のメルカプトカルボン酸類としては、例えば、チオ酢酸、β-メルカプトプロピオン酸等が挙げられる。また、これらは単独または2種類以上の組み合わせで使用できる。助触媒としてのチオール類の使用量は、原料の9-フルオレノンに対し通常1~30モル%の範囲、好ましくは2~10モル%の範囲で用いられる。
 反応に際して反応溶媒は使用しなくてもよいが、工業的生産時の操作性や反応速度の向上などの理由で使用してもよい。反応溶媒としては、反応温度において反応器から留出せず、反応に不活性であれば特に制限はないが、例えば、トルエン、キシレン等の芳香族炭化水素、メタノール、エタノール、1-プロパノール、2-プロパノール等の低級脂肪族アルコール、ヘキサン、ヘプタン、シクロヘキサン等の飽和脂肪族炭化水素等の有機溶媒や水またはこれらの混合物が挙げられる。これらのうち、芳香族炭化水素が好ましく用いられる。
 反応温度は、使用する酸触媒の種類により異なるが、酸触媒としてリンタングステン酸等のヘテロポリ酸を使用する場合は、通常20~200℃、好ましくは40~170℃、さらに好ましくは50~120℃の範囲である。反応圧力は、使用する有機溶媒の沸点によっては、反応温度が前記範囲内になるように加圧または減圧下で行ってもよく、生成する水を除去しながら反応を行ってもよい。
 反応時間は、使用する酸触媒の種類や、反応温度等の反応条件により異なるが、通常1~30時間程度で終了する。
 反応の終点は、液体クロマトグラフィーまたはガスクロマトグラフィー分析にて確認することができる。未反応の9-フルオレノンが消失し、目的物の増加が認められなくなった時点を反応の終点とするのが好ましい。
<反応の後処理について>
 このような反応の終了後に、公知の後処理方法を適用することができる。例えば、反応終了液に、酸触媒を中和するために、水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ水溶液を加える。中和した反応混合液を静置し、必要に応じて水と分離する溶媒を加えて、水層を分離除去する。必要に応じて得られた油層に蒸留水を加え、撹拌して水洗した後、水層を分離除去する操作を1回乃至複数回繰り返し行い中和塩を除去し、得られた油層をそのまま冷却して結晶が析出すれば、析出した結晶を分離して粗結晶を得ることができる。また、得られた油層から溶媒や余剰の上記化学式(3)で示されるアルコール類を、蒸留により除去して、得られた残渣に芳香族炭化水素等の溶媒を加えて均一の溶液とし、冷却して析出した結晶を分離して粗結晶を得てもよい。この粗結晶や前記残渣は、本発明の晶析する工程を経ることにより、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有し、包接体ではない9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体を得ることができる。
<晶析する工程について>
 本発明の製造方法は、アセトニトリルを用いて晶析する工程(以下、晶析工程ともいう。)を含むことを特徴とするものである。ここで、使用可能なアセトニトリルとしては、特に限定されることなく、一般的に市販されているアセトニトリルを使用することができる。
 晶析工程に使用するアセトニトリルの量は、反応の後処理により得られた残渣または粗結晶に含まれる9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン100重量部に対して、150~600重量部が好ましく、200~500重量部がより好ましく、250~400重量部がさらに好ましく、中でも、300~350重量部が最も好ましい。使用するアセトニトリルの量が多いと、得られる結晶量が低下してしまい、少ないと目的物の純度が低下し好ましくない。さらに、使用するアセトニトリルの量が少ないと、晶析工程に使用する反応後処理工程により得られた残渣または粗結晶に含まれる溶媒、例えば、トルエン等の芳香族炭化水素を包接する9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンが増加してしまうため好ましくない。
 本発明の晶析工程においては、アセトニトリル以外の溶媒を使用すると、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有し、包接体ではない9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体を得ることができないために、好ましくない。
