CN101403930A - 一种基于Fuzzy-PID的连铸结晶器液位控制方法 - Google Patents

一种基于Fuzzy-PID的连铸结晶器液位控制方法 Download PDF

Info

Publication number
CN101403930A
CN101403930A CNA2008102287392A CN200810228739A CN101403930A CN 101403930 A CN101403930 A CN 101403930A CN A2008102287392 A CNA2008102287392 A CN A2008102287392A CN 200810228739 A CN200810228739 A CN 200810228739A CN 101403930 A CN101403930 A CN 101403930A
Authority
CN
China
Prior art keywords
liquid level
control
fuzzy
pid
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008102287392A
Other languages
English (en)
Inventor
朱苗勇
孟祥宁
张会祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CNA2008102287392A priority Critical patent/CN101403930A/zh
Publication of CN101403930A publication Critical patent/CN101403930A/zh
Priority to CNA2009101495693A priority patent/CN101596582A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Continuous Casting (AREA)

Abstract

本发明涉及的一种基于Fuzzy-PID的连铸结晶器液位控制方法,该控制方法是在计算机和PLC的控制下,使用自整定参数PID控制和模糊控制混合控制液位,并对机械死区进行补偿,步骤包括:步骤一设定初始液位y0,通过液位控制器和液位传感器采集液位y1和y2;步骤二通过信号处理装置将采集的数据y1和y2输入PLC,采用自整定参数PID控制和模糊控制混合控制处理信息,通过调整PID参数来补偿由机械传动引起的不灵敏造成的机械死区;步骤三PLC输出u(k)=u1(k)+u2(k),从而通过塞棒控制器控制塞棒位置控制液位。本发明通过合理设计模糊控制规则和参数整定规则,保证了系统在时变状态下既拥有良好的稳态特性,又具有很好的暂态特性。

