WO2020059698A1 - 連続鋳造の制御装置、方法及びプログラム - Google Patents

連続鋳造の制御装置、方法及びプログラム Download PDF

Info

Publication number
WO2020059698A1
WO2020059698A1 PCT/JP2019/036347 JP2019036347W WO2020059698A1 WO 2020059698 A1 WO2020059698 A1 WO 2020059698A1 JP 2019036347 W JP2019036347 W JP 2019036347W WO 2020059698 A1 WO2020059698 A1 WO 2020059698A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
molten metal
disturbance
level
measured
Prior art date
Application number
PCT/JP2019/036347
Other languages
English (en)
French (fr)
Inventor
山本 浩貴
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020217001272A priority Critical patent/KR102460212B1/ko
Priority to JP2020548504A priority patent/JP7136220B2/ja
Priority to BR112020024482-1A priority patent/BR112020024482B1/pt
Priority to CN201980047771.7A priority patent/CN112423911B/zh
Priority to US17/256,778 priority patent/US11344946B2/en
Publication of WO2020059698A1 publication Critical patent/WO2020059698A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons

Definitions

  • the present invention relates to a control device, a method and a program for continuous casting.
  • Priority is claimed on Japanese Patent Application No. 2018-174509, filed Sep. 18, 2018, the content of which is incorporated herein by reference.
  • Patent Document 1 discloses a method for controlling a water level of a steam turbine condenser, which is not directed to a steel process.
  • a deviation signal between an inlet steam flow rate of a steam turbine measured by a turbine inlet steam flow meter and a condensate flow rate measured by a condensate flow meter corresponds to an opening amount of a condenser level control valve. It discloses that a condenser level control valve is converted into a condenser level control correction amount and added to an output of PID control that performs constant value control to control a condenser level control valve.
  • Patent Literature 1 discloses a configuration in which a control correction amount is added to the output of PID control in which constant value control is performed. However, when this is applied to continuous casting, particularly when the latter disturbance occurs, hot water is removed. Surface level control performance will be degraded.
  • the present invention has been made in view of the above points, and has been made to enable highly accurate control of the molten metal level in a mold even when a plurality of types of disturbances occur in continuous casting. Aim.
  • a first aspect of the present invention is a control apparatus for continuous casting, in which molten metal is injected into a mold from a nozzle, and the molten metal is solidified and pulled out to continuously produce a slab.
  • a melt level meter for measuring the melt level in the mold, and a melt injected from the nozzle into the mold so that the melt level measured by the melt level meter follows the melt level target value.
  • a main control unit that obtains an operation amount of a flow rate adjusting mechanism that adjusts a flow rate of metal; a flow meter that measures a flow rate of molten metal injected from the nozzle into the mold; and a molten metal that is measured by the flow meter.
  • An injection disturbance correction unit for obtaining a first correction amount for the operation amount of the flow rate control mechanism obtained by the main control unit in accordance with an estimated value of the injection disturbance obtained based on the flow rate measurement value of the injection surface; Measured with a level meter According to the estimated value of the drawing disturbance obtained on the basis of the surface level measurement, and a drawing disturbance correction unit for obtaining the second correction amount with respect to the operation amount of the flow rate adjusting mechanism which has been determined by the main control unit.
  • the flow disturbance estimating unit further calculates a value, the injection disturbance correction unit, the flow rate measurement value of the molten metal measured by the flow meter, the flow rate estimation value of the molten metal calculated by the flow rate estimation unit
  • the difference may be used as an estimated value of the injection disturbance, and the first correction amount may be obtained according to the estimated value of the injection disturbance.
  • the injection disturbance correction unit may obtain the first correction amount using an inverse model of the flow rate characteristic model.
  • the drawing disturbance correction unit may obtain the second correction amount using an inverse model of the flow characteristic model. .
  • a Lumberger type observer that uses the molten metal level and the extraction disturbance as state variables is configured, and the extraction is performed.
  • a pull-out disturbance estimating unit that obtains an estimated value of the disturbance may be provided, and the pull-out disturbance correcting unit may obtain the second correction amount according to the estimated value of the pull-out disturbance obtained by the pull-out disturbance estimating unit.
  • the flowmeter may be an electromagnetic flowmeter.
  • a second aspect of the present invention is a method for controlling continuous casting, in which a molten metal is injected into a mold from a nozzle, and the molten metal is solidified and pulled out to continuously produce a cast piece.
  • a metal level measuring step of measuring a metal level in the metal level with a metal level meter, and the nozzle from the nozzle so that the metal level measured in the metal level measuring step follows the metal level target value.
  • Main control step for determining the operation amount of the flow rate adjusting mechanism for adjusting the flow rate of the molten metal injected into the mold, and a flow measurement step for measuring the flow rate of the molten metal injected from the nozzle into the mold with a flow meter,
  • a first value for the operation amount of the flow rate adjusting mechanism determined in the main control step is determined.
  • An injection disturbance correction step for obtaining a correction amount, and the flow rate adjustment obtained in the main control step in accordance with an estimated value of a pull-out disturbance obtained based on a metal level measurement value measured by the metal level meter.
  • a pull-out disturbance correction step of obtaining a second correction amount for the operation amount of the mechanism is a program for controlling a continuous casting in which a molten metal is injected into a mold from a nozzle, and the molten metal is drawn out while solidifying, thereby continuously producing a slab. Determining an operation amount of a flow rate adjusting mechanism for adjusting a flow rate of molten metal injected from the nozzle into the mold so that the level of the molten metal measured by the level gauge is made to follow the target value of the molten metal level.
  • drawing disturbance correction determining a second correction amount with respect to the operation amount of the mechanism, a configuration was programmed to the computer to execute.
  • the level of the molten metal in the mold can be controlled with high accuracy. This makes it possible to improve the quality of the slab and stabilize the operation.
  • FIG. 6 is a characteristic diagram showing a simulation result comparing the method of the present invention with a conventional method.
  • FIG. 6 is a characteristic diagram showing a simulation result comparing the method of the present invention with a conventional method.
  • FIG. 6 is a characteristic diagram showing a simulation result comparing the method of the present invention with a conventional method.
  • FIG. 6 is a characteristic diagram showing a simulation result comparing the method of the present invention with a conventional method.
  • control device 100 for continuous casting according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • FIG. 1 shows a schematic configuration of a continuous casting control system including a continuous casting control device 100 and a continuous casting facility to be controlled.
  • the continuous casting equipment includes a mold 1 and an immersion nozzle 2, and molten steel is injected into the mold 1 from a tundish (not shown) via the immersion nozzle 2.
  • the mold 1 is water-cooled, and the molten steel in contact with the mold starts to solidify.
  • the molten steel is poured into the mold 1 from the immersion nozzle 2 and is drawn while solidifying the molten steel to continuously produce a cast piece.
  • a molten metal level meter 3 for measuring the molten metal level in the mold 1 is installed.