 本発明の晶析工程では、使用する反応後処理後の残渣または粗結晶に、アセトニトリルを添加し、常圧または加圧下でアセトニトリルの沸点以下まで加温して完溶させて均一な溶液とした後、冷却して析出する結晶を得ることができる。加温して均一な溶液とした後、冷却する場合には、1時間あたり1~10℃、好ましくは1時間あたり3~7℃で、冷却して結晶を析出させる。結晶を析出させる温度としては、40~58℃の温度範囲が好ましく、45~55℃の温度範囲がより好ましく、中でも50℃程度の温度が結晶析出温度としては適している。また、結晶を析出させる際には、種晶を使用しても良い。結晶が析出開始した後は、0~5時間同温度で保持し、前記冷却速度で、0~40℃、好ましくは10~35℃、より好ましくは20~30℃まで冷却して、0~3時間同温度で保持した後、析出した結晶を濾過操作等により分離することが好ましい。
<乾燥する工程について>
 乾燥する工程(以下、乾燥工程ともいう。)を実施することにより、本発明の晶析工程において使用したアセトニトリルを完全に除去することができる。本発明の乾燥工程は、晶析工程により得られた結晶を、45℃以上であって融点より低い温度条件下で実施することができるが、70℃以上が好ましく、90℃以上がより好ましく、100℃以上が特に好ましい。また、その他の条件等によっては熱により結晶の色相が悪化する可能性もあるため、150℃以下が好ましく、130℃以下がより好ましい。45℃より低い温度では、晶析工程において使用したアセトニトリルを除去できないか、除去できたとしても非常に多くの時間が必要となり好ましくない。
 乾燥工程を実施する際は常圧でも減圧下でも良いが、工業的に実施する場合には、減圧下において実施する方がより効率的に、晶析工程において使用したアセトニトリルを除去できることからも好適である。その他、乾燥工程は、窒素等の不活性ガス雰囲気中で行うことがより好ましい。
<本発明の結晶体>
 本発明の9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体は、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有することを特徴とする。示差走査熱量分析による吸熱ピークは、159℃以上161℃未満の温度範囲がより好ましく、160℃以上161℃未満の温度範囲がさらに好ましい。さらに、本発明の9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体は包接体ではない、すなわち、有機溶媒等の化合物を包接しない結晶体である。
 本発明における、有機溶媒等の化合物を包接しない結晶体としては、残存する有機溶媒の含量が1重量%以下である結晶体が好ましく、0.5重量%以下である結晶体がより好ましく、0.3重量%以下である結晶体がさらに好ましく、0.1重量%以下が特に好ましい。また、本発明における、有機溶媒等の化合物を包接しない結晶体は、ゆるみ嵩密度が0.35~0.45g/cmの範囲であることが好ましい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 分析方法は以下の通りである。
<分析方法>
1.示差走査熱量分析(DSC)
 結晶体5mgをアルミパンに秤量し、示差走査熱量測定装置((株)島津製作所製:DSC-60)を用いて、酸化アルミニウムを対照として下記操作条件により測定した。
(操作条件)
 昇温速度:10℃/分
 測定温度範囲:30~200℃
 測定雰囲気:開放、窒素50mL/分
2.示差熱・熱重量分析(DTG)
 結晶体8mgをアルミパンに秤量し、示差熱・熱重量分析装置((株)島津製作所製:DTG-60A)を用いて、下記操作条件により測定した。
(操作条件)
 昇温速度:10℃/分
 測定温度範囲:30~300℃
 測定雰囲気:開放、窒素50mL/分
3.HS-GC(残存溶媒分析)
 「HS-GC」とは、気相部分(ヘッドスペース、HS)をガスクロマトグラフ(GC)に導入して分析する手法である。バイアルに封入された試料を一定時間保温することで気相と試料を平衡状態として気相部分を分析することにより、結晶中に残存する溶媒量を測定した。具体的には、結晶体0.5gを秤量し、そこにN-メチルピロリドンを精秤しながら添加して全体を10gにする。この溶液をHS用バイアルに約3gを秤量して、漏れないようにクランプして下記条件で測定した。
(GC分析条件)
 装置:(株)島津製作所製:GC-2010plus
 カラム:TC-1 60m×0.25mmΦ、膜厚0.25μm