Description

一种基于Fuzzy-PID的连铸结晶器液位控制方法
技术领域
本发明属于连铸生产技术领域,特别涉及一种基于Fuzzy-PID的连铸结晶器液位控制方法。
背景技术
随着钢铁行业技术进步,市场对钢材产品质量的要求不断提高,连铸作为钢铁生产流程中承上启下的重要环节,直接影响钢材产品质量。连铸结晶器内钢水液位的变化对铸坯质量有重要影响,稳定结晶器液位对提高铸坯质量和改善浇铸效果意义重大。连铸过程中,结晶器液位高度应保持在合适范围,若钢水液位升高,相当于提高了浇铸水口浸入深度,使结晶器传热负荷增大,影响铸坯凝固进程,液位提高还使钢水静压力变大,增加了对铸坯内液芯的压力,易引起鼓肚现象,影响铸坯质量,液位过高甚至会引起溢钢事故。若钢水液位下降,相当于水口浸入深度降低,易造成卷渣,也不利于钢水中夹杂物上浮,无法保证钢水的洁净,过低的液位还易导致漏钢事故。稳定结晶器液位对减少铸坯夹渣和夹杂、改善结晶器润滑条件、维持稳定的钢水凝固条件、改善铸坯质量、降低漏钢率和溢流危险及提高连铸机作业率等均有重要作用。
连铸过程中结晶器内各种行为互相交织,相互影响,一系列无法测量的扰动因素的存在也为结晶器液位的控制带来了诸多困难,这些因素主要为:(1)拉速的波动;(2)中间包出口内钢水不规则流动;(3)结晶器内钢水紊流;(4)结晶器内熔池扰动;(5)钢种;(6)结晶器振动等。目前基于对上述因素的分析,并结合相应的方法和装置,已有相关技术被开发并用于结晶器液位的控制,如发明专利“结晶器液位检测装置”(申请号:02266583.8)即在结晶器周围安置一组线圈,通过连接该线圈与交流电源,设计出一种可达到较高检测精度的结晶器液位检测装置,发明专利“测量金属液位用超声波线阵探头”(申请号:92216303.0)和发明专利“嵌入式结晶器液位检测系统”(申请号:200620096044.X)也均提出了相应的结晶器液位检测装置,上述相关专利主要解决了结晶器液位检测装置及检测精度的问题,缺乏对结晶器液位控制方法的研究和开发。本发明目的在于开发新的结晶器液位控制方法,解决传统控制方法无法满足系统响应特性和控制参数难以精确调节等问题,实现结晶器液位的稳定控制。
通常结晶器液位控制采用的主要方法为PID控制和模糊控制,具体包括模糊控制器直接控制、改进PID控制及PID控制器与模糊控制器相互切换控制等方法。模糊控制器直接控制解决了系统暂态特性不好的问题,但模糊控制器难以保证系统同时具有良好的稳态特性,此方法很难应用于实践。改进的PID控制方法,特别是调整PID参数法能够解决系统非稳态和模型不确定等问题,但在非稳态浇铸时,系统超调量和调节时间难于精确控制。PID控制器与模糊控制器相互切换的控制方法在理论上综合利用了PID控制器良好的稳态性能和模糊控制较好的暂态性能,但实际生产过程中系统的不确定性使得PID控制器很难适应,且PID控制和模糊控制切换过程中带来的扰动冲击也相应增大了系统的干扰,容易引起超调现象频繁发生。
发明内容
针对浇铸过程中较大钢水液位波动幅度对浇铸带来的不利,本发明提供一种基于Fuzzy-PID的连铸结晶器液位控制方法,即基于自调整参数PID控制与模糊(Fuzzy)控制并行控制的连铸结晶器液位控制方法。
本发明的连铸结晶器液位控制系统包括计算机、PLC、机械执行机构、传感器、塞棒控制器、信号处理装置和电机,PLC通过液位测量装置与液位传感器相连,PLC通过塞棒控制器与电机传动位置传感器相连;塞棒通过连机结构与伺服电机相连。
本发明的PLC包括PID控制、模糊控制和死区补偿,采用自整定参数PID控制与模糊控制并行控制液位,采用PID参数调节器补偿由机械传动引起的不灵敏造成的机械死区。
本发明的自整定参数PID控制以常规PID算法为基础,以液位偏差和液位偏差变化率作为输入,采用模糊推理方法对PID参数进行在线自整定。自整定参数PID控制主要用于补偿因水口结瘤及结瘤脱落导致的水口模型变化,利用自整定参数法使PID实时跟踪液位,保证系统的性能和误差的稳定。