  • the immersion nozzle 2 is provided with an in-nozzle flowmeter 4 for measuring the flow rate of molten steel injected into the mold 1.
  • the measured value of the molten metal level measured by the molten metal level measuring instrument 3 (that is, the actual molten metal level) and the measured value of the molten steel flow rate measured by the in-nozzle flowmeter 4 (that is, the actual molten metal flow rate) are as follows. It is input to the control device 100.
  • the in-nozzle flowmeter 4 for example, an electromagnetic flowmeter can be used.
  • the flow rate of the molten steel injected into the mold 1 from the immersion nozzle 2 is adjusted by the opening of the sliding gate 5, which is a flow rate adjusting mechanism (operating end) for adjusting the flow rate of the molten steel.
  • the opening of the sliding gate 5 is operated under the control of the control device 100.
  • the sliding gate 5 is used in the example shown in FIG. 1, a configuration may be used in which the flow rate of molten steel supplied from the immersion nozzle 2 is adjusted using a stopper.
  • FIG. 2 shows a configuration of a control device 100 for continuous casting according to the present embodiment.
  • the control device 100 includes a main controller 101 (main control unit), a flow rate estimation unit 102, an injection disturbance correction unit 103, a disturbance observer 104, and a pull-out disturbance correction unit 105.
  • the main controller 101 determines the opening level u of the sliding gate 5 so as to make the measured level y measured by the level gauge 3 follow the target level, thereby determining the level. Execute feedback control so as to keep it constant.
  • the opening of the sliding gate 5 is simply referred to as the opening.
  • the flow rate estimating unit 102 calculates a flow rate estimated value Q pred of the molten steel according to the current opening degree using a flow rate characteristic model representing a relationship between the opening degree and the flow rate of the molten steel.
  • the injection disturbance correction unit 103 calculates the difference between the flow rate measurement value Q of the molten steel measured by the flow meter 4 in the nozzle and the flow rate estimation value Q pred of the molten steel calculated by the flow rate estimation unit 102 as the estimated value d of the injection disturbance. 1 ⁇ , and the opening correction amount v for the opening u is obtained in accordance with the estimated value d 1 ⁇ of the injection disturbance.
  • the method of obtaining the estimated value of the injection disturbance d 1 ⁇ is not limited to this, but may be obtained by a different method as long as it can be obtained using the flow rate measurement value Q.
  • d 1 ⁇ notation is assumed that ⁇ is attached on the d 1.
  • a disturbance that varies the flow rate of the molten steel injected from the immersion nozzle 2 into the mold 1 is referred to as an injection disturbance.
  • the injection disturbance disturbances such as a nozzle defect, nozzle clogging, clogging and peeling, and nozzle erosion are assumed.
  • the disturbance observer 104 calculates a molten steel flow rate measured value Q measured by the in-nozzle flow rate meter 4 and a molten metal level measured value y measured by the molten metal level meter 3.
  • An estimated value d 2 ⁇ of the extraction disturbance is obtained.
  • drawing disturbance a disturbance that affects the downstream side of the mold 1 and changes the volume balance of molten steel in the mold 1 and affects the level of the molten metal.
  • the pull-out disturbance a disturbance such as a casting speed error or a volume change due to unsteady bulging is assumed.
  • the casting speed error represents a difference between the actual casting speed measured from the roll rotation speed and the like and the actual casting speed inside the mold.
  • the opening amount of the flow rate adjusting mechanism is corrected based on a correction coefficient calculated in advance according to the casting speed change amount.
  • the unsteady bulging refers to bulging of a slab that periodically changes with time according to the roll pitch interval.
  • the extraction disturbance correction unit 105 calculates an opening correction amount w for the opening u in accordance with the extraction disturbance estimation value d 2 ⁇ obtained by the disturbance observer 104.
  • the opening degree u obtained by the main controller 101 and the opening degree correction amount v and the opening degree correction amount w obtained by the injection disturbance correction unit 103 and the extraction disturbance correction unit 105 are obtained.
  • the opening is determined, and the opening operation of the sliding gate 5 is executed so as to have the determined opening.
  • FIG. 3 is a block diagram showing a control system for continuous casting.
  • the main controller 101 takes the deviation e between the target level value and the measured level value y as an input so that the deviation e becomes 0, that is, as described above, the level level measured value y is The opening degree u is determined so as to follow the surface level target value.
  • the flow rate Q according to the current opening degree (u + v + w) and the current injection disturbance d 1 is obtained from the plant flow characteristic P. Then, the current flow rate Q, the drawing disturbance d 2 the current, the molten metal surface level y corresponding to the casting speed V c is.
  • A represents the cross-sectional area of the mold 1 and s represents the Laplace operator.
  • the flow rate estimating unit 102 uses the flow rate characteristic model P 0 , which is a nominal model representing the relationship between the opening degree and the flow rate of the molten steel, as shown in Expression (1), to calculate the flow rate of the molten steel according to the current opening degree (u + v + w). Calculate the flow estimate Q pred .
  • the flow characteristic model P 0 is given by a non-linear function, it can be generally approximated by a straight line by linearizing around the opening operation point.
  • the difference between the measured flow rate Q of the molten steel and the estimated flow rate Q pred of the molten steel is defined as an estimated value of injection disturbance d 1 ⁇ .
  • the injection disturbance d 1 can be estimated by comparing the flow rate measurement value Q of the molten steel including the injection disturbance d 1 and the flow rate estimation value Q pred of the molten steel not including the injection disturbance d 1 .
  • the injection disturbance correction unit 103 uses an inverse model of the flow rate characteristic model P 0 (a relational expression representing the degree of opening for a given flow rate) P 0 -1 as in equation (3), and uses the opening degree correction gain K 1. Is used to determine the opening correction amount v so as to cancel the estimated value d 1 ⁇ of the injection disturbance.
  • the inverse model P 0 -1 is given by a non-linear function, but may be generally approximated by a straight line by linearizing around the opening operation point.
  • the disturbance observer 104 is constituted by a Luenberger-type observer using the process level 1 / As representing the response of the molten metal level to the flow rate of the molten steel and using the molten metal level and the pull-out disturbance as state variables. An outline of calculation in the disturbance observer 104 will be described.
  • the process model 1 / As representing the response of the molten metal level the estimated molten metal level y ⁇ according to the measured flow rate Q of the current molten steel is calculated, and the measured molten metal level y and the estimated molten metal level are calculated.
  • An estimated value d 2 ⁇ of the extraction disturbance is obtained based on the difference from the value y ⁇ .
  • the process model 1 / As may be formulated in consideration of the run-off time factor. Further, the method of obtaining the estimated value d 2 ⁇ of the extraction disturbance is not limited to this, and may be obtained by a different method as long as it can be obtained by using the molten metal level measurement value y.
  • a step-like disturbance is assumed as the extraction disturbance, and the disturbance observer is formulated as in Expression (4).
  • L 1 and L 2 are observer gains.
  • a transfer function from the flow rate measurement value Q and the molten metal level measurement value y of the molten steel to the estimated value d 2 ⁇ of the drawing disturbance is expressed as Expression (5).