 検出器:FID
 INJ温度:300℃、FID温度:310℃
 昇温条件:40℃(25分)→20℃/分→300℃(5分)
 カラム線速度:19.9cm/秒
(HS分析条件)
 機器:TurboMatrix HS 40(パーキンエルマー社)
 キャリアガス圧:154kPa
 バイアル加熱温度:100℃
 注入時間:0.05分
4.ゆるみ嵩密度
 多機能型粉体物性測定器マルチテスター(MT―1001型/(株)セイシン企業製)を用い、容量20cmの測定用セルに、空気の隙間ができないように篩を通して結晶を静かに投入し、前記測定用セルが結晶で充填した時のセル内の結晶の重量a(g)を測定し、下記計算式よりゆるみ嵩密度を算出した。
[計算式]
 ゆるみ嵩密度(g/cm)=結晶体の重量a(g)÷20cm
5.粉末X線回析(XRD)分析
 結晶体0.1gをガラス試験板の試料充填部に充填し、下記粉末X線回析装置を用いて、下記条件により測定した。
 装置:(株)リガク製:SmartLab
 X線源:CuKα
 スキャン軸:2θ/θ
 モード:連続
 測定範囲:2θ=5°~70°
 ステップ:0.01°
 スピード計測時間:2θ=2°/min
 IS:1/2
 RS:20.00mm
 出力:40kV-30mA 
6.粒度分布
 結晶0.1gに、分散溶媒として水0.1g、分散剤(中性洗剤)一滴を加えて混合し、これを装置に投入し、超音波処理(3分)後、測定した。
 装置:(株)島津製作所製:SALD-2200
 測定方式:レーザー回析方式
7.YI値(黄色度)
 結晶2.0gを、純度99重量%以上の1,4ジオキサン18.0gに溶解させ、以下の条件で得られた1,4-ジオキサン溶液のYI値(黄色度)を測定した。
 装置:色差計(日本電色工業社製,ZE6000)
 使用セル:ガラス試験管(直径24mm)
なお、測定に使用する1,4-ジオキサン自身の着色が測定値に影響を与えないよう、事前に1,4-ジオキサンの色相を測定して補正した。(ブランク測定)。このブランク測定を実施したうえで、サンプルを測定した値を本発明におけるYI値(黄色度)とした。
<合成例>
9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの合成
 温度計、撹拌機、冷却管を備えた1リットル4つ口フラスコ内を窒素置換し、9-フルオレノン76.3g(0.423モル)、化学式(3)で示されるアルコール類907.0g(4.24モル)、リンタングステン酸13.7g、トルエン388.7gを仕込み、反応温度100℃、圧力42kPaにおいて、反応生成水を除去しながら反応を行った。液体クロマトグラフィー分析により原料消失を確認し、反応終了とした。反応液を80℃にまで冷却し、トルエン339.1g、15%水酸化ナトリウム水溶液26.69g、蒸留水250gを加えて反応液を中和して静置し、水層を除去した。得られた油層に蒸留水250gを加えて撹拌後静置し、水層を除去する水洗操作を4回実施した。得られた油層から、蒸留により溶媒等の低沸点物質と未反応の化学式(3)で示されるアルコール類を取り除いた後、残渣をトルエン1500gで溶解した。このトルエン溶液を25℃にまで冷却し、析出した結晶を濾過し、目的物のトルエン包接体232.0g(高速液体クロマトグラフィー分析による純度98.0%、トルエン5重量%包接)を得た。
<実施例1>
(晶析工程)
 温度計、撹拌機、冷却管を備えた200ミリリットル4つ口フラスコに、上記「合成例」で得られた白色結晶10gとアセトニトリル30gを入れて、60℃で溶解後、1時間あたり5℃の速度で冷却すると、50℃付近で結晶が析出した。その後、同じ冷却速度でさらに25℃まで冷却して、析出した結晶を濾過した。
(乾燥工程)
 晶析工程により得られた結晶を、温度20℃、1.2kPaで2時間乾燥させた。得られた結晶は、HS-GC分析により残存溶媒がトルエン0.05重量%、アセトニトリル3.6重量%であった。さらに、同一条件でこの結晶を4時間乾燥したが、残存溶媒の含有量に変化はなかった。このことから、晶析工程で得られた結晶は、アセトニトリル包接体であることが明らかになった。このアセトニトリル包接体について示差熱・熱重量分析(DTG)を行った結果、包接するアセトニトリルを除去する熱量は約40J/gであることが確認された。このアセトニトリル包接体の示差熱・熱重量分析(DTG)曲線を示す図を図1に示す。
 このアセトニトリル包接体を温度100℃、圧力1.2kPaの環境で4時間乾燥し、包接体ではない結晶9.0gが得られた。