本发明的模糊控制以液位偏差为输入,通过模糊推理输出补偿信号来抑制系统超调量,降低液位超调。模糊控制主要抑制过大超调量,保证开浇及非稳态浇铸条件下结晶器液位控制在偏离标准设定值±6mm范围,保证快速换中间包和换水口后再次浇铸时控制钢水液位波动在±5mm范围,保证稳定浇铸过程中钢水液位控制在偏离标准设定值小于±3mm,该控制过程均可在10s内达到稳定工艺要求。
本发明的控制系统采用等级单位描述液位偏差。将液位模糊观测量、液位变化率模糊观测量、模糊控制量(控制器PI参数调解量)和比例系数和积分系数的输出均分为:正大、正小、零、负小和负大5个模糊集合,并设计了相应的隶属函数。
自整定参数PID是在PID算法的基础上,通过计算当前的系统误差E和系统误差变化率Ec,利用模糊规则进行模糊推理,查询模糊矩阵表进行参数调整,模糊控制设计的核心是总结工程设计人员的技术知识和实际操作经验,建立模糊规则表,本发明采用PI控制算法,制定PI参数调节控制规则,并给出补偿控制规则。
本发明的死区补偿用于补偿传动机构中存在的塞棒结瘤与结瘤脱落、机械死区和铸坯鼓肚等造成的机械死区,从而保证准确调整塞棒位置。
本发明的结晶器液位控制方法按以下步骤进行:
步骤一数据采集
设定初始液位y0,通过液位控制器和液位传感器采集液位y1和y2,其中y1、y2为不同时间的液位。
步骤二信号输入并处理
通过信号处理装置将采集的数据y1和y2输入PLC,采用自整定参数PID控制和模糊控制混合控制处理信号;并通过调整PID参数来补偿由机械传动引起的不灵敏造成的机械死区。混合控制具体实现过程如下:
1.用模糊自整定参数PID控制检测液位误差e1和液位误差变化率为L,并通过公式e1=y0-y1和L=(y2-y1)/(t2-t1)进行计算处理,其中t2、t1表示采集液位数据时对应时间,根据模糊控制原理对参数进行在线修改,同时模糊控制也检测液位误差e1,但是当控制系统在液位标准设定值范围内时,模糊控制器输出为零,此时仅有自整定参数PID控制工作。
2.通过模糊控制规则(KP,Ki)=Fuzzy(e1,L),输出控制信号 u 1 ( k ) = K P * e ( k ) + K i Σ k e ( j ) 抑制超调情况,提高系统暂态性能;其中KP为影响系统响应速度和精度的比例系数;Ki为影响系统稳态精度的积分作用系数;u为模糊化后的系统控制信号;e为检测信号;i、k和j为序列号。
步骤三信号输出,PLC输出u(k)=u1(k)+u2(k),从而通过塞棒控制器控制塞棒位置,从而控制液位,式中u(k)为最终输出的系统控制信号,u1(k)为时间t1对应的模糊化后的系统控制信号,u2(k为时间t2对应的模糊化后的系统控制信号。
本发明的控制过程中塞棒结瘤与结瘤脱落、机械死区和铸坯鼓肚等补偿模块具体原理如下:
1.塞棒流量特性
(1)静态流量特性
Q in = C d 2 g H tum ( k s h )
式中,Qin为结晶器流入钢水量;Cd为流量比例系数;g为重力加速度;h为塞棒位置(开度);Htum为中间包液位高度;Ks为水口有效流通面积与塞棒开度线性关系系数。
(2)动态流量特性
塞棒位置与钢水流入量间动态特性主要为延迟特性,该特性由水口流量传输引起,采用一阶惯性环节近似为:
Q in = K Q 1 + Ts [ h ( s ) - d ( s ) ]
式中:s为时间;d为扰动;KQ为流量比例系数;T为滑动水口等效时间常数。
(3)时变特性
时变过程难于建模,因为它与钢水成分、温度、节流口几何形状等多种因素相关,本发明将堵塞和开堵等效为塞棒位置扰动,即:
xd=Acremain(t,Tc)
式中,函数remian为时间t除以Tc的余数,扰动信号幅值Ac和周期Tc可通过现场数据分析得到,xd为塞棒位置扰动。
2.机械传动死区补偿
由于机械传动机构存在间隙和摩擦,无论如何调节,都会存在空程,即存在调节不灵敏区——死区,使塞棒位置调节无法调节准确,甚至导致系统出现自激振荡而无法工作。“死区”特性如图3所示,为补偿该环节,控制系统加入饱和特性,函数表达式为:
N ( V ) = K &times; b 1 V < b 1 K &times; V b l &le; V &le; b r K &times; b r V > b r
式中,K为传动的比例系数;V为调节位置的给定信号;b1和br为控制系统动作临界点,N(V)为“死区”环节模型函数。
3.鼓肚量化
铸坯鼓肚程度与现场浇铸条件有关,铸坯鼓肚可引起液位周期性波动,且拉速与波动周期乘积为常数。本发明将鼓肚量化为正弦波,表示为:
y=Asin(ωt+b)
式中,A为由鼓肚引起的液位波动幅度;ω为液位波动角频率;b为液位波动相位角,y为鼓肚量。
本发明在综合分析传统控制方法基础上,采用自调节参数PID控制和模糊控制并行的控制方法,通过合理设计模糊控制规则和参数整定规则,保证系统在时变状态下既拥有良好的稳态特性,又具有很好的暂态特性。本发明具有以下优点:
1.本发明的基于Fuzzy-PID的连铸结晶器钢水液位控制方法具有响应速度快、控制精度高和超调量小的特点,即使在浇铸过程中外界突然加入扰动的情况下也能保证将系统超调量控制在±5mm范围内,同时保证在短时间内将钢水液位控制在±3mm范围内。
2.本发明的基于Fuzzy-PID的连铸结晶器钢水液位控制方法综合考虑了对结晶器液位有重要影响的拉速、钢水紊流和扰动和结晶器振动等因素,解决了更换中间包、更换水口和钢种等非稳态情况下液位波动较大的问题。
3.本发明的基于Fuzzy-PID的连铸结晶器钢水液位控制方法结合连铸实际,加入塞棒结瘤与结瘤脱落、机械死区和铸坯鼓肚等补偿模块,基于PID参数对系统的影响规律和现场生产经验,编制隶属函数和控制规则表,设计出的PID参数调整和模糊控制,能很好的抑制随机扰动,保证控制系统稳定运行。
附图说明
图1为本发明的系统设备结构示意图;
图2为本发明的控制原理图;
图3为PID控制与模糊控制的混合控制流程图;
图4为传动机构机械死区原理图;
图5为液位模糊控制隶属函数图,其中,
(a)为液位观测量隶属度函数;
(b)为液位变化率观测量隶属度函数;
(c)为控制量P隶属函数;
(d)为控制量I隶属函数;
图6为液位状况的仿真结果图;
图7为系统实际应用效果图;
图中1PLC,2现场控制箱,3液位测量装置,4塞棒控制器,5位置传感器,6伺服电机,7连接机构,8手动操作手柄,9塞棒,10中间包,11液位传感器,12水口,13模糊控制器,14自整定参数PID控制器,15PID参数调节器,16结晶器,17电机控制器。
具体实施方式
结合附图进一步说明本发明的基于Fuzzy-PID的连铸结晶器钢水液位控制方法。图1中PLC1通过液位测量装置3与液位传感器11相连,PLC1通过塞棒控制器4与电机传动位置传感器5相连,用以采集实时的液位信号和电机传动位置信号;塞棒9通过连接机构7与伺服电机6相连,伺服电机6控制塞棒9位置;(浸入式)水口开度在塞棒9控制下调节钢水流量以稳定液位。图2中控制系统整体呈串级控制,并分为内环和外环两部分,其中内环控制电机位置,外环控制液位。
如图2所示,首先输入给定液位,先与液位传感器采集的液位信号进行比较,并通过模糊控制器13和自整定参数PID控制器14输出控制信号,即电机位置给定信号,又因机械传动中具有死区特性,死区原理如图4所示,则通过电机调节位置传感器(补偿器)5和电机控制器17准确的控制电机传动位置,同时电机位置传感器5控制塞棒位置(塞棒开度),塞棒9模块输出中间包10的流量与系统扰动(拉速等)的差值并进入PID控制模块,通过积分得到结晶器16液位值。由于浇铸过程中经常出现水口结瘤和结瘤脱落等状况,导致整个控制系统不稳定,由此需根据实时情况通过PID参数调节器15对自整定参数PID实时调整。
PLC中模糊控制与PID控制并行工作,通过模糊控制规则使得在超调量大的时候做出快速反应,并抑制超调量,使得系统具有良好的暂态性能,而当液位在给定液位值附近波动时,模糊控制器输出很小,这时充分发挥PID控制良好的稳态特性,其参数的实时调节也保证了系统的稳定和良好的技术指标。
如图2所示,结合附图3、4和5对液位控制进行说明,其液位控制按以下步骤进行:
步骤一给定液位y0,并先与图1中液位传感器采集的液位信号y1和y2进行比较;由于浇铸过程中经常出现水口结瘤和结瘤脱落等状况,导致整个控制系统不稳定,由此需根据实时情况调整PID模块参数,即通过PID参数调节器15对PID参数实时调整。
步骤二信号输入并处理
通过信号处理装置将采集的数据y1和y2输入PLC,并由自整定参数PID控制和模糊控制混合控制处理数据,控制流程图如图3所示。具体实现过程如下:
1.用模糊自整定参数PID控制检测液位误差e1和误差变化率L,并通过公式e1=y0-y1和L=(y2-y1)/(t2-t1)进行计算处理,其中t2、t1表示采集液位数据时的时间。根据模糊控制原理对参数进行在线修改,同时模糊控制也检测液位误差e1,但是当控制系统在液位标准设定值范围内时,模糊控制输出为零,此时仅有模糊自整定参数PID控制工作。
2.通过模糊控制规则(KP,Ki)=Fuzzy(e1,L),输出控制信号 u 1 ( k ) = K P * e ( k ) + K I &Sigma; k e ( j ) 抑制超调情况,提高系统暂态性能。采用等级单位描述液位偏差,将液位模糊观测量分为5个模糊集合:PBE(正大)、PSE(正小)、OE(零)、NSE(负小)、NBE(负大),对应隶属函数如图5(a)所示;液位变化率模糊观测量为5个模糊集合:PBEc(正大)、PSEc(正小)、OEc(零)、NSEc(负小)、NBEc(负大),对应隶属函数如图5(b)所示;模糊控制量(控制器PI参数调解量)划分为5个模糊集合:PBP(正大)、PSP(正小)、OP(零)、NSP(负小)、NBP(负大),对应隶属函数如图5(c)所示;比例系数和积分系数的输出划分为5个模糊集合:PBI(正大)、PSI(正小)、OI(零)、NSI(负小)、NBI(负大),对应隶属函数如图5(d)所示。模糊自整定PID参数是在PID算法的基础上,通过计算当前的系统误差E和系统误差变化率Ec,利用模糊规则进行模糊推理,查询模糊规则表进行参数调整,模糊控制设计的核心是总结工程设计人员的技术知识和实际操作经验,建立合适的模糊规则表,模糊规则表包括比例系数控制规则表、积分系数控制规则表和补偿控制器控制规则,采用PI控制算法,对应PI参数调节器控制规则如表1和表2,同时给出补偿控制器控制规则表3。
表1比例系数控制规则表
Figure A20081022873900102
表2积分系数控制规则表
Figure A20081022873900103
表3补偿控制器控制规则
Figure A20081022873900111
3.信号输出,PLC输出u(k)=u1(k)+u2(k),从而通过塞棒控制器控制塞棒位置控制液位。
步骤三通过模糊控制和PID控制输出控制信号,PLC输出u(k)=u1(k)+u2(k),由于机械传动中具有死区特性,通过电机调节位置传感器(补偿器)和电机控制器准确的控制电机传动位置,同时电机位置控制塞棒位置(塞棒开度),塞棒模块输出中间包流量与系统扰动(拉速等)的差值并进入积分器(结晶器模块),通过积分得到结晶器液位值,从而通过塞棒控制其控制塞棒位置来控制液位。
如图6所示,拉速从1.6m/min升至1.8m/min时出现漏钢警报,现场在随后的10s内降低拉速至0.2m/min,并在接下来的6分钟后将拉速升至0.8m/min情况下的仿真结果。由图7看出,本发明的液位超调量约9mm,浇铸异常时系统能很快调节到稳定状态,并且在缓升拉速和基本稳定拉速情况下,控制液位波动在2mm范围内。由此可见所采用的模糊控制器与参数自整定PID控制器并行控制的方法,能很好的解决非稳态浇铸过程中稳定性差的问题,同时解决了机械死区和塞棒侵蚀等问题,并对鼓肚和拉速等扰动有较好抑制能力。
如图7所示,现场浇铸低碳钢种时从开浇至稳定时的液位波动情况。采用本发明的基于Fuzzy-PID的连铸结晶器液位控制方法后的液位波动明显得到改善,开浇时的液位控制在5mm范围内,且液位能较快趋于稳定,稳定浇铸时液位波动控制在2mm范围内。