  • a step-shaped disturbance may be assumed as the extraction disturbance, but a ramp-shaped disturbance or a periodic disturbance may be assumed.
  • yQ / As corresponds to the “prediction error” of the molten metal level, and the value obtained by passing this through the secondary filter L (s) is the estimated value d 2 ⁇ of the extraction disturbance.
  • the filter L (s) is represented by Expression (6). Note that the filter characteristics of the filter L (s) may be appropriately determined according to the frequency band of the assumed extraction disturbance. For example, when the peak frequency of the extraction disturbance can be assumed in advance, such as in unsteady bulging, an appropriate bandpass filter including the peak frequency may be designed.
  • the extraction disturbance correction unit 105 uses the inverse model P 0 -1 of the flow characteristic model P 0 as shown in Expression (7), and calculates the estimated value d 2 ⁇ of the extraction disturbance using the opening correction gain K 2.
  • the opening correction amount w is determined so as to cancel.
  • the inverse model P 0 -1 is given by a non-linear function, but may be generally approximated by a straight line by linearizing around the opening operation point.
  • the opening correction gains K 1 and K 2 are not limited to positive constants, and for example, a PD controller may be used. Further, the opening correction gains K 1 and K 2 may be changeable.
  • a minor loop that suppresses injection disturbance a loop including the injection disturbance correction unit 103
  • a minor loop that suppresses pullout disturbance By adding the loop including the pull-out disturbance correction unit 105, the molten metal level can be controlled with high accuracy so as to cancel the injection disturbance and the pull-out disturbance. This makes it possible to improve the quality of the slab and stabilize the operation. In addition, it is possible to separately estimate the injection disturbance and the extraction disturbance, and it is possible to prevent the control performance from deteriorating for each disturbance.
  • the estimated value of the injection disturbance d 1 is obtained, and is used to detect a nozzle failure, nozzle clogging, clogging peeling, nozzle erosion, etc., and to perform an action for stabilizing the operation (for example, changing the casting speed).
  • Action action to change the set value of the electromagnetic force device).
  • a more effective suppression of the periodic disturbance can be performed using the estimated value of the removal disturbance d 2 in combination with the periodic disturbance suppression control method disclosed in Patent Document 2, for example. It becomes possible.
  • Simulation conditions of invention method to which the present invention is applied Assuming typical casting conditions of a continuous casting facility for manufacturing slabs, the following simulation conditions were set, and a simulation of level control was performed.
  • the width of the mold was set to 1250 mm
  • the thickness of the mold was set to 270 mm
  • the casting speed was set to 1.5 m / m
  • the drip time was set to 0.3 sec.
  • the molten metal level target value was set at a position (-100 mm) in the casting direction of 100 mm in a coordinate system with the upper end of the mold as the origin (see the target values indicated by dotted lines in FIGS. 4 to 6).
  • the flow characteristic model P 0 and its inverse model P 0 -1 are given by straight lines. In addition, since the controller is mounted in a speed type, it is sufficient to set only the slope without considering the intercept of the straight line.
  • A is the level response when the injection disturbance d 1 occurs
  • (b) is the level response when the extraction disturbance d 2 occurs
  • (c) is the injection disturbance d 1 and the extraction disturbance d. 2 shows the response of the molten metal level when 2 occurs simultaneously.
  • FIG. 4 (a) when the injection disturbance d 1 is generated, it is both same result conventional method and the invention method.
  • FIGS. 4B and 4C when the pull-out disturbance d 2 occurs, the conventional method cannot suppress the level change, but the invention method cannot control the level change. Can be suppressed. In the conventional method, it is not possible to distinguish between the injection disturbance d 1 and the extraction disturbance d 2 , so that when the extraction disturbance d 2 occurs, the effect of suppressing the fluctuation of the metal surface level deteriorates.
  • Fig. 6 shows the response of the level of the molten metal when the occurrences of the symbols occur simultaneously.
  • FIG. 6 shows a simulation result when the model error ⁇ of the flow characteristic model P 0 is 0.2 (flow is likely to occur), and (a) is similar to (a) to (c) of FIG. Is the level response when the injection disturbance d 1 occurs, (b) is the level response when the extraction disturbance d 2 occurs, and (c) is the response between the injection disturbance d 1 and the extraction disturbance d 2.
  • Fig. 4 shows the response of the molten metal level at the same time.
  • the injection disturbance d 1 and the pull-out disturbance d 2 cannot be distinguished from each other, so that when the pull-out disturbance d 2 occurs, the effect of suppressing the fluctuation of the metal surface level is deteriorated.
  • the model error of the flow characteristic model P 0 is, the generation of the injection disturbance d 1 and the extraction disturbance d 2 in the method of the present invention as compared with the conventional method.
  • the effect of suppressing the fluctuation of the molten metal level does not deteriorate.
  • the present invention has been described with the embodiment.
  • the above embodiment is merely an example of the embodiment in carrying out the present invention, and the technical scope of the present invention is interpreted in a limited manner. It must not be. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features.
  • another aspect of the present invention is a method for controlling continuous casting in which a molten metal is injected into a mold from a nozzle, and the molten metal is solidified and pulled out to continuously produce a slab. From the nozzle to the mold, so as to make the metal level measured in the metal level measuring step follow the metal level measured in the metal level measuring step, and the metal level measured in the metal level measuring step.
  • control device for continuous casting to which the present invention is applied can be realized by, for example, a computer including a CPU, a ROM, a RAM, and the like.
  • the present invention can also be realized by supplying software (program) for realizing the functions of the present invention to a system or apparatus via a network or various storage media, and a computer of the system or apparatus reads and executes the program. It is feasible.
  • still another aspect of the present invention is a program for controlling continuous casting to continuously produce slabs by injecting molten metal from a nozzle into a mold and pulling out while solidifying the molten metal,
  • Main control for determining an operation amount of a flow rate adjusting mechanism for adjusting a flow rate of molten metal injected from the nozzle into the mold so that the level of the molten metal measured by the level gauge is made to follow the target level of the molten metal level.
  • a first correction to the operation amount of the flow rate adjusting mechanism obtained in the main control step in accordance with an estimated value of the injection disturbance obtained based on the flow rate measurement value of the molten metal measured by the flow rate meter.
  • the level of the molten metal in the mold can be controlled with high accuracy.
  • 1 mold
  • 2 immersion nozzle
  • 3 level gauge
  • 4 flow rate meter in nozzle
  • 5 sliding gate
  • 100 controller for continuous casting
  • 101 main controller
  • 102 flow rate estimation unit
  • 103 injection disturbance correction unit
  • 104 disturbance observer
  • 105 pull-out disturbance correction unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造の制御装置であって、前記鋳型内の湯面レベルを測定する湯面レベル測定計と、前記湯面レベル測定計で測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御部と、前記ノズルから前記鋳型に注入される溶融金属の流量を測定する流量測定計と、前記流量測定計で測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御部で求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正部と、前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御部で求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正部と、を備える。