(分析結果)
 乾燥工程により得られた結晶は、高速液体クロマトグラフィー分析による純度が98.7%であり、HS-GC分析により残存溶媒がトルエン0.05重量%、アセトニトリル0.2重量%であることが確認できた。
 上記分析を行った、包接体ではない結晶の示差走査熱量測定(DSC)曲線を示す図を図2に示す。
<実施例2>
(晶析工程)
 温度計、撹拌機、冷却管を備えた1リットル四つ口フラスコに、上記「合成例」で得られた白色結晶208.7gとアセトニトリル626.1gを入れて60℃で溶解後、1時間あたり5℃の冷却速度で冷却し、実施例1で得られた種結晶概略0.1gを55℃で添加したところ、50℃で析出結晶の増加を確認できた。同じ冷却速度で25℃まで冷却し、25℃で2時間保持し、析出した結晶を濾別した。
(乾燥工程)
 晶析工程により得られた結晶を、温度20℃、圧力1.2kPaの環境で2時間乾燥させた。得られた結晶は、HS-GC分析により残存溶媒がトルエン0.08重量%、アセトニトリル3.7重量%であった。さらに、同一条件でこの結晶を2時間乾燥したが、残存溶媒の含有量に変化はなかった。このことから、晶析工程により得られた結晶は、アセトニトリル包接体であることが明らかとなった。このアセトニトリル包接体について示差熱・熱重量分析(DTG)を行った結果、包接するアセトニトリルを除去する熱量は約94J/gであることが確認された。
 アセトニトリル包接体を、温度100℃、圧力1.2kPaの環境で14時間乾燥させることにより、包接体ではない結晶156.6gが得られた。
(分析結果)
 乾燥工程により得られた結晶は、高速液体クロマトグラフィー分析による純度が98.8%であり、HS-GC分析により残存溶媒がトルエン0.08重量%、アセトニトリル0.003重量%であること、さらに、示差走査熱量分析による吸熱ピークトップ温度は160℃、YI値(黄色度)は、0.47、ゆるみ嵩密度0.4g/cmであることが確認できた。また、得られた結晶のメディアン径(D50)は34.0μm、モード径は39.6μmであった。
 上記分析を行った、包接体ではない結晶の示差走査熱量測定(DSC)曲線を示す図を図3に示す。また、上記付着溶媒を除去して得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図4に示し、粉末X線の主なピーク(5%を超える相対積分強度を有するもの)を表1に列挙する。
Figure JPOXMLDOC01-appb-T000005
 これらの分析により、得られた結晶体は、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有する結晶体であり、さらには、包接体ではない結晶体であることが明らかとなった。
<比較例1>
 上記特許文献4の実施例1に記載された製造方法について、追試験を行った。
 詳しくは、撹拌機、冷却管、および温度計を備えた1リットル4つ口フラスコ内を窒素置換し、9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン75g(0.149mol)、炭酸カリウム1.7g、エチレンカーボネート30.05g(0.341mol)、トルエン112.5g、およびメチルトリグライム7.5gを仕込み、110℃まで昇温し、同温度で16時間撹拌後、高速液体クロマトグラフィー(以下HPLC)測定にて原料が消失していることを確認した。
 その後、水3.07g添加し、100℃で5時間加水分解を行った。
 得られた反応液を90℃まで冷却した後、水113gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ水洗操作を3回繰り返した後、得られた有機溶媒層から溶媒を除去し、濃縮物を得た。得られた濃縮物にトルエン92g、メタノール348gを添加し晶析溶液を得た。得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、1分あたり0.1℃で冷却することにより50℃で結晶を析出させ、同温度で2時間撹拌した。更に22℃まで冷却した後、濾過し結晶を得た。
 得られた結晶を1.3kPaの減圧下、55℃で3時間乾燥した後、結晶の一部をHS-GCで分析した。その結果、晶析工程で用いた溶媒であるメタノールを3.5重量%含有していることが確認された。更に同条件で3時間乾燥を継続し分析しても、メタノールの含有量が4重量%と減少しなかった。この結晶から、包接した溶媒を除去するのに必要な熱量をDTGで測定した結果、約875J/gであった。この結晶を内圧1.3kPaの減圧下、内温を90℃に昇温し、更に3時間乾燥した。メタノールの含有量が0.02重量%となった為、乾燥終了とした。