Claims (6)

1.一种基于Fuzzy-PID的连铸结晶器液位控制方法,其特征在于该控制方法在计算机和PLC的控制下,使用自整定参数PID控制和模糊控制混合控制液位,并对机械死区进行补偿,其具体步骤包括:
步骤一数据采集
设定初始液位y0,通过液位控制器和液位传感器采集液位y1和y2,其中y1、y2为不同时间的液位;
步骤二信号输入并处理
通过信号处理装置将采集的数据y1和y2输入PLC,采用自整定参数PID控制和模糊控制混合控制处理信息,并通过调整PID参数来补偿由机械传动引起的不灵敏造成的机械死区;
步骤三信号输出,PLC输出u(k)=u1(k)+u2(k),从而通过塞棒控制器控制塞棒位置控制液位;式中u(k)为最终输出的系统控制信号,u1(k)为时间t1对应的模糊化后的系统控制信号,u2(k)为时间t2对应的模糊化后的系统控制信号。
2.根据权利要求1所述的一种基于Fuzzy-PID的连铸结晶器液位控制方法,其特征在于步骤二所述的自整定参数PID控制和模糊控制混合控制步骤包括:
(1)、用模糊自整定参数PID控制检测液位误差e1和液位误差变化率L,并通过公式e1=y0-y1和L=(y2-y1)/(t2-t1)进行计算处理,其中t2、t1表示采集液位数据时对应时间;根据模糊控制原理对参数进行在线修改,同时模糊控制器也检测液位误差e1;当控制系统在液位标准设定值范围内时,模糊控制器输出为零,此时仅有模糊自整定参数PID控制工作;
(2)、通过模糊控制规则(KP,Ki)=Fuzzy(e1,L),输出控制信号 u 1 ( k ) = K P * e ( k ) + K I &Sigma; k e ( j ) 抑制超调情况,提高系统暂态性能,其中KP为影响系统响应速度和精度的比例系数;Ki为影响系统稳态精度的积分作用系数;u为模糊化后的系统控制信号;e为检测信号;i、k和j为序列号。
3.根据权利要求1所述的一种基于Fuzzy-PID的连铸结晶器液位控制方法,其特征在于步骤二所述的死区补偿用于补偿由调节不灵敏区造成的塞棒位置无法调节准确的弊端,死区特性函数表达式为:
N ( V ) = K &times; b 1 V < b 1 K &times; V b l &le; V &le; b r K &times; b r V > b r
式中,K为传动的比例系数;V为调节位置的给定信号;b1和br为控制系统动作临界点;N(V)为“死区”环节模型函数。
4.根据权利要求2所述的一种基于Fuzzy-PID的连铸结晶器液位控制方法,其特征在于所述的模糊规则采用等级单位描述液位偏差,将液位模糊观测量、液位变化率模糊观测量、模糊控制量和比例系数和积分系数的输出均分为:正大、正小、零、负小和负大5个模糊集合。
5.根据权利要求1所述的一种基于Fuzzy-PID的连铸结晶器液位控制方法,其特征在于所述的自整定参数PID控制以常规PID算法为基础,以液位偏差和液位偏差变化率为输入,采用模糊推理方法,并查询模糊规则表进行参数调整,对PID参数进行在线自整定。
6.根据权利要求1所述的一种基于Fuzzy-PID的连铸结晶器液位控制方法,其特征在于所述的模糊控制以液位偏差为输入,通过模糊推理输出补偿信号来抑制系统超调量,降低液位超调。
CNA2008102287392A 2008-11-13 2008-11-13 一种基于Fuzzy-PID的连铸结晶器液位控制方法 Pending CN101403930A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNA2008102287392A CN101403930A (zh) 2008-11-13 2008-11-13 一种基于Fuzzy-PID的连铸结晶器液位控制方法
CNA2009101495693A CN101596582A (zh) 2008-11-13 2009-06-26 一种基于Fuzzy-PID的连铸结晶器液位控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008102287392A CN101403930A (zh) 2008-11-13 2008-11-13 一种基于Fuzzy-PID的连铸结晶器液位控制方法