Description

連続鋳造の制御装置、方法及びプログラム
 本発明は、連続鋳造の制御装置、方法及びプログラムに関する。
 本願は、2018年9月18日に、日本に出願された特願2018-174009号に基づき優先権を主張し、その内容をここに援用する。
 鋼の連続鋳造において、鋳型内の溶鋼の湯面変動を抑止して、湯面レベルを一定に保つことは、鋳片品質の悪化防止に加え、操業の安定化の観点からも重要である。通常、1基の湯面レベル測定計の測定値に基づいて、湯面レベルを一定に保つようにフィードバック制御を実行する。
 この種の技術として、例えば特許文献1には、鉄鋼プロセスを対象とするものではないが、蒸気タービン復水器の水位レベル制御方法が開示されている。特許文献1では、タービン入口蒸気流量計により計測される蒸気タービンの入口蒸気流量と復水流量計により計測される復水流量との偏差信号を、復水器レベル制御弁の開度量に相当する復水器レベル制御補正量に換算して、定値制御を行っているPID制御の出力に加算して復水器レベル制御弁を制御することが開示されている。
日本国特開2012-159024号公報 日本国特開2007-7722号公報
 連続鋳造においては、鋳型に注入される溶鋼の流量に変動を与えるノズル詰まり等の外乱や、鋳型内の湯面レベルに変動を与える非定常バルジングに伴う体積変動等の外乱が発生することがある。特許文献1では、定値制御を行っているPID制御の出力に制御補正量を加算する構成が開示されているが、これを連続鋳造に適用した場合、特に後者の外乱が生じた場合に、湯面レベルの制御性能が悪化してしまう。
 本発明は上記のような点に鑑みてなされたものであり、連続鋳造において複数種の外乱が発生した場合であっても、鋳型内の湯面レベルを高精度に制御できるようにすることを目的とする。
 上記の課題を解決するための本発明の要旨は、以下のとおりである。
(1)本発明の第一の態様は、ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造の制御装置であって、前記鋳型内の湯面レベルを測定する湯面レベル測定計と、前記湯面レベル測定計で測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御部と、前記ノズルから前記鋳型に注入される溶融金属の流量を測定する流量測定計と、前記流量測定計で測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御部で求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正部と、前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御部で求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正部と、を備える。
(2)上記(1)に記載の連続鋳造の制御装置は、前記流量調節機構の操作量と溶融金属の流量との関係を表す流量特性モデルを用いて、開度に応じた溶鋼の流量推定値を計算する流量推定部を更に備え、前記注入外乱補正部は、前記流量測定計で測定される溶融金属の流量測定値と、前記流量推定部で計算される溶融金属の流量推定値との差を注入外乱の推定値とし、当該注入外乱の推定値に応じて、前記第1の補正量を求めてもよい。
(3)上記(2)に記載の連続鋳造の制御装置では、前記注入外乱補正部は、前記流量特性モデルの逆モデルを用いて、前記第1の補正量を求めてもよい。
(4)上記(2)又は(3)に記載の連続鋳造の制御装置では、前記引抜外乱補正部は、前記流量特性モデルの逆モデルを用いて、前記第2の補正量を求めてもよい。
(5)上記(1)~(4)のいずれか一項に記載の連続鋳造の制御装置は、前記流量測定計で測定される溶融金属の流量測定値と前記湯面レベル測定計で測定される湯面レベル測定値とを入力とし、溶融金属の流量に対する湯面レベルの応答を表すプロセスモデルを用いて、湯面レベルと引抜外乱を状態変数とするルーエンバーガー型のオブザーバを構成し、引抜外乱の推定値を求める引抜外乱推定部を備え、前記引抜外乱補正部は、前記引抜外乱推定部で求めた引抜外乱の推定値に応じて、前記第2の補正量を求めてもよい。
(6)上記(1)~(5)のいずれか一項に記載の連続鋳造の制御装置では、前記流量測定計が電磁流量計であってもよい。
(7)本発明の第二の態様は、ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造の制御方法であって、前記鋳型内の湯面レベルを湯面レベル測定計で測定する湯面レベル測定ステップと、前記湯面レベル測定ステップで測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御ステップと、前記ノズルから前記鋳型に注入される溶融金属の流量を流量測定計で測定する流量測定ステップと、前記流量測定ステップで測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正ステップと、前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正ステップと、を有する。
(8)本発明の第三の態様は、ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造を制御するためのプログラムであって、湯面レベル測定計で測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御ステップと、流量測定計で測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正ステップと、前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正ステップと、をコンピュータに実行させるように構成したプログラムである。
 本発明によれば、連続鋳造において複数種の外乱が発生した場合であっても、鋳型内の湯面レベルを高精度に制御することができる。これにより、鋳片の高品質化及び操業の安定化が可能となる。
本発明の一実施形態に係る連続鋳造の制御装置を含む制御システムの概略構成を示す図である。 同実施形態に係る連続鋳造の制御装置の構成を示す図である。 同実施形態に係る連続鋳造の制御装置の制御系を表すブロック線図である。 本発明法と従来法とを比較するシミュレーション結果を示す特性図である。 本発明法と従来法とを比較するシミュレーション結果を示す特性図である。 本発明法と従来法とを比較するシミュレーション結果を示す特性図である。
 以下、添付図面を参照して、本発明の一実施形態に係る連続鋳造の制御装置100について説明する。
 図1に、連続鋳造の制御装置100と、制御対象の連続鋳造設備とを含む連続鋳造の制御システムの概略構成を示す。
 連続鋳造設備は、鋳型1と、浸漬ノズル2とを備え、溶鋼がタンディッシュ(不図示)から浸漬ノズル2を介して鋳型1に注入される。鋳型1は水冷されており、鋳型に接した溶鋼は凝固し始める。浸漬ノズル2から溶鋼を鋳型1に注入して、溶鋼を凝固させながら引き抜くことで連続的に鋳片を製造する。
 鋳型1内の湯面付近には、鋳型1内の湯面レベルを測定する湯面レベル測定計3が設置される。また、浸漬ノズル2には、鋳型1に注入される溶鋼の流量を測定するノズル内流量測定計4が設置される。湯面レベル測定計3で測定される湯面レベル測定値(すなわち、湯面レベル実績)と、ノズル内流量測定計4で測定される溶鋼の流量測定値(すなわち、溶鋼の流量実績)とは制御装置100に入力される。ノズル内流量測定計4としては、例えば電磁流量計を用いることができる。