 得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図5に、各分析値を下記に示す。
得られた結晶の重さ:77.9g(収率:88%)
HPLC純度:98.6%
トルエン含量:0.01重量%
メタノール含量:0.02重量%
 比較例2の結果より、メタノール包接体からメタノールを除去するためには、概略900J/g程度のエネルギーが必要であることが確認された。
 また、得られた結晶のメディアン径(D50)は18.5μm、モード径は21.2μmであった。
 上記特許文献5の比較例1、実施例8、12、17、19、20に記載された製造方法について、追試験を行った。
<参考例1>
(特許文献5の比較例1)
 撹拌器、加熱冷却器、および温度計を備えた1リットル4つ口フラスコ内を窒素置換し、9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン60g(0.119mol)、炭酸カリウム1.2g、エチレンカーボネート24.15g(0.274mol)、およびトルエン60gを仕込み、110℃で34時間撹拌した。次いで水4.86g添加し、100℃で11時間反応(加水分解)を行った。得られた反応液を85℃まで冷却した後、トルエン30gと水102gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ水洗操作を3回繰り返した後、得られた有機溶媒層からディーンスターク装置を用いて還流下で水を除去し、冷却により75℃で結晶が析出し、同温度で2時間撹拌した。更に26℃まで冷却した後、濾過し結晶を得た。得られた結晶を、12時間、内圧1.1kPaの減圧下、110℃~112℃で乾燥した。
 得られた結晶を上述した方法により分析した結果、トルエン包接体であることを確認した。   
 得られた結晶の分析結果を下記に示す。
得られた結晶の重さ:68.5g
HPLC純度:97.5%
トルエン(ゲスト分子)含量:4.46重量%
<比較例2>
(特許文献5の実施例8:イソブチルケトン)
 上記参考例2で得られたトルエン包接体の結晶5gとジイソブチルケトン25gを撹拌子の入った試験管に入れ、100℃で5時間撹拌し、そのまま冷却せずに濾過した。その後、窒素気流中で2時間乾燥した。
 得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図6に、各分析値を下記に示す。
HPLC純度:98.40%
トルエン(ゲスト分子)含量:検出限界以下(HS-GC)
融点:192℃
ゆるみ嵩密度:0.31g/cm
なお、上記ゆるみ嵩密度は、試験管での簡易試験によるデータである。
比較例3の結果より、上記特許文献5の実施例8により得られる結晶は、融点が192℃と高融点結晶であることが、さらに、ゆるみ嵩密度は0.31g/cmと低いことも確認された。
<比較例3>(特許文献5の実施例12:ヘプタン)
 上記参考例2で得られたトルエン包接体の結晶5gとへプタン25gを撹拌子の入った試験管に入れ、100℃で2時間撹拌し、そのまま冷却せずに濾過した。その後、窒素気流中で2時間乾燥した。
 得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図7に、各分析値を下記に示す。
HPLC純度:98.74%
トルエン(ゲスト分子)含量:検出限界以下(HS-GC)
融点:191℃
ゆるみ嵩密度:0.38g/cm
なお、上記ゆるみ嵩密度は、試験管での簡易試験によるデータである。
比較例4の結果より、上記特許文献5の実施例12により得られる結晶は、融点が191℃と高融点結晶であることが確認された。
<比較例4>
(特許文献5の実施例17:ジブチルエーテル)
 上記参考例2で得られたトルエン包接体の結晶5gとジブチルエーテル25gを撹拌子の入った試験管に入れ、100℃で5時間撹拌し、そのまま冷却せずに濾過した。その後、窒素気流中で2時間乾燥した。
 得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図8に、各分析値を下記に示す。
HPLC純度:97.88%
トルエン(ゲスト分子)含量:検出限界以下(HS-GC)
融点:192℃
ゆるみ嵩密度:0.35g/cm
なお、上記ゆるみ嵩密度は、試験管での簡易試験によるデータである。
比較例5の結果より、上記特許文献5の実施例17により得られる結晶は、融点が192℃と高融点結晶であることが確認された。
<比較例5>
 温度計、撹拌機、冷却管を備えた500ミリリットル4つ口フラスコを窒素置換し、そこに、上記「合成例」で得られたトルエン包接体14.1g(YI値0.80)とメチルイソブチルケトン60gとへプタン24gを仕込み、100℃まで昇温し、30分間撹拌して結晶をすべて溶解させた。得られた溶液を1分間あたり0.8℃の速度で冷却することにより65℃で結晶が析出した。同温度で2時間撹拌後、20℃ まで冷却し、ろ過を行った。得られた結晶を1.3kPaの減圧下、90℃で3時間乾燥し、下記品質の結晶10.6gを得た。
HPLC純度:99.3%
残存トルエン:112ppm
残存メチルイソブチルケトン:1680ppm
残存へプタン:321ppm
YI値:1.26(10%ジオキサン溶液)
DSC融解吸熱最大温度:171℃
上記特許文献6の実施例1、2に記載された製造方法について、追試験を行った。
<比較例6>
(特許文献6の実施例1)
 温度計、撹拌機、冷却管を備えた1リットル4つ口フラスコ内を窒素置換し、9-フルオレノン18.0g(0.1モル)、2-[(2-フェニル)フェノキシ]エタノール53.5g(0.25モル)、3-メルカプトプロピオン酸1g、トルエン60mLを仕込み、65℃で溶解させてから、98%硫酸25mLを1時間かけて滴下した。その後65℃で6時間撹拌して反応させた。反応終了後、水酸化ナトリウム溶液を加えて中和し、さらに、トルエン100g、水50g加えて撹拌し、静置後、水層を除去した。得られた有機層に水60gを加えて撹拌して静置後、水層を除去する操作を4回実施した。
 洗浄した有機層を10℃/時間で冷却して晶析し、25℃で15時間撹拌後、濾過して9,9-ビス[3-フェニル-4-(2-ヒドロキシエトキシ)フェニル]フルオレンの粗生成物を得た。
この粗生成物20.2gをトルエン60.6gで溶解後、冷却して晶析を行い、25℃で濾過し、9,9-ビス[3-フェニル-4-(2-ヒドロキシエトキシ)フェニル]フルオレンの結晶を得た。その後、80℃、1.3kPaで6時間乾燥して結晶11gを得た。(収率19.0%)
 結晶をHPLCで分析した結果、その純度は92.8%であった。
 得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図9に示す。
 図9より、融点以上の温度において結晶重量が減少していることから、上記特許文献6の実施例1により得られる結晶は、トルエン包接体であることが明らかとなった。
<比較例7>
(特許文献6の実施例2)
 上記比較例8の結晶10gをエタノール60gで溶解後、冷却して晶析を行い、25℃で濾過し、結晶を得た。25℃、1.3kPaで3時間乾燥した後、HS-GCで分析した結果、エタノールの含有量が6.0重量%であった。この結晶について示差熱・熱重量分析(DTG)を行った結果、包接するエタノールを除去する熱量は約147J/gであることが確認された。この結晶の示差熱・熱重量分析(DTG)曲線を示す図を図10に示す。
 さらに、この結晶を80℃、1.3kPaで6時間乾燥した結果、エタノールの含有量が0.14重量%の結晶6.9gが得られた。(収率69%)
得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図11に、各分析値を下記に示す。
HPLC純度:94.5%
エタノール含量:0.14重量%(HS-GC)
トルエン含量:検出限界以下(HS-GC)
融点:132℃
ゆるみ嵩密度:0.33g/cm
 なお、上記ゆるみ嵩密度は、試験管での簡易試験によるデータである。また、HPLC純度が特許文献6に記載された数値より低いのは、実施例6には、硫酸滴下温度等の詳細が説明されていないので、反応条件が完全に一致していないことも理由として考えられる。
 また、得られた結晶のメディアン径(D50)は20.7μm、モード径は26.1μmであった。得られた結晶は、本発明の結晶混合体に比べて粒子径が非常に細かく、また、上記「比較例2」のメタノール包接体から得られた結晶に比べて流動性が向上した様子は確認されなかった。
 比較例9の結果より、エタノール包接体からエタノールを除去するためには、概略150J/g程度のエネルギーが必要であることが、さらに、包接体からエタノールを除去した結晶の融点は132℃であることが確認された。
 

Claims (4)