Publications (1)

Publication Number Publication Date
CN101403930A true CN101403930A (zh) 2009-04-08

Family

ID=40537963

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2008102287392A Pending CN101403930A (zh) 2008-11-13 2008-11-13 一种基于Fuzzy-PID的连铸结晶器液位控制方法
CNA2009101495693A Pending CN101596582A (zh) 2008-11-13 2009-06-26 一种基于Fuzzy-PID的连铸结晶器液位控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2009101495693A Pending CN101596582A (zh) 2008-11-13 2009-06-26 一种基于Fuzzy-PID的连铸结晶器液位控制方法

Country Status (1)

Country Link
CN (2) CN101403930A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328044A (zh) * 2011-08-04 2012-01-25 石家庄钢铁有限责任公司 一种大方坯连铸机结晶器液面自动控制方法
CN102354229A (zh) * 2011-07-26 2012-02-15 上海理工大学 一种液位模糊控制器及工作方法
CN102566608A (zh) * 2011-12-13 2012-07-11 江西稀有稀土金属钨业集团有限公司 基于视觉的铸轮液位自动控制系统与控制方法
CN102839161A (zh) * 2012-09-03 2012-12-26 福建农林大学 一种绿僵菌发酵生产酯酶的培养基及方法
CN103341609A (zh) * 2013-07-10 2013-10-09 鞍钢股份有限公司 一种结晶器液面波动的控制方法
CN104166405A (zh) * 2014-08-06 2014-11-26 东北大学 一种基于虚拟未建模动态补偿的液位系统pi控制方法
CN104226953A (zh) * 2013-06-24 2014-12-24 上海梅山钢铁股份有限公司 基于拉坯力补偿结晶器钢水液位的方法
CN105157006A (zh) * 2015-08-07 2015-12-16 于冲 锅炉水位检测装置及其控制方法
CN102458718B (zh) * 2009-06-24 2016-09-07 首要金属科技德国有限责任公司 用于连铸结晶器的浇铸液位的调节方法
CN106647832A (zh) * 2016-12-29 2017-05-10 西安理工大学 一种基于CompactLogix的模糊自整定PID的液位控制方法
CN109281134A (zh) * 2018-11-09 2019-01-29 珠海格力电器股份有限公司 一种水位控制方法、装置、存储介质及洗衣机
CN110393975A (zh) * 2019-08-19 2019-11-01 山信软件股份有限公司 脱硫液提精盐的控制方法及系统
CN111185583A (zh) * 2020-02-12 2020-05-22 首钢集团有限公司 一种连铸浸入式水口堵塞的处理方法和处理装置
CN111857194A (zh) * 2020-07-23 2020-10-30 莱芜钢铁集团电子有限公司 一种闭环水循环系统液位平衡控制模型
CN112496287A (zh) * 2020-10-22 2021-03-16 福建三宝钢铁有限公司 一种控制连铸板坯气孔缺陷的炼钢工艺
CN116105817A (zh) * 2023-04-12 2023-05-12 博莱阀门(常州)有限公司 一种基于模糊自整定pid算法的高精度流量测试装置
CN117434988A (zh) * 2023-12-18 2024-01-23 杭州金固环保设备科技有限公司 水平衡控制方法、装置及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550807B (zh) * 2014-12-24 2016-08-24 江苏永钢集团有限公司 连铸机定径水口自动开浇方法
CN105268937A (zh) * 2015-10-23 2016-01-27 首钢京唐钢铁联合有限责任公司 一种连铸机中间包快换水口的控制方法
CN109848401B (zh) * 2017-11-30 2021-02-05 上海梅山钢铁股份有限公司 一种抑制中间包塞棒粘结堵塞效应的方法
BR112020024482B1 (pt) * 2018-09-18 2023-10-31 Nippon Steel Corporation Dispositivo de controle, método de controle, e produto para controlar um processo de lingotamento contínuo
CN110961615B (zh) * 2018-09-30 2021-07-09 上海梅山钢铁股份有限公司 一种基于液位自动控制的在线自动更换浸入式水口方法
CN109648057B (zh) * 2018-11-01 2021-04-13 日照钢铁控股集团有限公司 一种连铸中包液位稳定控制方法及系统
CN109676106B (zh) * 2019-02-13 2021-01-29 衡阳镭目科技有限责任公司 一种控制连铸结晶器液面波动的方法及装置
CN110355341A (zh) * 2019-07-17 2019-10-22 首钢京唐钢铁联合有限责任公司 一种预测水口堵塞程度的方法及装置
CN110405173B (zh) * 2019-08-12 2020-12-11 大连理工大学 一种采用希尔伯特-黄变换检测和定位连铸坯鼓肚的方法
CN110639223B (zh) * 2019-09-30 2021-10-01 辽宁美亚制药有限公司 一种结晶釜液位与搅拌转速自动控制系统
CN111112568B (zh) * 2020-01-16 2021-09-21 首钢京唐钢铁联合有限责任公司 一种连铸浇钢的控制方法及装置
CN111950137B (zh) * 2020-07-28 2022-04-12 北京科技大学 用于固体夹杂物在钢液中运动轨迹的模拟方法及系统
CN114101645B (zh) * 2020-08-27 2023-07-18 秦皇岛秦冶重工有限公司 一种钢水流速调整方法及装置
CN114505458A (zh) * 2020-11-15 2022-05-17 上海梅山钢铁股份有限公司 一种提高结晶器液面稳定性的塞棒控流系统控制方法
CN112403689B (zh) * 2020-11-25 2022-07-01 河南资环检测科技有限公司 一种浮选设备的液位自动控制方法
CN114603090B (zh) * 2022-03-11 2023-06-16 北京海卓博尔科技有限公司 一种结晶器振动驱动装置、控制方法及控制系统