 浸漬ノズル2から鋳型1に注入される溶鋼の流量は、溶鋼の流量を調節する流量調節機構(操作端)であるスライディングゲート5の開度により調節される。スライディングゲート5の開度は、制御装置100の制御下で操作される。なお、図1に示す例ではスライディングゲート5を用いるが、ストッパーを用いて浸漬ノズル2からの溶鋼供給流量を調整する構成としてもよい。
 図2に、本実施形態に係る連続鋳造の制御装置100の構成を示す。制御装置100は、主制御器101(主制御部)と、流量推定部102と、注入外乱補正部103と、外乱オブザーバ104と、引抜外乱補正部105とを備える。
 主制御器101は、湯面レベル測定計3で測定される湯面レベル測定値yを湯面レベル目標値に追従させるように、スライディングゲート5の開度uを求めることにより、湯面レベルを一定に保つようにフィードバック制御を実行する。なお、以下では、スライディングゲート5の開度を単に開度と呼ぶ。
 流量推定部102は、開度と溶鋼の流量との関係を表す流量特性モデルを用いて、現状の開度に応じた溶鋼の流量推定値Qpredを計算する。
 注入外乱補正部103は、ノズル内流量測定計4で測定される溶鋼の流量測定値Qと、流量推定部102で計算される溶鋼の流量推定値Qpredとの差を注入外乱の推定値d1^とし、注入外乱の推定値d1^に応じて、開度uに対する開度補正量vを求める。なお、注入外乱の推定値d1^の求め方は、これに限定されず、流量測定値Qを用いて求めることが可能であれば、異なる方法で求めてもよい。また、d1^の表記はd1の上に^が付されているものとする。ここで、浸漬ノズル2から鋳型1に注入される溶鋼の流量に変動を与える外乱を注入外乱と呼ぶ。注入外乱としては、ノズルの不具合、ノズル詰まり、詰まり剥離、ノズル溶損等の外乱が想定される。
 外乱オブザーバ104(引抜外乱推定部)は、ノズル内流量測定計4で測定される溶鋼の流量測定値Qと、湯面レベル測定計3で測定される湯面レベル測定値yとに基づいて、引抜外乱の推定値d2^を求める。ここで、制御対象の連続鋳造設備において、鋳型1より下流側に影響し、鋳型1内における溶鋼体積バランスを変動させ、湯面レベルに影響を与える外乱を引抜外乱と呼ぶ。引抜外乱としては、鋳造速度誤差や非定常バルジングに伴う体積変動等の外乱が想定される。なお、鋳造速度誤差とは、ロール回転速度等から計測した鋳造速度の実績値と鋳型内部における実際の鋳造速度との差を表す。通常、湯面レベル制御では、鋳造速度変更時において、鋳造速度変更量に応じ予め算出した補正係数に基づき流量調整機構の開度量を補正する。ここで、前記の鋳造速度誤差がある場合に引抜外乱となってしまう。また、非定常バルジングとは、ロールピッチ間隔に応じ周期的に時間変化する鋳片のバルジングを指す。
 引抜外乱補正部105は、外乱オブザーバ104で求められた引抜外乱の推定値d2^に応じて、開度uに対する開度補正量wを求める。
 このように制御装置100においては、主制御器101で求められた開度uと、注入外乱補正部103及び引抜外乱補正部105で求められた開度補正量v及び開度補正量wとにより開度が決定されて、この決定開度となるようにスライディングゲート5の開度操作が実行される。
 図3に、連続鋳造の制御系を表すブロック線図を示す。
 主制御器101は、湯面レベル目標値と、湯面レベル測定値yとの偏差eを入力として、偏差eが0になるように、すなわち、既述したとおり湯面レベル測定値yを湯面レベル目標値に追従させるように、開度uを求める。
 制御対象となる実プラント(連続鋳造設備)200では、そのプラント流量特性Pにより、現状の開度(u+v+w)と、現状の注入外乱d1とに応じた流量Qとなる。そして、現状の流量Qと、現状の引抜外乱d2と、現状の鋳造速度Vcとに応じた湯面レベルyとなる。なお、Aは鋳型1の断面積、sはラプラス演算子を表す。
 流量推定部102は、開度と溶鋼の流量との関係を表すノミナルモデルである流量特性モデルP0を用いて、式(1)のように、現状の開度(u+v+w)に応じた溶鋼の流量推定値Qpredを計算する。流量特性モデルP0は非線形関数で与えられるが、開度動作点まわりで線形化することにより、一般に直線で近似すればよい。
 そして、式(2)のように、溶鋼の流量測定値Qと、溶鋼の流量推定値Qpredとの差を注入外乱の推定値d1^とする。このように注入外乱d1を含む溶鋼の流量測定値Qと、注入外乱d1を含まない溶鋼の流量推定値Qpredとを比較することで、注入外乱d1を推定することができる。
Figure JPOXMLDOC01-appb-M000001
 注入外乱補正部103は、式(3)のように、流量特性モデルP0の逆モデル(与えられた流量に対する開度を表す関係式)P0 -1を利用し、開度補正ゲインK1を用いて、注入外乱の推定値d1^を打ち消すように開度補正量vを求める。流量特性モデルP0と同様、その逆モデルP0 -1は非線形関数で与えられるが、開度動作点まわりで線形化することにより、一般に直線で近似すればよい。
Figure JPOXMLDOC01-appb-M000002
 外乱オブザーバ104は、溶鋼の流量に対する湯面レベルの応答を表すプロセスモデル1/Asを用いて、湯面レベルと引抜外乱を状態変数とするルーエンバーガー(Luenberger)型のオブザーバにより構成する。外乱オブザーバ104における計算の概略を説明する。湯面レベルの応答を表すプロセスモデル1/Asを用いて、現状の溶鋼の流量測定値Qに応じた湯面レベル推定値y^を計算し、湯面レベル測定値yと、湯面レベル推定値y^との差に基づいて、引抜外乱の推定値d2^を求める。このように引抜外乱d2を含む湯面レベル測定値yと、引抜外乱d2を含まない湯面レベル推定値y^とを比較することで、引抜外乱d2を推定することができる。なお、プロセスモデル1/Asに湯落ちむだ時間要素を考慮して定式化してもよい。また、引抜外乱の推定値d2^の求め方は、これに限定されず、湯面レベル測定値yを用いて求めることが可能であれば、異なる方法で求めてもよい。
 具体的には、引抜外乱としてステップ状の外乱を想定し、外乱オブザーバを式(4)のように定式化する。L1、L2はオブザーバゲインである。この場合、溶鋼の流量測定値Q、湯面レベル測定値yから引抜外乱の推定値d2^への伝達関数は式(5)のように表現される。なお、引抜外乱としては一般に、ステップ状外乱を想定すればよいが、ランプ状外乱を想定してもよく、周期的外乱を想定してもよい。
Figure JPOXMLDOC01-appb-M000003
 ここで、y-Q/Asは湯面レベルの「予測誤差」に相当するが、これに2次フィルタL(s)を通したものが、引抜外乱の推定値d2^となる。フィルタL(s)は式(6)のように表される。なお、フィルタL(s)のフィルタ特性は、想定される引抜外乱の周波数帯域に応じて適切に定めればよい。例えば非定常バルジングのように、引抜外乱のピーク周波数が予め想定できる場合には、そのピーク周波数を含む適切なバンドパスフィルタを設計すればよい。
Figure JPOXMLDOC01-appb-M000004
 引抜外乱補正部105は、式(7)のように、流量特性モデルP0の逆モデルP0 -1を利用し、開度補正ゲインK2を用いて、引抜外乱の推定値d2^を打ち消すように開度補正量wを求める。流量特性モデルP0と同様、その逆モデルP0 -1は非線形関数で与えられるが、開度動作点まわりで線形化することにより、一般に直線で近似すればよい。
Figure JPOXMLDOC01-appb-M000005
 なお、開度補正ゲインK1、K2は正の定数に限定されるものではなく、例えばPD制御器を用いてもよい。また、開度補正ゲインK1、K2を変更可能としてもよい。
 以上のように、湯面レベルを一定に保つようにフィードバック制御を実行する制御系において、注入外乱を抑制するマイナーループ(注入外乱補正部103を含むループ)と、引抜外乱を抑制するマイナーループ(引抜外乱補正部105を含むループ)とを付加することで、注入外乱及び引抜外乱を打ち消すように湯面レベルを高精度に制御することができる。これにより、鋳片の高品質化及び操業の安定化が可能となる。
 また、注入外乱と引抜外乱とをそれぞれ区別して推定することができ、それぞれの外乱に対して制御性能の劣化を防ぐことができる。そして、注入外乱d1の推定値が得られることにより、これを使って、ノズルの不具合、ノズル詰まり、詰まり剥離、ノズル溶損等を検知し、操業安定化のためのアクション(例えば鋳造速度変更アクション、電磁力装置の設定値の変更アクション)につなげることができる。また、引抜外乱d2の推定値が得られることにより、これを使って、例えば特許文献2に開示されている周期的外乱の抑制制御方法と組み合わせて、より効果的な周期的外乱の抑制が可能となる。
 本発明を適用することによる効果を確認するために、湯面レベル制御のシミュレーションを実施した。
[本発明を適用した発明法のシミュレーション条件]
 スラブを製造する連続鋳造設備の典型的な鋳造条件を想定し、以下のようなシミュレーション条件を設定して、湯面レベル制御のシミュレーションを実施した。
 鋳型幅は1250mm、鋳型厚は270mm、鋳造速度は1.5m/m、湯落ちむだ時間は0.3secに設定した。
 湯面レベル目標値は、鋳型上端を原点とする座標系において鋳造方向100mmの位置(-100mm)に設定した(図4乃至図6に点線で示す目標値を参照のこと)。
 主制御器101は、PI制御器で設定し(比例ゲイン0.20、積分時間30sec)、制御周期は50msecとし、PI制御は速度型で実装した。
 また、開度補正ゲインK1=0.3、K2=1.0、オブザーバゲインL1=1、L2=L1*Aに設定した。
 流量特性モデルP0及びその逆モデルP0 -1は、直線で与えるものとした。なお、速度型で制御器を実装するので、直線の切片については考慮せず、傾きだけを設定すればよい。
[シミュレーション内容]
 開度補正ゲインK2=0としたものを従来法とした。開度補正ゲインK2=0とすることにより、引抜外乱を抑制するマイナーループがないものと同等の状態となり、特許文献1に開示されている手法に準じたものとなる。そして、発明法と従来法とで、シミュレーションによる湯面レベル制御結果を比較した。
 ここで、実プラントにおけるプラント流量特性Pを予め正確に把握することは難しく、実際には、ノミナルモデルである流量特性モデルP0には誤差が生じる。この流量特性モデルP0のモデル誤差Δとして、3種類のケース、具体的にはΔ=0(誤差なし)、Δ<0(流量が出にくい)、Δ>0(流量が出やすい)を設定する。そして、それぞれのケースについて、(a)注入外乱d1が発生、(b)引抜外乱d2が発生、(c)注入外乱d1と引抜外乱d2とが同時発生した場合についてシミュレーションを実施した。次に説明する図4乃至図6に示すように、注入外乱d1及び引抜外乱d2ともに50sec時点で発生するものとした。また、いずれの外乱も流量10%相当の体積変動を考慮した。流量特性モデルP0のモデル誤差Δは、ノミナル値の20%減(Δ=-0.2)、ノミナル値の20%増(Δ=0.2)とした。
[シミュレーション結果]
 図4乃至図6に、シミュレーション結果を示す。
 図4は、流量特性モデルP0のモデル誤差Δ=0(誤差なし)とした場合のシミュレーション結果を示す。(a)は注入外乱d1が発生したときの湯面レベルの応答、(b)は引抜外乱d2が発生したときの湯面レベルの応答、(c)は注入外乱d1と引抜外乱d2とが同時発生したときの湯面レベルの応答を示す。図4の(a)に示すように、注入外乱d1が発生したときは、従来法及び発明法ともに同じ結果となる。一方、図4の(b)、(c)に示すように、引抜外乱d2が発生したとき、従来法では湯面レベル変動を抑制することができていないが、発明法では湯面レベル変動を抑制することができている。従来法では、注入外乱d1と引抜外乱d2との区別ができないため、引抜外乱d2が発生したときに湯面レベル変動の抑制効果が悪化する。
 また、図5は、流量特性モデルP0のモデル誤差Δ=-0.2(流量が出にくい)とした場合のシミュレーション結果を示し、図4の(a)~(c)と同様、(a)は注入外乱d1が発生したときの湯面レベルの応答、(b)は引抜外乱d2が発生したときの湯面レベルの応答、(c)は注入外乱d1と引抜外乱d2とが同時発生したときの湯面レベルの応答を示す。ここでも、従来法では、注入外乱d1と引抜外乱d2との区別ができないため、引抜外乱d2が発生したときに湯面レベル変動の抑制効果が悪化する。
 また、図6は、流量特性モデルP0のモデル誤差Δ=0.2(流量が出やすい)とした場合のシミュレーション結果を示し、図4の(a)~(c)と同様、(a)は注入外乱d1が発生したときの湯面レベルの応答、(b)は引抜外乱d2が発生したときの湯面レベルの応答、(c)は注入外乱d1と引抜外乱d2とが同時発生したときの湯面レベルの応答を示す。ここでも、従来法では、注入外乱d1と引抜外乱d2との区別ができないため、引抜外乱d2が発生したときに湯面レベル変動の抑制効果が悪化する。
 図4乃至図6に示すように、流量特性モデルP0のモデル誤差がどのような場合であっても、発明法では、従来法と比較して、注入外乱d1、引抜外乱d2の発生に対して、湯面レベルの変動の抑制効果が悪化することはない。
 以上、本発明を実施形態と共に説明したが、上記実施形態は本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 例えば、本発明の別の態様は、ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造の制御方法であって、前記鋳型内の湯面レベルを湯面レベル測定計で測定する湯面レベル測定ステップと、前記湯面レベル測定ステップで測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御ステップと、前記ノズルから前記鋳型に注入される溶融金属の流量を流量測定計で測定する流量測定ステップと、前記流量測定ステップで測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正ステップと、前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正ステップと、を有する連続鋳造の制御方法である。
 また、本発明を適用する連続鋳造の制御装置は、例えばCPU、ROM、RAM等を備えたコンピュータにより実現可能である。
 また、本発明は、本発明の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
 従って、本発明の更に別の態様は、ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造を制御するためのプログラムであって、湯面レベル測定計で測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御ステップと、流量測定計で測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正ステップと、前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正ステップと、をコンピュータに実行させるように構成したプログラム又はそれを記録したコンピュータが読み取り可能な記録媒体である。
 本発明によれば、連続鋳造において複数種の外乱が発生した場合であっても、鋳型内の湯面レベルを高精度に制御できる。
 1:鋳型、2:浸漬ノズル、3:湯面レベル測定計、4:ノズル内流量測定計、5:スライディングゲート、100:連続鋳造の制御装置、101:主制御器、102:流量推定部、103:注入外乱補正部、104:外乱オブザーバ、105:引抜外乱補正部

Claims (8)

  1.  ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造の制御装置であって、
     前記鋳型内の湯面レベルを測定する湯面レベル測定計と、
     前記湯面レベル測定計で測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御部と、
     前記ノズルから前記鋳型に注入される溶融金属の流量を測定する流量測定計と、
     前記流量測定計で測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御部で求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正部と、
     前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御部で求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正部と、
    を備える連続鋳造の制御装置。
  2.  前記流量調節機構の操作量と溶融金属の流量との関係を表す流量特性モデルを用いて、開度に応じた溶鋼の流量推定値を計算する流量推定部を更に備え、
     前記注入外乱補正部は、前記流量測定計で測定される溶融金属の流量測定値と、前記流量推定部で計算される溶融金属の流量推定値との差を注入外乱の推定値とし、当該注入外乱の推定値に応じて、前記第1の補正量を求める
    請求項1に記載の連続鋳造の制御装置。
  3.  前記注入外乱補正部は、前記流量特性モデルの逆モデルを用いて、前記第1の補正量を求める
    請求項2に記載の連続鋳造の制御装置。
  4.  前記引抜外乱補正部は、前記流量特性モデルの逆モデルを用いて、前記第2の補正量を求める
    請求項2又は3に記載の連続鋳造の制御装置。
  5.  前記流量測定計で測定される溶融金属の流量測定値と前記湯面レベル測定計で測定される湯面レベル測定値とを入力とし、溶融金属の流量に対する湯面レベルの応答を表すプロセスモデルを用いて、湯面レベルと引抜外乱を状態変数とするルーエンバーガー型のオブザーバを構成し、引抜外乱の推定値を求める引抜外乱推定部を備え、
     前記引抜外乱補正部は、前記引抜外乱推定部で求めた引抜外乱の推定値に応じて、前記第2の補正量を求める
    請求項1から4のいずれか1項に記載の連続鋳造の制御装置。
  6.  前記流量測定計が電磁流量計である
    請求項1から5のいずれか1項に記載の連続鋳造の制御装置。
  7.  ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造の制御方法であって、
     前記鋳型内の湯面レベルを湯面レベル測定計で測定する湯面レベル測定ステップと、
     前記湯面レベル測定ステップで測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御ステップと、
     前記ノズルから前記鋳型に注入される溶融金属の流量を流量測定計で測定する流量測定ステップと、
     前記流量測定ステップで測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正ステップと、
     前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正ステップと、
    を有する連続鋳造の制御方法。
  8.  ノズルから溶融金属を鋳型に注入し、溶融金属を凝固させながら引き抜くことで連続的に鋳片を製造する連続鋳造を制御するためのプログラムであって、
     湯面レベル測定計で測定された湯面レベルを湯面レベル目標値に追従させるように、前記ノズルから前記鋳型に注入される溶融金属の流量を調節する流量調節機構の操作量を求める主制御ステップと、
     流量測定計で測定される溶融金属の流量測定値に基づいて求められた注入外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第1の補正量を求める注入外乱補正ステップと、
     前記湯面レベル測定計で測定される湯面レベル測定値に基づいて求められた引抜外乱の推定値に応じて、前記主制御ステップで求めた前記流量調節機構の操作量に対する第2の補正量を求める引抜外乱補正ステップと、
    をコンピュータに実行させるように構成したプログラム。
PCT/JP2019/036347 2018-09-18 2019-09-17 連続鋳造の制御装置、方法及びプログラム WO2020059698A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217001272A KR102460212B1 (ko) 2018-09-18 2019-09-17 연속 주조의 제어 장치, 방법 및 프로그램
JP2020548504A JP7136220B2 (ja) 2018-09-18 2019-09-17 連続鋳造の制御装置、方法及びプログラム
BR112020024482-1A BR112020024482B1 (pt) 2018-09-18 2019-09-17 Dispositivo de controle, método de controle, e produto para controlar um processo de lingotamento contínuo
CN201980047771.7A CN112423911B (zh) 2018-09-18 2019-09-17 连续铸造的控制装置、方法及记录介质
US17/256,778 US11344946B2 (en) 2018-09-18 2019-09-17 Control device, control method, and program for controlling continuous casting process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018174009 2018-09-18
JP2018-174009 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020059698A1 true WO2020059698A1 (ja) 2020-03-26

Family

ID=69887111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036347 WO2020059698A1 (ja) 2018-09-18 2019-09-17 連続鋳造の制御装置、方法及びプログラム

Country Status (7)

Country Link
US (1) US11344946B2 (ja)
JP (1) JP7136220B2 (ja)
KR (1) KR102460212B1 (ja)
CN (1) CN112423911B (ja)
BR (1) BR112020024482B1 (ja)
TW (1) TW202023711A (ja)
WO (1) WO2020059698A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180837A1 (ja) * 2021-02-26 2022-09-01 日本電信電話株式会社 光導波路部品製造システムおよび光導波路部品の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11890671B2 (en) * 2019-02-19 2024-02-06 Jfe Steel Corporation Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting
WO2024086215A1 (en) * 2022-10-18 2024-04-25 Massachusetts Institute Of Technology Thermal imaging-based state estimation of a stefan problem with application to cell thawing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114660A (ja) * 1997-10-14 1999-04-27 Sumitomo Heavy Ind Ltd 連続鋳造設備のモールドレベル制御装置
JP2006088212A (ja) * 2004-09-27 2006-04-06 Jfe Steel Kk 連続鋳造における湯面レベル制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776715B1 (en) * 1995-02-28 2003-08-13 Nkk Corporation Method of controlling continuous casting and apparatus therefor
JP4517960B2 (ja) 2005-07-04 2010-08-04 住友金属工業株式会社 連続鋳造機の湯面レベル制御方法及び湯面レベル制御装置
JP4990680B2 (ja) 2007-05-22 2012-08-01 新日本製鐵株式会社 連続鋳造機の湯面レベル制御装置及び制御方法
CN101403930A (zh) * 2008-11-13 2009-04-08 东北大学 一种基于Fuzzy-PID的连铸结晶器液位控制方法
JP2012159024A (ja) 2011-01-31 2012-08-23 Jfe Steel Corp 蒸気タービン復水器の水位レベル制御方法
CN104281166B (zh) * 2013-07-04 2017-03-01 中国钢铁股份有限公司 连铸机的液位控制方法
CN106270437B (zh) * 2015-05-26 2018-10-02 宝山钢铁股份有限公司 一种中间包钢水控流装置的自动测试系统和方法
JP6471632B2 (ja) * 2015-07-13 2019-02-20 新日鐵住金株式会社 鋳型内湯面形状推定方法、湯面レベル制御方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114660A (ja) * 1997-10-14 1999-04-27 Sumitomo Heavy Ind Ltd 連続鋳造設備のモールドレベル制御装置
JP2006088212A (ja) * 2004-09-27 2006-04-06 Jfe Steel Kk 連続鋳造における湯面レベル制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180837A1 (ja) * 2021-02-26 2022-09-01 日本電信電話株式会社 光導波路部品製造システムおよび光導波路部品の製造方法

Also Published As

Publication number Publication date
TW202023711A (zh) 2020-07-01
US20210283679A1 (en) 2021-09-16
US11344946B2 (en) 2022-05-31
CN112423911A (zh) 2021-02-26
JPWO2020059698A1 (ja) 2021-08-30
JP7136220B2 (ja) 2022-09-13
CN112423911B (zh) 2022-04-26
KR20210019550A (ko) 2021-02-22
BR112020024482B1 (pt) 2023-10-31
BR112020024482A2 (pt) 2021-03-23
KR102460212B1 (ko) 2022-10-31

Similar Documents

Publication Publication Date Title
WO2020059698A1 (ja) 連続鋳造の制御装置、方法及びプログラム
JP3318742B2 (ja) 連続鋳造設備のモールド湯面制御装置
WO2014027543A1 (ja) 凝固完了位置制御方法及び凝固完了位置制御装置
US5311924A (en) Molten metal level control method and device for continuous casting
JP2634106B2 (ja) 連続鋳造における湯面レベル制御方法
JP5206569B2 (ja) 連続鋳造機のモールド湯面レベル制御装置及び制御方法
JP3171220B2 (ja) 連続鋳造におけるモールド内溶融金属レベル制御方法
JP6065865B2 (ja) 連続鋳造機の制御装置および制御方法
JP6447336B2 (ja) 制御器パラメータ導出方法、制御器パラメータ導出装置、およびプログラム
JP2634108B2 (ja) 連続鋳造における湯面レベル制御方法
JP5751144B2 (ja) 連続鋳造機の制御装置および制御方法
JP2006088212A (ja) 連続鋳造における湯面レベル制御方法
JP2011125924A (ja) 鋳型内溶鋼の湯面レベル制御方法
JP3309809B2 (ja) 連続鋳造機における湯面レベル制御方法
US11161170B2 (en) Control method, device, and program of continuous casting process of multilayered slab
JPH03174961A (ja) 連続鋳造における湯面レベル制御方法及び装置
JP7077797B2 (ja) 複層鋳片の連続鋳造プロセスの制御方法、装置及びプログラム
JP3370900B2 (ja) 連続鋳造の鋳型内湯面レベル制御方法
JPH0679423A (ja) 連続鋳造における湯面レベル制御方法
JPH08243703A (ja) 連続鋳造における湯面レベル制御方法
JP2021186854A (ja) 連続鋳造機の湯面レベル制御装置、方法、およびプログラム
JPH07232252A (ja) 連続鋳造におけるモールド内溶融金属レベル制御方法
JPH0773778B2 (ja) 連続鋳造における湯面レベル制御方法及び装置
JP2007275924A (ja) 連続鋳造機におけるモールド内湯面レベル制御方法
JPH10296413A (ja) 連続鋳造におけるモールド内湯面レベル制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020548504

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024482

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217001272

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020024482

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201130

122 Ep: pct application non-entry in european phase

Ref document number: 19863583

Country of ref document: EP

Kind code of ref document: A1