  1.  示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有することを特徴とする、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンの結晶体。
  2.  包接体ではないことを特徴とする、請求項1に記載の結晶体。
  3.  アセトニトリルを用いて晶析する工程を含むことを特徴とする、請求項1または2に記載の結晶体の製造方法。
  4.  さらに、晶析により得られた結晶を45℃以上であって融点より低い温度条件下において乾燥する工程を含むことを特徴とする、請求項3に記載の製造方法。
     
PCT/JP2019/036374 2018-09-19 2019-09-17 ビスフルオレン化合物の結晶体 WO2020059710A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980056020.1A CN112638852A (zh) 2018-09-19 2019-09-17 双芴化合物的结晶体
KR1020217006589A KR20210063323A (ko) 2018-09-19 2019-09-17 비스플루오렌 화합물의 결정체
JP2020548514A JP7379770B2 (ja) 2018-09-19 2019-09-17 ビスフルオレン化合物の結晶体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-174723 2018-09-19
JP2018174723 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020059710A1 true WO2020059710A1 (ja) 2020-03-26

Family

ID=69887098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036374 WO2020059710A1 (ja) 2018-09-19 2019-09-17 ビスフルオレン化合物の結晶体

Country Status (5)

Country Link
JP (1) JP7379770B2 (ja)
KR (1) KR20210063323A (ja)
CN (1) CN112638852A (ja)
TW (1) TWI810366B (ja)
WO (1) WO2020059710A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890877B (zh) * 2022-01-28 2024-03-26 江苏永星化工股份有限公司 9,9-二[3-苯基-4-(2-羟基乙氧基)苯基]芴及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222708A (ja) * 2007-02-15 2008-09-25 Taoka Chem Co Ltd フルオレン誘導体の結晶多形体およびその製造方法
JP2017200900A (ja) * 2015-07-08 2017-11-09 田岡化学工業株式会社 フルオレン骨格を有するアルコールの結晶およびその製造方法
JP2017200901A (ja) * 2015-07-21 2017-11-09 田岡化学工業株式会社 フルオレン骨格を有するアルコールの結晶およびその製造方法
JP2018048086A (ja) * 2016-09-21 2018-03-29 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
JP2018076245A (ja) * 2016-11-08 2018-05-17 田岡化学工業株式会社 フルオレン骨格を有するジヒドロキシ化合物の精製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206863A (ja) 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物及びその製造方法
JP5285561B2 (ja) 2009-09-30 2013-09-11 大阪瓦斯株式会社 フルオレン骨格を有するポリエステル樹脂
JP5437106B2 (ja) 2010-02-19 2014-03-12 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
CN104230671B (zh) * 2014-07-18 2016-03-09 宿迁市永星化工有限公司 9,9-双(6-羟基萘-2-基)芴的溶剂合物晶体及其制备
CN106242955A (zh) 2015-07-17 2016-12-21 宿迁市永星化工有限公司 高堆积密度9,9-二[3-苯基-4-(2-羟基乙氧基)苯基]芴晶体的制备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222708A (ja) * 2007-02-15 2008-09-25 Taoka Chem Co Ltd フルオレン誘導体の結晶多形体およびその製造方法
JP2017200900A (ja) * 2015-07-08 2017-11-09 田岡化学工業株式会社 フルオレン骨格を有するアルコールの結晶およびその製造方法
JP2017200901A (ja) * 2015-07-21 2017-11-09 田岡化学工業株式会社 フルオレン骨格を有するアルコールの結晶およびその製造方法
JP2018048086A (ja) * 2016-09-21 2018-03-29 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
JP2018076245A (ja) * 2016-11-08 2018-05-17 田岡化学工業株式会社 フルオレン骨格を有するジヒドロキシ化合物の精製方法

Also Published As

Publication number Publication date
CN112638852A (zh) 2021-04-09
TWI810366B (zh) 2023-08-01
TW202031630A (zh) 2020-09-01
JPWO2020059710A1 (ja) 2021-08-30
KR20210063323A (ko) 2021-06-01
JP7379770B2 (ja) 2023-11-15

Similar Documents

Publication Publication Date Title
JP6426226B2 (ja) 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンの結晶体
TWI406843B (zh) 茀衍生物之結晶多形體之製造方法
EP3805195B1 (en) Crystal of 2,2'-bis(carboxymethoxy)-1,1'-binaphthyl
KR102564609B1 (ko) 플루오렌 골격을 갖는 알코올의 결정 및 그 제조 방법
TWI658034B (zh) 具有茀骨架之醇之結晶及其製造方法
WO2021015083A1 (ja) 2,2'-ビス(エトキシカルボニルメトキシ)-1,1'-ビナフチルの結晶体
JP7295692B2 (ja) 2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチルの結晶体
WO2020059710A1 (ja) ビスフルオレン化合物の結晶体
WO2020059709A1 (ja) ビスフルオレン化合物の結晶混合体
WO2020171039A1 (ja) 新規フルオレン化合物
WO2022138178A1 (ja) 1,1,1-トリス(4-ヒドロキシ-3,5-ジメチルフェニル)エタンの結晶体及びその製造方法
WO2020004207A1 (ja) 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンの結晶体
JP6994299B2 (ja) フルオレン骨格を有するジヒドロキシ化合物の精製方法
JP2017025024A (ja) フルオレン骨格を有するアルコール類を用いた包接化合物
WO2023234158A1 (ja) 4,4'-ビス(1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エチル)ビフェニルの結晶及び、その製造方法
TW202130625A (zh) 2,6-萘二醇-雙(偏苯三酸酐)的粉體及其製造方法
JP2019026627A (ja) 新規なビスフェノール化合物
WO2017170096A1 (ja) 新規なジヒドロキシ化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863924

Country of ref document: EP

Kind code of ref document: A1