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458718B (zh) * 2009-06-24 2016-09-07 首要金属科技德国有限责任公司 用于连铸结晶器的浇铸液位的调节方法
CN102354229A (zh) * 2011-07-26 2012-02-15 上海理工大学 一种液位模糊控制器及工作方法
CN102328044A (zh) * 2011-08-04 2012-01-25 石家庄钢铁有限责任公司 一种大方坯连铸机结晶器液面自动控制方法
CN102566608A (zh) * 2011-12-13 2012-07-11 江西稀有稀土金属钨业集团有限公司 基于视觉的铸轮液位自动控制系统与控制方法
CN104950929A (zh) * 2011-12-13 2015-09-30 江西稀有稀土金属钨业集团有限公司 基于视觉的铸轮液位自动控制系统与控制方法
CN102839161A (zh) * 2012-09-03 2012-12-26 福建农林大学 一种绿僵菌发酵生产酯酶的培养基及方法
CN102839161B (zh) * 2012-09-03 2013-07-03 福建农林大学 一种绿僵菌发酵生产酯酶的培养基及方法
CN104226953B (zh) * 2013-06-24 2016-04-13 上海梅山钢铁股份有限公司 基于拉坯力补偿结晶器钢水液位的方法
CN104226953A (zh) * 2013-06-24 2014-12-24 上海梅山钢铁股份有限公司 基于拉坯力补偿结晶器钢水液位的方法
CN103341609A (zh) * 2013-07-10 2013-10-09 鞍钢股份有限公司 一种结晶器液面波动的控制方法
CN103341609B (zh) * 2013-07-10 2015-03-11 鞍钢股份有限公司 一种结晶器液面波动的控制方法
CN104166405A (zh) * 2014-08-06 2014-11-26 东北大学 一种基于虚拟未建模动态补偿的液位系统pi控制方法
CN104166405B (zh) * 2014-08-06 2017-02-01 东北大学 一种基于虚拟未建模动态补偿的液位系统pi控制方法
CN105157006A (zh) * 2015-08-07 2015-12-16 于冲 锅炉水位检测装置及其控制方法
CN105157006B (zh) * 2015-08-07 2017-03-08 于冲 锅炉水位检测装置及其控制方法
CN106647832A (zh) * 2016-12-29 2017-05-10 西安理工大学 一种基于CompactLogix的模糊自整定PID的液位控制方法
CN109281134A (zh) * 2018-11-09 2019-01-29 珠海格力电器股份有限公司 一种水位控制方法、装置、存储介质及洗衣机
CN110393975B (zh) * 2019-08-19 2021-07-23 山信软件股份有限公司 脱硫液提精盐的控制方法及系统
CN110393975A (zh) * 2019-08-19 2019-11-01 山信软件股份有限公司 脱硫液提精盐的控制方法及系统
CN111185583A (zh) * 2020-02-12 2020-05-22 首钢集团有限公司 一种连铸浸入式水口堵塞的处理方法和处理装置
CN111185583B (zh) * 2020-02-12 2021-11-19 首钢集团有限公司 一种连铸浸入式水口堵塞的处理方法和处理装置
CN111857194A (zh) * 2020-07-23 2020-10-30 莱芜钢铁集团电子有限公司 一种闭环水循环系统液位平衡控制模型
CN112496287A (zh) * 2020-10-22 2021-03-16 福建三宝钢铁有限公司 一种控制连铸板坯气孔缺陷的炼钢工艺
CN112496287B (zh) * 2020-10-22 2022-02-15 福建三宝钢铁有限公司 一种控制连铸板坯气孔缺陷的炼钢工艺
CN116105817A (zh) * 2023-04-12 2023-05-12 博莱阀门(常州)有限公司 一种基于模糊自整定pid算法的高精度流量测试装置
CN117434988A (zh) * 2023-12-18 2024-01-23 杭州金固环保设备科技有限公司 水平衡控制方法、装置及系统
CN117434988B (zh) * 2023-12-18 2024-04-26 杭州泰恩智达装备科技有限公司 水平衡控制方法、装置及系统

Also Published As

Publication number Publication date
CN101596582A (zh) 2009-12-09

Similar Documents

Publication Publication Date Title
CN101403930A (zh) 一种基于Fuzzy-PID的连铸结晶器液位控制方法
CN101364114B (zh) 自适应与模糊逻辑pid结晶器液位在线控制系统及方法
CN101920323B (zh) 基于压力反馈检测铸坯凝固液芯末端的动态轻压下方法
CN103341609B (zh) 一种结晶器液面波动的控制方法
CN109047683B (zh) 一种连铸坯智能定重定尺在线控制系统
CN104249138B (zh) 一种连铸结晶器吹氩自动控制方法
CN104690242A (zh) 一种钢连铸凝固末端电磁搅拌位置的动态控制方法及装置
CN104999043B (zh) 一种连铸钢包滑动水口开度在线测量装置及其测量方法
CN101698224B (zh) 连铸坯二冷冷却水量与电磁搅拌器的动态控制方法
CN105807615A (zh) 模糊前馈反馈控制器
CN104734588A (zh) 一种生物质气内燃发电机组转速控制方法
CN102416456B (zh) 板坯连铸二次冷却控制系统与方法
CN102059326A (zh) 一种结晶器振动液压缸的控制方法
CN102873106B (zh) 一种平整机延伸率快速精确控制方法
CN1220196A (zh) 连铸机结晶器液面控制系统
CN102059332B (zh) 在基础自动化中实现板坯生命周期模型的系统
CN202279787U (zh) 乳化炸药生产过程中的随动控制系统
CN205200520U (zh) 一种底注式浇注机自动浇注系统
CN102222147B (zh) 在线模拟连铸结晶器内钢液凝固传热过程的仿真系统
Bo et al. Based on plc fuzzy control algorithm in the application of level control
Zarghoon et al. Robust Control of Continuous Casting Process for Various Technological Conditions
CN202726000U (zh) 连铸结晶器振动工艺过程模拟检测试验装置
CN111570781A (zh) 一种中间包水口控流系统及方法
CN202531551U (zh) 实现结晶器振动液压缸同步的控制装置
Zhou Research on the Control Methods Based on Liquid Level System

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication