WO2020059280A1 - 基板処理装置および基板処理方法 - Google Patents

基板処理装置および基板処理方法 Download PDF

Info

Publication number
WO2020059280A1
WO2020059280A1 PCT/JP2019/028345 JP2019028345W WO2020059280A1 WO 2020059280 A1 WO2020059280 A1 WO 2020059280A1 JP 2019028345 W JP2019028345 W JP 2019028345W WO 2020059280 A1 WO2020059280 A1 WO 2020059280A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfuric acid
spm
substrate
containing liquid
pipe
Prior art date
Application number
PCT/JP2019/028345
Other languages
English (en)
French (fr)
Inventor
賢士 川口
亨 遠藤
紘太 谷川
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to US17/273,123 priority Critical patent/US11318504B2/en
Priority to CN201980061522.3A priority patent/CN112740361A/zh
Priority to KR1020217007433A priority patent/KR102525270B1/ko
Publication of WO2020059280A1 publication Critical patent/WO2020059280A1/ja
Priority to US17/704,343 priority patent/US11883858B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67023Apparatus for fluid treatment for general liquid treatment, e.g. etching followed by cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method.
  • substrates to be processed include semiconductor wafers, substrates for liquid crystal displays, substrates for flat panel displays (FPDs) such as organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, and substrates for magneto-optical disks.
  • FPDs flat panel displays
  • organic EL electro-electron emission
  • substrates for optical disks substrates for optical disks
  • substrates for magnetic disks substrates for magnetic disks
  • magneto-optical disks substrates for magneto-optical disks.
  • Substrates, photomask substrates, ceramic substrates, solar cell substrates and the like are included.
  • a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device is used.
  • Patent Document 1 discloses a single-wafer-type substrate processing apparatus that processes substrates one by one.
  • This substrate processing apparatus includes a spin chuck that rotates while holding a substrate horizontally, and a nozzle that discharges SPM (a mixture of sulfuric acid and hydrogen peroxide solution) toward the substrate held by the spin chuck.
  • SPM a mixture of sulfuric acid and hydrogen peroxide solution
  • Have. Patent Document 1 discloses a configuration in which SPM used after processing a substrate is collected, and the collected SPM is reused in subsequent processing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-024793
  • SPM collected from the processing chamber in which the spin chuck is housed is collected in a collection tank through a collection line.
  • the SPM stored in the recovery tank is supplied to a circulation tank after foreign substances contained in the SPM are removed by a filter.
  • An SPM supply pipe extending toward the SPM nozzle is connected to the circulation tank.
  • a pump is interposed in the middle of the SPM supply pipe.
  • a filter, a heater, and a discharge valve are interposed in the middle of the SPM supply pipe on the downstream side of the pump.
  • An SPM return pipe is branched and connected to the SPM supply pipe between the heater and the discharge valve. The tip of the SPM return pipe extends to the circulation tank.
  • the pump and the temperature controller are constantly driven, and while the discharge valve is closed, the SPM pumped out of the circulation tank is opened by opening the return valve so that the SPM supply pipe is opened. Flows to the branch point of the SPM return pipe, and is returned from the branch point to the circulation tank through the SPM return pipe. That is, during the period when SPM is not discharged from the SPM nozzle, the SPM circulates in the circulation tank, the SPM supply pipe, and the SPM return pipe. By circulating the SPM, the SPM whose temperature has been adjusted to a constant temperature is stored in the circulation tank.
  • the SPM whose temperature has been adjusted to a constant temperature is pumped out of the circulation tank and supplied to the SPM nozzle through the SPM supply pipe. Then, the SPM discharged from the SPM nozzle is supplied to the substrate.
  • Patent Document 1 if the collection and reuse of SPM are repeated, the respective concentrations of sulfuric acid and hydrogen peroxide contained in SPM are reduced to values that are not suitable for reuse.
  • the concentration of hydrogen peroxide decreases remarkably. That is, as the temperature of the SPM increases, the ability to remove the SPM (the ability of the SPM to remove the resist) increases, so it is desirable that the SPM be used at a high temperature.
  • hydrogen peroxide is easily decomposed into water and oxygen at high temperatures. Therefore, when the collection and reuse of SPM are repeated, the concentration of hydrogen peroxide may decrease to a value unsuitable for reuse relatively early.
  • one of the objects of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of efficiently removing a resist from a substrate using SPM prepared based on the recovered sulfuric acid-containing solution.
  • the present invention is a substrate processing apparatus for removing a resist from a substrate with SPM, which is a mixture of sulfuric acid and hydrogen peroxide, comprising: a substrate holding unit that holds a substrate at least partially covered with a resist; A nozzle that discharges SPM from the discharge port toward a substrate held by the substrate holding unit, a mixing unit that communicates with the discharge port, and supply to the substrate held by the substrate holding unit. Recovering the liquid discharged from the substrate, preparing a sulfuric acid-containing liquid based on the recovered liquid, and supplying a sulfuric acid-containing liquid after the preparation to the mixing unit; and hydrogen peroxide.
  • a hydrogen peroxide supply unit for supplying water to the mixing unit, a control device for controlling the sulfuric acid-containing liquid supply device and the hydrogen peroxide water supply unit, the control device A sulfuric acid-containing liquid creating step of collecting the SPM supplied to the substrate and discharged from the substrate to create a sulfuric acid-containing liquid, and supplying the sulfuric acid-containing liquid and the hydrogen peroxide solution after the preparation to the mixing unit.
  • a substrate processing apparatus that performs an SPM discharging step of generating an SPM by mixing a sulfuric acid-containing liquid and a hydrogen peroxide solution in a mixing section and discharging the generated SPM from the discharge port.
  • the sulfuric acid-containing liquid is a liquid containing sulfuric acid and may contain components other than sulfuric acid, but is a liquid containing sulfuric acid in a concentration of at least half at a weight% concentration.
  • a sulfuric acid-containing liquid is created instead of the SPM itself, based on the SPM discharged and collected from the substrate.
  • the prepared sulfuric acid-containing liquid is reused as SPM by being mixed with a hydrogen peroxide solution.
  • the sulfuric acid concentration of the sulfuric acid-containing solution to be prepared is required to be within a predetermined concentration range.
  • the temperature of the sulfuric acid-containing liquid to be prepared is required to be within a predetermined temperature range.
  • the sulfuric acid concentration and temperature of the sulfuric acid-containing liquid are adjusted in a form separated from hydrogen peroxide, so that the sulfuric acid-containing liquid that satisfies both the required concentration range and temperature range can be satisfactorily prepared. Can be created. Then, by mixing the prepared sulfuric acid-containing solution with the hydrogen peroxide solution, the resist can be efficiently removed from the substrate using SPM prepared based on the recovered sulfuric acid-containing solution.
  • the sulfuric acid-containing liquid supply device includes a first liquid storage part and a second liquid storage part.
  • the first liquid storage unit includes a first tank for storing the collected liquid, and a sulfuric acid replenishing unit for replenishing the first tank with sulfuric acid.
  • a second tank for storing the liquid sent from the first tank, and a liquid stored in the second tank, both ends of which are connected to the second tank; And a first heater for heating the liquid circulating in the second tank and the first pipe.
  • the control device collects the SPM discharged from the substrate and stores the collected SPM in the first tank as a sulfuric acid-containing liquid.
  • a sulfuric acid replenishing step of replenishing the first tank with sulfuric acid a second storing step of storing the sulfuric acid-containing liquid sent from the first tank in the second tank, the second tank and the second tank.
  • the control device executes a step of supplying the sulfuric acid-containing liquid circulating in the second tank and the first pipe to the mixing unit.
  • the SPM discharged and collected from the substrate is stored in the first tank as a sulfuric acid-containing liquid. Also, sulfuric acid from the sulfuric acid replenishing unit is replenished to the first tank. This makes it possible to accurately adjust the sulfuric acid concentration of the sulfuric acid-containing liquid stored in the first tank to a required concentration range.
  • the sulfuric acid-containing liquid sent from the first liquid storage section circulates through the second tank and the first pipe.
  • the sulfuric acid-containing liquid circulating in the second tank and the first pipe is heated by the first heater. Thereby, the temperature of the sulfuric acid-containing liquid circulating in the second tank and the first pipe can be accurately adjusted to a required temperature range.
  • the second liquid storage section for exclusively controlling the temperature of the sulfuric acid-containing liquid is provided separately from the first liquid storage section that can replenish sulfuric acid to the sulfuric acid-containing liquid (the sulfuric acid concentration of the sulfuric acid-containing liquid can be adjusted). Since the temperature of the sulfuric acid to be replenished is room temperature, if the temperature of the sulfuric acid-containing solution is adjusted while replenishing sulfuric acid in the storage portion for adjusting the temperature of the sulfuric acid-containing solution, the sulfuric acid content in the storage portion is reduced. Fluid temperature is not stable. Since the second liquid storage unit for exclusively adjusting the temperature of the sulfuric acid-containing liquid and the first liquid storage unit capable of replenishing the sulfuric acid-containing liquid with sulfuric acid are separately provided, the second liquid storage unit is provided. The temperature of the sulfuric acid-containing liquid stabilizes. Thereby, the sulfuric acid-containing liquid sent to the mixing section can be adjusted to a desired temperature range.
  • the second liquid storage section further includes a sulfuric acid concentration meter that measures a sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second tank and the first pipe. Then, the control device executes the sulfuric acid replenishing step when the value measured by the sulfuric acid concentration meter is less than a predetermined determination value.
  • the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second tank and the first pipe is measured by the concentration meter, the sulfuric acid circulating in the second tank and the first pipe is measured.
  • the sulfuric acid concentration of the contained solution can be determined accurately.
  • the sulfuric acid concentration of the sulfuric acid-containing liquid sent to the mixing section can be adjusted accurately to a desired concentration range.
  • the first liquid storage section has both ends connected to the first tank, and a second pipe through which the sulfuric acid-containing liquid stored in the first tank circulates; A second heater for heating the sulfuric acid-containing liquid circulating in the first tank and the second pipe.
  • the controller further executes a second heating step of heating the sulfuric acid-containing liquid circulating in the first tank and the second pipe by a second heater in the sulfuric acid-containing liquid creating step.
  • the sulfuric acid-containing liquid circulates through the first tank and the second pipe in the first liquid storage section.
  • the sulfuric acid-containing liquid circulating in the first tank and the second pipe is heated by the second heater.
  • the sulfuric acid-containing liquid is heated in the first and second liquid storage units by the second and first heaters, respectively. Therefore, more heat can be given to the sulfuric acid-containing liquid. Therefore, it is possible to raise the temperature of the sulfuric acid-containing liquid to a higher temperature in the second liquid storage section.
  • both ends of the first liquid storage section are connected to the first tank, and a second pipe through which the sulfuric acid-containing liquid stored in the first tank circulates is further provided. Including. Further, the first liquid storage section is not provided with a unit for heating the sulfuric acid-containing liquid circulating in the first tank and the second pipe.
  • the first liquid storage unit is not provided with a unit for heating the sulfuric acid-containing liquid circulating in the first tank and the second pipe. That is, heating of the sulfuric acid-containing liquid is not performed in the first liquid storage section. Therefore, the sulfuric acid-containing liquid circulating in the first tank and the second pipe has a relatively low temperature.
  • the first liquid storage section further includes a filter interposed in the second pipe and capturing foreign matter contained in the sulfuric acid-containing liquid flowing through the second pipe. .
  • the sulfuric acid-containing liquid flowing through the second pipe is captured by the filter.
  • the sulfuric acid containing liquid passing through the filter is relatively cool.
  • the filter expands as the high-temperature sulfuric acid-containing liquid continuously flows through the filter, and each hole of the filter is opened.
  • the diameter of the may increase.
  • the diameter of each hole of the filter increases, the diameter of the foreign matter that can be captured by the filter increases. For this reason, the filtering performance of the filter is degraded, and there is a possibility that the foreign matter contained in the sulfuric acid-containing liquid may not be properly captured in the first liquid storage part.
  • the sulfuric acid-containing liquid supply device further includes a third liquid storage unit.
  • the third storage section is configured to store a liquid sent from the first tank, and a third tank having both ends connected to the third tank to store the liquid stored in the third tank.
  • the control device stores a sulfuric acid-containing liquid sent from the first tank in the third tank; and a third storage step for storing the sulfuric acid-containing liquid in the third tank.
  • the control device further executes a step of sending the sulfuric acid-containing liquid circulating in the third tank and the third pipe to the second tank in the SPM discharging step.
  • the sulfuric acid-containing liquid sent from the first liquid storage circulates through the third tank and the third pipe.
  • the sulfuric acid-containing liquid circulating in the third tank and the third pipe is heated by the second heater.
  • the sulfuric acid-containing liquid is heated by the second and first heaters in the third and second reservoirs, respectively. More heat can be given to the sulfuric acid-containing liquid. Therefore, it is possible to raise the temperature of the sulfuric acid-containing liquid to a higher temperature in the second liquid storage section.
  • the first liquid storage section further includes a cooler for cooling the sulfuric acid-containing liquid circulating in the first tank and the second pipe.
  • the control device further executes a cooling step of cooling the sulfuric acid-containing liquid circulating in the first tank and the second pipe by the cooler in the sulfuric acid-containing liquid creating step.
  • the sulfuric acid-containing liquid circulating in the first tank and the second pipe can be cooled by the cooler. Therefore, it is possible to lower the temperature of the sulfuric acid-containing liquid circulating in the first tank and the second pipe to room temperature or lower than room temperature.
  • the first liquid storage section further includes the filter.
  • the temperature of the sulfuric acid-containing liquid passing through the filter can be lowered to room temperature or lower than room temperature, so that a decrease in filtering performance can be more effectively suppressed. Therefore, the foreign matter contained in the sulfuric acid-containing liquid can be more favorably captured in the first liquid storage section. As a result, it is possible to supply an even cleaner sulfuric acid-containing liquid to the mixing section.
  • the sulfuric acid-containing liquid circulating in the first tank and the second pipe is cooled only by natural cooling.
  • the sulfuric acid-containing liquid can be cooled without increasing the cost.
  • the first heating temperature which is the heating temperature of the first heater
  • the second heating temperature which is the heating temperature of the second heater
  • the sulfuric acid-containing liquid that has been heated to the second heating temperature in the first liquid storage section (third liquid storage section) is supplied to the second liquid storage section. Then, the sulfuric acid-containing liquid is heated in the second storage part, and the temperature is raised to the first heating temperature. That is, the sulfuric acid-containing liquid is heated stepwise. Therefore, it is possible to raise the temperature of the sulfuric acid-containing liquid to a higher temperature in the second liquid storage section. Thereby, even when the temperature (first heating temperature) of the sulfuric acid-containing liquid to be sent to the mixing section is set to an extremely high temperature, such a high-temperature sulfuric acid-containing liquid can be satisfactorily prepared.
  • the substrate processing apparatus is configured to flow through the sulfuric acid-containing liquid supply pipe connecting the second tank or the first pipe to the mixing section, and the sulfuric acid-containing liquid supply pipe. And a third heater for heating the sulfuric acid-containing liquid.
  • the controller further executes a third heating step of heating the sulfuric acid-containing liquid flowing through the sulfuric acid-containing liquid supply pipe by the third heater in the sulfuric acid-containing liquid producing step.
  • the sulfuric acid-containing liquid circulating in the second tank and the first pipe is guided to the sulfuric acid-containing liquid supply pipe. Then, the sulfuric acid-containing liquid flowing through the sulfuric acid-containing liquid supply pipe is heated by the third heater. By the heating by the third heater, it is possible to further raise the temperature of the sulfuric acid-containing liquid as compared with the case where the liquid was circulating in the second tank and the first pipe.
  • the substrate processing apparatus is supplied to a mixing ratio changing unit that changes a ratio of a sulfuric acid-containing solution to a hydrogen peroxide solution in the mixing unit, and to a substrate held by the substrate holding unit.
  • a collection pipe for collecting the liquid discharged from the substrate and sending it to the sulfuric acid-containing liquid supply device, and a drainage liquid into which the liquid supplied to the substrate held by the substrate holding unit and discharged from the substrate flows.
  • the apparatus further includes a pipe and a switching unit that switches a pipe into which liquid discharged from the substrate held by the substrate holding unit flows, between the drain pipe and the recovery pipe.
  • the control device controls the mixing ratio changing unit to mix the sulfuric acid-containing liquid and the hydrogen peroxide solution at a first mixing ratio representing a ratio of the sulfuric acid-containing liquid to the hydrogen peroxide solution.
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed at the first mixing ratio.
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed at the second mixing ratio.
  • Each of the first mixing ratio and the second mixing ratio represents a ratio of the volume of the sulfuric acid-containing liquid before mixing to the volume of the hydrogen peroxide solution before mixing.
  • the first mixture ratio is smaller than the second mixture ratio. Therefore, the concentration of hydrogen peroxide contained in the first SPM is higher than the concentration of hydrogen peroxide contained in the second SPM.
  • the first SPM has a higher removal ability than the second SPM. Therefore, the resist can be efficiently removed from the substrate. Then, after the first SPM is supplied to the substrate, the second SPM is supplied to the substrate. Although the second SPM has a lower removal ability than the first SPM, almost all the resist is removed from the substrate by the supply of the first SPM, so that only the resist that is relatively easy to remove remains on the substrate. Therefore, the resist can be reliably removed from the substrate even in the case of the second SPM having poor removal ability.
  • the first SPM supplied to the substrate and discharged from the substrate flows into the drainage pipe, not the recovery pipe.
  • the first SPM discharged from the substrate has a relatively high concentration of hydrogen peroxide and a relatively low concentration of sulfuric acid.
  • the first SPM discharged from the substrate contains many contaminants (such as carbides of the resist) generated by the reaction between the first SPM and the resist. Therefore, the first SPM discharged from the substrate is not suitable for collection.
  • the second SPM discharged from the substrate has a relatively high sulfuric acid concentration. Further, the amount of contaminants contained in the second SPM discharged from the substrate is smaller than the amount of contaminants contained in the first SPM discharged from the substrate. Therefore, the second SPM having a relatively high sulfuric acid concentration and a low contaminant content is led to the recovery pipe to create a sulfuric acid-containing liquid.
  • the prepared sulfuric acid-containing liquid is mixed with a hydrogen peroxide solution. Thereby, the sulfuric acid contained in the sulfuric acid-containing liquid reacts with the hydrogen peroxide, and a new SPM is created. Therefore, the amount of discarded SPM can be reduced.
  • the SPM when the sulfuric acid concentration, that is, the ratio of the volume of sulfuric acid before mixing to the volume of sulfuric acid and hydrogen peroxide solution before mixing is large, the SPM is recovered. it can. Further, instead of maintaining the state where the sulfuric acid concentration is high, the SPM having a high concentration of hydrogen peroxide and a sufficient removal ability is supplied to the substrate before starting the recovery of the SPM, so that the resist can be efficiently removed from the substrate. Can be removed from Therefore, SPM having a high sulfuric acid concentration can be recovered while efficiently removing the resist from the substrate.
  • the substrate processing apparatus is connected to the drainage pipe, a first guard surrounding the substrate held by the substrate holding unit, and connected to the collection pipe, A second guard surrounding the substrate held by the substrate holding unit.
  • the switching unit determines the state of the first guard and the second guard in a first state in which the first guard receives the liquid discharged from the substrate and a state in which the liquid discharged from the substrate is the first state.
  • a guard switching unit for switching between a second state received by the second guard.
  • the control device controls the guard switching unit to cause the first guard to receive the first SPM discharged from the substrate in the first SPM supply step.
  • the first SPM discharged from the substrate is received by the first guard surrounding the substrate.
  • the second SPM discharged from the substrate is received by a second guard surrounding the substrate.
  • the first SPM received by the first guard flows into a drain pipe connected to the first guard.
  • the second SPM received by the second guard flows into a collection pipe connected to the second guard.
  • the first SPM discharged from the substrate contains many contaminants. Therefore, after the first guard receives the first SPM, contaminants may remain on the inner wall of the first guard. When the second SPM discharged from the substrate is received and collected by the first guard, contaminants adhering to the first guard may be mixed into the second SPM. Accordingly, by causing the second guard different from the first guard to receive the second SPM, the amount of contaminants contained in the recovered SPM can be reduced.
  • the present invention includes a nozzle for discharging SPM, which is a mixture of sulfuric acid and hydrogen peroxide, from a discharge port toward a substrate held by a substrate holding unit, and a mixing unit communicating with the discharge port.
  • a substrate processing method executed in a substrate processing apparatus, wherein the SPM supplied to a substrate at least partially covered with a resist and held by the substrate holding unit, recovers SPM discharged from the substrate, and removes sulfuric acid.
  • a SPM discharging step of discharging the generated SPM from the discharge port.
  • the sulfuric acid concentration of the sulfuric acid-containing solution to be prepared is required to be within a predetermined concentration range.
  • the temperature of the sulfuric acid-containing liquid to be prepared is required to be within a predetermined temperature range.
  • the sulfuric acid concentration and temperature of the sulfuric acid-containing liquid are adjusted in a form separated from hydrogen peroxide, so that the sulfuric acid-containing liquid that satisfies both the required concentration range and temperature range can be satisfactorily prepared. Can be created. Then, by mixing the prepared sulfuric acid-containing solution with the hydrogen peroxide solution, the resist can be efficiently removed from the substrate using SPM prepared based on the recovered sulfuric acid-containing solution.
  • the step of preparing a sulfuric acid-containing liquid includes a step of collecting the SPM discharged from the substrate and storing the collected SPM as a sulfuric acid-containing liquid in a first tank of a first liquid storage unit; A sulfuric acid replenishing step of replenishing sulfuric acid into the first tank, and storing the sulfuric acid-containing liquid sent from the first tank in a second tank of a second liquid storage unit different from the first tank. And heating the sulfuric acid-containing liquid circulating in the second tank and the first pipe connected at both ends to the second tank by a first heater in a second liquid storage unit. And a step.
  • the SPM discharging step includes a step of supplying the sulfuric acid-containing liquid circulating in the second tank and the first pipe to the mixing unit.
  • the SPM discharged from the substrate and collected in the first liquid storage section is stored in the first tank as a sulfuric acid-containing liquid. Also, sulfuric acid from the sulfuric acid replenishing unit is replenished to the first tank. This makes it possible to accurately adjust the sulfuric acid concentration of the sulfuric acid-containing liquid stored in the first tank to a required concentration range.
  • the sulfuric acid-containing liquid sent from the first liquid storage section circulates through the second tank and the first pipe.
  • the sulfuric acid-containing liquid circulating in the second tank and the first pipe is heated by the first heater. Thereby, the temperature of the sulfuric acid-containing liquid circulating in the second tank and the first pipe can be accurately adjusted to a required temperature range.
  • the second liquid storage section for exclusively controlling the temperature of the sulfuric acid-containing liquid is provided separately from the first liquid storage section that can replenish sulfuric acid to the sulfuric acid-containing liquid (the sulfuric acid concentration of the sulfuric acid-containing liquid can be adjusted). Since the temperature of the sulfuric acid to be replenished is room temperature, if the temperature of the sulfuric acid-containing solution is adjusted while replenishing sulfuric acid in the storage portion for adjusting the temperature of the sulfuric acid-containing solution, the sulfuric acid content in the storage portion is reduced. Fluid temperature is not stable. Since the second liquid storage unit for exclusively adjusting the temperature of the sulfuric acid-containing liquid and the first liquid storage unit capable of replenishing the sulfuric acid-containing liquid with sulfuric acid are separately provided, the second liquid storage unit is provided. The temperature of the sulfuric acid-containing liquid stabilizes. Thereby, the sulfuric acid-containing liquid sent to the mixing section can be adjusted to a desired temperature range.
  • the substrate processing method changes the ratio of the sulfuric acid-containing solution to the hydrogen peroxide solution in the mixing section, thereby providing a first mixing ratio representing the ratio of the sulfuric acid-containing solution to the hydrogen peroxide solution.
  • a first SPM supply for mixing the sulfuric acid-containing liquid and the hydrogen peroxide solution at a ratio to form a first SPM, and supplying the prepared first SPM to a substrate held by the substrate holding unit; Changing the ratio of the sulfuric acid-containing solution to the hydrogen peroxide solution in the mixing section and the ratio of the sulfuric acid-containing solution to the hydrogen peroxide solution in the mixing section, wherein the second mixing ratio is larger than the first mixing ratio.
  • a second SPM is prepared by mixing sulfuric acid and a hydrogen peroxide solution with the second SPM, and after the supply of the first SPM is stopped in the first SPM supply step, Substrate holding A second SPM supply step of supplying the substrate held by the knit, and the first SPM supplied to the substrate and discharged from the substrate in the first SPM supply step is held by the substrate holding unit.
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed at the first mixing ratio.
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed at the second mixing ratio.
  • Each of the first mixing ratio and the second mixing ratio represents a ratio of the volume of the sulfuric acid-containing liquid before mixing to the volume of the hydrogen peroxide solution before mixing.
  • the first mixture ratio is smaller than the second mixture ratio. Therefore, the concentration of hydrogen peroxide contained in the first SPM is higher than the concentration of hydrogen peroxide contained in the second SPM.
  • the first SPM has a higher removal ability than the second SPM. Therefore, the resist can be efficiently removed from the substrate. Then, after the first SPM is supplied to the substrate, the second SPM is supplied to the substrate. Although the second SPM has a lower removal ability than the first SPM, almost all the resist is removed from the substrate by the supply of the first SPM, so that only the resist that is relatively easy to remove remains on the substrate. Therefore, the resist can be reliably removed from the substrate even in the case of the second SPM having poor removal ability.
  • the first SPM supplied to the substrate and discharged from the substrate flows into the drainage pipe, not the recovery pipe.
  • the first SPM discharged from the substrate has a relatively high concentration of hydrogen peroxide and a relatively low concentration of sulfuric acid.
  • the first SPM discharged from the substrate contains many contaminants (such as carbides of the resist) generated by the reaction between the first SPM and the resist. Therefore, the first SPM discharged from the substrate is not suitable for collection.
  • the second SPM discharged from the substrate has a relatively high sulfuric acid concentration. Further, the amount of contaminants contained in the second SPM discharged from the substrate is smaller than the amount of contaminants contained in the first SPM discharged from the substrate. Therefore, the second SPM having a relatively high sulfuric acid concentration and a low contaminant content is led to the recovery pipe to create a sulfuric acid-containing liquid.
  • the prepared sulfuric acid-containing liquid is mixed with a hydrogen peroxide solution. Thereby, the sulfuric acid contained in the sulfuric acid-containing liquid reacts with the hydrogen peroxide, and a new SPM is created. Therefore, the amount of discarded SPM can be reduced.
  • the SPM when the sulfuric acid concentration, that is, the ratio of the volume of sulfuric acid before mixing to the volume of sulfuric acid and hydrogen peroxide solution before mixing is large, the SPM is recovered. it can. Further, instead of maintaining the state where the sulfuric acid concentration is high, the SPM having a high concentration of hydrogen peroxide and a sufficient removal ability is supplied to the substrate before starting the recovery of the SPM, so that the resist can be efficiently removed from the substrate. Can be removed from Therefore, SPM having a high sulfuric acid concentration can be recovered while efficiently removing the resist from the substrate.
  • the first SPM discharged from the substrate in the first SPM supply step surrounds the substrate, and is connected to the drain pipe.
  • the first SPM capturing step to be received by the first guard and the second SPM discharged from the substrate in the second SPM supply step surround the substrate and are connected to the recovery pipe.
  • a second SPM capturing step to be received by the second guard is a first SPM discharged from the substrate in the first SPM supply step.
  • the first SPM discharged from the substrate is received by the first guard surrounding the substrate.
  • the second SPM discharged from the substrate is received by a second guard surrounding the substrate.
  • the first SPM received by the first guard flows into a drain pipe connected to the first guard.
  • the second SPM received by the second guard flows into a collection pipe connected to the second guard.
  • the first SPM discharged from the substrate contains many contaminants. Therefore, after the first guard receives the first SPM, contaminants may remain on the inner wall of the first guard. When the second SPM discharged from the substrate is received and collected by the first guard, contaminants adhering to the first guard may be mixed into the second SPM. Accordingly, by causing the second guard different from the first guard to receive the second SPM, the amount of contaminants contained in the recovered SPM can be reduced.
  • FIG. 1 is a schematic diagram of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above.
  • FIG. 2 is a view of the first sulfuric acid-containing liquid supply device and the device main body shown in FIG. 1 as viewed from the horizontal direction.
  • FIG. 3 is an enlarged sectional view showing the configuration of the third capture filter shown in FIG.
  • FIG. 4 is a view of the second sulfuric acid-containing liquid supply device and the device main body shown in FIG. 1 as viewed from the horizontal direction.
  • FIG. 5 is an illustrative sectional view for explaining a configuration example of the processing unit shown in FIG.
  • FIG. 6 is a block diagram for explaining an electrical configuration of the substrate processing apparatus.
  • FIG. 1 is a schematic diagram of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above.
  • FIG. 2 is a view of the first sulfuric acid-containing liquid supply device and the device main body shown in FIG. 1 as viewed from the horizontal direction.
  • FIG. 7 is a flowchart for explaining an example of substrate processing performed by the substrate processing apparatus.
  • FIG. 8 is a timing chart showing the transition of the mixing ratio of the sulfuric acid-containing solution and the hydrogen peroxide solution in the SPM step (S3 in FIG. 7), the operation of the first guard and the second guard, and the like.
  • FIG. 9 is a flowchart showing a flow in which a sulfuric acid-containing solution and a hydrogen peroxide solution are mixed to produce SPM, and SPM collected from one substrate is supplied to another substrate.
  • FIG. 10 is a graph showing changes in the sulfuric acid concentration of the recovered sulfuric acid-containing solution.
  • FIG. 11 is a view of the first sulfuric acid-containing liquid supply device according to the second embodiment of the present invention viewed from the horizontal direction.
  • FIG. 12 is a view of the first sulfuric acid-containing liquid supply device according to the third embodiment of the present invention as viewed from the horizontal direction.
  • FIG. 13 is a diagram for explaining a change in the filtering
  • FIG. 1 is a schematic view of a substrate processing apparatus 1 according to a first embodiment of the present invention as viewed from above.
  • the substrate processing apparatus 1 is a single-wafer processing apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 includes an apparatus main body 2 disposed in a clean room, an indexer unit 3 coupled to the apparatus main body 2, a processing liquid supply device, and a control device 4 for controlling the substrate processing apparatus 1.
  • the indexer unit 3 includes a plurality of load ports LP each holding a plurality of carriers C accommodating the substrates W, and an indexer robot IR for transporting the substrates W to each carrier C.
  • the apparatus main body 2 includes a transfer chamber 5 and a plurality of processing units 6 for processing the substrate W transferred from the plurality of load ports LP with a processing fluid such as a processing liquid or a processing gas.
  • the plurality of processing units 6 form six towers respectively arranged at six horizontally separated positions. Each tower includes a plurality (for example, three) of processing units 6 stacked vertically. The six towers are arranged three on each side of the transfer chamber 5.
  • the processing unit 6 is arranged in an outer wall 7 of the apparatus main body 2, that is, is surrounded by the outer wall 7.
  • the substrate processing apparatus 1 includes a first substrate transfer robot CR1 and a second substrate transfer robot CR2 as transfer robots in addition to the indexer robot IR.
  • the first substrate transfer robot CR1 and the second substrate transfer robot CR2 are arranged in the transfer chamber 5.
  • the indexer robot IR transfers the substrate W between the load port LP and the first substrate transfer robot CR1.
  • the indexer robot IR includes a hand that supports the substrate W.
  • the first substrate transport robot CR1 transports the substrate W between the indexer robot IR and the processing units 6 included in the two towers on the load port LP side, and the indexer robot IR and the second substrate transport robot CR2. The substrate W is transported between.
  • the second substrate transport robot CR2 transports the substrate W between the indexer robot IR and the processing units 6 included in the four towers on the opposite side from the load port LP side.
  • the first substrate transfer robot CR1 and the second substrate transfer robot CR2 include hands that support the substrate W.
  • the processing liquid supply device supplies a processing liquid (sulfuric acid-containing liquid (etching liquid or cleaning liquid)) to the processing unit 6.
  • the processing liquid supply device includes a sulfuric acid-containing liquid supply device 8 that supplies a sulfuric acid-containing liquid containing sulfuric acid to the processing unit 6.
  • the sulfuric acid-containing liquid supply device 8 collects the sulfuric acid-containing liquid discharged from the processing unit 6, adjusts the sulfuric acid-containing liquid, and supplies the adjusted sulfuric acid-containing liquid to the processing unit 6.
  • the sulfuric acid-containing liquid supply device 8 includes a first sulfuric acid-containing liquid supply device 9 disposed outside the clean room, and a second sulfuric acid-containing liquid supply device 10 disposed outside the outer wall 7 in the clean room.
  • the substrate processing apparatus 1 includes two first sulfuric acid-containing liquid supply devices 9.
  • the two first sulfuric acid-containing liquid supply devices 9 are arranged in a space below the clean room called a sub-fab.
  • Each first sulfuric acid-containing liquid supply device 9 corresponds to three towers arranged on one side of the transfer chamber 5.
  • Each first sulfuric acid-containing liquid supply device 9 is supplied with the SPM discharged from the processing units 6 included in the corresponding three columns.
  • the first sulfuric acid-containing liquid supply device 9 includes a first liquid storage unit 11 that collects the SPM discharged from the processing unit 6, stores the collected SPM as a sulfuric acid-containing liquid, and adjusts the SPM to a predetermined state.
  • the first sulfuric acid-containing liquid supply device 9 is provided with a second sulfuric acid-containing liquid supply device 10 in one-to-one correspondence. That is, the substrate processing apparatus 1 includes two second sulfuric acid-containing liquid supply devices 10.
  • the sulfuric acid-containing liquid is sent from the corresponding first sulfuric acid-containing liquid supply device 9 to the second sulfuric acid-containing liquid supply device 10.
  • the second sulfuric acid-containing liquid supply device 10 includes a second liquid storage part 12 for storing the sulfuric acid-containing liquid sent from the first liquid storage part 11 and adjusting the sulfuric acid-containing liquid to a predetermined sulfuric acid concentration and temperature.
  • the sulfuric acid-containing liquid adjusted by the second liquid storage unit 12 is supplied to the SPM nozzle (nozzle) 13 of the processing unit 6 (see FIGS. 2 and 4).
  • Hydrogen peroxide water is supplied to the SPM nozzle 13 from a hydrogen peroxide water supply unit 122 (see FIG. 4).
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution supplied to the SPM nozzle 13 are mixed inside the SPM nozzle 13 (mixing section), thereby generating SPM. Then, the SPM is discharged from a discharge port 13a (see FIG. 5) formed below the SPM nozzle 13.
  • the discharge port 13a communicates with the inside of the SPM nozzle 13. Then, in the processing unit 6, the SPM discharged from the discharge port 13a is supplied to the substrate W. Thereby, the resist is removed from the substrate W.
  • a sulfuric acid-containing liquid is prepared based on the SPM discharged and collected from the substrate W instead of the SPM itself (sulfuric acid-containing liquid preparation step).
  • the prepared sulfuric acid-containing liquid is reused as SPM by being mixed with a hydrogen peroxide solution.
  • the sulfuric acid concentration of the sulfuric acid-containing solution to be prepared is required to be within a predetermined concentration range.
  • the temperature of the sulfuric acid-containing liquid to be prepared is required to be within a predetermined temperature range.
  • the sulfuric acid-containing liquid supply device 8 focuses on sulfuric acid contained in the recovered SPM and adjusts the sulfuric acid concentration and temperature of the sulfuric acid-containing liquid in a form separated from hydrogen peroxide. A sulfuric acid-containing liquid that satisfies the above conditions can be satisfactorily prepared.
  • the prepared sulfuric acid-containing liquid is mixed with hydrogen peroxide at the SPM nozzle 13 to generate SPM, and the generated SPM is discharged from the SPM nozzle 13 and supplied to the substrate W (SPM discharging step).
  • the resist can be efficiently removed from the substrate W by the SPM created based on the recovered sulfuric acid-containing liquid.
  • FIG. 2 is a view of the first sulfuric acid-containing liquid supply device 9 and the device main body 2 shown in FIG. 1 as viewed from the horizontal direction.
  • FIG. 3 is an enlarged sectional view showing the configuration of the third capture filter 37 shown in FIG.
  • the first liquid storage unit 11 included in the first sulfuric acid-containing liquid supply device 9 includes a reclaim tank (reclaim @ tank) 21 and a first circulation tank (first tank) 22. , A first circulation pipe (second pipe) 23, a first circulation heater (second heater) 24, and a sulfuric acid replenishment unit 25.
  • the reclaim tank 21 stores SPM collected from a total of nine processing units 6 included in the corresponding three towers as a sulfuric acid-containing liquid. Specifically, a downstream end of a collection lead-out pipe 26 connected to a collection pipe 156 described later is connected to the reclaim tank 21. The SPM collected in the processing cup 111 of each processing unit 6 is guided to the reclaim tank 21 through the collection pipe 156 and the collection lead-out pipe 26, and stored in the reclaim tank 21 as a sulfuric acid-containing liquid.
  • a first capture filter 27 that captures and removes foreign matter in the SPM flowing through the collection and discharge pipe 26 is provided at an intermediate portion of the collection and discharge pipe 26.
  • the first capture filter 27 is a filter for capturing relatively large foreign matter contained in the SPM.
  • the first capture filter 27 has the same configuration as a third capture filter 37 described later.
  • the first capture filter 27 has a larger diameter of a hole 71 (see FIG. 3) described later than the second capture filter 30 and the third capture filter (filter) 37 described below.
  • the collection and discharge pipe 26 extends vertically, and the SPM flowing through the collection and discharge pipe 26 presses the SPM against the first capture filter 27 by its own weight. Thereby, a relatively large foreign substance is captured by the first capture filter 27. Then, the SPM from which relatively large foreign matter has been removed is stored in the reclaim tank 21 as a sulfuric acid-containing liquid.
  • the upstream end of a transfer pipe 28 whose downstream end is connected to the first circulation tank 22 is connected to the reclaim tank 21.
  • a first liquid sending device 29 such as a pump for pumping out the sulfuric acid-containing liquid in the reclaim tank 21 and relatively small foreign matter contained in the sulfuric acid-containing liquid flowing through the transfer pipe 28 are provided.
  • a second capture filter 30 for capturing and removing is interposed.
  • the second capture filter 30 has the same configuration as the third capture filter 37 described below.
  • the second capture filter 30 has a diameter of a hole 71 (see FIG. 3) equivalent to that of the third capture filter 37.
  • the first liquid sending device 29 and the second capture filter 30 are arranged in this order from the reclaim tank 21 side. Therefore, the sulfuric acid-containing liquid flowing through the transfer pipe 28 is pressed against the second capture filter 30 by the pumping force of the first liquid sending device 29. Thereby, the foreign matter can be captured by the second capture filter 30.
  • the sulfuric acid-containing liquid is sent from the reclaim tank 21 to the first circulation tank 22 via the transfer pipe 28, and the sulfuric acid-containing liquid is stored in the first circulation tank 22 (first storage step).
  • the first circulation tank 22 is connected to a first liquid guide pipe 31 extending toward the second sulfuric acid-containing liquid supply device 10 (second liquid storage unit 12).
  • a second liquid feeding device 32 such as a pump for pumping out the sulfuric acid-containing liquid in the first circulation tank 22 is provided at an intermediate portion of the first liquid introducing pipe 31.
  • a third capture filter 37 and an opening / closing valve 38 are interposed in the middle of the first liquid guide pipe 31 on the downstream side of the second liquid feeding device 32.
  • the third capture filter 37 is a filter for capturing and removing relatively small foreign matters contained in the sulfuric acid-containing liquid flowing through the first liquid guide pipe 31.
  • the third capture filter 37 removes foreign matter that has not been completely removed by the second capture filter 30.
  • the third capture filter 37 is, for example, a tubular filter whose downstream end is closed, and is, for example, a standard closed type filter.
  • a plurality of holes 71 penetrating the third capture filter 37 are formed in the entire area of the third capture filter 37 in the thickness direction of the third capture filter 37.
  • the hole 71 of the third capture filter 37 has, for example, a square shape when viewed from the thickness direction of the third capture filter 37, but has a polygonal shape other than a regular shape, a circular shape, or an elliptical shape when viewed from the direction. It may be.
  • the third capture filter 37 is detachably attached to a housing 72 that holds the third capture filter 37 inside.
  • the housing 72 includes an inflow portion 73 to which a downstream end of a pipe (first liquid guide pipe 31) upstream of the third capture filter 37 is connected, and a pipe (downstream side of the third capture filter 37).
  • An outlet 74 to which the upstream end of the first liquid guide pipe 31) is connected.
  • the inside of the housing 72 is separated by the third capture filter 37 into the upstream space B1 of the third capture filter 37 through which the sulfuric acid-containing liquid to be filtered flows, and the filtered sulfuric acid-containing liquid. It is partitioned into a downstream space B2 of the third capture filter 37 which circulates.
  • the sulfuric acid-containing liquid flowing through the first liquid introduction pipe 31 is pressed against the third capture filter 37 by the pumping force of the second liquid sending device 32, and the sulfuric acid-containing liquid flows from the upstream space B1 toward the downstream space B2.
  • the liquid flows and passes through the hole 71 of the third capture filter 37.
  • the sulfuric acid-containing liquid is filtered by the third capture filter 37.
  • Foreign matter contained in the sulfuric acid-containing liquid present in the upstream space B1 is trapped in the hole 71 by being adsorbed by the wall surface of the third capture filter 37 that defines the hole 71.
  • foreign substances are removed by the third capture filter 37.
  • the open / close valve 38 is a valve for controlling the flow of the sulfuric acid-containing liquid in the first liquid introduction pipe 31 and the stop thereof.
  • a return pipe 40 is connected to the first liquid guide pipe 31 between the open / close valve 38 and the third capture filter 37 in a branched manner.
  • the downstream end of the return pipe 40 extends to the first circulation tank 22.
  • a return valve 41 is interposed in the middle of the return pipe 40.
  • the first circulation pipe 23 is constituted by the portion of the first liquid guide pipe 31 downstream of the branch position 42 of the return pipe 40 and the return pipe 40.
  • the sulfuric acid replenishment unit 25 is a unit that supplies fresh sulfuric acid (sulfuric acid not used for processing the substrate W) to the first circulation tank 22.
  • the sulfuric acid replenishment unit 25 includes a sulfuric acid replenishment pipe 44 for replenishing the first circulation tank 22 with sulfuric acid, and a sulfuric acid replenishment valve 45 for opening and closing the sulfuric acid replenishment pipe 44.
  • the sulfuric acid to be replenished is unused sulfuric acid (for example, concentrated sulfuric acid), and the sulfuric acid concentration is higher than the sulfuric acid concentration in the sulfuric acid-containing liquid in the first circulation tank 22.
  • the replenished sulfuric acid is at room temperature (about 23 ° C. to about 25 ° C.).
  • the second liquid feeding device 32 and the first circulation heater 24 are constantly driven. Therefore, when the opening / closing valve 38 is closed and the return valve 41 is opened, the sulfuric acid-containing liquid pumped from the first circulation tank 22 flows through the first liquid introducing pipe 31 to the branch position 42, and the branch position From 42, it is returned to the first circulation tank 22 through the return pipe 40. In other words, the sulfuric acid-containing liquid is circulating in the first circulation tank 22 and the first circulation pipe 23 during the period when the sulfuric acid-containing liquid is not sent to the second liquid storage unit 12.
  • the opening / closing valve 38 is opened and the return valve 41 is closed, so that the sulfuric acid-containing liquid pumped from the first circulation tank 22 is discharged.
  • the liquid is supplied to the second liquid storage section through the first liquid guide pipe 31.
  • the first circulation heater 24 is interposed in the middle of the first liquid guide pipe 31 and upstream of the first liquid feeding device 29.
  • the first circulation heater 24 heats the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 (second heating step).
  • the heating temperature of the first circulation heater 24 is set to a predetermined first temperature (a second heating temperature, for example, about 120 ° C. to about 130 ° C.).
  • a second heating temperature for example, about 120 ° C. to about 130 ° C.
  • the sulfuric acid-containing liquid adjusted to the first temperature is stored in the first circulation tank 22. be able to. After the opening and closing valve 38 is opened, the sulfuric acid-containing liquid adjusted to the first temperature can be sent to the second liquid storage unit 12.
  • first liquid storage unit 11 further includes a drainage tank 50.
  • a drain pipe 46 extending toward the drain tank 50 is connected to the first circulation tank 22.
  • a drain valve 47 that opens and closes the drain pipe 46 is provided at an intermediate portion of the drain pipe 46.
  • an outlet pipe 48 extends from the drainage tank 50, and a downstream end of the outlet pipe 48 is connected to a cooling unit (not shown).
  • a third liquid sending device 49 such as a pump is interposed in the outlet pipe 48.
  • the sulfuric acid-containing liquid stored in the drainage tank 50 is pumped out to the outlet pipe 48 and supplied to the cooling unit.
  • the sulfuric acid-containing liquid cooled by the cooling unit is guided to a waste liquid device (not shown) provided outside the machine, and is processed in the waste liquid device.
  • the first liquid storage unit 11 has been described above.
  • the SPM collected from the processing unit 6 is stored in the first circulation tank 22 as a sulfuric acid-containing liquid.
  • the sulfuric acid-containing liquid stored in the first circulation tank 22 circulates through the first circulation pipe 23. Further, the sulfuric acid from the sulfuric acid replenishing unit 25 is replenished to the first circulation tank 22. Since the sulfuric acid replenishing unit 25 is provided, the first liquid storage unit 11 can be regarded as a liquid storage unit for adjusting the sulfuric acid concentration.
  • FIG. 4 is a view of the second sulfuric acid-containing liquid supply device 10 and the device main body 2 shown in FIG. 1 as viewed from the horizontal direction.
  • the second liquid storage unit 12 included in the second sulfuric acid-containing liquid supply device 10 includes a second circulation tank (second tank) 51, a second circulation heater (first heater) 52, 2 and a heater (third heater) 54.
  • the downstream end of the first liquid guide pipe 31 is connected to the second circulation tank 51.
  • a sulfuric acid-containing liquid whose temperature has been adjusted to a first temperature (for example, about 120 ° C. to about 130 ° C.) in the first liquid storage unit 11 is led to the second circulation tank 51. Then, the introduced sulfuric acid-containing liquid is stored in the second circulation tank 51 (second storage step).
  • a liquid meter 65 having a sensor unit at each of a plurality of positions having different heights is attached to the second circulation tank 51, and the liquid meters 65 are stored in the second circulation tank 51 by these liquid meters 65. The liquid level of the sulfuric acid-containing liquid is detected.
  • a common pipe 51A is connected to the second circulation tank 51.
  • the second circulation heater 52 is interposed in the middle of the common pipe 51A.
  • ⁇ 3Three sulfuric acid-containing liquid distribution pipes 51B are connected to the second circulation tank 51 and the common pipe 51A. Specifically, the upstream ends of three sulfuric acid-containing liquid circulation pipes 51B for supplying sulfuric acid to the corresponding towers are connected to the downstream end of the common pipe 51A. The downstream ends of these three sulfuric acid-containing liquid circulation pipes 51B are connected to the second circulation tank 51.
  • a second circulation pipe 53 is configured by the common pipe 51A and the sulfuric acid-containing liquid distribution pipe 51B.
  • a fourth liquid feeding device 56 such as a pump for pumping out the sulfuric acid-containing liquid in the common pipe 51A is provided.
  • the sulfuric acid-containing liquid pumped into the second circulation pipe 53 by the fourth liquid feeding device 56 flows through the sulfuric acid-containing liquid circulation pipe 51B from the upstream end to the downstream end, and returns to the second circulation tank 51. Thereby, the sulfuric acid-containing liquid circulates through the second circulation tank 51 and the second circulation pipe 53 (the common pipe 51A and the sulfuric acid-containing liquid circulation pipe 51B).
  • FIG. 4 only one tower is shown in detail, and the other two towers are only described as “other towers” and detailed description is omitted.
  • the second circulation heater 52 heats the sulfuric acid-containing liquid circulating in the second circulation tank 51 and the second circulation pipe 53 (the common pipe 51A and the sulfuric acid-containing liquid circulation pipe 51B) (first heating step).
  • the heating temperature of the second circulation heater 52 is set to a predetermined second temperature (> first temperature; first heating temperature, for example, about 160 ° C.).
  • first temperature first heating temperature, for example, about 160 ° C.
  • the sulfuric acid-containing liquid is reduced from the first temperature up to the second temperature. It is adjusted to the temperature.
  • the second liquid storage section 12 branches from the second circulation pipe 53 and supplies a sulfuric acid-containing liquid supply pipe 57 for supplying the sulfuric acid-containing liquid to a plurality (three) of the processing units 6 included in the corresponding tower. As many as the number of processing units 6 included in the tower.
  • a heater (third heater) 54 is interposed in the middle of each of the sulfuric acid-containing liquid supply pipes 57.
  • a flow meter 58, a sulfuric acid-containing liquid flow rate adjusting valve (mixing ratio changing unit) 59, and a sulfuric acid-containing liquid valve are arranged downstream from the heater 54 in this order from the heater 54 side. 60 are interposed.
  • the flow meter 58 is a flow meter that detects the flow rate of the sulfuric acid-containing liquid flowing in each sulfuric acid-containing liquid supply pipe 57.
  • the sulfuric acid-containing liquid flow rate adjusting valve 59 is a valve for adjusting the opening of the sulfuric acid-containing liquid supply pipe 57 to adjust the flow rate of the sulfuric acid-containing liquid supplied to the SPM nozzle 13.
  • the sulfuric acid-containing liquid flow control valve 59 includes a valve body provided with a valve seat therein, a valve body for opening and closing the valve seat, and an actuator for moving the valve body between an open position and a closed position. It may be.
  • the sulfuric acid-containing liquid valve 60 is a valve for controlling the supply of the sulfuric acid-containing liquid to the SPM nozzle 13 and the stop thereof.
  • the return pipe 61 is branched and connected to the sulfuric acid-containing liquid supply pipe 57 between the sulfuric acid-containing liquid valve 60 and the sulfuric acid-containing liquid flow rate adjusting valve 59.
  • the downstream end of the return pipe 61 is connected to the sulfuric acid-containing liquid distribution pipe 51B.
  • the pressure loss at the upstream side of the branch position 63 in the sulfuric acid-containing liquid supply pipe 57 is greater than the pressure loss at the return pipe 61.
  • the control device 4 When supplying the sulfuric acid-containing liquid to the SPM nozzle 13, the control device 4 opens the sulfuric acid-containing liquid valve 60.
  • the pressure loss in the return pipe 61 is larger than the pressure loss in the sulfuric acid-containing liquid supply pipe 57 on the downstream side of the branch position 63. Therefore, the sulfuric acid-containing liquid in the upstream part of the branch position 63 in the sulfuric acid-containing liquid supply pipe 57 is supplied to the downstream part of the branch position 63 in the sulfuric acid-containing liquid supply pipe 57, and from this downstream part to the SPM nozzle 13. Supplied.
  • the control device 4 closes the sulfuric acid-containing liquid valve 60.
  • the pressure loss in the return pipe 61 is smaller than the pressure loss in the sulfuric acid-containing liquid supply pipe 57 on the downstream side of the branch position 63. Therefore, the sulfuric acid-containing liquid that has reached the branch position 63 is guided to the return pipe 61 without flowing backward in the sulfuric acid-containing liquid supply pipe 57 on the upstream side of the branch position 63.
  • the sulfuric acid-containing liquid guided to the return pipe 61 returns to the sulfuric acid-containing liquid circulation pipe 51B, and circulates again through the second circulation tank 51 and the second circulation pipe 53 (the common pipe 51A and the sulfuric acid-containing liquid circulation pipe 51B). I do.
  • the heater 54 heats the sulfuric acid-containing liquid flowing through the sulfuric acid-containing liquid supply pipe 57.
  • the heating temperature of the heater 54 is set to a predetermined third temperature (> second temperature, for example, about 165 ° C.).
  • the sulfuric acid-containing liquid flows through the sulfuric acid-containing liquid supply pipe 57, the sulfuric acid-containing liquid, which has been adjusted to the second temperature, rises from the second temperature to the third temperature. .
  • the fourth liquid supply device 56 and the second circulation heater 52 are constantly driven. Therefore, during the operation of the substrate processing apparatus 1, the second circulation tank 51 and the second circulation pipe 53 (the common pipe 51 ⁇ / b> A and the sulfuric acid-containing liquid circulation pipe 51 ⁇ / b> B) are connected to the sulfuric acid-containing liquid adjusted to the second temperature. Is circulating.
  • the sulfuric acid-containing liquid valve 60 When the sulfuric acid-containing liquid valve 60 is closed, the sulfuric acid-containing liquid flowing through the second circulation pipe 53 flows from the second circulation pipe 53 to the sulfuric acid-containing liquid supply pipe 57, and returns via the branch position 63 to the return pipe 61. And returns to the sulfuric acid-containing liquid distribution pipe 51B. Thereby, the second circulation tank 51 and the second circulation pipe 53 are circulated.
  • the sulfuric acid-containing liquid valve 60 when the sulfuric acid-containing liquid valve 60 is open, the sulfuric acid-containing liquid flowing through the sulfuric acid-containing liquid distribution pipe 51B flows from the second circulation pipe 53 to the sulfuric acid-containing liquid supply pipe 57, and is supplied to the SPM nozzle 13. You. That is, the sulfuric acid-containing liquid adjusted to the third temperature is supplied to the SPM nozzle 13.
  • the liquid amount of the sulfuric acid-containing liquid stored in the second circulation tank 51 is constantly monitored by the control device 4. Then, when the liquid amount of the sulfuric acid-containing liquid stored in the second circulation tank 51 becomes smaller than the lower limit liquid amount, the opening / closing valve 38 is opened, and the first liquid storage pipe 11 to the first liquid introducing pipe 31 are opened. A sulfuric acid-containing liquid is supplied through the passage.
  • One of the three sulfuric acid-containing liquid circulation pipes 51B has a sulfuric acid-containing liquid flowing through the sulfuric acid-containing liquid circulation pipe 51B downstream of the fourth liquid supply device 56 (that is, the second circulation tank 51 and the second circulation tank 51).
  • a sulfuric acid concentration meter 64 for measuring the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second circulation pipe 53 is interposed. Since it is considered that the sulfuric acid concentrations of the sulfuric acid-containing liquids flowing through the three second circulation pipes 53 are the same as each other, it is sufficient that the sulfuric acid concentration meter 64 is interposed in one of the three second circulation pipes 53. .
  • the sulfuric acid concentration meter 64 By referring to the output of the sulfuric acid concentration meter 64, that is, the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second circulation tank 51 and the second circulation pipe 53 (the sulfuric acid content stored in the second circulation tank 51)
  • the sulfuric acid concentration of the liquid is constantly monitored by the control device 4.
  • the sulfuric acid replenishment valve 45 for opening and closing the sulfuric acid replenishment pipe 44 is opened, Sulfuric acid is supplied to one circulation tank 22 (sulfuric acid replenishment step).
  • the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 increases, and accordingly, after a certain period of time, the second circulation tank 51 and the second circulation tank 51 The sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second circulation pipe 53 increases.
  • the second liquid storage unit 12 has been described above.
  • the sulfuric acid-containing liquid sent from the first liquid storage section 11 is stored in the second circulation tank 51.
  • the sulfuric acid-containing liquid stored in the second circulation tank 51 is heated. Thereby, the temperature of the sulfuric acid-containing liquid in the second liquid storage section 12 can be raised to a temperature suitable for processing. Therefore, the second liquid storage unit 12 can be regarded as a liquid storage unit for adjusting the temperature of the sulfuric acid-containing liquid.
  • FIG. 5 is an illustrative cross-sectional view for explaining a configuration example of the processing unit 6.
  • the processing unit 6 holds a box-shaped chamber 107 having an internal space, and one substrate W in the chamber 107 in a horizontal posture, and moves the substrate W around a vertical rotation axis A1 passing through the center of the substrate W.
  • the chamber 107 includes a box-shaped partition wall 112, an FFU (fan filter unit) 114 as a blower unit that sends clean air from above the partition wall 112 into the partition wall 112 (corresponding to the inside of the chamber 107), and a lower portion of the partition wall 112. And an exhaust device (not shown) for exhausting the gas in the chamber 107 from the inside.
  • the FFU 114 is disposed above the partition 112 and is attached to the ceiling of the partition 112. The FFU 114 sends clean air from the ceiling of the partition 112 into the chamber 107.
  • the exhaust device (not shown) is connected to the bottom of the processing cup 111 via an exhaust duct 113 connected to the processing cup 111, and sucks the gas in the processing cup 111 from the bottom of the processing cup 111.
  • a downflow (downflow) is formed in the chamber 107 by the FFU 114 and an exhaust device (not shown).
  • the spin chuck 108 As the spin chuck 108, a clamping chuck that holds the substrate W horizontally while sandwiching the substrate W in the horizontal direction is employed.
  • the spin chuck 108 includes a spin motor (rotating unit) M, a spin shaft 115 integrated with a drive shaft of the spin motor M, and a disk attached substantially horizontally to the upper end of the spin shaft 115. And a spin base 116 in the shape of a circle.
  • the spin base 116 includes a horizontal circular upper surface 116a having an outer diameter larger than the outer diameter of the substrate W.
  • a plurality (three or more, for example, six) of holding members 117 are arranged at a peripheral portion thereof.
  • the plurality of holding members 117 are arranged at appropriate intervals on the circumference corresponding to the outer peripheral shape of the substrate W at the peripheral edge of the upper surface of the spin base 116.
  • the SPM nozzle 13 is, for example, a straight nozzle that discharges SPM in a continuous flow state.
  • the SPM nozzle 13 is attached to the tip of the nozzle arm 119.
  • the SPM nozzle 13 is attached to the nozzle arm 119 in a vertical posture for discharging a processing liquid (SPM) in a direction perpendicular to the upper surface of the substrate W, for example.
  • the nozzle arm 119 extends in the horizontal direction.
  • a nozzle moving unit 120 that moves the SPM nozzle 13 by moving the nozzle arm 119 is coupled to the nozzle arm 119.
  • the nozzle moving unit 120 is configured to include an electric motor.
  • the nozzle moving unit 120 moves the SPM nozzle 13 horizontally by horizontally moving the nozzle arm 119 around a vertical swing axis set around the processing cup 111.
  • the nozzle moving unit 120 moves the SPM between the processing position where the SPM discharged from the SPM nozzle 13 lands on the upper surface of the substrate W and the retracted position where the SPM nozzle 13 is located around the spin chuck 108 in plan view.
  • the nozzle 13 is moved horizontally.
  • the processing position is, for example, the center position where the SPM discharged from the SPM nozzle 13 lands on the center of the upper surface of the substrate W.
  • the processing liquid supply device includes a hydrogen peroxide solution supply unit 122 that supplies hydrogen peroxide solution (H 2 O 2 ) to the SPM nozzle 13.
  • the hydrogen peroxide solution supply unit 122 includes a hydrogen peroxide solution pipe 135 connected to the SPM nozzle 13, a hydrogen peroxide solution valve 136 for opening and closing the hydrogen peroxide solution pipe 135, and a hydrogen peroxide solution valve 136.
  • a hydrogen peroxide water flow rate adjusting valve (mixing ratio changing unit) 137 for adjusting the opening degree to adjust the flow rate of the hydrogen peroxide water flowing through the hydrogen peroxide water valve 136.
  • the hydrogen peroxide water flow control valve 137 includes a valve body provided with a valve seat therein, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position. It may be a configuration. Hydrogen peroxide water at a normal temperature (20 to 40 ° C.) whose temperature has not been adjusted is supplied to the hydrogen peroxide water pipe 135 from a hydrogen peroxide water supply source (not shown).
  • the sulfuric acid-containing liquid valve 60 and the hydrogen peroxide water valve 136 are opened, the high temperature (165 ° C.) sulfuric acid-containing liquid from the sulfuric acid-containing liquid supply pipe 57 and the hydrogen peroxide water from the hydrogen peroxide water pipe 135 are subjected to SPM. It is supplied into a casing (not shown) of the nozzle 13 and is sufficiently mixed (stirred) in the casing. By this mixing, the sulfuric acid-containing solution and the hydrogen peroxide solution are uniformly mixed, and a reaction between the sulfuric acid and the hydrogen peroxide solution contained in the sulfuric acid-containing solution produces a mixed solution of sulfuric acid and hydrogen peroxide solution (SPM). You.
  • the SPM contains peroxomonosulfuric acid (H 2 SO 5 ) having a strong oxidizing power, and is higher than the temperature of the sulfuric acid-containing liquid (for example, about 165 ° C.) and the temperature of the hydrogen peroxide solution before mixing (for example, about 190 ° C.). (About 220 ° C.).
  • the generated high-temperature SPM is discharged from a discharge port opened at the tip (for example, the lower end) of the casing of the SPM nozzle 13.
  • the flow rate of the sulfuric acid-containing liquid supplied to the SPM nozzle 13 is changed by the sulfuric acid-containing liquid flow rate adjusting valve 59.
  • the flow rate of the hydrogen peroxide solution supplied to the SPM nozzle 13 is changed by a hydrogen peroxide solution flow control valve 137. Accordingly, the mixing ratio of the sulfuric acid-containing liquid and the hydrogen peroxide solution is changed by the sulfuric acid-containing liquid flow rate control valve 59 and the hydrogen peroxide solution flow rate control valve 137.
  • the mixing ratio of the sulfuric acid-containing solution and the hydrogen peroxide solution is, for example, 30: 1 (sulfuric acid-containing solution: hydrogen peroxide solution) to 2: 1 (sulfuric acid-containing solution: (Aqueous hydrogen peroxide).
  • the rinsing liquid supply unit 110 includes a rinsing liquid nozzle 147 that discharges a rinsing liquid toward the upper surface of the substrate W.
  • the rinse liquid nozzle 147 is, for example, a straight nozzle that discharges the liquid in a continuous flow state.
  • the rinsing liquid nozzle 147 is a fixed nozzle fixed to the partition 112 of the chamber 107.
  • the discharge port of the rinse liquid nozzle 147 is directed toward the center of the upper surface of the substrate W.
  • the rinsing liquid nozzle 147 may be a scan nozzle that can move within the chamber 107. That is, the rinsing liquid supply unit 110 may include a nozzle moving unit that moves the rinsing liquid landing position on the upper surface of the substrate W within the upper surface of the substrate W by moving the rinsing liquid nozzle 147.
  • the rinse liquid nozzle 147 is connected to a rinse liquid pipe 148 for guiding a rinse liquid from a rinse liquid supply source.
  • a rinsing liquid valve 149 for switching the supply / stop of the rinsing liquid from the rinsing liquid nozzle 147 is provided in the middle of the rinsing liquid pipe 148.
  • the rinsing liquid valve 149 When the rinsing liquid valve 149 is opened, the rinsing liquid is supplied from the rinsing liquid pipe 148 to the rinsing liquid nozzle 147, and is discharged from a discharge port provided at a lower end of the rinsing liquid nozzle 147.
  • the rinse liquid is, for example, deionized water (DIW (Deionized @ Water)), but is not limited to DIW.
  • DIW Deionized @ Water
  • the rinsing liquid may be at room temperature (20 to 40 ° C.) or may be heated before being supplied to the substrate W.
  • the processing cup 111 is disposed outside (in a direction away from the rotation axis A1) the substrate W held by the spin chuck 108.
  • the processing cup 111 surrounds the side of the spin base 116.
  • the processing liquid supplied to the substrate W is shaken off around the substrate W.
  • the upper end 111 a of the processing cup 111 that is opened upward is disposed above the spin base 116. Therefore, a processing liquid such as a chemical solution or water discharged around the substrate W is received by the processing cup 111. Then, the processing liquid received by the processing cup 111 is sent to the reclaim tank 21 of the first liquid storage unit 11 or sent to a waste liquid device (not shown) via a cooling unit (not shown).
  • the processing cup 111 includes a plurality of cylindrical guards (a first guard 143, a second guard 144, and a third guard 145) for receiving a processing liquid (a chemical solution or a rinsing liquid) scattered around the substrate W; A plurality of annular cups (the first cup 141 and the second cup 142) for receiving the processing solution guided by the guard, and a cylindrical member 140 surrounding the plurality of guards and the plurality of cups.
  • a processing liquid a chemical solution or a rinsing liquid
  • the processing cup 111 further includes a guard elevating unit 146 for independently elevating and lowering the individual guards (the first guard 143, the second guard 144, and the third guard 145).
  • Guard elevating unit 146 includes, for example, an electric motor that generates power, and a ball screw mechanism that transmits the power of the electric motor to any guard. When the guard lifting unit 146 raises and lowers at least one of the three guards, the state of the processing cup 111 switches.
  • the state of the processing cup 111 includes a retracted state in which the upper ends of all guards are disposed below the substrate W (a state shown in FIG. 5), and a state in which the first guard 143 is disposed on the peripheral end surface of the substrate W.
  • the first cup 141 surrounds the spin chuck 108 inside the cylindrical member 140.
  • the first cup 141 defines an annular first groove 150 into which the processing liquid used for processing the substrate W flows.
  • a drain port 151 is opened at the lowest portion of the bottom of the first groove 150, and a first drain pipe 152 is connected to the drain port 151.
  • the processing liquid introduced into the first drainage pipe 152 is sent to a drainage device, where it is processed.
  • the second cup 142 surrounds the first cup 141 inside the cylindrical member 140.
  • the second cup 142 defines an annular second groove 153 into which the processing liquid used for processing the substrate W flows.
  • a drain / recovery port 154 is opened at the lowest portion of the bottom of the second groove 153, and a common pipe 155 is connected to the drain / recovery port 154.
  • the recovery pipe 156 and the second drain pipe 157 are branched from the common pipe 155.
  • the upstream end of the collection pipe 156 is connected to the shared pipe 155, and the downstream end of the collection pipe 156 is connected to the reclaim tank 21 of the first liquid storage unit 11.
  • a collection valve 158 is interposed in the collection pipe 156, and a drain valve 159 is interposed in the second drain pipe 157.
  • the drain valve 159 is closed and the recovery valve 158 is opened, the liquid flowing in the common pipe 155 is guided to the recovery pipe 156.
  • the drain valve 159 is opened and the collection valve 158 is closed, the liquid flowing in the common pipe 155 is guided to the second drain pipe 157.
  • the collection valve 158 and the drain valve 159 are included in a collection and drain switching unit that switches a pipe into which the liquid discharged from the substrate W flows between the collection pipe 156 and the second drain pipe 157.
  • the innermost first guard 143 surrounds the spin chuck 108 inside the cylindrical member 140.
  • the first guard 143 includes a cylindrical lower end 163 surrounding the periphery of the spin chuck 108, a cylindrical portion 164 extending outward from the upper end of the lower end 163 (in a direction away from the rotation axis A1 of the substrate W), Cylindrical middle portion 165 extending vertically upward from the upper end of the shape portion 164; and an annular upper end portion 166 extending diagonally upward from the upper end of the middle portion 165 inward (in a direction approaching the rotation axis A1 of the substrate W).
  • the lower end 163 of the first guard 143 is located on the first groove 150 of the first cup 141.
  • the inner peripheral edge of the upper end 166 of the first guard 143 has a larger diameter than the substrate W held by the spin chuck 108 in plan view.
  • the cross-sectional shape of the upper end 166 of the first guard 143 is linear.
  • the cross-sectional shape of the upper end 166 may be a shape other than a linear shape such as an arc.
  • the second guard 144 from the inside surrounds the first guard 143 inside the cylindrical member 140.
  • the second guard 144 includes a cylindrical portion 167 surrounding the first guard 143, an annular upper end portion 168 extending obliquely upward from the upper end of the cylindrical portion 167 toward the center (in a direction approaching the rotation axis A1 of the substrate W). ,have.
  • the cylindrical portion 167 of the second guard 144 is located on the second groove 153 of the second cup 142.
  • the inner peripheral end of the upper end 168 of the second guard 144 has a larger diameter than the substrate W held by the spin chuck 108 in plan view.
  • the cross-sectional shape of the upper end 168 of the second guard 144 is straight.
  • the cross-sectional shape of the upper end 168 may be a shape other than a linear shape such as an arc.
  • the upper end 168 of the second guard 144 vertically overlaps the upper end 166 of the first guard 143.
  • the upper end 168 of the second guard 144 is close to the upper end 166 of the first guard 143 with a small gap in a state where the first guard 143 and the second guard 144 are closest to each other. Is formed.
  • the third guard 145 from the inside surrounds the second guard 144 inside the cylindrical member 140.
  • the third guard 145 includes a cylindrical portion 170 surrounding the second guard 144, an annular upper end portion 171 extending obliquely upward from the upper end of the cylindrical portion 170 toward the center (in a direction approaching the rotation axis A ⁇ b> 1 of the substrate W). ,have.
  • the inner peripheral end of the upper end portion 171 has a larger diameter than the substrate W held by the spin chuck 108 in a plan view.
  • the cross-sectional shape of the upper end 171 is linear.
  • the cross-sectional shape of the upper end 171 may be a shape other than a linear shape such as an arc.
  • the first groove 150 of the first cup 141, the inner wall 143a of the first guard 143, and the outer periphery of the casing of the spin chuck 108 are formed in a first flow space (in other words, a first flow space) through which the chemical solution used for processing the substrate W is guided. , Drainage space) SP1.
  • the second groove 153 of the second cup 142, the outer wall 143b of the first guard 143, and the inner wall 144a of the second guard 144 are formed in the second flow space (in other words, the second flow space into which the chemical solution used for processing the substrate W is guided).
  • the collection space SP2 is partitioned.
  • the first distribution space SP1 and the second distribution space SP2 are isolated from each other by a first guard 143.
  • the guard elevating unit 146 moves each guard (the first guard 143, the first guard 143, between the upper position where the upper end of the guard is located above the substrate W and the lower position where the upper end of the guard is located below the substrate W).
  • the second guard 144 and the third guard 145) are moved up and down.
  • the guard elevating unit 146 can hold each guard at an arbitrary position between the upper position and the lower position.
  • the supply of the processing liquid to the substrate W is performed in a state where one of the guards faces the peripheral end surface of the substrate W.
  • first facing state of the processing cup 111 in which the innermost first guard 143 faces the peripheral end surface of the substrate W all of the first guard 143, the second guard 144, and the third guard 145 are on the upper side.
  • Position (processing height position) In the second facing state of the processing cup 111 in which the second guard 144 from the inside faces the peripheral end surface of the substrate W, the second and third guards 144 and 145 are arranged at the upper position, and One guard 143 is arranged at the lower position.
  • the third guard 145 is disposed at the upper position, and the first guard 143 and the second guard 145 are disposed in the upper position.
  • the first guard 143 when the processing cup 111 is switched from the first facing state to the second facing state, the first guard 143 includes the second guard 144 and the third guard 145 arranged at the upper position. In the cleaning position between the upper position and the lower position.
  • This state is a transition state in which the processing cup 111 switches from the first facing state to the second facing state.
  • the processing cup 111 switches to any one of a plurality of states including the first to third opposed states, the retracted state, and the transition state.
  • the transition state is a state in which the first guard 143 faces the peripheral end surface of the substrate W.
  • FIG. 6 is a block diagram for explaining an electrical configuration of the substrate processing apparatus 1.
  • the control device 4 is, for example, a computer.
  • the control device 4 has an arithmetic unit such as a CPU, a storage unit such as a fixed memory device and a hard disk drive, and an input / output unit for inputting and outputting information.
  • the storage unit includes a computer-readable recording medium on which a computer program executed by the arithmetic unit is recorded. Step groups are incorporated in the recording medium so that the control device 4 executes a resist removal process described later.
  • the control device 4 controls the spin motor M, the nozzle moving unit 120, the guard elevating unit 146, the first liquid feeding device 29, the second liquid feeding device 32, and the third liquid feeding device 49 according to a predetermined program. , The fourth liquid feeding device 56, the first circulation heater 24, the second circulation heater 52, the heater 54, and the like.
  • the control device 4 also controls the opening / closing valve 38, the return valve 41, the sulfuric acid replenishing valve 45, the drainage valve 47, the sulfuric acid-containing liquid valve 60, the hydrogen peroxide water valve 136, and the rinsing liquid valve 149 according to a predetermined program. , The opening and closing operations of the collection valve 158, the drain valve 159, and the like.
  • control device 4 adjusts the opening degree of the sulfuric acid-containing liquid flow rate control valve 59 and the hydrogen peroxide water flow rate control valve 137 according to a predetermined program.
  • the measured values of the sulfuric acid concentration meter 64 and the liquid meter 65 are input to the control device 4.
  • FIG. 7 is a flowchart for explaining an example of the processing of the substrate W performed by the substrate processing apparatus 1.
  • An example of the processing of the substrate W is a resist removal processing for removing the resist from the upper surface (main surface) of the substrate W.
  • the resist is, for example, a photoresist formed of a compound containing carbon.
  • the control device 4 When the substrate W is processed by the substrate processing apparatus 1, the control device 4 operates in a state where all the nozzles are retracted from above the spin chuck 108 and all the guards 143 to 145 are located at the lower position.
  • Substrate transfer robot (first substrate transfer robot CR1, second substrate transfer robot CR2 (see FIG. 1)) holding substrate W having at least a part of the surface (device formation surface) of substrate W covered with resist. ) Is made to enter the inside of the chamber 107.
  • the substrate W is transferred to the spin chuck 108 with the surface thereof facing upward, and is held by the spin chuck 108.
  • the control device 4 After the substrate W is held by the spin chuck 108, the control device 4 causes the spin motor M to start rotating. Thus, the rotation of the substrate W is started (S2 in FIG. 7). The rotation speed of the substrate W is increased to a predetermined liquid processing speed (in the range of 300 to 1500 rpm, for example, 500 rpm), and is maintained at that liquid processing speed. Then, when the rotation speed of the substrate W reaches the liquid processing speed, the control device 4 executes the SPM process S3.
  • a predetermined liquid processing speed in the range of 300 to 1500 rpm, for example, 500 rpm
  • the control device 4 controls the nozzle moving unit 120 to move the SPM nozzle 13 from the retracted position to the processing position. Further, the control device 4 simultaneously opens the sulfuric acid-containing liquid valve 60 and the hydrogen peroxide water valve 136.
  • the sulfuric acid-containing liquid is supplied to the SPM nozzle 13 through the sulfuric acid-containing liquid supply pipe 57
  • the hydrogen peroxide solution is supplied to the SPM nozzle 13 through the hydrogen peroxide solution pipe 135.
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed inside the SPM nozzle 13 to generate a high-temperature (for example, 190 to 220 ° C.) SPM.
  • the SPM is discharged from the discharge port of the SPM nozzle 13 and lands on the center of the upper surface of the substrate W.
  • the SPM discharged from the SPM nozzle 13 lands on the upper surface of the substrate W, and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the SPM is supplied to the entire upper surface of the substrate W, and a liquid film of the SPM covering the entire upper surface of the substrate W is formed on the substrate W. This causes a chemical reaction between the resist and the SPM, and the resist on the substrate W is removed from the substrate W by the SPM.
  • the SPM that has moved to the peripheral edge of the substrate W scatters from the peripheral edge of the substrate W toward the side of the substrate W.
  • the control device 4 controls the nozzle moving unit 120 so that the SPM nozzle 13 faces the peripheral position facing the peripheral portion of the upper surface of the substrate W and the central portion of the upper surface of the substrate W. It may be moved between the central position.
  • the entire area of the upper surface of the substrate W is scanned at the liquid landing position of the SPM. Thereby, the entire upper surface of the substrate W is uniformly processed.
  • the control device 4 closes the sulfuric acid-containing liquid valve 60 and the hydrogen peroxide water valve 136 to stop the discharge of the SPM from the SPM nozzle 13.
  • the control device 4 controls the nozzle moving unit 120 (see FIG. 6) to return the SPM nozzle 13 to the retracted position.
  • a rinsing step of supplying a rinsing liquid to the substrate W (S4 in FIG. 7) is performed.
  • control device 4 opens rinsing liquid valve 149 and causes rinsing liquid nozzle 147 to discharge the rinsing liquid toward the center of the upper surface of substrate W.
  • the rinse liquid discharged from the rinse liquid nozzle 147 lands on the center of the upper surface of the substrate W covered by the SPM.
  • the rinsing liquid deposited on the center of the upper surface of the substrate W flows on the upper surface of the substrate W toward the peripheral portion of the substrate W under the centrifugal force caused by the rotation of the substrate W.
  • the control device 4 closes the rinsing liquid valve 149 and causes the rinsing liquid nozzle 147 to stop discharging the rinsing liquid.
  • a drying step of drying the substrate W (S5 in FIG. 7) is performed. Specifically, by controlling the spin motor M, the control device 4 accelerates the substrate W to a drying rotation speed (for example, several thousand rpm) higher than the rotation speed up to the SPM process S3 and the rinsing process S4, and The substrate W is rotated at a rotation speed. As a result, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. Thus, the liquid is removed from the substrate W, and the substrate W is dried. Then, when a predetermined time has elapsed since the start of the high-speed rotation of the substrate W, the control device 4 stops the spin motor M and stops the rotation of the substrate W by the spin chuck 108 (S6 in FIG. 7).
  • a drying rotation speed for example, several thousand rpm
  • the control device 4 controls the substrate transfer robots (the first substrate transfer robot CR1 and the second substrate transfer robot CR2 (see FIG. 1) in a state where all the guards 143 to 145 are located at the lower position. )) Enters the inside of the chamber 107. Then, the control device 4 causes the hand of the substrate transfer robot to hold the substrate W on the spin chuck 108. After that, the control device 4 retreats the hand of the substrate transfer robot from the inside of the chamber 107. Thereby, the substrate W from which the resist has been removed from the surface (device formation surface) is carried out of the chamber 107.
  • FIG. 8 is a timing chart showing the transition of the mixing ratio of the sulfuric acid-containing solution and the hydrogen peroxide solution in the SPM step (S3 in FIG. 7), the operation of the first guard 143 and the second guard 144, and the like.
  • ON of the collection indicates that the SPM discharged from the substrate W flows into the collection pipe 156 via the second guard 144, and OFF of the collection stops the flow of the SPM into the collection pipe 156. Represents that it has been done.
  • ON of the drainage indicates that the SPM discharged from the substrate W flows into the first drainage pipe 152 via the first guard 143, and OFF of the drainage indicates the first drainage. This indicates that the inflow of SPM into the liquid pipe 152 has been stopped.
  • the following operations and the like are executed by the control device 4 controlling the substrate processing apparatus 1. In other words, the control device 4 is programmed to execute the following operations and the like.
  • the sulfuric acid-containing liquid valve 60 and the hydrogen peroxide water valve 136 are opened at time T1 shown in FIG. 8, the sulfuric acid-containing liquid is supplied to the SPM nozzle 13 at the first sulfuric acid-containing liquid flow rate, and the hydrogen peroxide water is supplied to the first sulfuric acid-containing liquid. Is supplied to the SPM nozzle 13 at a flow rate of H 2 O 2 . Therefore, the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed in the SPM nozzle 13 at the first mixing ratio (first sulfuric acid-containing liquid flow rate / first H 2 O 2 flow rate).
  • FIG. 8 shows an example in which the opening degrees of both the sulfuric acid-containing liquid flow rate control valve 59 and the hydrogen peroxide solution flow rate control valve 137 are changed.
  • the sulfuric acid-containing liquid is supplied to the SPM nozzle 13 at a second sulfuric acid-containing liquid flow rate larger than the first sulfuric acid-containing liquid flow rate, and the hydrogen peroxide solution is supplied from the first H 2 O 2 flow rate.
  • the second flow rate of the sulfuric acid-containing liquid and the second flow rate of the H 2 O 2 are such that the flow rate of the SPM discharged from the SPM nozzle 13 is constant even when the mixing ratio (the ratio of the sulfuric acid-containing liquid to the hydrogen peroxide solution) is changed.
  • the mixture ratio is continuously changed from the first mixture ratio to the second mixture ratio. Therefore, the SPM supplied to the upper surface of the substrate W continuously changes from a state where the concentration of hydrogen peroxide is high to a state where the concentration of the sulfuric acid-containing liquid is high.
  • the processing cup 111 is the innermost of the three guards 143 to 145. Is set in a first facing state in which the first guard 143 faces the peripheral end surface of the substrate W. Therefore, the first SPM discharged from the substrate W is received by the inner wall 143a of the first guard 143 and guided by the first cup 141 (first SPM capturing step). Then, the first SPM in the first cup 141 is discharged to the first drainage pipe 152 (the drainage ON shown in FIG. 8; drainage step).
  • the first guard 143 when the mixture ratio of SPM is changed to the second mixture ratio (time T2 shown in FIG. 8), the first guard 143 is located at the upper position. Therefore, the second SPM discharged from the substrate W is received by the inner wall 143 a of the first guard 143 and guided to the first cup 141. After the SPM mixture ratio is changed to the second mixture ratio, the guard elevating unit 146 lowers the first guard 143 to the cleaning height position between the upper position and the lower position at time T3 shown in FIG. Let it. Accordingly, the position where the second SPM directly hits the inner wall 143a of the first guard 143 moves upward with respect to the first guard 143.
  • the guard elevating / lowering unit 146 stops the first guard 143 at the cleaning height position for a predetermined time, and then lowers the first guard 143 to the lower position at time T4 shown in FIG. Therefore, the processing cup 111 is in a state where the SPM nozzle 13 is discharging the second SPM and the entire upper surface of the substrate W is covered with the liquid film of the second SPM. The state is switched to the second facing state facing the peripheral end surface of W. The second SPM discharged from the substrate W is received by the inner wall 144a of the second guard 144 and guided by the second cup 142 (second SPM capturing step).
  • the second SPM in the second cup 142 is sent to the reclaim tank 21 of the first liquid storage unit 11 via the common pipe 155 and the recovery pipe 156.
  • the second SPM supplied to the substrate W is collected (collection step; collection ON shown in FIG. 8).
  • the guard elevating unit 146 raises the first guard 143 from the lower position to the upper position at the time T6 shown in FIG.
  • the processing cup 111 causes the first guard 143 to move around the substrate W in a state where the SPM nozzle 13 stops discharging the SPM and the entire upper surface of the substrate W is covered with the SPM liquid film.
  • the state is switched to the first facing state facing the end face.
  • a rinsing step of supplying a rinsing liquid to the substrate W (S4 in FIG. 7) is performed.
  • the drying step (S5 in FIG. 7) for drying the substrate W is performed in a state where the processing cup 111 is set in a third facing state in which the third guard 145 faces the peripheral end surface of the substrate W.
  • FIG. 9 is a flowchart showing a flow when a sulfuric acid-containing liquid and a hydrogen peroxide solution are mixed to produce SPM, and the SPM collected from one substrate W is supplied to another substrate W.
  • FIG. 5 and FIG. 9 will be referred to.
  • the following operations and the like are executed by the control device 4 controlling the substrate processing apparatus 1.
  • the control device 4 is programmed to execute the following operations and the like.
  • the sulfuric acid-containing solution and the hydrogen peroxide solution are mixed at the first mixing ratio to form the first SPM. It is created (S11 in FIG. 9).
  • the first SPM is discharged from the SPM nozzle 13 and supplied to the substrate W (S12 in FIG. 9). Then, the first SPM discharged from the substrate W is guided to the first drain pipe 152 via the first guard 143 and the first cup 141.
  • the mixing ratio of the sulfuric acid-containing liquid and the hydrogen peroxide solution (the ratio of the flow rate of the sulfuric acid-containing liquid before mixing to the flow rate of the hydrogen peroxide solution before mixing) Increases from the first mixture ratio to the second mixture ratio (S13 in FIG. 9).
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed at the second mixing ratio, and the second SPM is created.
  • the second SPM is supplied to the substrate W (S14 in FIG. 9) and is discharged from the substrate W.
  • the second SPM discharged from the substrate W is supplied to the reclaim tank 21 of the first liquid storage unit 11 through the second guard 144, the second cup 142, the common pipe 155, and the recovery pipe 156, and the sulfuric acid is transferred to the reclaim tank 21. It is recovered as a contained liquid (S15 in FIG. 9).
  • the sulfuric acid-containing liquid collected in the reclaim tank 21 is sent to the second circulation tank 51 of the second liquid storage unit 12 via the first circulation tank 22 of the first liquid storage unit 11. Since hydrogen peroxide is easily decomposed into water and oxygen in a high temperature state, the second SPM (sulfuric acid-containing liquid) recovered in the reclaim tank 21 contains water. However, more than half of the components of the second SPM (sulfuric acid containing liquid) are sulfuric acid.
  • the second SPM (sulfuric acid-containing liquid) collected in the reclaim tank 21 is mixed with the sulfuric acid-containing liquid in the first circulation tank 22 and the sulfuric acid-containing liquid in the second circulation tank 51, and the second circulation is performed.
  • the tank 51 and the second circulation pipe 53 (common pipe 51A and sulfuric acid-containing liquid distribution pipe 51B) are circulated.
  • the sulfuric acid concentration of the circulating sulfuric acid-containing liquid is measured by the sulfuric acid concentration meter 64 (S16 in FIG. 9).
  • the control device 4 monitors the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second circulation tank 51 and the second circulation pipe 53 based on the measurement value of the sulfuric acid concentration meter 64 (S17 in FIG. 9).
  • the control device 4 opens the sulfuric acid-containing liquid valve 60. Accordingly, the sulfuric acid-containing liquid flowing through the sulfuric acid-containing liquid distribution pipe 51B flows through the sulfuric acid-containing liquid supply pipe 57 and is supplied to the SPM nozzle 13. Thus, the sulfuric acid-containing liquid created based on the second SPM discharged from the substrate W is mixed with the hydrogen peroxide solution, and a new SPM is created. Then, this new SPM is supplied to the subsequent substrate W. Thus, the SPM discharged from the substrate W is reused, so that the amount of discarded SPM can be reduced.
  • the control device 4 sets the sulfuric acid replenishing valve interposed in the sulfuric acid replenishing pipe 44. 45 is opened to replenish sulfuric acid in the first circulation tank 22 (S18 in FIG. 9). As the unused sulfuric acid is replenished in the first circulation tank 22, the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 increases.
  • the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 is sent to the second circulation tank 51 through the first liquid introduction pipe 31, whereby the second circulation tank
  • the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the first circulation pipe 51 and the second circulation pipe 53 increases. Thereby, the state in which the sulfuric acid concentration of the circulated sulfuric acid-containing liquid is high is maintained.
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed to form the first SPM, and the generated first SPM is supplied to the substrate W. . Then, after the supply of the first SPM is stopped, the sulfuric acid-containing solution and the hydrogen peroxide solution are mixed to form the second SPM, and the generated second SPM is supplied to the substrate W. Thereby, the first SPM and the second SPM are supplied to the substrate W, and the resist is removed from the substrate W.
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed at the first mixing ratio.
  • the sulfuric acid-containing liquid and the hydrogen peroxide solution are mixed at the second mixing ratio.
  • Each of the first mixing ratio and the second mixing ratio represents a ratio of the volume of the sulfuric acid-containing liquid before mixing to the volume of the hydrogen peroxide solution before mixing.
  • the first mixture ratio is smaller than the second mixture ratio. Therefore, the concentration of hydrogen peroxide contained in the first SPM is higher than the concentration of hydrogen peroxide contained in the second SPM.
  • the first SPM has a higher removal ability than the second SPM. Therefore, the resist can be efficiently removed from the substrate W. Then, after the first SPM is supplied to the substrate W, the second SPM is supplied to the substrate W. Although the second SPM is inferior in removal ability to the first SPM, since almost all the resist is removed from the substrate W by the supply of the first SPM, only the resist that is relatively easily removed remains on the substrate W. . In addition, since the temperature of the SPM (second SPM) supplied to the substrate W is adjusted to a very high temperature (about 190 ° C. to about 220 ° C.), the SPM has a high removal capability although it is inferior to the first SPM. ing. As a result, the resist can be reliably removed from the substrate W even if the second SPM has a poor removal ability.
  • the first SPM discharged from the substrate W flows into the first drain pipe 152 instead of the recovery pipe 156.
  • the first SPM discharged from the substrate W has a relatively high concentration of hydrogen peroxide and a relatively low concentration of sulfuric acid.
  • the first SPM discharged from the substrate W contains many contaminants (such as carbides of the resist) generated by the reaction between the first SPM and the resist. Therefore, the first SPM discharged from the substrate W is not suitable for collection.
  • the second SPM discharged from the substrate W has a relatively high sulfuric acid concentration. Further, the amount of contaminants contained in the second SPM discharged from the substrate W is smaller than the amount of contaminants contained in the first SPM discharged from the substrate W. Therefore, the second SPM having a relatively high sulfuric acid concentration and a low contaminant content is guided to the recovery pipe 156 and mixed again with the hydrogen peroxide solution. Thereby, the sulfuric acid contained in the second SPM reacts with the hydrogen peroxide solution, and a new SPM is created. Therefore, the amount of discarded SPM can be reduced.
  • the SPM when the sulfuric acid concentration, that is, the ratio of the volume of sulfuric acid before mixing to the volume of sulfuric acid and hydrogen peroxide solution before mixing is large, the SPM is recovered. it can. Further, instead of maintaining the state in which the sulfuric acid concentration is high, the SPM having a high concentration of hydrogen peroxide and sufficient removal ability is supplied to the substrate W before the recovery of the SPM is started, so that the resist can be efficiently removed. It can be removed from the substrate W. Therefore, SPM having a high sulfuric acid concentration can be recovered while efficiently removing the resist from the substrate W.
  • the first SPM discharged from the substrate W is received by the first guard 143 surrounding the substrate W.
  • the second SPM discharged from the substrate W is received by the second guard 144 surrounding the substrate W.
  • the first SPM received by the first guard 143 flows into the first drain pipe 152 connected to the first guard 143.
  • the second SPM received by the second guard 144 flows into the collection pipe 156 connected to the second guard 144.
  • the first SPM discharged from the substrate W contains many contaminants. Therefore, after the first guard 143 receives the first SPM, contaminants may remain on the inner peripheral surface of the first guard 143.
  • a contaminant attached to the first guard 143 may be mixed into the second SPM. Therefore, by causing the second guard 144 different from the first guard 143 to receive the second SPM, the amount of contaminants contained in the recovered SPM can be reduced.
  • the first SPM discharged from the substrate W when the supply of the first SPM is stopped is received by the first guard 143. Thereafter, the states of the first guard 143 and the second guard 144 are switched from the first facing state to the second facing state, and the second SPM discharged from the substrate W is received by the second guard 144. . That is, after the discharge of the first SPM containing a large amount of contaminants is completed, the state where the first guard 143 directly faces the substrate W is switched to the state where the second guard 144 directly faces the substrate W. . Accordingly, it is possible to prevent the second guard 144 from being contaminated by the first SPM having a high contaminant content.
  • FIG. 10 is a graph showing changes in the sulfuric acid concentration of the recovered sulfuric acid-containing solution.
  • the vertical axis in FIG. 10 indicates the sulfuric acid concentration of the recovered sulfuric acid-containing solution.
  • the horizontal axis in FIG. 10 indicates the number of substrates W processed by the substrate processing apparatus 1.
  • the ratio X, the ratio Y, and the ratio Z in FIG. 10 all indicate the ratio of the flow rate of the sulfuric acid-containing liquid when the flow rate of the hydrogen peroxide solution is 1.
  • the ratio X is greater than the ratio Y, and the ratio Y is greater than the ratio Z (ratio X> ratio Y> ratio Z).
  • the sulfuric acid concentration of the sulfuric acid-containing liquid decreases as the number of processed substrates W increases, regardless of the ratio of the sulfuric acid-containing liquid at any one of the ratios X, Y, and Z.
  • the rate of decrease in the concentration of sulfuric acid increases as the ratio of the sulfuric acid-containing liquid decreases. That is, when the ratio of the sulfuric acid-containing liquid is the ratio Z, the rate of reduction of the sulfuric acid concentration in the sulfuric acid-containing liquid is the largest, and when the ratio of the sulfuric acid-containing liquid is the ratio Y, the reduction rate of the sulfuric acid concentration in the sulfuric acid-containing liquid is the second. large.
  • the ratio of the sulfuric acid-containing liquid is high, the sulfuric acid concentration in the sulfuric acid-containing liquid is not easily reduced.
  • the ratio of the sulfuric acid-containing liquid is ratio X, even if 100 or more substrates W are processed while recovering the SPM supplied to the substrate W, the sulfuric acid concentration of the sulfuric acid-containing liquid may only decrease to about 90%. confirmed.
  • the SPM having a high sulfuric acid concentration in the sulfuric acid-containing liquid is collected in the sulfuric acid-containing liquid supply device 8, and the collected SPM is reused as the sulfuric acid-containing liquid.
  • the lower the ratio of the sulfuric acid-containing liquid the greater the rate of decrease in the concentration of sulfuric acid. Even if W is treated, the sulfuric acid concentration in the sulfuric acid-containing liquid is hardly reduced. Therefore, the sulfuric acid concentration of the sulfuric acid-containing liquid recovered by the sulfuric acid-containing liquid supply device 8 can be maintained at a value suitable for reuse.
  • the frequency of exchanging the sulfuric acid-containing liquid in the first circulation tank 22 and the second circulation tank 51 with new sulfuric acid and the frequency of replenishing the first circulation tank 22 with new sulfuric acid can be reduced. Therefore, the consumption amount of sulfuric acid (that is, the waste amount of sulfuric acid) can be reduced.
  • the storage portion for adjusting the sulfuric acid concentration (first storage portion 11) and the storage portion for adjusting temperature (second storage portion) 12) are provided separately. Since the temperature of the sulfuric acid to be replenished is room temperature, if the temperature of the sulfuric acid-containing liquid is adjusted while replenishing the sulfuric acid in the second liquid storage part 12 for temperature adjustment, the sulfuric acid-containing liquid in the liquid storage part is adjusted. Temperature is not stable. In this embodiment, the first liquid storage unit 11 for adjusting the sulfuric acid concentration and the second liquid storage unit 12 for adjusting the temperature are separately provided. Temperature stabilizes. Thereby, the sulfuric acid-containing liquid supplied to the SPM nozzle 13 can be adjusted to a desired high temperature.
  • the sulfuric acid-containing liquid is heated by the second and first circulation heaters 52 and 24 in the first liquid storage section 11 and the second liquid storage section 12, respectively. Therefore, more heat can be given to the sulfuric acid-containing liquid. Further, the sulfuric acid-containing liquid whose temperature has been adjusted to the first temperature (about 120 ° C. to about 130 ° C.) in the first liquid storage section 11 is supplied to the second liquid storage section 12. Then, the sulfuric acid-containing liquid is heated in the second liquid storage section 12, and is heated to the second temperature (about 160 ° C.). That is, the sulfuric acid-containing liquid is heated stepwise. Therefore, it is possible to raise the temperature of the sulfuric acid-containing liquid to a higher temperature in the second liquid storage unit 12.
  • the second SPM having the second SPM mixture ratio is inferior in removal ability to the first SPM.
  • the ability to remove SPM depends not only on the concentration of hydrogen peroxide but also on the temperature of the SPM. That is, the ability to remove SPM increases as the temperature of the SPM increases. Then, as the temperature of the sulfuric acid-containing liquid increases, the temperature of the SPM after mixing increases. Therefore, by increasing the temperature of the sulfuric acid-containing liquid before mixing, the SPM removal ability can be kept high even if the mixing ratio is the second mixing ratio. Thereby, even if the mixture ratio is the second mixture ratio, the resist can be efficiently removed from the substrate W.
  • the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second circulation tank 51 and the second circulation pipe 53 is measured by the sulfuric acid concentration meter 64. Therefore, the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second circulation tank 51 and the second circulation pipe 53 can be accurately obtained. Then, when the sulfuric acid concentration measured by the sulfuric acid concentration meter 64 falls below the lower limit, the sulfuric acid replenishment unit 25 supplies sulfuric acid to the first circulation tank 22. Thereby, the sulfuric acid concentration of the sulfuric acid-containing liquid supplied to the SPM nozzle 13 can be adjusted to a desired high concentration.
  • the sulfuric acid-containing liquid is heated using both the first circulation heater 24 and the second circulation heater 52, the sulfuric acid-containing liquid is heated only by the second circulation heater 52. Thus, the load on the second circulation heater 52 can be reduced.
  • FIG. 11 is a view of the first sulfuric acid-containing liquid supply device 209 according to the second embodiment of the present invention as viewed from the horizontal direction. 11, the same components as those shown in FIGS. 1 to 10 are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • the difference between the first sulfuric acid-containing liquid supply device 209 according to the second embodiment and the first sulfuric acid-containing liquid supply device 9 according to the first embodiment is that
  • the third point is that a liquid storage unit 213 is further provided.
  • the sulfuric acid-containing liquid is sent to the third liquid storage section 213 from the first liquid storage section, and the sulfuric acid-containing liquid stored in the third liquid storage section 213 is sent to the second liquid storage section 12.
  • the first liquid storage unit 211 is different from the first liquid storage unit 11 according to the first embodiment in that the first circulation heater 24 is omitted. Further, the first liquid storage unit 211 does not include the drainage tank 50. That is, the first liquid storage unit 211 is not provided with a unit for heating the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23.
  • the SPM collected in the reclaim tank 21 is stored in the reclaim tank 21 as a sulfuric acid-containing liquid.
  • the SPM discharged from the substrate W is recovered in the reclaim tank 21 while being cooled in the process of flowing through the processing cup 111, the recovery pipe 156, and the recovery outlet pipe 26. Therefore, the SPM recovered in the reclaim tank 21 is considerably lower than the temperature of the SPM supplied to the substrate W (about 190 ° C. to about 220 ° C.), but still has a high liquid temperature of about 80 ° C. to about 90 ° C. Have.
  • the sulfuric acid-containing liquid stored in the reclaim tank 21 is sent to the first circulation tank 22 via the transfer pipe 28 by driving the first liquid sending device 29. Then, the sulfuric acid-containing liquid circulates through the first circulation tank 22 and the first circulation pipe 23. In the process in which the sulfuric acid-containing liquid flows through the transfer pipe 28 and the first circulation pipe 23, heat is taken away by the pipe wall of the transfer pipe 28 and the pipe wall of the first circulation pipe 23, so that the temperature of the sulfuric acid-containing liquid drops. .
  • the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 is higher than room temperature (about 23 ° C. to about 25 ° C.) due to thermal equilibrium with the pipe wall of the first circulation pipe 23. The temperature is kept at a fourth temperature (about 40 ° C. to about 60 ° C.) lower than the sulfuric acid-containing liquid stored in the reclaim tank 21.
  • the third liquid storage unit 213 included in the first sulfuric acid-containing liquid supply device 209 includes a third circulation tank (third tank) 222, a third circulation pipe (third pipe) 223, 3 circulating heaters (second heaters) 224.
  • the downstream end of the first liquid guide pipe 31 is connected to the third circulation tank 222.
  • a sulfuric acid-containing liquid at a fourth temperature (for example, about 40 ° C. to about 60 ° C.) is guided to the third circulation tank 222 in the first liquid storage unit 11. Then, the introduced sulfuric acid-containing liquid is stored in the third circulation tank 222 (third storage step).
  • the third circulation tank 222 is connected to a second liquid guide pipe 231 extending toward the second sulfuric acid-containing liquid supply device 10 (second liquid storage unit 12).
  • the downstream end of the second liquid guide pipe 231 is connected to the second circulation tank 51 of the second liquid storage unit 12.
  • a fifth liquid supply such as a pump for pumping out the sulfuric acid-containing liquid in the third circulation tank 222 is provided in the middle of the second liquid guide pipe 231 and in the middle of the first liquid guide pipe 31.
  • a device 232 is interposed.
  • a fourth capture filter 237 and an opening / closing valve 238 are interposed in the middle of the second liquid guide pipe 231 on the downstream side of the fifth liquid feeding device 232.
  • the fourth capture filter 237 is a filter for capturing and removing relatively small foreign matters contained in the sulfuric acid-containing liquid flowing through the second liquid guide pipe 231.
  • the fourth capture filter 237 removes foreign matter that has not been completely removed by the third capture filter 37.
  • the open / close valve 238 is a valve for controlling the flow of the sulfuric acid-containing liquid in the second liquid guide pipe 231 and the stop thereof.
  • the return pipe 240 is branched and connected to the second liquid guide pipe 231 between the open / close valve 238 and the fourth capture filter 237.
  • the downstream end of the return pipe 240 extends to the third circulation tank 222.
  • a return valve 241 is interposed in the middle of the return pipe 240.
  • a third circulation pipe 223 is formed by the return pipe 240 and a downstream portion of the branch position 242 of the return pipe 240 in the second liquid guide pipe 231.
  • the fifth liquid sending device 232 and the third circulation heater 224 are constantly driven. Therefore, when the opening / closing valve 238 is closed and the return valve 241 is opened, the sulfuric acid-containing liquid pumped from the third circulation tank 222 flows through the second liquid guide pipe 231 to the branch position 242, and the branch position 242 is returned to the third circulation tank 222 through the return pipe 240. In other words, the sulfuric acid-containing liquid is circulating in the third circulation tank 222 and the third circulation pipe 223 during a period in which the sulfuric acid-containing liquid is not sent to the second liquid storage unit 12.
  • the opening / closing valve 238 is opened and the return valve 241 is closed, so that the sulfuric acid-containing liquid pumped from the third circulation tank 222 is The liquid is supplied to the second liquid storage unit 12 through the second liquid guide pipe 231.
  • the third circulation heater 224 is interposed in the middle of the second liquid guide pipe 231 on the upstream side of the fifth liquid feeding device 232.
  • the third circulation heater 224 heats the sulfuric acid-containing liquid circulating in the third circulation tank 222 and the third circulation pipe 223 (third heating step).
  • the heating temperature of the third circulation heater 224 is set to a predetermined first temperature (second heating temperature, for example, about 120 ° C. to about 130 ° C.).
  • second heating temperature for example, about 120 ° C. to about 130 ° C.
  • the sulfuric acid-containing liquid adjusted to the first temperature is stored in the third circulation tank 222. be able to. After the opening and closing valve 238 is opened, the sulfuric acid-containing liquid adjusted to the first temperature can be sent to the second liquid storage unit 12.
  • the third liquid storage unit 213 includes a drain pipe 246, a drain valve 247, an outlet pipe 248, a sixth liquid feed device 249, and a drain tank 250.
  • the drainage pipe 246, the drainage valve 247, the lead-out pipe 248, the sixth liquid feeder 249, and the drainage tank 250 are respectively a drainage pipe 46, a drainage valve 47, a lead-out pipe 48, and a third liquid feeder. 49 and the drainage tank 50.
  • the first liquid storage unit 211 is not provided with a unit for heating the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23. That is, the heating of the sulfuric acid-containing liquid is not performed in the first liquid storage unit 211. Therefore, the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 has a relatively low temperature (about 40 ° C. to about 60 ° C.). Therefore, the temperature of the sulfuric acid-containing liquid passing through the third capture filter 37 is relatively low.
  • the third capture filter 37 is used.
  • the filter may expand and the diameter of each hole 71 (see FIG. 3) may increase.
  • the diameter of each hole 71 increases. For this reason, the filtering performance of the third capture filter 37 is reduced, and there is a possibility that foreign matters contained in the sulfuric acid-containing liquid cannot be captured well in the first liquid storage section.
  • the sulfuric acid-containing liquid passing through the third capture filter 37 has a relatively low temperature (about 40 to about 60 ° C.), it is possible to suppress a decrease in the filtering performance of the third capture filter 37. Therefore, foreign matter contained in the sulfuric acid-containing liquid can be satisfactorily captured in the first liquid storage section 211. This makes it possible to supply a clean sulfuric acid-containing liquid to the SPM nozzle 13.
  • the sulfuric acid-containing liquid sent from the first liquid storage section 211 circulates through the third circulation tank 222 and the third circulation pipe 223.
  • the sulfuric acid-containing liquid circulating in the third circulation tank 222 and the third circulation pipe 223 is heated by the third circulation heater 224.
  • the sulfuric acid-containing liquid is heated by the third 224 and the second circulation heater 52, respectively. Since a larger amount of heat can be given to the sulfuric acid-containing liquid, it is possible to raise the temperature of the sulfuric acid-containing liquid to a higher temperature in the second liquid storage unit 12.
  • FIG. 12 is a view of the first sulfuric acid-containing liquid supply device 309 according to the third embodiment of the present invention as viewed from the horizontal direction. 12, the same components as those shown in FIGS. 1 to 10 are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • the first liquid storage unit 311 according to the first sulfuric acid-containing liquid supply device 309 according to the third embodiment is the first liquid storage unit of the first sulfuric acid-containing liquid supply device 9 according to the first embodiment.
  • the difference from the eleventh embodiment is that the first circulation heater 24 is eliminated. Beyond that, the first liquid storage unit 311 has the same configuration as the first liquid storage unit 11.
  • the SPM recovered in the reclaim tank 21 is considerably lower than the temperature of the SPM supplied to the substrate W (about 190 ° C. to about 220 ° C.), but still as high as about 80 ° C. to about 90 ° C. Has a liquid temperature.
  • the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 is at room temperature (about 23 ° C. to about 25 ° C.) due to thermal equilibrium with the pipe wall of the first circulation pipe 23.
  • the temperature is maintained at a fourth temperature (about 40 ° C. to about 60 ° C.) which is higher than that of the sulfuric acid-containing liquid stored in the reclaim tank 21.
  • the fourth sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 is sent to the second storage section 12 of the second sulfuric acid-containing liquid supply device 10.
  • the sulfuric acid-containing liquid circulating in the second circulation tank 51 and the second circulation pipe 53 is heated by the second circulation heater 52, so that the circulation heater is heated. And raise the temperature to a second temperature.
  • the sulfuric acid-containing liquid passing through the third capture filter 37 has a relatively low temperature (about 40 to about 60 ° C.), it is possible to suppress a decrease in the filtering performance of the third capture filter 37. Therefore, foreign matter contained in the sulfuric acid-containing liquid can be satisfactorily captured in the first liquid storage section 311. This makes it possible to supply a clean sulfuric acid-containing liquid to the SPM nozzle 13.
  • the first liquid storage units 211 and 311 are provided with the first circulation tank 22 and the first circulation pipe 23. May be further provided with a cooler 401 for cooling the sulfuric acid-containing liquid circulating through the air.
  • the cooler 401 is interposed on the upstream side of the third liquid feeding device 49, for example, in the middle of the first liquid guide pipe 31.
  • the sulfuric acid-containing liquid is cooled by the circulation of the sulfuric acid-containing liquid in the first circulation tank 22 and the first circulation pipe 23.
  • the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23 is cooled to room temperature (about 23 ° C. to about 25 ° C.) or a low temperature below room temperature. It is also possible to lower it.
  • FIG. 13 is a diagram for explaining changes in the filtering performance of the capture filter (third capture filter 37) due to thermal influence.
  • the filtering performance of the trapping filter improves (ie, relatively small foreign matter).
  • (Fine particles) can be captured well.
  • the temperature of the sulfuric acid-containing liquid passing through the capture filter is set to a lower temperature (temperature A) than the sulfuric acid-containing liquid stored in the reclaim tank, the number of passing fine particles is defined as a reference (100%).
  • the number of passing fine particles is 40%, and the filtering performance is further improved.
  • the temperature of the sulfuric acid-containing liquid is 80 ° C. or higher, the number of passing fine particles is larger than the standard (100%), and the filtering performance deteriorates. Therefore, relatively small foreign substances contained in the sulfuric acid-containing liquid can be more favorably captured in the first liquid storage units 211 and 311. As a result, it is possible to supply an even cleaner sulfuric acid-containing liquid to the SPM nozzle 13.
  • the second liquid storage unit 12 includes a sulfuric acid supply unit 402 that supplies fresh sulfuric acid (sulfuric acid unused for processing the substrate W) to the second circulation tank 51. May be.
  • the sulfuric acid supply unit 402 includes a sulfuric acid supply pipe 403 that replenishes the second circulation tank 51 with sulfuric acid, and a sulfuric acid supply valve 404 that opens and closes the sulfuric acid supply pipe 403.
  • the sulfuric acid supplied to the sulfuric acid supply pipe 403 is unused sulfuric acid (for example, concentrated sulfuric acid).
  • the supply of sulfuric acid from the sulfuric acid supply unit 402 is not used for replenishing sulfuric acid for increasing the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second circulation tank 51 and the second circulation pipe 53. Absent. It is used exclusively for storing the sulfuric acid-containing liquid in the second circulation tank 51 at the start of the activation of the substrate processing apparatus 1 or the like.
  • the SPM collected from the collection and discharge pipe 26 is once collected in the reclaim tank 21 and then stored in the first circulation tank 22. You may make it store directly in the 1st circulation tank 22, without going through the reclaim tank 21. In this case, the reclaim tank 21 may be omitted.
  • the sulfuric acid concentration meter 64 may be arranged not only in one of the sulfuric acid-containing liquid circulation pipes 51B corresponding to each tower but in all of them. Further, the sulfuric acid concentration meter 64 may be arranged in the second circulation tank 51 and / or the common piping 51A instead of the sulfuric acid-containing liquid distribution piping 51B.
  • the sulfuric acid concentration of the sulfuric acid-containing liquid created in the sulfuric acid-containing liquid supply device 8 is used instead of or in combination with the measurement of the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the second circulation tank 51 and the second circulation pipe 53. The measurement may be performed by measuring the sulfuric acid concentration of the sulfuric acid-containing liquid circulating in the first circulation tank 22 and the first circulation pipe 23.
  • one (1) sulfuric acid-containing liquid supply device constituted by one first sulfuric acid-containing liquid supply device (9) and one second sulfuric acid-containing liquid supply device (10) is included in a plurality (three) of columns.
  • the sulfuric acid-containing liquid may be supplied only to the processing unit 6 included in one column. That is, a pair of the first circulation tank 22 and the second circulation tank 51 may be provided in the processing unit 6 in a one-to-one correspondence.
  • the configuration of the common pipe 51A can be omitted, and both ends of the sulfuric acid-containing liquid distribution pipe 51B are connected to the second circulation tank 51. That is, the second circulation pipe 53 can be constituted only by the sulfuric acid-containing liquid circulation pipe 51B.
  • the first liquid storage units 11, 211, 311 and / or the third liquid storage unit 213 are not disposed on a separate floor from the second liquid storage unit 12, but in a clean room (that is, in a clean room). It may be arranged commonly on the same floor as the second liquid storage unit 12). In this case, the first liquid storage units 11, 211, 311 and / or the third liquid storage unit 213 and the second liquid storage unit 12 are not housed and arranged in separate frames, but are shared. You may make it accommodate and arrange in a flame
  • the substrate processing apparatus 1 is an apparatus for processing a substrate W made of a semiconductor wafer
  • the substrate processing apparatus is a substrate for a liquid crystal display device, an organic EL (electroluminescence) display device. (Flat Panel Display) substrate, optical disk substrate, magnetic disk substrate, magneto-optical disk substrate, photomask substrate, ceramic substrate, solar cell substrate, and other substrates. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polarising Elements (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

この基板処理装置は、吐出口を有し、基板に向けて前記吐出口からSPMを吐出するノズルと、前記吐出口に連通する混合部と、前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体を回収し、回収した液体に基づいて硫酸含有液を作成し、作成後の硫酸含有液を前記混合部に供給するための硫酸含有液供給装置と、制御装置とを含む。そして、前記制御装置が、前記基板に供給され当該基板から排出されたSPMを回収して硫酸含有液を作成する硫酸含有液作成工程と、作成後の硫酸含有液および過酸化水素水を前記混合部に供給して前記混合部において硫酸含有液および過酸化水素水を混合することによりSPMを生成し、生成されたSPMを前記吐出口から吐出するSPM吐出工程と、を実行する。

Description

基板処理装置および基板処理方法
 この発明は、基板処理装置および基板処理方法に関する。処理対象となる基板の例には、半導体ウエハ、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。
 半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板を処理する基板処理装置が用いられる。
 下記特許文献1には、基板を1枚ずつ処理する枚葉式の基板処理装置が開示されている。この基板処理装置は、基板を水平に保持しながら回転させるスピンチャックと、スピンチャックに保持されている基板に向けてSPM(硫酸と過酸化水素水との混合液)を吐出するノズルと、を備えている。特許文献1には、基板の処理に用いた後のSPMを回収して、その回収したSPMを以降の処理に再使用する構成が開示されている。
特許文献1:特開2006-024793号公報
 特許文献1では、スピンチャックが収容された処理室から回収されたSPMは、回収ラインを通して回収タンクに回収される。この回収タンクに貯められたSPMは、フィルタによってSPM中に含まれる異物が除去された後、循環タンクに供給される。循環タンクには、SPMノズルに向けて延びたSPM供給配管が接続されている。このSPM供給配管の途中部には、ポンプが介装されている。また、SPM供給配管の途中部には、ポンプの下流側に、フィルタ、ヒータおよび吐出バルブが介装されている。SPM供給配管には、ヒータと吐出バルブとの間において、SPM帰還配管が分岐して接続されている。SPM帰還配管の先端は、循環タンクへ延びている。
  基板処理装置の運転中は、ポンプおよび温度調節器が常に駆動されていて、吐出バルブが閉じられている間は、帰還バルブが開かれることにより、循環タンクから汲み出されるSPMが、SPM供給配管をSPM帰還配管の分岐点まで流れ、その分岐点からSPM帰還配管を通して循環タンクに戻される。つまり、SPMノズルからSPMを吐出しない期間は、循環タンク、SPM供給配管およびSPM帰還配管をSPMが循環している。SPMを循環させることにより、一定温度に温度調節されたSPMが循環タンクに貯留される。そして、SPMノズルからSPMを吐出するタイミングになると、一定温度に温度調節されたSPMが循環タンクから汲み出され、SPM供給配管を通してSPMノズルに供給される。そして、SPMノズルから吐出されたSPMが基板に供給される。
 しかしながら、特許文献1において、SPMの回収および再利用を繰り返すと、SPMに含まれる硫酸および過酸化水素水のそれぞれの濃度が、再利用に適さない値まで低下してしまう。
 とくに、過酸化水素濃度の減少が著しい。すなわち、SPMの温度が高くなるに従って、SPMの除去能力(SPMがレジストを除去する能力)が高まるので、SPMは高温で使用されることが望ましい。しかしながら、過酸化水素は高温状態では水と酸素とに分解し易い。そのため、SPMの回収および再利用を繰り返すと、比較的早期に、過酸化水素濃度が再利用に適さない値まで低下するおそれがある。
 いずれにしても、特許文献1に記載の手法では、SPMに含まれる硫酸および過酸化水素水のそれぞれの濃度が低下するから、基板からレジストを効率良く除去することができない。
 そこで、この発明の目的の一つは、回収された硫酸含有液に基づいて作成されたSPMを用いて基板からレジストを効率良く除去できる基板処理装置および基板処理方法を提供することである。
 この発明は、硫酸および過酸化水素水の混合液であるSPMで基板からレジストを除去する基板処理装置であって、少なくとも一部がレジストで覆われた基板を保持する基板保持ユニットと、吐出口を有し、前記基板保持ユニットに保持されている基板に向けて前記吐出口からSPMを吐出するノズルと、前記吐出口に連通する混合部と、前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体を回収し、回収した液体に基づいて硫酸含有液を作成し、作成後の硫酸含有液を前記混合部に供給するための硫酸含有液供給装置と、過酸化水素水を前記混合部に供給するための過酸化水素水供給ユニットと、前記硫酸含有液供給装置および前記過酸化水素水供給ユニットを制御する制御装置とを含み、前記制御装置が、前記基板に供給され当該基板から排出されたSPMを回収して硫酸含有液を作成する硫酸含有液作成工程と、作成後の硫酸含有液および過酸化水素水を前記混合部に供給して前記混合部において硫酸含有液および過酸化水素水を混合することによりSPMを生成し、生成されたSPMを前記吐出口から吐出するSPM吐出工程と、を実行する、基板処理装置を提供する。
 この明細書において、硫酸含有液とは、硫酸を含む液体であって、硫酸以外の成分を含んでいてもよいが、重量%濃度において、硫酸を半分以上の割合で含む液体である。
 この構成によれば、基板から排出され回収されたSPMに基づいて、SPMそのものではなく硫酸含有液が作成される。作成された硫酸含有液は、過酸化水素水と混合されることによりSPMとして再利用される。
 SPMの除去能力を高める観点から、作成される硫酸含有液の硫酸濃度は、所定の濃度範囲であることが求められる。そして、同様の観点から、作成される硫酸含有液の温度は所定の温度範囲であることが求められる。
 回収されたSPMに含まれる硫酸に着目し、過酸化水素と切り離した形で硫酸含有液の硫酸濃度および温度を調整するので、求められる濃度範囲および温度範囲の双方を満たす硫酸含有液を良好に作成できる。そして、作成された硫酸含有液を過酸化水素水と混合することにより、回収された硫酸含有液に基づいて作成されたSPMを用いて基板からレジストを効率良く除去できる。
 この発明の一実施形態では、前記硫酸含有液供給装置が、第1の貯液部と、第2の貯液部と、を含む。前記第1の貯液部が、回収した液体を貯留する第1のタンクと、前記第1のタンクに硫酸を補充するための硫酸補充ユニットと、を含む。前記第2の貯液部が、前記第1のタンクから送られた液体を貯留する第2のタンクと、前記第2のタンクに両端が接続され、前記第2のタンクに貯留されている液体が循環する第1の配管と、前記第2のタンクおよび前記第1の配管を循環している液体を加熱するための第1のヒータと、を含む。前記制御装置が、前記硫酸含有液作成工程において、前記基板から排出されたSPMを回収して、硫酸含有液として前記第1のタンクに貯留する第1の貯留工程と、前記硫酸補充ユニットによって前記第1のタンクに硫酸を補充する硫酸補充工程と、前記第1のタンクから送られた硫酸含有液を前記第2のタンクに貯留する第2の貯留工程と、前記第2のタンクおよび前記第1の配管を循環している硫酸含有液を前記第1のヒータによって加熱する第1の加熱工程と、を実行する。そして、前記制御装置が、前記SPM吐出工程において、前記第2のタンクおよび前記第1の配管を循環している硫酸含有液を前記混合部に供給する工程を実行する。
 この構成によれば、第1の貯液部において、基板から排出され回収されたSPMが硫酸含有液として第1のタンクに貯留される。また、硫酸補充ユニットからの硫酸が第1のタンクに補充される。これにより、第1のタンクに貯留されている硫酸含有液の硫酸濃度を、求められる濃度範囲に精度良く調整することが可能である。
 また、第2の貯液部において、第1の貯液部から送られた硫酸含有液が、第2のタンクおよび第1の配管を循環する。第2のタンクおよび第1の配管を循環する硫酸含有液が第1のヒータによって加熱される。これにより、第2のタンクおよび第1の配管を循環する硫酸含有液の温度を、求められる温度範囲に精度良く調整することが可能である。
 硫酸含有液の温度調整が専ら行われる第2の貯液部を、硫酸含有液に硫酸を補充可能(硫酸含有液の硫酸濃度を調整可能)な第1の貯液部と別に設けている。補充される硫酸の温度が室温であることから、仮に、硫酸含有液の温度調整を行うための貯液部において、硫酸の補充を行いながら硫酸含有液を温度調整すると、貯液部における硫酸含有液の温度が安定しない。硫酸含有液の温度調整が専ら行われる第2の貯液部と、硫酸含有液に硫酸を補充可能な第1の貯液部と、をそれぞれ別に設けているので、第2の貯液部における硫酸含有液の温度が安定する。これにより、混合部に送られる硫酸含有液を所望の温度範囲に調整できる。
 この発明の一実施形態では、前記第2の貯液部が、前記第2のタンクおよび前記第1の配管を循環している硫酸含有液の硫酸濃度を計測する硫酸濃度計をさらに含む。そして、前記制御装置が、前記硫酸濃度計による計測値が所定の判定値未満である場合に、前記硫酸補充工程を実行する。
 この構成によれば、第2のタンクおよび第1の配管を循環している硫酸含有液の硫酸濃度が濃度計によって計測されるので、第2のタンクおよび第1の配管を循環している硫酸含有液の硫酸濃度を正確に求めることができる。これにより、混合部に送られる硫酸含有液の硫酸濃度を所望の濃度範囲に精度良く調整できる。
 この発明の一実施形態では、前記第1の貯液部が、前記第1のタンクに両端が接続され、前記第1のタンクに貯留されている硫酸含有液が循環する第2の配管と、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を加熱する第2のヒータと、をさらに含む。前記制御装置が、前記硫酸含有液作成工程において、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を第2のヒータによって加熱する第2の加熱工程をさらに実行する。
 この構成によれば、第1の貯液部において、第1のタンクおよび第2の配管を硫酸含有液が循環する。第1のタンクおよび第2の配管を循環する硫酸含有液が第2のヒータによって加熱される。第1および第2の貯液部においてそれぞれ第2および第1のヒータによって硫酸含有液が加熱される。そのため、硫酸含有液により多くの熱量を与えることができる。そのため、第2の貯液部において、硫酸含有液をより高温に昇温させることが可能である。
 また、第1および第2のヒータの双方を用いて硫酸含有液を加熱するので、一方のヒータ(すなわち、第1のヒータ)に加わる負担を低減できる。
 この発明の一実施形態では、前記第1の貯液部が、前記第1のタンクに両端が接続され、前記第1のタンクに貯留されている硫酸含有液が循環する第2の配管をさらに含む。そして、前記第1の貯液部には、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を加熱するためのユニットが設けられていない。
 この構成によれば、第1の貯液部には、第1のタンクおよび第2の配管を循環している硫酸含有液を加熱するためのユニットが設けられていない。すなわち、第1の貯液部において硫酸含有液の加熱が行われない。そのため、第1のタンクおよび第2の配管を循環している硫酸含有液は、比較的低温を有している。
 この発明の一実施形態では、前記第1の貯液部が、前記第2の配管に介装され、当該前記第2の配管を流通する硫酸含有液に含まれる異物を捕獲するフィルタをさらに含む。
 この構成によれば、フィルタによって、第2の配管を流通する硫酸含有液が捕獲される。フィルタを通過する硫酸含有液が比較的低温である。
 第1のタンクおよび第2の配管を、仮に高温の硫酸含有液が流通する場合には、フィルタを高温の硫酸含有液が継続的に流通することに伴ってフィルタが膨張し、フィルタの各孔の径が広がるおそれがある。フィルタの各孔の径が広がると、フィルタによって捕獲可能な異物の径が大きくなる。そのため、フィルタのフィルタリング性能が低下し、第1の貯液部において硫酸含有液に含まれる異物を良好に捕獲できないおそれがある。
 この構成では、フィルタを通過する硫酸含有液が比較的低温であるので、フィルタのフィルタリング性能の低下を抑制できる。そのため、第1の貯液部において硫酸含有液に含まれる異物を良好に捕獲できる。これにより、清浄な硫酸含有液を混合部に供給することが可能である。
 この発明の一実施形態では、前記硫酸含有液供給装置が、第3の貯液部をさらに含む。前記第3の貯液部が、前記第1のタンクから送られる液体を貯留する第3のタンクと、前記第3のタンクに両端が接続され、前記第3のタンクに貯留されている液体が循環する第3の配管と、前記第3のタンクおよび前記第3の配管を循環している液体を加熱するための第2のヒータと、を含む。前記制御装置が、前記硫酸含有液作成工程において、前記第1のタンクから送られた硫酸含有液を前記第3のタンクに貯留する第3の貯留工程と、前記第3のタンクおよび前記第3の配管を循環している硫酸含有液を前記第2のヒータによって加熱する第2の加熱工程と、をさらに実行する。そして、前記制御装置が、前記SPM吐出工程において、前記第3のタンクおよび前記第3の配管を循環している硫酸含有液を前記第2のタンクに送る工程をさらに実行する。
 この構成によれば、第1の貯液部から送られた硫酸含有液が、第3のタンクおよび第3の配管を循環する。第3のタンクおよび第3の配管を循環する硫酸含有液が第2のヒータによって加熱される。第3および第2の貯液部においてそれぞれ第2および第1のヒータによって硫酸含有液が加熱される。硫酸含有液により多くの熱量を与えることができる。そのため、第2の貯液部において、硫酸含有液をより高温に昇温させることが可能である。
 また、第1および第2のヒータの双方を用いて硫酸含有液を加熱するので、第1のヒータに加わる負担を低減できる。
 この発明の一実施形態では、前記第1の貯液部が、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を冷却するためのクーラーをさらに含む。前記制御装置が、前記硫酸含有液作成工程において、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を前記クーラーによって冷却する冷却工程をさらに実行する。
 この構成によれば、第1のタンクおよび第2の配管を循環している硫酸含有液をクーラーによって冷却できる。そのため、第1のタンクおよび第2の配管を循環している硫酸含有液の温度を室温または室温未満まで下げることが可能である。
 この場合、前記第1の貯液部が、前記フィルタをさらに含んでいることが好ましい。
 この構成によれば、フィルタを通過する硫酸含有液の温度を、室温または室温未満まで下げることができるから、フィルタリング性能の低下をより一層効果的に抑制できる。そのため、第1の貯液部において硫酸含有液に含まれる異物を、より一層良好に捕獲できる。これにより、より一層清浄な硫酸含有液を混合部に供給することが可能である。
 この発明の一実施形態では、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液が自然冷却のみによって冷却される。
 この構成によれば、コストアップを招くことなく、硫酸含有液を冷却できる。
 この発明の一実施形態では、前記第1のヒータによる加熱温度である第1の加熱温度が、前記第2のヒータによる加熱温度である第2の加熱温度よりも高い。
 この構成によれば、第1の貯液部(第3の貯液部)において第2の加熱温度にまで昇温された後の硫酸含有液が第2の貯液部に供給される。そして、第2の貯液部において硫酸含有液が加熱されて、第1の加熱温度まで昇温される。つまり、硫酸含有液が段階的に加熱される。そのため、第2の貯液部において、硫酸含有液をより高温まで昇温させることが可能である。これにより、混合部に送られるべき硫酸含有液の温度(第1の加熱温度)を極めて高温に設ける場合であっても、そのような高温の硫酸含有液を良好に作成できる。
 この発明の一実施形態では、前記基板処理装置が、前記第2のタンクまたは前記第1の配管と前記混合部とを接続する硫酸含有液供給配管と、前記硫酸含有液供給配管を流通している硫酸含有液を加熱するための第3のヒータと、をさらに含む。前記制御装置が、前記硫酸含有液作成工程において、前記硫酸含有液供給配管を流通している硫酸含有液を前記第3のヒータによって加熱する第3の加熱工程をさらに実行する。
 この構成によれば、第2のタンクおよび第1の配管を循環している硫酸含有液が、硫酸含有液供給配管に導かれる。そして、硫酸含有液供給配管を流通している硫酸含有液が第3のヒータによって加熱される。第3のヒータによる加熱によって、硫酸含有液を、第2のタンクおよび第1の配管を循環していたときよりもさらに昇温させることが可能である。
 この発明の一実施形態では、前記基板処理装置が、前記混合部における過酸化水素水に対する硫酸含有液の比を変更する混合比変更ユニットと、前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体を回収して前記硫酸含有液供給装置に送るための回収配管と、前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体が流入する排液配管と、前記基板保持ユニットに保持されている基板から排出された液体が流入する配管を、前記排液配管および前記回収配管の間で切り換える切り換えユニットと、をさらに含む。そして、前記制御装置が、前記混合比変更ユニットを制御することにより、過酸化水素水に対する硫酸含有液の比を表す第1の混合比で硫酸含有液および過酸化水素水を混合して第1のSPMを作成し、作成された前記第1のSPMを、前記基板保持ユニットに保持されている基板に供給する第1のSPM供給工程と、前記混合比変更ユニットを制御することにより、過酸化水素水に対する硫酸含有液の比を表し、前記第1の混合比よりも大きい第2の混合比で硫酸および過酸化水素水を混合して第2のSPMを作成し、作成された前記第2のSPMを、前記第1のSPM供給工程において前記第1のSPMの供給が停止された後に、前記基板保持ユニットに保持されている基板に供給する第2のSPM供給工程と、前記切り換えユニットを制御することにより、前記第1のSPM供給工程において前記基板に供給され前記基板から排出された前記第1のSPMを、前記排液配管に流入させる排液工程と、前記切り換えユニットを制御することにより、前記第2のSPM供給工程において前記基板に供給され前記基板から排出された前記第2のSPMを、前記回収配管に流入させる回収工程と、をさらに実行する。
 この構成によれば、第1のSPMを作成するときは、硫酸含有液および過酸化水素水が第1の混合比で混合される。第2のSPMを作成するときは、硫酸含有液および過酸化水素水が第2の混合比で混合される。第1の混合比および第2の混合比は、いずれも、混合前の過酸化水素水の体積に対する混合前の硫酸含有液の体積の比を表す。第1の混合比は、第2の混合比よりも小さい。したがって、第1のSPMに含まれる過酸化水素濃度は、第2のSPMに含まれる過酸化水素の濃度よりも高い。
 過酸化水素濃度が相対的に高いので、第1のSPMは、第2のSPMよりも高い除去能力を有している。したがって、レジストを効率的に基板から除去できる。そして、第1のSPMが基板に供給された後、第2のSPMが基板に供給される。第2のSPMは除去能力が第1のSPMより劣るものの、第1のSPMの供給によって殆ど全てのレジストが基板から除去されているので、比較的除去し易いレジストしか基板に残っていない。そのため、除去能力が劣る第2のSPMであっても、レジストを基板から確実に除去できる。
 基板に供給され基板から排出された第1のSPMは、回収配管ではなく、排液配管に流入する。基板から排出された第1のSPMは、過酸化水素濃度が相対的に高く、硫酸濃度が相対的に低い。それだけでなく、基板から排出された第1のSPMは、第1のSPMとレジストとの反応によって生じた多くの汚染物質(レジストの炭化物など)を含んでいる。したがって、基板から排出された第1のSPMは、回収に適さない。
 その一方で、基板から排出された第2のSPMは、硫酸濃度が相対的に高い。さらに、基板から排出された第2のSPMに含まれる汚染物質の量は、基板から排出された第1のSPMに含まれる汚染物質の量よりも少ない。したがって、硫酸濃度が相対的に高く、汚染物質の含有量が少ない第2のSPMが、回収配管に導かれ硫酸含有液が作成される。作成された硫酸含有液は、過酸化水素水と混合される。これにより、この硫酸含有液に含まれる硫酸が過酸化水素と反応し、新たなSPMが作成される。そのため、SPMの廃棄量を減らすことができる。
 このように、硫酸濃度、つまり、混合前の硫酸および過酸化水素水の体積に対する混合前の硫酸の体積の割合が大きいときに、SPMを回収するので、硫酸濃度が高いSPMを回収することができる。さらに、硫酸濃度が大きい状態を維持するのではなく、SPMの回収を開始する前に、過酸化水素濃度が高く、十分な除去能力を有するSPMを基板に供給するので、レジストを効率的に基板から除去できる。したがって、基板から効率良くレジストを除去しながら、硫酸濃度が高いSPMを回収することができる。
 この発明の一実施形態では、前記基板処理装置が、前記排液配管に接続されて、前記基板保持ユニットに保持されている基板を取り囲む第1のガードと、前記回収配管に接続されて、前記基板保持ユニットに保持されている基板を取り囲む第2のガードと、をさらに含む。前記切り換えユニットが、前記第1のガードおよび前記第2のガードの状態を、前記基板から排出された液体を前記第1のガードが受け止める第1状態と、前記基板から排出された液体を前記第2のガードが受け止める第2状態との間で切り換えるガード切り換えユニットと、を含む。そして、前記制御装置が、前記ガード切り換えユニットを制御することにより、前記第1のSPM供給工程において前記基板から排出された前記第1のSPMを、前記第1のガードに受け止めさせる第1のSPM捕獲工程と、前記ガード切り換えユニットを制御することにより、前記第2のSPM供給工程において前記基板から排出された前記第2のSPMを、前記第2のガードに受け止めさせる第2のSPM捕獲工程と、をさらに実行する。
 この構成によれば、基板から排出された第1のSPMが、基板を取り囲む第1のガードに受け止められる。基板から排出された第2のSPMは、基板を取り囲む第2のガードに受け止められる。第1のガードに受け止められた第1のSPMは、第1のガードに接続された排液配管に流入する。第2のガードに受け止められた第2のSPMは、第2のガードに接続された回収配管に流入する。
 基板から排出された第1のSPMは、多くの汚染物質を含んでいる。したがって、第1のガードが第1のSPMを受け止め後は、汚染物質が第1のガードの内壁に残留している場合がある。基板から排出された第2のSPMを第1のガードで受け止めて回収すると、第1のガードに付着している汚染物質が、第2のSPMに混入する場合がある。したがって、第1のガードとは異なる第2のガードに第2のSPMを受け止めさせることにより、回収されたSPMに含まれる汚染物質の量を減らすことができる。
 この発明は、基板保持ユニットに保持されている基板に向けて吐出口から、硫酸および過酸化水素水の混合液であるSPMを吐出するノズルと、前記吐出口に連通する混合部と、を含む基板処理装置において実行される基板処理方法であって、前記基板保持ユニットに保持されている、少なくとも一部がレジストで覆われた基板に供給され、当該基板から排出されたSPMを回収して硫酸含有液を作成する硫酸含有液作成工程と、作成後の硫酸含有液および過酸化水素水を前記混合部に供給することにより、前記混合部において硫酸含有液および過酸化水素水を混合してSPMを生成し、生成されたSPMを前記吐出口から吐出するSPM吐出工程と、を含む、基板処理方法を提供する。
 この方法によれば、基板から排出され回収されたSPMに基づいて、SPMそのものではなく硫酸含有液が作成される。作成された硫酸含有液は、過酸化水素水と混合されることによりSPMとして再利用される。
 SPMの除去能力を高める観点から、作成される硫酸含有液の硫酸濃度は、所定の濃度範囲であることが求められる。そして、同様の観点から、作成される硫酸含有液の温度は所定の温度範囲であることが求められる。
 回収されたSPMに含まれる硫酸に着目し、過酸化水素と切り離した形で硫酸含有液の硫酸濃度および温度を調整するので、求められる濃度範囲および温度範囲の双方を満たす硫酸含有液を良好に作成できる。そして、作成された硫酸含有液を過酸化水素水と混合することにより、回収された硫酸含有液に基づいて作成されたSPMを用いて基板からレジストを効率良く除去できる。
 この発明の一実施形態では、前記硫酸含有液作成工程が、前記基板から排出されたSPMを回収して硫酸含有液として第1の貯液部の第1のタンクに貯留する工程と、前記第1のタンクに硫酸を補充する硫酸補充工程と、前記第1のタンクから送られた硫酸含有液を、前記第1のタンクとは異なる、第2の貯液部の第2のタンクに貯留する工程と、前記第2のタンク、および前記第2のタンクに両端が接続された第1の配管を循環している硫酸含有液を、第2の貯液部の第1のヒータによって加熱する加熱工程と、を含む。そして、前記SPM吐出工程が、前記第2のタンクおよび前記第1の配管を循環している硫酸含有液を前記混合部に供給する工程を含む。
 この方法によれば、第1の貯液部において、基板から排出され回収されたSPMが硫酸含有液として第1のタンクに貯留される。また、硫酸補充ユニットからの硫酸が第1のタンクに補充される。これにより、第1のタンクに貯留されている硫酸含有液の硫酸濃度を、求められる濃度範囲に精度良く調整することが可能である。
 また、第2の貯液部において、第1の貯液部から送られた硫酸含有液が、第2のタンクおよび第1の配管を循環する。第2のタンクおよび第1の配管を循環する硫酸含有液が第1のヒータによって加熱される。これにより、第2のタンクおよび第1の配管を循環する硫酸含有液の温度を、求められる温度範囲に精度良く調整することが可能である。
 硫酸含有液の温度調整が専ら行われる第2の貯液部を、硫酸含有液に硫酸を補充可能(硫酸含有液の硫酸濃度を調整可能)な第1の貯液部と別に設けている。補充される硫酸の温度が室温であることから、仮に、硫酸含有液の温度調整を行うための貯液部において、硫酸の補充を行いながら硫酸含有液を温度調整すると、貯液部における硫酸含有液の温度が安定しない。硫酸含有液の温度調整が専ら行われる第2の貯液部と、硫酸含有液に硫酸を補充可能な第1の貯液部と、をそれぞれ別に設けているので、第2の貯液部における硫酸含有液の温度が安定する。これにより、混合部に送られる硫酸含有液を所望の温度範囲に調整できる。
 この発明の一実施形態では、前記基板処理方法が、前記混合部における過酸化水素水に対する硫酸含有液の比を変更することにより、過酸化水素水に対する硫酸含有液の比を表す第1の混合比で硫酸含有液および過酸化水素水を混合して第1のSPMを作成し、作成された前記第1のSPMを、前記基板保持ユニットに保持されている基板に供給する第1のSPM供給工程と、前記混合部における過酸化水素水に対する硫酸含有液の比を変更することにより、過酸化水素水に対する硫酸含有液の比を表し、前記第1の混合比よりも大きい第2の混合比で硫酸および過酸化水素水を混合して第2のSPMを作成し、作成された前記第2のSPMを、前記第1のSPM供給工程において前記第1のSPMの供給が停止された後に、前記基板保持ユニットに保持されている基板に供給する第2のSPM供給工程と、前記第1のSPM供給工程において前記基板に供給され前記基板から排出された前記第1のSPMを、前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体を回収して前記硫酸含有液供給装置に送るための回収配管とは異なる配管である排液配管に流入させる排液工程と、前記第2のSPM供給工程において前記基板に供給され前記基板から排出された前記第2のSPMを、前記回収配管に流入させる回収工程と、をさらに含む。
 この方法によれば、第1のSPMを作成するときは、硫酸含有液および過酸化水素水が第1の混合比で混合される。第2のSPMを作成するときは、硫酸含有液および過酸化水素水が第2の混合比で混合される。第1の混合比および第2の混合比は、いずれも、混合前の過酸化水素水の体積に対する混合前の硫酸含有液の体積の比を表す。第1の混合比は、第2の混合比よりも小さい。したがって、第1のSPMに含まれる過酸化水素濃度は、第2のSPMに含まれる過酸化水素の濃度よりも高い。
 過酸化水素濃度が相対的に高いので、第1のSPMは、第2のSPMよりも高い除去能力を有している。したがって、レジストを効率的に基板から除去できる。そして、第1のSPMが基板に供給された後、第2のSPMが基板に供給される。第2のSPMは除去能力が第1のSPMより劣るものの、第1のSPMの供給によって殆ど全てのレジストが基板から除去されているので、比較的除去し易いレジストしか基板に残っていない。そのため、除去能力が劣る第2のSPMであっても、レジストを基板から確実に除去できる。
 基板に供給され基板から排出された第1のSPMは、回収配管ではなく、排液配管に流入する。基板から排出された第1のSPMは、過酸化水素濃度が相対的に高く、硫酸濃度が相対的に低い。それだけでなく、基板から排出された第1のSPMは、第1のSPMとレジストとの反応によって生じた多くの汚染物質(レジストの炭化物など)を含んでいる。したがって、基板から排出された第1のSPMは、回収に適さない。
 その一方で、基板から排出された第2のSPMは、硫酸濃度が相対的に高い。さらに、基板から排出された第2のSPMに含まれる汚染物質の量は、基板から排出された第1のSPMに含まれる汚染物質の量よりも少ない。したがって、硫酸濃度が相対的に高く、汚染物質の含有量が少ない第2のSPMが、回収配管に導かれ硫酸含有液が作成される。作成された硫酸含有液は、過酸化水素水と混合される。これにより、この硫酸含有液に含まれる硫酸が過酸化水素と反応し、新たなSPMが作成される。そのため、SPMの廃棄量を減らすことができる。
 このように、硫酸濃度、つまり、混合前の硫酸および過酸化水素水の体積に対する混合前の硫酸の体積の割合が大きいときに、SPMを回収するので、硫酸濃度が高いSPMを回収することができる。さらに、硫酸濃度が大きい状態を維持するのではなく、SPMの回収を開始する前に、過酸化水素濃度が高く、十分な除去能力を有するSPMを基板に供給するので、レジストを効率的に基板から除去できる。したがって、基板から効率良くレジストを除去しながら、硫酸濃度が高いSPMを回収することができる。
 この発明の一実施形態では、前記基板処理方法が、前記第1のSPM供給工程において前記基板から排出された前記第1のSPMを、前記基板を取り囲んでおり、前記排液配管に接続された第1のガードに受け止めさせる第1のSPM捕獲工程と、前記第2のSPM供給工程において前記基板から排出された前記第2のSPMを、前記基板を取り囲んでおり、前記回収配管に接続された第2のガードに受け止めさせる第2のSPM捕獲工程と、をさらに含む。
 この方法によれば、基板から排出された第1のSPMが、基板を取り囲む第1のガードに受け止められる。基板から排出された第2のSPMは、基板を取り囲む第2のガードに受け止められる。第1のガードに受け止められた第1のSPMは、第1のガードに接続された排液配管に流入する。第2のガードに受け止められた第2のSPMは、第2のガードに接続された回収配管に流入する。
 基板から排出された第1のSPMは、多くの汚染物質を含んでいる。したがって、第1のガードが第1のSPMを受け止め後は、汚染物質が第1のガードの内壁に残留している場合がある。基板から排出された第2のSPMを第1のガードで受け止めて回収すると、第1のガードに付着している汚染物質が、第2のSPMに混入する場合がある。したがって、第1のガードとは異なる第2のガードに第2のSPMを受け止めさせることにより、回収されたSPMに含まれる汚染物質の量を減らすことができる。
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、この発明の第1の実施形態に係る基板処理装置を上から見た模式図である。 図2は、図1に示す第1の硫酸含有液供給装置および装置本体を、水平方向から見た図である。 図3は、図2に示す第3の捕獲フィルタの構成を拡大して示す断面図である。 図4は、図1に示す第2の硫酸含有液供給装置および装置本体を、水平方向から見た図である。 図5は、図1に示す処理ユニットの構成例を説明するための図解的な断面図である。 図6は、前記基板処理装置の電気的構成を説明するためのブロック図である。 図7は、前記基板処理装置によって行われる基板の処理の一例について説明するためのフローチャートである。 図8は、SPM工程(図7のS3)における、硫酸含有液および過酸化水素水の混合比の推移と、第1のガードおよび第2のガードの動作等を示すタイミングチャートである。 図9は、SPMを作成するために硫酸含有液および過酸化水素水を混合し、基板から回収されたSPMを別の基板に供給するときの流れを示すフローチャートである。 図10は、回収された硫酸含有液の硫酸濃度の推移を示すグラフである。 図11は、本発明の第2の実施形態に係る第1の硫酸含有液供給装置を、水平方向から見た図である。 図12は、本発明の第3の実施形態に係る第1の硫酸含有液供給装置を、水平方向から見た図である。 図13は、捕獲フィルタのフィルタリング性能の熱影響による変化を説明するための図である。
 図1は、この発明の第1の実施形態に係る基板処理装置1を上から見た模式図である。
 基板処理装置1は、半導体ウエハなどの円板状の基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、クリーンルーム内に配置された装置本体2と、装置本体2に結合されたインデクサユニット3と、処理液供給装置と、基板処理装置1を制御する制御装置4と、を含む。
 インデクサユニット3は、基板Wを収容する複数のキャリアCをそれぞれ保持する複数のロードポートLPと、各キャリアCに対して基板Wを搬送するためのインデクサロボットIRと、を含む。
 装置本体2は、搬送室5と、複数のロードポートLPから搬送された基板Wを処理液や処理ガスなどの処理流体で処理する複数の処理ユニット6と、を含む。複数の処理ユニット6は、水平に離れた6つの位置にそれぞれ配置された6つの塔を形成している。各塔は、上下に積層された複数(たとえば3つ)の処理ユニット6を含む。6つの塔は、搬送室5の両側に3つずつ配置されている。処理ユニット6は、装置本体2の外壁7の中に配置されており、すなわち外壁7に取り囲まれている。
 基板処理装置1は、搬送ロボットとして、インデクサロボットIRの他に、第1の基板搬送ロボットCR1と、第2の基板搬送ロボットCR2と、を含む。第1の基板搬送ロボットCR1および第2の基板搬送ロボットCR2は、搬送室5内に配置されている。インデクサロボットIRは、ロードポートLPと第1の基板搬送ロボットCR1との間で基板Wを搬送する。インデクサロボットIRは、基板Wを支持するハンドを含む。第1の基板搬送ロボットCR1は、インデクサロボットIRと、ロードポートLP側の2つの塔に含まれる処理ユニット6との間で基板Wを搬送すると共に、インデクサロボットIRと第2の基板搬送ロボットCR2との間で基板Wを搬送する。第2の基板搬送ロボットCR2は、インデクサロボットIRと、ロードポートLP側とは反対側の4つの塔に含まれる処理ユニット6と、の間で基板Wを搬送する。第1の基板搬送ロボットCR1および第2の基板搬送ロボットCR2は、基板Wを支持するハンドを含む。
 処理液供給装置は、処理ユニット6に対して処理液(硫酸含有液(エッチング液や洗浄液))を供給する。処理液供給装置は、処理ユニット6に対して硫酸を含有する硫酸含有液を供給する硫酸含有液供給装置8を含む。硫酸含有液供給装置8は、処理ユニット6から排出された硫酸含有液を回収して硫酸含有液として調整し、調整後の硫酸含有液を処理ユニット6に供給する。硫酸含有液供給装置8は、クリーンルームの外に配置された第1の硫酸含有液供給装置9と、クリーンルームにおいて外壁7の外側に配置された第2の硫酸含有液供給装置10と、を含む。
 この実施形態では、基板処理装置1は、第1の硫酸含有液供給装置9を2つ備えている。2つの第1の硫酸含有液供給装置9は、サブファブ(Sub-Fab)と呼ばれる、クリーンルームの階下スペースに配置されている。各第1の硫酸含有液供給装置9は、搬送室5の片側に配置された3つの塔に対応している。各第1の硫酸含有液供給装置9には、対応する3つの塔に含まれる処理ユニット6から排出されたSPMが供給される。第1の硫酸含有液供給装置9は、処理ユニット6から排出されたSPMを回収して硫酸含有液として貯留し、所定の状態に調整する第1の貯液部11を含む。
 第1の硫酸含有液供給装置9には、第2の硫酸含有液供給装置10が一対一対応で設けられている。すなわち、基板処理装置1は、第2の硫酸含有液供給装置10を2つ備えている。
 第2の硫酸含有液供給装置10には、対応する第1の硫酸含有液供給装置9から硫酸含有液が送られる。第2の硫酸含有液供給装置10は、第1の貯液部11から送られる硫酸含有液を貯留し、所定の硫酸濃度および温度に調整する第2の貯液部12を含む。第2の貯液部12によって調整された硫酸含有液が、処理ユニット6のSPMノズル(ノズル)13(図2および図4参照)に供給される。SPMノズル13には、過酸化水素水供給ユニット122(図4参照)から過酸化水素水が供給される。SPMノズル13に供給された硫酸含有液および過酸化水素水は、SPMノズル13の内部(混合部)で混合され、これによってSPMが生成される。そして、SPMノズル13の下部に形成されている吐出口13a(図5参照)からSPMが吐出される。吐出口13aは、SPMノズル13の内部に連通している。そして、処理ユニット6において、吐出口13aから吐出されるSPMが基板Wに供給される。これにことにより、基板Wからレジストが除去される。
 硫酸含有液供給装置8では、基板Wから排出され回収されたSPMに基づいて、SPMそのものではなく硫酸含有液が作成される(硫酸含有液作成工程)。作成された硫酸含有液は、過酸化水素水と混合されることによりSPMとして再利用される。
 SPMの除去能力を高める観点から、作成される硫酸含有液の硫酸濃度は、所定の濃度範囲であることが求められる。そして、同様の観点から、作成される硫酸含有液の温度は所定の温度範囲であることが求められる。
 硫酸含有液供給装置8では、回収されたSPMに含まれる硫酸に着目し、過酸化水素と切り離した形で硫酸含有液の硫酸濃度および温度を調整するので、求められる濃度範囲および温度範囲の双方を満たす硫酸含有液を良好に作成できる。
 そして、作成後の硫酸含有液をSPMノズル13において過酸化水素水と混合することによりSPMを生成し、生成されたSPMをSPMノズル13から吐出して基板Wに供給する(SPM吐出工程)。これにより、回収された硫酸含有液に基づいて作成されたSPMによって基板Wからレジストを効率良く除去できる。
 図2は、図1にそれぞれ示す第1の硫酸含有液供給装置9および装置本体2を、水平方向から見た図である。図3は、図2に示す第3の捕獲フィルタ37の構成を拡大して示す断面図である。
 図2に示すように、第1の硫酸含有液供給装置9に含まれる第1の貯液部11は、リクレームタンク(reclaim tank)21と、第1の循環タンク(第1のタンク)22と、第1の循環配管(第2の配管)23と、第1の循環ヒータ(第2のヒータ)24と、硫酸補充ユニット25と、を含む。
 図2に示すように、リクレームタンク21は、対応する3つのタワーに含まれる合計9つの処理ユニット6から回収されたSPMを、硫酸含有液として貯留する。具体的には、リクレームタンク21には、後述する回収配管156に接続された回収導出配管26の下流端が接続されている。各処理ユニット6の処理カップ111に回収されたSPMは、回収配管156および回収導出配管26を通ってリクレームタンク21に導かれ、硫酸含有液としてリクレームタンク21に貯留される。回収導出配管26の途中部には、回収導出配管26を流通するSPM中の異物を捕捉して除去する第1の捕獲フィルタ27が介装されている。第1の捕獲フィルタ27は、SPM中に含まれる比較的大きな異物を捕捉するためのフィルタである。第1の捕獲フィルタ27は、後述する第3の捕獲フィルタ37と同等の構成である。第1の捕獲フィルタ27は、次に述べる第2の捕獲フィルタ30や第3の捕獲フィルタ(フィルタ)37と比較して、後述する孔71(図3参照)の径が大きい。回収導出配管26は上下に延びており、回収導出配管26を流通するSPMの自重によって、第1の捕獲フィルタ27にSPMが押し付けられる。これにより、第1の捕獲フィルタ27によって比較的大きな異物が捕捉される。そして、比較的大きな異物が除去された後のSPMが、硫酸含有液としてリクレームタンク21に貯留される。
 リクレームタンク21には、3つのタワーに対応する3つの回収導出配管26の下流端が、それぞれ接続されている。図2では、1つのタワーについてのみ詳細に図示し、他の2つのタワーに関しては、「他のタワー」とのみ記載し、詳細な記載を省略している。
 図2に示すように、リクレームタンク21には、第1の循環タンク22に下流端が接続された移送配管28の上流端が接続されている。移送配管28には、リクレームタンク21内の硫酸含有液を汲み出すためのポンプ等の第1の送液装置29、および移送配管28を流通する硫酸含有液中に含まれる比較的小さな異物を捕捉して除去するための第2の捕獲フィルタ30が介装されている。第2の捕獲フィルタ30は、次に述べる第3の捕獲フィルタ37と同等の構成である。第2の捕獲フィルタ30は、第3の捕獲フィルタ37と同等の孔71(図3参照)の径を有する。図2に示すように、第1の送液装置29および第2の捕獲フィルタ30は、リクレームタンク21側からこの順で並んでいる。そのため、第1の送液装置29による汲み出し力によって、移送配管28を流通する硫酸含有液が第2の捕獲フィルタ30に押し付けられる。これにより、第2の捕獲フィルタ30によって異物を捕捉できる。リクレームタンク21から第1の循環タンク22に移送配管28を介して硫酸含有液が送られ、この硫酸含有液が第1の循環タンク22に貯留される(第1の貯留工程)。
 図2に示すように、第1の循環タンク22には、第2の硫酸含有液供給装置10(第2の貯液部12)に向けて延びた第1の導液配管31が接続されている。第1の導液配管31の途中部には、第1の循環タンク22内の硫酸含有液を汲み出すためのポンプ等の第2の送液装置32が介装されている。第1の導液配管31の途中部には、第2の送液装置32の下流側に第3の捕獲フィルタ37および開閉バルブ38が介装されている。第3の捕獲フィルタ37は、第1の導液配管31を流通する硫酸含有液中に含まれる比較的小さな異物を捕捉して除去するためのフィルタである。第3の捕獲フィルタ37は、第2の捕獲フィルタ30で除去し切れなかった異物を除去する。
 図3に示すように、第3の捕獲フィルタ37は、たとえば、下流端側が閉塞された筒状であり、たとえば標準閉塞タイプのフィルタである。第3の捕獲フィルタ37の全域には、第3の捕獲フィルタ37の厚み方向に、第3の捕獲フィルタ37を貫通する複数の孔71が形成されている。第3の捕獲フィルタ37の孔71は、第3の捕獲フィルタ37の厚み方向から見て、たとえば正方形状であるが、当該方向から見て、正角形状以外の多角形状や円形状や楕円形状であってもよい。
 図3に示すように、第3の捕獲フィルタ37は、第3の捕獲フィルタ37を内部に保持するハウジング72に着脱可能に取り付けられている。ハウジング72は、第3の捕獲フィルタ37よりも上流側の配管(第1の導液配管31)の下流端が接続された流入部73と、第3の捕獲フィルタ37よりも下流側の配管(第1の導液配管31)の上流端が接続された流出部74と、を備えている。
 図3に示すように、ハウジング72の内部は、第3の捕獲フィルタ37によって、ろ過すべき硫酸含有液が流通する第3の捕獲フィルタ37の上流側空間B1と、ろ過された硫酸含有液が流通する第3の捕獲フィルタ37の下流側空間B2とに仕切られている。第2の送液装置32による汲み出し力によって、第1の導液配管31を流通する硫酸含有液が第3の捕獲フィルタ37に押し付けられ、上流側空間B1から下流側空間B2に向かって硫酸含有液が流れて第3の捕獲フィルタ37の孔71を通過する。これにより、第3の捕獲フィルタ37によって硫酸含有液がろ過される。上流側空間B1に存在する硫酸含有液に含まれる異物は、孔71を区画する第3の捕獲フィルタ37の壁面によって吸着されることにより孔71内に捕捉される。これにより、第3の捕獲フィルタ37によって異物が除去される。
 図2に示すように、開閉バルブ38は、第1の導液配管31における硫酸含有液の流通およびその停止を制御するためのバルブである。
 図2に示すように、第1の導液配管31には、開閉バルブ38と第3の捕獲フィルタ37との間において、リターン配管40が分岐接続されている。リターン配管40の下流端は第1の循環タンク22へ延びている。リターン配管40の途中部には、リターンバルブ41が介装されている。第1の導液配管31におけるリターン配管40の分岐位置42の下流側部分と、リターン配管40とによって、第1の循環配管23が構成されている。
 図2に示すように、硫酸補充ユニット25は、新しい硫酸(基板Wの処理に未使用の硫酸)を第1の循環タンク22に供給するユニットである。硫酸補充ユニット25は、第1の循環タンク22に硫酸を補充する硫酸補充配管44と、硫酸補充配管44を開閉する硫酸補充バルブ45と、を含む。補充される硫酸は、未使用の硫酸(たとえば濃硫酸)であり、その硫酸濃度は、第1の循環タンク22内の硫酸含有液における硫酸濃度よりも高い。補充される硫酸は、室温(約23℃~約25℃)である。
 基板処理装置1の運転中(基板Wの処理を停止している期間を含む)において、第2の送液装置32および第1の循環ヒータ24が常に駆動されている。そのため、開閉バルブ38が閉じられかつリターンバルブ41が開かれることにより、第1の循環タンク22から汲み出される硫酸含有液が、第1の導液配管31を分岐位置42まで流れ、その分岐位置42からリターン配管40を通して第1の循環タンク22に戻される。つまり、第2の貯液部12に硫酸含有液を送らない期間は、第1の循環タンク22および第1の循環配管23を硫酸含有液が循環している。そして、第2の貯液部12に硫酸含有液を送るタイミングになると、開閉バルブ38が開かれかつリターンバルブ41が閉じられることによって、第1の循環タンク22から汲み出される硫酸含有液が、第1の導液配管31を通して第2の貯液部に供給される。
 図2に示すように、第1の循環ヒータ24は、第1の導液配管31の途中部において第1の送液装置29の上流側に介装されている。第1の循環ヒータ24は、第1の循環タンク22および第1の循環配管23を循環する硫酸含有液を加熱する(第2の加熱工程)。第1の循環ヒータ24の加熱温度は、所定の第1の温度(第2の加熱温度。たとえば約120℃~約130℃)に設定されている。第1の循環タンク22および第1の循環配管23を硫酸含有液が循環することにより、硫酸含有液が第1の温度に調整される。第2の貯液部12に硫酸含有液を送らない期間、硫酸含有液を循環させておくことによって、第1の温度に調整された硫酸含有液を第1の循環タンク22に貯留しておくことができる。また、開閉バルブ38の開成後、第1の温度に調整された硫酸含有液を第2の貯液部12に送ることができる。
 図2に示すように、第1の貯液部11は、排液タンク50をさらに含む。第1の循環タンク22には、排液タンク50に向けて延びた排液配管46が接続されている。排液配管46の途中部には、排液配管46を開閉する排液バルブ47が介装されている。第1の循環タンク22に貯留されている硫酸含有液を、それ以上基板Wの処理のために使用しない場合には、排液バルブ47が開かれ、第1の循環タンク22に貯留されている硫酸含有液が、第1の循環タンク22から排出され排液タンク50に導かれ、排液タンク50に貯留される。
 図2に示すように、排液タンク50からは導出配管48が延び、その導出配管48の下流端が、冷却ユニット(図示しない)に接続されている。導出配管48には、ポンプ等の第3の送液装置49が介装されている。第3の送液装置49が駆動されると、排液タンク50に貯留されている硫酸含有液は導出配管48に汲み出され、冷却ユニットに与えられる。そして、その冷却ユニットによって冷却された硫酸含有液は、機外に設けられた廃液装置(図示しない)に案内され、その廃液装置において処理される。
 以上、第1の貯液部11について説明した。第1の貯液部11において、処理ユニット6から回収されたSPMが、硫酸含有液として第1の循環タンク22に貯留される。第1の循環タンク22に貯留されている硫酸含有液が、第1の循環配管23を循環する。また、硫酸補充ユニット25からの硫酸が第1の循環タンク22に補充される。硫酸補充ユニット25が設けられているため、第1の貯液部11を、硫酸濃度調整用の貯液部と捉えることができる。
 図4は、図1にそれぞれ示す第2の硫酸含有液供給装置10および装置本体2を、水平方向から見た図である。
 第2の硫酸含有液供給装置10に含まれる第2の貯液部12は、第2の循環タンク(第2のタンク)51と、第2の循環ヒータ(第1のヒータ)52と、第2の循環配管53と、ヒータ(第3のヒータ)54と、を含む。
 第2の循環タンク51には、第1の導液配管31の下流端が接続されている。第2の循環タンク51には、第1の貯液部11において第1の温度(たとえば約120℃~約130℃)に温度調整された硫酸含有液が導かれる。そして、導かれた硫酸含有液が第2の循環タンク51に貯留される(第2の貯留工程)。
  第2の循環タンク51には、高さの異なる複数の位置にそれぞれセンサ部を有する液量計65が取り付けられており、これらの液量計65によって、第2の循環タンク51に貯留されている硫酸含有液の液面高さが検出される。
 第2の循環タンク51には、共通配管51Aが接続されている。第2の循環ヒータ52が、共通配管51Aの途中部に介装されている。
 第2の循環タンク51および共通配管51Aには、3つの硫酸含有液流通配管51Bが接続されている。具体的には、共通配管51Aの下流端に、対応するタワーにそれぞれ硫酸を供給するための3つの硫酸含有液流通配管51Bの上流端が接続されている。第2の循環タンク51には、これら3つの硫酸含有液流通配管51Bの下流端が接続されている。共通配管51Aおよび硫酸含有液流通配管51Bによって第2の循環配管53が構成されている。硫酸含有液流通配管51Bの途中部には、共通配管51A内の硫酸含有液を汲み出すためのポンプ等の第4の送液装置56が介装されている。第4の送液装置56によって第2の循環配管53に汲み出された硫酸含有液は、硫酸含有液流通配管51Bを上流端から下流端まで流通し、第2の循環タンク51に戻る。これにより、硫酸含有液が、第2の循環タンク51ならびに第2の循環配管53(共通配管51Aおよび硫酸含有液流通配管51B)を循環する。
 図4では、1つのタワーについてのみ詳細に図示し、他の2つのタワーに関しては、「他のタワー」とのみ記載し、詳細な記載を省略している。
 第2の循環ヒータ52は、第2の循環タンク51ならびに第2の循環配管53(共通配管51Aおよび硫酸含有液流通配管51B)を循環する硫酸含有液を加熱する(第1の加熱工程)。第2の循環ヒータ52の加熱温度は、所定の第2の温度(>第1の温度。第1の加熱温度。たとえば約160℃)に設定されている。第2の循環タンク51ならびに第2の循環配管53(共通配管51Aおよび硫酸含有液流通配管51B)を硫酸含有液が循環することにより、硫酸含有液が、それまでの第1の温度から第2の温度に調整される。
 第2の貯液部12は、第2の循環配管53から分岐して、対応するタワーに含まれる複数(3つの)の処理ユニット6に硫酸含有液を供給するための硫酸含有液供給配管57を、タワーに含まれる処理ユニット6の数と同数含む。
 ヒータ(第3のヒータ)54が、各硫酸含有液供給配管57の途中部に介装されている。また、各硫酸含有液供給配管57の途中部には、ヒータ54の下流側において、ヒータ54側から順に、流量計58、硫酸含有液流量調整バルブ(混合比変更ユニット)59および硫酸含有液バルブ60が介装されている。
 流量計58は、各硫酸含有液供給配管57内を流れる硫酸含有液の流量を検出する流量計である。
 硫酸含有液流量調整バルブ59は、硫酸含有液供給配管57の開度を調整して、SPMノズル13に供給される硫酸含有液の流量を調整するためのバルブである。硫酸含有液流量調整バルブ59は、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータと、を含む構成であってもよい。
 硫酸含有液バルブ60は、SPMノズル13への硫酸含有液の供給およびその停止を制御するためのバルブである。
 硫酸含有液供給配管57には、硫酸含有液バルブ60と硫酸含有液流量調整バルブ59との間において、リターン配管61が分岐接続されている。リターン配管61の下流端は硫酸含有液流通配管51Bに接続されている。硫酸含有液供給配管57における分岐位置63の上流側部分の圧力損失が、リターン配管61での圧力損失よりも大きい。
 SPMノズル13に硫酸含有液を供給するときは、制御装置4は、硫酸含有液バルブ60を開く。これにより、リターン配管61での圧力損失が、硫酸含有液供給配管57における分岐位置63の下流側部分の圧力損失よりも大きくなる。そのため、硫酸含有液供給配管57における分岐位置63の上流側部分内の硫酸含有液は、硫酸含有液供給配管57における分岐位置63の下流側部分に供給され、この下流側部分からSPMノズル13に供給される。
 SPMノズル13への硫酸含有液の供給を停止させるときは、制御装置4は、硫酸含有液バルブ60を閉じる。これにより、リターン配管61での圧力損失が、硫酸含有液供給配管57における分岐位置63の下流側部分の圧力損失よりも小さくなる。そのため、分岐位置63に到達した硫酸含有液は、硫酸含有液供給配管57における分岐位置63の上流側部分を逆流することなく、リターン配管61へと導かれる。リターン配管61に導かれた硫酸含有液は、硫酸含有液流通配管51Bに戻り、再び、第2の循環タンク51および第2の循環配管53(共通配管51Aおよび硫酸含有液流通配管51B)を循環する。
 ヒータ54は、硫酸含有液供給配管57を流通する硫酸含有液を加熱する。ヒータ54の加熱温度は、所定の第3の温度(>第2の温度。たとえば約165℃)に設定されている。硫酸含有液供給配管57を硫酸含有液が流通することにより、それまで、第2の温度に温度調整されていた硫酸含有液が、それまでの第2の温度から第3の温度に昇温する。
 基板処理装置1の運転中(基板Wの処理を停止している期間を含む)において、第4の送液装置56および第2の循環ヒータ52が常に駆動されている。そのため、基板処理装置1の運転中は、第2の循環タンク51ならびに第2の循環配管53(共通配管51Aおよび硫酸含有液流通配管51B)を、第2の温度に温度調整された硫酸含有液が循環している。
 硫酸含有液バルブ60が閉じられた状態では、第2の循環配管53を流れる硫酸含有液は、第2の循環配管53から硫酸含有液供給配管57に流れ、分岐位置63を介してリターン配管61に流れて、硫酸含有液流通配管51Bに戻る。これにより、第2の循環タンク51および第2の循環配管53を循環する。
 一方で、硫酸含有液バルブ60が開かれた状態では、硫酸含有液流通配管51Bを流れる硫酸含有液は、第2の循環配管53から硫酸含有液供給配管57に流れ、SPMノズル13に供給される。つまり、第3の温度に調整された硫酸含有液がSPMノズル13に供給される。
 液量計65の出力の参照により、第2の循環タンク51に溜められている硫酸含有液の液量は、制御装置4によって常時監視されている。そして、第2の循環タンク51に溜められている硫酸含有液の液量が下限液量よりも少なくなると、開閉バルブ38が開かれ、第1の貯液部11から第1の導液配管31を通って硫酸含有液が供給される。
 3つの硫酸含有液流通配管51Bのうち1つには、第4の送液装置56の下流側に、硫酸含有液流通配管51Bを流れる硫酸含有液(つまりは、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液)の硫酸濃度を計測する硫酸濃度計64が介装されている。3つの第2の循環配管53を流れる硫酸含有液の硫酸濃度は互いに同一であると考えられるため、硫酸濃度計64は、3つの第2の循環配管53のうち1つに介装すれば足りる。
 硫酸濃度計64の出力の参照により、すなわち、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液の硫酸濃度(第2の循環タンク51に溜められている硫酸含有液の硫酸濃度)は、制御装置4によって常時監視されている。そして、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液の硫酸濃度が下限濃度よりも低くなると、硫酸補充配管44を開閉する硫酸補充バルブ45が開かれ、第1の循環タンク22に硫酸が供給される(硫酸補充工程)。これにより、第1の循環タンク22および第1の循環配管23を循環している硫酸含有液の硫酸濃度が高くなり、それに従い、その後しばらくの期間の経過後には、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液の硫酸濃度が高くなる。
 以上、第2の貯液部12について説明した。第2の貯液部12において、第1の貯液部11から送られた硫酸含有液が第2の循環タンク51に貯留される。第2の循環タンク51に貯留されている硫酸含有液が加熱される。これにより、第2の貯液部12における硫酸含有液の温度を処理に適した温度まで上昇できる。そのため、第2の貯液部12を、硫酸含有液の温度調整用の貯液部と捉えることができる。
 図5は、処理ユニット6の構成例を説明するための図解的な断面図である。
 処理ユニット6は、内部空間を有する箱形のチャンバ107と、チャンバ107内で1枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)108と、SPMノズル13と、スピンチャック108に保持されている基板Wの上面にリンス液を供給するためのリンス液供給ユニット110と、スピンチャック108を取り囲む筒状の処理カップ111と、を含む。
 チャンバ107は、箱状の隔壁112と、隔壁112の上部から隔壁112内(チャンバ107内に相当)に清浄空気を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)114と、隔壁112の下部からチャンバ107内の気体を排出する排気装置(図示しない)と、を含む。FFU114は隔壁112の上方に配置されており、隔壁112の天井に取り付けられている。FFU114は、隔壁112の天井からチャンバ107内に清浄空気を送る。排気装置(図示しない)は、処理カップ111に接続された排気ダクト113を介して処理カップ111の底部に接続されており、処理カップ111の底部から処理カップ111内の気体を吸引する。FFU114および排気装置(図示しない)により、チャンバ107内にダウンフロー(下降流)が形成される。
 スピンチャック108として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。具体的には、スピンチャック108は、スピンモータ(回転ユニット)Mと、このスピンモータMの駆動軸と一体化されたスピン軸115と、スピン軸115の上端に略水平に取り付けられた円板状のスピンベース116と、を含む。
 スピンベース116は、基板Wの外径よりも大きな外径を有する水平な円形の上面116aを含む。上面116aには、その周縁部に複数個(3個以上。たとえば6個)の挟持部材117が配置されている。複数個の挟持部材117は、スピンベース116の上面周縁部において、基板Wの外周形状に対応する円周上で適当な間隔を空けて配置されている。
 SPMノズル13は、たとえば、連続流の状態でSPMを吐出するストレートノズルである。SPMノズル13は、ノズルアーム119の先端部に取り付けられている。SPMノズル13は、たとえば、基板Wの上面に垂直な方向に処理液(SPM)を吐出する垂直姿勢でノズルアーム119に取り付けられている。ノズルアーム119は水平方向に延びている。また、ノズルアーム119には、ノズルアーム119を移動させることにより、SPMノズル13を移動させるノズル移動ユニット120が結合されている。ノズル移動ユニット120は、電動モータを含む構成である。
 ノズル移動ユニット120は、処理カップ111のまわりに設定された鉛直な揺動軸線まわりにノズルアーム119を水平移動させることにより、SPMノズル13を水平に移動させる。ノズル移動ユニット120は、SPMノズル13から吐出されたSPMが基板Wの上面に着液する処理位置と、SPMノズル13が平面視でスピンチャック108の周囲に位置する退避位置との間で、SPMノズル13を水平に移動させる。この実施形態では、処理位置は、たとえば、SPMノズル13から吐出されたSPMが基板Wの上面中央部に着液する中央位置である。
 処理液供給装置は、SPMノズル13に過酸化水素水(H)を供給する過酸化水素水供給ユニット122を含む。過酸化水素水供給ユニット122は、SPMノズル13に接続された過酸化水素水配管135と、過酸化水素水配管135を開閉するための過酸化水素水バルブ136と、過酸化水素水バルブ136の開度を調整して、過酸化水素水バルブ136を流通する過酸化水素水の流量を調整する過酸化水素水流量調整バルブ(混合比変更ユニット)137と、を含む。過酸化水素水流量調整バルブ137は、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータと、を含む構成であってもよい。過酸化水素水配管135には、過酸化水素水供給源(図示しない)から、温度調整されていない常温(20~40℃)程度の過酸化水素水が供給される。
 硫酸含有液バルブ60および過酸化水素水バルブ136が開かれると、硫酸含有液供給配管57からの高温(165℃)の硫酸含有液および過酸化水素水配管135からの過酸化水素水が、SPMノズル13のケーシング(図示しない)内へと供給され、ケーシング内において十分に混合(攪拌)される。この混合によって、硫酸含有液と過酸化水素水とが均一に混ざり合い、硫酸含有液に含まれる硫酸と過酸化水素水との反応によって硫酸および過酸化水素水の混合液(SPM)が生成される。SPMは、酸化力が強いペルオキソ一硫酸(Peroxomonosulfuric acid;HSO)を含み、混合前の硫酸含有液(たとえば約165℃)および過酸化水素水の温度よりも高い温度(たとえば約190℃~約220℃)まで昇温させられる。生成された高温のSPMは、SPMノズル13のケーシングの先端(たとえば下端)に開口した吐出口から吐出される。
 SPMノズル13に供給される硫酸含有液の流量は、硫酸含有液流量調整バルブ59によって変更される。SPMノズル13に供給される過酸化水素水の流量は、過酸化水素水流量調整バルブ137によって変更される。したがって、硫酸含有液および過酸化水素水の混合比は、硫酸含有液流量調整バルブ59および過酸化水素水流量調整バルブ137によって変更される。硫酸含有液および過酸化水素水の混合比(硫酸含有液および過酸化水素水の流量比)は、たとえば、30:1(硫酸含有液:過酸化水素水)~2:1(硫酸含有液:過酸化水素水)の範囲内で調整される。
 リンス液供給ユニット110は、基板Wの上面に向けてリンス液を吐出するリンス液ノズル147を含む。リンス液ノズル147は、たとえば、連続流の状態で液を吐出するストレートノズルである。リンス液ノズル147は、チャンバ107の隔壁112に対して固定された固定ノズルである。リンス液ノズル147の吐出口は、基板Wの上面中央部に向けてられている。リンス液ノズル147は、チャンバ107内で移動可能なスキャンノズルであってもよい。すなわち、リンス液供給ユニット110は、リンス液ノズル147を移動させることにより、基板Wの上面に対するリンス液の着液位置を基板Wの上面内で移動させるノズル移動ユニットを備えていてもよい。
 リンス液ノズル147は、リンス液供給源からのリンス液を案内するリンス液配管148に接続されている。リンス液配管148の途中部には、リンス液ノズル147からのリンス液の供給/供給停止を切り換えるためのリンス液バルブ149が介装されている。リンス液バルブ149が開かれると、リンス液がリンス液配管148からリンス液ノズル147に供給され、リンス液ノズル147の下端に設けられた吐出口から吐出される。
 リンス液バルブ149が閉じられると、リンス液配管148からリンス液ノズル147へのリンス液の供給が停止される。リンス液は、たとえば脱イオン水(DIW(Deionized Water))であるが、DIWに限らず、炭酸水、電解イオン水、水素水、オゾン水、アンモニア水および希釈濃度(たとえば、10ppm~100ppm程度)の塩酸水のいずれかであってもよい。リンス液は、常温(20~40℃)であってもよいし、基板Wに供給される前に加熱されていてもよい。
 処理カップ111は、スピンチャック108に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。処理カップ111は、スピンベース116の側方を取り囲んでいる。スピンチャック108が基板Wを回転させている状態で、処理液が基板Wに供給されると、基板Wに供給された処理液が基板Wの周囲に振り切られる。処理液が基板Wに供給されるとき、上向きに開いた処理カップ111の上端部111aは、スピンベース116よりも上方に配置される。したがって、基板Wの周囲に排出された薬液や水などの処理液は、処理カップ111によって受け止められる。そして、処理カップ111に受け止められた処理液は、第1の貯液部11のリクレームタンク21に送られるか、または冷却ユニット(図示しない)を介して廃液装置(図示しない)に送られる。
 処理カップ111は、基板Wの周囲に飛散した処理液(薬液またはリンス液)を受け止める複数の筒状のガード(第1のガード143、第2のガード144および第3のガード145)と、複数のガードによって案内された処理液を受け止める環状の複数のカップ(第1のカップ141および第2のカップ142)と、複数のガードおよび複数のカップを取り囲む円筒部材140と、を含む。
 処理カップ111は、さらに、個々のガード(第1のガード143、第2のガード144および第3のガード145)を独立して昇降させるガード昇降ユニット146を含む。ガード昇降ユニット146は、たとえば、動力を発生する電動モータと、電動モータの動力をいずれかのガードに伝達するボールねじ機構と、を含む。ガード昇降ユニット146が3つのガードのうちの少なくとも一つを昇降させると、処理カップ111の状態が切り換わる。
 後述するように、処理カップ111の状態は、全てのガードの上端が基板Wよりも下方に配置された退避状態(図5に示す状態)と、第1のガード143が基板Wの周端面に対向する第1の対向状態と、第2のガード144が基板Wの周端面に対向する第2の対向状態と、第3のガード145が基板Wの周端面に対向する第3の対向状態と、のうちのいずれかに切り換えられる。
 第1のカップ141は、円筒部材140の内側でスピンチャック108を取り囲んでいる。第1のカップ141は、基板Wの処理に使用された処理液が流入する環状の第1の溝150を区画している。第1の溝150の底部の最も低い箇所には、排液口151が開口しており、排液口151には、第1の排液配管152が接続されている。第1の排液配管152に導入される処理液は、排液装置に送られ、当該装置で処理される。
 第2のカップ142は、円筒部材140の内側で第1のカップ141を取り囲んでいる。第2のカップ142は、基板Wの処理に使用された処理液が流入する環状の第2の溝153を区画している。第2の溝153の底部の最も低い箇所には、排液/回収口154が開口しており、排液/回収口154には、共用配管155が接続されている。回収配管156および第2の排液配管157は、共用配管155から分岐している。回収配管156の上流端は、共用配管155に接続されており、回収配管156の下流端は、第1の貯液部11のリクレームタンク21に接続されている。
 回収配管156には回収バルブ158が介装されており、第2の排液配管157には排液バルブ159が介装されている。排液バルブ159が閉じられ、回収バルブ158が開かれると、共用配管155内を流れる液が回収配管156に導かれる。また、排液バルブ159が開かれ、回収バルブ158が閉じられると、共用配管155内を流れる液が第2の排液配管157に導かれる。回収バルブ158および排液バルブ159は、基板Wから排出された液が流入する配管を回収配管156と第2の排液配管157との間で切り換える回収排液切り換えユニットに含まれる。
 最も内側の第1のガード143は、円筒部材140の内側でスピンチャック108を取り囲んでいる。第1のガード143は、スピンチャック108の周囲を取り囲む円筒状の下端部163と、下端部163の上端から外方(基板Wの回転軸線A1から遠ざかる方向)に延びる筒状部164と、筒状部164の上端から鉛直上方に延びる円筒状の中段部165と、中段部165の上端から内方(基板Wの回転軸線A1に近づく方向)に向かって斜め上方に延びる円環状の上端部166と、を含む。
 第1のガード143の下端部163は、第1のカップ141の第1の溝150上に位置している。第1のガード143の上端部166の内周端は、平面視で、スピンチャック108に保持される基板Wよりも大径の円形をなしている。図5に示すように、第1のガード143の上端部166の断面形状は直線状である。上端部166の断面形状は、円弧などの直線状以外の形状であってもよい。
 内側から2番目の第2のガード144は、円筒部材140の内側で第1のガード143を取り囲んでいる。第2のガード144は、第1のガード143を取り囲む円筒部167と、円筒部167の上端から中心側(基板Wの回転軸線A1に近づく方向)に斜め上方に延びる円環状の上端部168と、を有している。第2のガード144の円筒部167は、第2のカップ142の第2の溝153上に位置している。
 第2のガード144の上端部168の内周端は、平面視で、スピンチャック108に保持される基板Wよりも大径の円形をなしている。第2のガード144の上端部168の断面形状は直線状である。上端部168の断面形状は、円弧などの直線状以外の形状であってもよい。第2のガード144の上端部168は、第1のガード143の上端部166と上下方向に重なっている。第2のガード144の上端部168は、第1のガード143と第2のガード144とが最も近接した状態で第1のガード143の上端部166に対して微少な隙間を保って近接するように形成されている。
 内側から3番目の第3のガード145は、円筒部材140の内側で第2のガード144を取り囲んでいる。第3のガード145は、第2のガード144を取り囲む円筒部170と、円筒部170の上端から中心側(基板Wの回転軸線A1に近づく方向)に斜め上方に延びる円環状の上端部171と、を有している。上端部171の内周端は、平面視で、スピンチャック108に保持される基板Wよりも大径の円形をなしている。上端部171の断面形状は直線状である。上端部171の断面形状は、円弧などの直線状以外の形状であってもよい。
 第1のカップ141の第1の溝150、第1のガード143の内壁143aおよびスピンチャック108のケーシングの外周は、基板Wの処理に用いられた薬液が導かれる第1の流通空間(換言すると、排液空間)SP1を区画している。第2のカップ142の第2の溝153、第1のガード143の外壁143bおよび第2のガード144の内壁144aは、基板Wの処理に用いられた薬液が導かれる第2の流通空間(換言すると、回収空間)SP2を区画している。第1の流通空間SP1と第2の流通空間SP2とは、第1のガード143によって互いに隔離されている。
 ガード昇降ユニット146は、ガードの上端部が基板Wより上方に位置する上位置と、ガードの上端部が基板Wより下方に位置する下位置との間で、各ガード(第1のガード143、第2のガード144および第3のガード145)を昇降させる。ガード昇降ユニット146は、上位置と下位置との間の任意の位置で各ガードを保持可能である。基板Wへの処理液の供給は、いずれかのガードが基板Wの周端面に対向している状態で行われる。
 最も内側の第1のガード143を基板Wの周端面に対向させる、処理カップ111の第1の対向状態では、第1のガード143、第2のガード144および第3のガード145の全てが上位置(処理高さ位置)に配置される。内側から2番目の第2のガード144を基板Wの周端面に対向させる、処理カップ111の第2の対向状態では、第2および第3のガード144,145が上位置に配置され、かつ第1のガード143が下位置に配置される。最も外側の第3のガード145を基板Wの周端面に対向させる、処理カップ111の第3の対向状態では、第3のガード145が上位置に配置され、かつ第1のガード143および第2のガード144が下位置に配置される。全てのガードを、基板Wの周端面から退避させる退避状態(図5参照)では、第1のガード143、第2のガード144および第3のガード145の全てが下位置に配置される。
 後述するように、処理カップ111を第1の対向状態から第2の対向状態に切り換えるときに、第1のガード143は、第2のガード144および第3のガード145が上位置に配置されている状態で、上位置と下位置との間の洗浄高さ位置に配置される。この状態は、処理カップ111が第1の対向状態から第2の対向状態に切り換わる移行状態である。処理カップ111は、第1~第3の対向状態、退避状態、および移行状態を含む複数の状態のうちのいずれかに切り換わる。移行状態は、第1のガード143が基板Wの周端面に対向する状態である。
 図6は、基板処理装置1の電気的構成を説明するためのブロック図である。
 制御装置4は、たとえばコンピュータである。制御装置4は、CPU等の演算ユニットと、固定メモリデバイス、ハードディスクドライブ等の記憶ユニットと、情報の入力および出力が行われる入出力ユニットと、を有している。記憶ユニットは、演算ユニットによって実行されるコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体を含む。記録媒体には、制御装置4に後述するレジスト除去処理を実行させるようにステップ群が組み込まれている。
 制御装置4は、予め定められたプログラムにしたがって、スピンモータM、ノズル移動ユニット120、ガード昇降ユニット146、第1の送液装置29、第2の送液装置32、第3の送液装置49、第4の送液装置56、第1の循環ヒータ24、第2の循環ヒータ52、ヒータ54等の動作を制御する。また、制御装置4は、予め定められたプログラムにしたがって、開閉バルブ38、リターンバルブ41、硫酸補充バルブ45、排液バルブ47、硫酸含有液バルブ60、過酸化水素水バルブ136、リンス液バルブ149、回収バルブ158、排液バルブ159等の開閉動作を制御する。また、制御装置4は、予め定められたプログラムにしたがって、硫酸含有液流量調整バルブ59、過酸化水素水流量調整バルブ137の開度を調整する。硫酸濃度計64および液量計65の計測値はそれぞれ制御装置4に入力される。
 図7は、基板処理装置1によって行われる基板Wの処理の一例について説明するためのフローチャートである。
 以下では、図1~図7を参照しながら、基板Wの処理の一例について説明する。この基板Wの処理の一例は、基板Wの上面(主面)からレジストを除去するレジスト除去処理である。レジストは、たとえば、炭素を含む化合物によって形成されたフォトレジストである。
 基板処理装置1によって基板Wが処理されるとき、制御装置4は、全てのノズルがスピンチャック108の上方から退避しており、全てのガード143~145が下位置に位置している状態で、基板Wの表面(デバイス形成面)の少なくとも一部がレジストで覆われた基板Wを保持している基板搬送ロボット(第1の基板搬送ロボットCR1、第2の基板搬送ロボットCR2(図1参照))のハンドをチャンバ107の内部に進入させる。これにより、基板Wは、その表面が上に向けた状態でスピンチャック108に渡され、スピンチャック108に保持される。
 基板Wがスピンチャック108に保持された後、制御装置4は、スピンモータMに回転を開始させる。これにより、基板Wの回転が開始される(図7のS2)。基板Wの回転速度は、予め定める液処理速度(300~1500rpmの範囲内で、たとえば500rpm)まで上昇させられ、その液処理速度に維持される。そして、基板Wの回転速度が液処理速度に達すると、制御装置4は、SPM工程S3を実行する。
 具体的には、制御装置4は、ノズル移動ユニット120を制御して、SPMノズル13を、退避位置から処理位置に移動させる。また、制御装置4は、硫酸含有液バルブ60および過酸化水素水バルブ136を同時に開く。これにより、硫酸含有液供給配管57を通って硫酸含有液がSPMノズル13に供給されると共に、過酸化水素水配管135を通って過酸化水素水がSPMノズル13に供給される。SPMノズル13の内部において硫酸含有液と過酸化水素水とが混合され、高温(たとえば、190~220℃)のSPMが生成される。そのSPMが、SPMノズル13の吐出口から吐出され、基板Wの上面中央部に着液する。
 SPMノズル13から吐出されたSPMは、基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、SPMが基板Wの上面全域に供給され、基板Wの上面全域を覆うSPMの液膜が基板W上に形成される。これにより、レジストとSPMとが化学反応し、基板W上のレジストがSPMによって基板Wから除去される。基板Wの周縁部に移動したSPMは、基板Wの周縁部から基板Wの側方に向けて飛散する。
 なお、制御装置4は、SPM工程S3において、ノズル移動ユニット120を制御して、SPMノズル13を、基板Wの上面の周縁部に対向する周縁位置と、基板Wの上面の中央部に対向する中央位置との間で移動させてもよい。この場合、基板Wの上面におけるSPMの着液位置が、基板Wの上面の全域を通過するので、基板Wの上面の全域がSPMの着液位置で走査される。これにより、基板Wの上面全域が均一に処理される。
 SPMの吐出開始から予め定める期間が経過すると、制御装置4は、硫酸含有液バルブ60および過酸化水素水バルブ136を閉じて、SPMノズル13からのSPMの吐出を停止する。これにより、SPM工程S3が終了する。その後、制御装置4がノズル移動ユニット120(図6参照)を制御して、SPMノズル13を退避位置に戻させる。
 次いで、リンス液を基板Wに供給するリンス工程(図7のS4)が行われる。具体的には、制御装置4は、リンス液バルブ149を開いて、基板Wの上面中央部に向けてリンス液ノズル147にリンス液を吐出させる。リンス液ノズル147から吐出されたリンス液は、SPMによって覆われている基板Wの上面中央部に着液する。基板Wの上面中央部に着液したリンス液は、基板Wの回転による遠心力を受けて基板Wの上面上を基板Wの周縁部に向けて流れる。これにより、基板W上のSPMが、リンス液によって外方に押し流され、基板Wの周囲に排出される。その結果、SPMおよびレジスト(レジスト残渣)が基板Wの上面の全域から洗い流される。リンス工程S4の開始から予め定める期間が経過すると、制御装置4は、リンス液バルブ149を閉じて、リンス液ノズル147にリンス液の吐出を停止させる。
 次いで、基板Wを乾燥させる乾燥工程(図7のS5)が行われる。具体的には、制御装置4は、スピンモータMを制御することにより、SPM工程S3およびリンス工程S4までの回転速度よりも大きい乾燥回転速度(たとえば数千rpm)まで基板Wを加速させ、乾燥回転速度で基板Wを回転させる。これにより、大きな遠心力が基板W上の液に加わり、基板Wに付着している液が基板Wの周囲に振り切られる。このようにして、基板Wから液が除去され、基板Wが乾燥する。そして、基板Wの高速回転が開始されてから所定時間が経過すると、制御装置4は、スピンモータMを停止させ、スピンチャック108による基板Wの回転を停止させる(図7のS6)。
 次いで、チャンバ107内から基板Wが搬出される(図7のS7)。具体的には、制御装置4は、全てのガード143~145が下位置に位置している状態で、基板搬送ロボット(第1の基板搬送ロボットCR1、第2の基板搬送ロボットCR2(図1参照))のハンドをチャンバ107の内部に進入させる。そして、制御装置4は、基板搬送ロボットのハンドにスピンチャック108上の基板Wを保持させる。その後、制御装置4は、基板搬送ロボットのハンドをチャンバ107内から退避させる。これにより、表面(デバイス形成面)からレジストが除去された基板Wがチャンバ107から搬出される。
 次に、SPM工程(図7のS3)における、硫酸含有液および過酸化水素水の混合比の推移と、第1のガード143および第2のガード144の動作等について説明する。
 図8は、SPM工程(図7のS3)における、硫酸含有液および過酸化水素水の混合比の推移と、第1のガード143および第2のガード144の動作等を示すタイミングチャートである。図8において、回収のONは、基板Wから排出されたSPMが第2のガード144を介して回収配管156に流入することを表し、回収のOFFは、回収配管156へのSPMの流入が停止されていることを表す。図8において、排液のONは、基板Wから排出されたSPMが第1のガード143を介して第1の排液配管152に流入することを表し、排液のOFFは、第1の排液配管152へのSPMの流入が停止されていることを表す。以下では、図5および図8を参照する。以下の動作等は、制御装置4が基板処理装置1を制御することにより実行される。言い換えると、制御装置4は、以下の動作等を実行するようにプログラムされている。
 図8に示す時刻T1で硫酸含有液バルブ60および過酸化水素水バルブ136が開かれると、硫酸含有液が第1の硫酸含有液流量でSPMノズル13に供給され、過酸化水素水が第1のH流量でSPMノズル13に供給される。そのため、硫酸含有液および過酸化水素水は、SPMノズル13内において第1の混合比(第1の硫酸含有液流量/第1のH流量)で混合される。これにより、第1のSPMが、SPMノズル13内で作成され、SPMノズル13から基板Wの上面に向けて吐出される(第1のSPM供給工程)。その結果、基板Wの上面の全域を覆う第1のSPMの液膜が形成される。
 硫酸含有液バルブ60および過酸化水素水バルブ136が開かれてから所定時間が経過すると、図8に示す時刻T2で硫酸含有液流量調整バルブ59および過酸化水素水流量調整バルブ137の少なくとも一方の開度が変更され、硫酸含有液および過酸化水素水が、第1の混合比よりも大きい第2の混合比(第2の硫酸含有液流量/第2のH流量)でSPMノズル13内において混合される。図8は、硫酸含有液流量調整バルブ59および過酸化水素水流量調整バルブ137の両方の開度が変更される例を示している。これにより、第2のSPMが、SPMノズル13内で作成され、SPMノズル13から基板Wの上面に向けて吐出される(第2のSPM供給工程)。その結果、基板Wの上面の全域を覆う第1のSPMの液膜が、基板Wの上面の全域を覆う第2のSPMの液膜に置換される。
 図8に示す例では、硫酸含有液が第1の硫酸含有液流量よりも大きい第2の硫酸含有液流量でSPMノズル13に供給され、過酸化水素水が第1のH流量よりも小さい第2のH流量でSPMノズル13に供給される。第2の硫酸含有液流量および第2のH流量は、混合比(過酸化水素水に対する硫酸含有液の比)が変更されてもSPMノズル13から吐出されるSPMの流量が一定に保たれるように設定されてもよいし、SPMノズル13から吐出されるSPMの流量が増加または減少するように設定されてもよい。混合比は、第1の混合比から第2の混合比に連続的に変更される。したがって、基板Wの上面に供給されるSPMは、過酸化水素濃度が高い状態から硫酸含有液の濃度が高い状態に連続的に変化する。
 SPMの混合比が第2の混合比に変更されてから所定時間が経過すると、図8に示す時刻T5で硫酸含有液バルブ60および過酸化水素水バルブ136が閉じられ、SPMノズル13からのSPMの吐出が停止される。
 図8に示すように、処理カップ111は、SPMノズル13が第1のSPMの吐出を開始する前に(図8に示す時刻T1の前に)、3つのガード143~145の中で最も内側の第1のガード143が基板Wの周端面に対向する第1の対向状態に設定されている。したがって、基板Wから排出された第1のSPMは、第1のガード143の内壁143aによって受け止められ、第1のカップ141に案内される(第1のSPM捕獲工程)。そして、第1のカップ141内の第1のSPMは、第1の排液配管152に排出される(図8に示す排液のON。排液工程)。
 図8に示すように、SPMの混合比が第2の混合比に変更された時点では(図8に示す時刻T2)、第1のガード143は、上位置に位置している。したがって、基板Wから排出された第2のSPMは、第1のガード143の内壁143aによって受け止められ、第1のカップ141に案内される。ガード昇降ユニット146は、SPMの混合比が第2の混合比に変更された後、図8に示す時刻T3で第1のガード143を上位置と下位置との間の洗浄高さ位置まで下降させる。これにより、第2のSPMが第1のガード143の内壁143aに直接当たる位置が、第1のガード143に対して上方に移動する。
 ガード昇降ユニット146は、たとえば第1のガード143を洗浄高さ位置で所定時間静止させた後、図8に示す時刻T4で第1のガード143を下位置まで下降させる。したがって、処理カップ111は、SPMノズル13が第2のSPMを吐出しており、基板Wの上面の全域が第2のSPMの液膜で覆われている状態で、第2のガード144が基板Wの周端面に対向する第2の対向状態に切り換わる。基板Wから排出された第2のSPMは、第2のガード144の内壁144aによって受け止められ、第2のカップ142に案内される(第2のSPM捕獲工程)。そして、第2のカップ142内の第2のSPMは、共用配管155および回収配管156を介して、第1の貯液部11のリクレームタンク21に送られる。これにより、基板Wに供給された第2のSPMが回収される(回収工程。図8に示す回収のON)。
 図8に示す時刻T5でSPMノズル13からのSPMの吐出が停止されると、ガード昇降ユニット146は、図8に示す時刻T6で第1のガード143を下位置から上位置まで上昇させる。これにより、処理カップ111は、SPMノズル13がSPMの吐出を停止しており、基板Wの上面の全域がSPMの液膜で覆われている状態で、第1のガード143が基板Wの周端面に対向する第1の対向状態に切り換わる。この状態で、リンス液を基板Wに供給するリンス工程(図7のS4)が行われる。基板Wを乾燥させる乾燥工程(図7のS5)は、第3のガード145が基板Wの周端面に対向する第3の対向状態に処理カップ111が設定された状態で行われる。
 図9は、SPMを作成するために硫酸含有液および過酸化水素水を混合し、基板Wから回収されたSPMを別の基板Wに供給するときの流れを示すフローチャートである。以下では、図5および図9を参照する。以下の動作等は、制御装置4が基板処理装置1を制御することにより実行される。言い換えると、制御装置4は、以下の動作等を実行するようにプログラムされている。
 前述のように、SPM工程(図7のS3)を開始するときは、図9に示すように、硫酸含有液および過酸化水素水を第1の混合比で混合して、第1のSPMを作成する(図9のS11)。第1のSPMは、SPMノズル13から吐出され、基板Wに供給される(図9のS12)。そして、基板Wから排出された第1のSPMは、第1のガード143および第1のカップ141を介して第1の排液配管152に導かれる。
 第1のSPMの吐出が開始されてから所定時間が経過すると、硫酸含有液および過酸化水素水の混合比(混合前の過酸化水素水の流量に対する混合前の硫酸含有液の流量の比)が、第1の混合比から第2の混合比に増加する(図9のS13)。これにより、硫酸含有液および過酸化水素水が第2の混合比で混合され、第2のSPMが作成される。その後、第2のSPMは、基板Wに供給され(図9のS14)、基板Wから排出される。基板Wから排出された第2のSPMは、第2のガード144、第2のカップ142、共用配管155、および回収配管156を介して、第1の貯液部11のリクレームタンク21に硫酸含有液として回収される(図9のS15)。
 リクレームタンク21に回収された硫酸含有液は、第1の貯液部11の第1の循環タンク22を経て、第2の貯液部12の第2の循環タンク51に送られる。過酸化水素は高温状態において水と酸素とに分解し易いため、リクレームタンク21に回収された第2のSPM(硫酸含有液)は水を含む。しかしながら、第2のSPM(硫酸含有液)の成分の半分以上は硫酸である。リクレームタンク21に回収された第2のSPM(硫酸含有液)は、第1の循環タンク22内の硫酸含有液および第2の循環タンク51内の硫酸含有液と混合され、第2の循環タンク51ならびに第2の循環配管53(共通配管51Aおよび硫酸含有液流通配管51B)を循環する。こうして循環する硫酸含有液の硫酸濃度は、硫酸濃度計64によって計測される(図9のS16)。制御装置4は、硫酸濃度計64の計測値に基づいて、第2の循環タンク51および第2の循環配管53を循環する硫酸含有液の硫酸濃度を監視している(図9のS17)。
 硫酸濃度計64によって計測された硫酸含有液の硫酸濃度が下限値以上であれば(図9のS17でYES)、制御装置4は、硫酸含有液バルブ60を開く。これにより、硫酸含有液流通配管51Bを流れる硫酸含有液は、硫酸含有液供給配管57を流れて、SPMノズル13に供給される。これにより、基板Wから排出された第2のSPMに基づいて作成された硫酸含有液が過酸化水素水と混合され、新たなSPMが作成される。そして、この新たなSPMは、後続の基板Wに供給される。これにより、基板Wから排出されたSPMが再利用されるので、SPMの廃棄量を減らすことができる。
 その一方で、硫酸濃度計64によって計測された硫酸含有液の硫酸濃度が下限値を下回る場合(図9のS17でNO)、制御装置4は、硫酸補充配管44に介装された硫酸補充バルブ45を開いて、第1の循環タンク22内に硫酸を補充する(図9のS18)。未使用の硫酸が第1の循環タンク22内に補充されることにより、第1の循環タンク22および第1の循環配管23を循環する硫酸含有液の硫酸濃度が上昇する。その後、第1の循環タンク22および第1の循環配管23を循環する硫酸含有液が、第1の導液配管31を通って第2の循環タンク51に送られることにより、第2の循環タンク51ならびに第2の循環配管53(共通配管51Aおよび硫酸含有液流通配管51B)を循環する硫酸含有液の硫酸濃度が上昇する。これにより、こうして循環する硫酸含有液の硫酸濃度が高い状態が維持される。
 図7~図9を用いて説明した基板処理例では、第1のSPMを作成するために硫酸含有液および過酸化水素水が混合され、作成された第1のSPMが基板Wに供給される。そして、第1のSPMの供給が停止された後、第2のSPMを作成するために硫酸含有液および過酸化水素水が混合され、作成された第2のSPMが基板Wに供給される。これにより、第1のSPMおよび第2のSPMが基板Wに供給され、レジストが基板Wから除去される。
 第1のSPMを作成するときは、硫酸含有液および過酸化水素水が第1の混合比で混合される。第2のSPMを作成するときは、硫酸含有液および過酸化水素水が第2の混合比で混合される。第1の混合比および第2の混合比は、いずれも、混合前の過酸化水素水の体積に対する混合前の硫酸含有液の体積の比を表す。第1の混合比は、第2の混合比よりも小さい。したがって、第1のSPMに含まれる過酸化水素濃度は、第2のSPMに含まれる過酸化水素濃度よりも高い。
 過酸化水素濃度が相対的に高いので、第1のSPMは、第2のSPMよりも高い除去能力を有している。したがって、レジストを効率的に基板Wから除去できる。そして、第1のSPMが基板Wに供給された後、第2のSPMが基板Wに供給される。第2のSPMは除去能力が第1のSPMより劣るものの、第1のSPMの供給によって殆ど全てのレジストが基板Wから除去されているので、比較的除去し易いレジストしか基板Wに残っていない。また、基板Wに供給されるSPM(第2のSPM)の温度が非常に高温(約190℃~約220℃)に調整されているため、第1のSPMより劣るものの高い除去能力を有している。これらにより、除去能力が劣る第2のSPMであっても、レジストを基板Wから確実に除去できる。
 基板Wから排出された第1のSPMは、回収配管156ではなく、第1の排液配管152に流入する。基板Wから排出された第1のSPMは、過酸化水素濃度が相対的に高く、硫酸濃度が相対的に低い。それだけでなく、基板Wから排出された第1のSPMは、第1のSPMとレジストとの反応によって生じた多くの汚染物質(レジストの炭化物など)を含んでいる。したがって、基板Wから排出された第1のSPMは、回収に適さない。
 その一方で、基板Wから排出された第2のSPMは、硫酸濃度が相対的に高い。さらに、基板Wから排出された第2のSPMに含まれる汚染物質の量は、基板Wから排出された第1のSPMに含まれる汚染物質の量よりも少ない。したがって、硫酸濃度が相対的に高く、汚染物質の含有量が少ない第2のSPMが、回収配管156に導かれ、過酸化水素水と再び混合される。これにより、第2のSPMに含まれる硫酸が過酸化水素水と反応し、新たなSPMが作成される。そのため、SPMの廃棄量を減らすことができる。
 このように、硫酸濃度、つまり、混合前の硫酸および過酸化水素水の体積に対する混合前の硫酸の体積の割合が大きいときに、SPMを回収するので、硫酸濃度が高いSPMを回収することができる。さらに、硫酸濃度が大きい状態を維持するのではなく、SPMの回収を開始する前に、過酸化水素濃度が高く、十分な除去能力を有するSPMを基板Wに供給するので、レジストを効率的に基板Wから除去できる。したがって、基板Wから効率良くレジストを除去しながら、硫酸濃度が高いSPMを回収することができる。
 この基板処理例では、基板Wから排出された第1のSPMが、基板Wを取り囲む第1のガード143に受け止められる。基板Wから排出された第2のSPMが、基板Wを取り囲む第2のガード144に受け止められる。第1のガード143に受け止められた第1のSPMは、第1のガード143に接続された第1の排液配管152に流入する。第2のガード144に受け止められた第2のSPMは、第2のガード144に接続された回収配管156に流入する。
 基板Wから排出された第1のSPMは、多くの汚染物質を含んでいる。したがって、第1のガード143が第1のSPMを受け止め後は、汚染物質が第1のガード143の内周面に残留している場合がある。基板Wから排出された第2のSPMを第1のガード143で受け止めて回収すると、第1のガード143に付着している汚染物質が、第2のSPMに混入する場合がある。したがって、第1のガード143とは異なる第2のガード144に第2のSPMを受け止めさせることにより、回収されたSPMに含まれる汚染物質の量を減らすことができる。
 この基板処理例では、第1のSPMの供給が停止されたときに基板Wから排出された第1のSPMは、第1のガード143に受け止められる。その後、第1のガード143および第2のガード144の状態が第1の対向状態から第2の対向状態に切り換えられ、基板Wから排出された第2のSPMが第2のガード144に受け止められる。つまり、汚染物質の含有量が多い第1のSPMの排出が終了した後に、第1のガード143が基板Wに直接対向した状態から第2のガード144が基板Wに直接対向した状態に切り換えられる。これにより、汚染物質の含有量が多い第1のSPMで第2のガード144が汚染されることを防止できる。
 図10は、回収された硫酸含有液の硫酸濃度の推移を示すグラフである。図10中の縦軸は、回収された硫酸含有液の硫酸濃度を示している。図10中の横軸は、基板処理装置1で処理された基板Wの枚数を示している。図10中の比X、比Y、および比Zは、いずれも、過酸化水素水の流量を1とした場合の硫酸含有液の流量の比を示している。比Xは、比Yよりも大きく、比Yは、比Zよりも大きい(比X>比Y>比Z)。
 図10を見ると分かるように、硫酸含有液の比が比X、比Y、および比Zのいずれの場合も、硫酸含有液の硫酸濃度は、基板Wの処理枚数が増えるにしたがって減少する。硫酸の濃度の低下率は、硫酸含有液の比が小さいほど大きい。つまり、硫酸含有液の比が比Zのとき、硫酸含有液における硫酸濃度の低下率が最も大きく、硫酸含有液の比が比Yのとき、硫酸含有液における硫酸濃度の低下率が2番目に大きい。言い換えると、硫酸含有液の比が高いと、硫酸含有液における硫酸濃度が低下し難い。硫酸含有液の比が比Xのとき、基板Wに供給されたSPMを回収しながら100枚以上の基板Wを処理しても、硫酸含有液の硫酸濃度が90%程度までしか低下しないことが確認された。
 前述のように、本実施形態では、硫酸含有液の硫酸濃度が高いSPMを硫酸含有液供給装置8に回収し、回収されたSPMを硫酸含有液として再利用する。図10を見ると分かるように、硫酸含有液の比が小さいほど、硫酸の濃度の低下率が大きいので、硫酸含有液供給装置8に回収する硫酸含有液の比が小さければ、多数枚の基板Wを処理しても硫酸含有液における硫酸濃度が低下し難い。したがって、硫酸含有液供給装置8に回収される硫酸含有液の硫酸濃度を再利用に適した値に維持できる。これにより、第1の循環タンク22および第2の循環タンク51内の硫酸含有液を新しい硫酸に交換する頻度や、第1の循環タンク22内に新しい硫酸を補充する頻度を減らすことができる。ゆえに、硫酸の消費量(すなわち、硫酸の廃棄量)を低減できる。
 以上によりこの実施形態によれば、硫酸含有液供給装置8において、硫酸濃度調整用の貯液部(第1の貯液部11)と、温度調整用の貯液部(第2の貯液部12)と、を別に設けている。補充される硫酸の温度が室温であることから、仮に、温度調整用の第2の貯液部12において、硫酸の補充を行いながら硫酸含有液を温度調整すると、貯液部における硫酸含有液の温度が安定しない。この実施形態では、硫酸濃度調整用の第1の貯液部11と、温度調整用の第2の貯液部12と、をそれぞれ別に設けるので、第2の貯液部12において硫酸含有液の温度が安定する。これにより、SPMノズル13に供給される硫酸含有液を所望の高温に調整できる。
 この実施形態では、第1の貯液部11および第2の貯液部12においてそれぞれ第2および第1の循環ヒータ52,24によって硫酸含有液が加熱される。そのため、硫酸含有液により多くの熱量を与えることができる。また、第1の貯液部11において第1の温度(約120℃~約130℃)に温度調整された硫酸含有液が第2の貯液部12に供給される。そして、第2の貯液部12において硫酸含有液が加熱されて、第2の温度(約160℃)まで昇温される。つまり、硫酸含有液が段階的に加熱される。そのため、第2の貯液部12において、硫酸含有液をより高温まで昇温させることが可能である。
 また、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液が、硫酸含有液供給配管57に導かれる。そして、硫酸含有液供給配管57を流通している硫酸含有液がヒータ54によって加熱される。ヒータ54による加熱によって、硫酸含有液を、第2の循環タンク51および第2の循環配管53を循環していたときよりもさらに高温の第3の温度(約165℃)まで昇温させることが可能である。
 SPMの混合比が第2の混合比である第2のSPMは、除去能力が第1のSPMより劣る。しかしながら、SPMの除去能力は、過酸化水素濃度だけでなく、そのSPMの温度にも依存している。すなわち、SPMの除去能力は、そのSPMの温度が高くなるにつれて上昇する。そして、硫酸含有液の温度が高くなるにつれて、混合後のSPMの温度が高くなる。したがって、混合前の硫酸含有液の温度を高めることで、混合比が第2の混合比であっても、SPMの除去能力を高く保つことができる。これにより、混合比が第2の混合比であっても、基板Wからレジストを効率良く除去できる。
 この実施形態では、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液の硫酸濃度が硫酸濃度計64によって計測される。そのため、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液の硫酸濃度を正確に求めることができる。そして、硫酸濃度計64によって計測された硫酸濃度が下限値を下回ると、硫酸補充ユニット25によって、第1の循環タンク22に硫酸が供給される。これにより、SPMノズル13に供給される硫酸含有液の硫酸濃度を所望の高濃度に調整できる。
 この実施形態では、第1の循環ヒータ24および第2の循環ヒータ52の双方を用いて硫酸含有液を加熱するので、第2の循環ヒータ52のみで硫酸含有液を加熱する場合と比較して、第2の循環ヒータ52に加わる負担を低減できる。
 図11は、本発明の第2の実施形態に係る第1の硫酸含有液供給装置209を、水平方向から見た図である。図11において、前述の図1~図10に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
 第2の実施形態に係る第1の硫酸含有液供給装置209が、第1の実施形態に係る第1の硫酸含有液供給装置9と相違する点は、第1の貯液部に加えて第3の貯液部213をさらに設けた点である。第3の貯液部213には、第1の貯液部から硫酸含有液が送られ、第3の貯液部213に貯留されている硫酸含有液は、第2の貯液部12に送られる。
 また、第1の貯液部211は、第1の循環ヒータ24が廃止されている点で、第1の実施形態に係る第1の貯液部11と相違している。また、第1の貯液部211は、排液タンク50を備えていない。すなわち、第1の貯液部211には、第1の循環タンク22および第1の循環配管23を循環している硫酸含有液を加熱するためのユニットが設けられていない。
 リクレームタンク21に回収されるSPMは、硫酸含有液としてリクレームタンク21に貯留される。基板Wから排出されたSPMは、処理カップ111、回収配管156および回収導出配管26を流れる過程で冷却されながら、リクレームタンク21に回収される。そのため、リクレームタンク21に回収されるSPMは、基板Wに供給されるSPMの温度(約190℃~約220℃)よりもかなり低いが、それでも約80℃~約90℃という高い液温を有している。
 リクレームタンク21に貯留されている硫酸含有液は、第1の送液装置29の駆動によって、移送配管28を介して第1の循環タンク22に送られる。そして、第1の循環タンク22および第1の循環配管23を硫酸含有液が循環する。移送配管28および第1の循環配管23を硫酸含有液が流れる過程で、移送配管28の管壁および第1の循環配管23の管壁によって熱を奪われるから、硫酸含有液の温度は降下する。第1の循環タンク22および第1の循環配管23を循環する硫酸含有液は、第1の循環配管23の管壁との熱平衡により、室温(約23℃~約25℃)よりも高いが、リクレームタンク21に貯留されている硫酸含有液よりも低い第4の温度(約40℃~約60℃)に保たれている。
 第1の硫酸含有液供給装置209に含まれる第3の貯液部213は、第3の循環タンク(第3のタンク)222と、第3の循環配管(第3の配管)223と、第3の循環ヒータ(第2のヒータ)224と、を含む。
 第3の循環タンク222には、第1の導液配管31の下流端が接続されている。第3の循環タンク222には、第1の貯液部11において第4の温度(たとえば約40℃~約60℃)の硫酸含有液が導かれる。そして、導かれた硫酸含有液が第3の循環タンク222に貯留される(第3の貯留工程)。
 第3の循環タンク222には、第2の硫酸含有液供給装置10(第2の貯液部12)に向けて延びた第2の導液配管231が接続されている。第2の導液配管231の下流端は、第2の貯液部12の第2の循環タンク51に接続されている。第2の導液配管231の途中部には、第1の導液配管31の途中部には、第3の循環タンク222内の硫酸含有液を汲み出すためのポンプ等の第5の送液装置232が介装されている。第2の導液配管231の途中部には、第5の送液装置232の下流側に第4の捕獲フィルタ237および開閉バルブ238が介装されている。第4の捕獲フィルタ237は、第2の導液配管231を流通する硫酸含有液中に含まれる比較的小さな異物を捕捉して除去するためのフィルタである。第4の捕獲フィルタ237は、第3の捕獲フィルタ37で除去し切れなかった異物を除去する。
 開閉バルブ238は、第2の導液配管231における硫酸含有液の流通およびその停止を制御するためのバルブである。
 第2の導液配管231には、開閉バルブ238と第4の捕獲フィルタ237との間において、リターン配管240が分岐接続されている。リターン配管240の下流端は第3の循環タンク222へ延びている。リターン配管240の途中部には、リターンバルブ241が介装されている。第2の導液配管231におけるリターン配管240の分岐位置242の下流側部分と、リターン配管240とによって、第3の循環配管223が構成されている。
 基板処理装置の運転中(基板Wの処理を停止している期間を含む)において、第5の送液装置232および第3の循環ヒータ224が常に駆動されている。そのため、開閉バルブ238が閉じられかつリターンバルブ241が開かれることにより、第3の循環タンク222から汲み出される硫酸含有液が、第2の導液配管231を分岐位置242まで流れ、その分岐位置242からリターン配管240を通して第3の循環タンク222に戻される。つまり、第2の貯液部12に硫酸含有液を送らない期間は、第3の循環タンク222および第3の循環配管223を硫酸含有液が循環している。そして、第2の貯液部12に硫酸含有液を送るタイミングになると、開閉バルブ238が開かれかつリターンバルブ241が閉じられることによって、第3の循環タンク222から汲み出される硫酸含有液が、第2の導液配管231を通して第2の貯液部12に供給される。
 第3の循環ヒータ224は、第2の導液配管231の途中部において第5の送液装置232の上流側に介装されている。第3の循環ヒータ224は、第3の循環タンク222および第3の循環配管223を循環する硫酸含有液を加熱する(第3の加熱工程)。第3の循環ヒータ224の加熱温度は、所定の第1の温度(第2の加熱温度。たとえば約120℃~約130℃)に設定されている。第3の循環タンク222および第3の循環配管223を硫酸含有液が循環することにより、硫酸含有液が第1の温度に調整される。第2の貯液部12に硫酸含有液を送らない期間、硫酸含有液を循環させておくことによって、第1の温度に調整された硫酸含有液を第3の循環タンク222に貯留しておくことができる。また、開閉バルブ238の開成後、第1の温度に調整された硫酸含有液を第2の貯液部12に送ることができる。
 第3の貯液部213は、排液配管246、排液バルブ247、導出配管248、第6の送液装置249および排液タンク250を含む。排液配管246、排液バルブ247、導出配管248、第6の送液装置249および排液タンク250は、それぞれ、排液配管46、排液バルブ47、導出配管48、第3の送液装置49および排液タンク50と同等の構成および機能を有している。
 この第2の実施形態では、前述の第1の実施形態に加えて、以下の作用効果を奏する。
 すなわち、第1の貯液部211には、第1の循環タンク22および第1の循環配管23を循環している硫酸含有液を加熱するためのユニットが設けられていない。すなわち、第1の貯液部211において硫酸含有液の加熱が行われない。そのため、第1の循環タンク22および第1の循環配管23を循環している硫酸含有液は、比較的低温(約40℃から約60℃)を有している。そのため、第3の捕獲フィルタ37を通過する硫酸含有液が比較的低温である。
 第1の実施形態のように、第1の循環タンク22および第1の循環配管23を高温(約120℃~約130℃)の硫酸含有液が流通する場合には、第3の捕獲フィルタ37を高温(約120℃~約130℃)の硫酸含有液が継続的に流通することに伴ってフィルタが膨張し、各孔71(図3参照)の径が広がるおそれがある。各孔71(図3参照)の径が広がると、第3の捕獲フィルタ37によって捕獲可能な異物の径が大きくなる。そのため、第3の捕獲フィルタ37のフィルタリング性能が低下し、第1の貯液部において硫酸含有液に含まれる異物を良好に捕獲できないおそれがある。
 第2の実施形態では、第3の捕獲フィルタ37を通過する硫酸含有液が比較的低温(約40~約60℃)であるので、第3の捕獲フィルタ37のフィルタリング性能の低下を抑制できる。そのため、第1の貯液部211において硫酸含有液に含まれる異物を良好に捕獲できる。これにより、清浄な硫酸含有液をSPMノズル13に供給することが可能である。
 第2の実施形態では、第3の貯液部213において、第1の貯液部211から送られた硫酸含有液が、第3の循環タンク222および第3の循環配管223を循環する。第3の循環タンク222および第3の循環配管223を循環する硫酸含有液が第3の循環ヒータ224によって加熱される。第3の貯液部213および第2の貯液部12においてそれぞれ第3の224および第2の循環ヒータ52によって硫酸含有液が加熱される。硫酸含有液により多くの熱量を与えることができるので、第2の貯液部12において、硫酸含有液をより高温に昇温させることが可能である。
 また、第3の循環ヒータ224および第2の循環ヒータ52の双方を用いて硫酸含有液を加熱するので、一方のヒータ(すなわち、第2の循環ヒータ52)に加わる負担を低減できる。
 図12は、本発明の第3の実施形態に係る第1の硫酸含有液供給装置309を、水平方向から見た図である。図12において、前述の図1~図10に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
 第3の実施形態に係る第1の硫酸含有液供給装置309に係る第1の貯液部311が、第1の実施形態に係る第1の硫酸含有液供給装置9の第1の貯液部11と相違する点は、において、第1の循環ヒータ24を廃止した点である。その余において、第1の貯液部311は、第1の貯液部11と同等の構成である。
 前述のように、リクレームタンク21に回収されるSPMは、基板Wに供給されるSPMの温度(約190℃~約220℃)よりもかなり低いが、それでも約80℃~約90℃という高い液温を有している。前述のように、第1の循環タンク22および第1の循環配管23を循環する硫酸含有液は、第1の循環配管23の管壁との熱平衡により、室温(約23℃~約25℃)よりも高いが、リクレームタンク21に貯留されている硫酸含有液よりも低い第4の温度(約40℃~約60℃)に保たれている。そして、第1の循環タンク22および第1の循環配管23を循環する第4の硫酸含有液が、第2の硫酸含有液供給装置10の第2の貯液部12に送られる。
 そして、第2の貯液部12において、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液を、第2の循環ヒータ52に加熱することにより、この循環ヒータを、第2の温度まで昇温させる。
 第3の実施形態では、第3の捕獲フィルタ37を通過する硫酸含有液が比較的低温(約40~約60℃)であるので、第3の捕獲フィルタ37のフィルタリング性能の低下を抑制できる。そのため、第1の貯液部311において硫酸含有液に含まれる異物を良好に捕獲できる。これにより、清浄な硫酸含有液をSPMノズル13に供給することが可能である。
 以上、この発明の3つの実施形態について説明したが、この発明は、さらに他の形態で実施することもできる。
 たとえば、前述の第2および第3の実施形態において、図11および図12に破線で示すように、第1の貯液部211,311が、第1の循環タンク22および第1の循環配管23を循環している硫酸含有液を冷却するクーラー401をさらに備えていてもよい。クーラー401は、たとえば、第1の導液配管31の途中部において、第3の送液装置49の上流側に介装されている。この場合、第1の循環タンク22および第1の循環配管23のおける硫酸含有液の循環により、硫酸含有液が冷却される。クーラー401による冷却温度の設定次第で、第1の循環タンク22および第1の循環配管23を循環している硫酸含有液を室温(約23℃~約25℃)や、室温未満の低温にまで下げることも可能である。
 図13は、捕獲フィルタ(第3の捕獲フィルタ37)のフィルタリング性能の熱影響による変化を説明するための図である。図13に示すように、捕獲フィルタ(第3の捕獲フィルタ37)を通過する硫酸含有液の温度(循環温度)が低くなるにしたがって、捕獲フィルタのフィルタリング性能が向上する(すなわち、比較的小さい異物(微小パーティクル)を良好に捕捉できる)。捕獲フィルタを通過する硫酸含有液の温度をリクレームタンクに貯留されている硫酸含有液よりも低い温度(温度A)にした場合の微小パーティクルが通過する数を基準(100%)とすると、捕獲フィルタを通過する硫酸含有液の温度を常温(温度B)まで下げた場合、微小パーティクルが通過する数が40%になり、フィルタリング性能がさらによくなる。一方、図示はしないが、硫酸含有液の温度が80℃以上の場合、基準(100%)よりも微小パーティクルが通過する数が大幅に増え、フィルタリング性能が悪化する。そのため、第1の貯液部211,311において硫酸含有液に含まれる比較的小さな異物を、より一層良好に捕獲できる。これにより、より一層清浄な硫酸含有液をSPMノズル13に供給することが可能である。
 また、図4に破線で示すように、第2の貯液部12が、第2の循環タンク51に新しい硫酸(基板Wの処理に未使用の硫酸)を供給する硫酸供給ユニット402を含んでいてもよい。硫酸供給ユニット402は、第2の循環タンク51に硫酸を補充する硫酸供給配管403と、硫酸供給配管403を開閉する硫酸補充バルブ404と、を含む。硫酸供給配管403に供給される硫酸は、未使用の硫酸(たとえば濃硫酸)である。
 硫酸供給ユニット402からの硫酸の供給は、第2の循環タンク51および第2の循環配管53を循環している硫酸含有液の硫酸濃度を上昇させるための硫酸の補充のためには用いることはない。基板処理装置1の起動開始時等に、第2の循環タンク51に硫酸含有液を溜めるために専ら用いられる。
 また、硫酸含有液と過酸化水素水とをSPMノズル13の内部で混合させるノズル内混合方式を採用する場合について説明したが、硫酸含有液と過酸化水素水とを、ノズルに接続された処理液配管内、または当該処理液配管に連結された混合配管において混合させる配管内混合方式が採用されていてもよい。
 また、第1の貯液部11,211,311において、回収導出配管26から回収されたSPMをリクレームタンク21に一旦回収し、その後に第1の循環タンク22に貯留するとして説明したが、リクレームタンク21を経ることなく、第1の循環タンク22に直接貯留させるようにしてもよい。この場合には、リクレームタンク21を廃止してもよい。
 また、硫酸濃度計64を、各タワーに対応する硫酸含有液流通配管51Bの1つのみではなく全てに配置するようにしてもよい。また、硫酸濃度計64を、硫酸含有液流通配管51Bではなく、第2の循環タンク51および/または共通配管51Aに配置するようにしてもよい。硫酸含有液供給装置8において作成された硫酸含有液の硫酸濃度を、第2の循環タンク51および第2の循環配管53を循環する硫酸含有液の硫酸濃度の計測に代えてまたは併せて、第1の循環タンク22および第1の循環配管23を循環している硫酸含有液の硫酸濃度を計測することによって行ってもよい。
 また、1つの第1の硫酸含有液供給装置9と、1つの第2の硫酸含有液供給装置10とによって構成される1つの硫酸含有液供給装置が、複数(3つ)の塔に含まれる処理ユニット6に硫酸含有液を供給するのではなく、1つの塔に含まれる処理ユニット6にのみ硫酸含有液を供給するようになっていてもよい。すなわち、第1の循環タンク22および第2の循環タンク51の対が、処理ユニット6に一対一対応で設けられていてもよい。この場合、共通配管51Aの構成を省略でき、硫酸含有液流通配管51Bの両端が第2の循環タンク51に接続される。すなわち、硫酸含有液流通配管51Bのみによって第2の循環配管53を構成することができる。
 この実施形態では、第1の貯液部11,211,311および/または第3の貯液部213を、第2の貯液部12と別フロアに配置するのではなく、クリーンルーム内(すなわち、第2の貯液部12と同じフロア)に共通して配置するようにしてもよい。この場合、第1の貯液部11,211,311および/または第3の貯液部213と第2の貯液部12を、それぞれ別々のフレームの中に収容配置するのではなく、共通するフレーム内に収容配置するようにしてもよい。
 また、前述の各実施形態において、基板処理装置1が半導体ウエハからなる基板Wを処理する装置である場合について説明したが、基板処理装置が、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板を処理する装置であってもよい。
 その他、請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 この出願は、2018年9月20日に日本国特許庁に提出された特願2018-176394号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
1    :基板処理装置
4    :制御装置
6    :処理ユニット
8    :硫酸含有液供給装置
11   :第1の貯液部
12   :第2の貯液部
13   :SPMノズル(ノズル)
13a  :SPMノズルの内部(混合部)
22   :第1の循環タンク(第1のタンク)
23   :第1の循環配管(第2の配管)
24   :第1の循環ヒータ(第2のヒータ)
25   :硫酸補充ユニット
37   :第3の捕獲フィルタ(フィルタ)
51   :第2の循環タンク(第2のタンク)
52   :第2の循環ヒータ(第1のヒータ)
53   :第2の循環配管(第1の配管)
54   :ヒータ(第3のヒータ)
59   :硫酸含有液流量調整バルブ(混合比変更ユニット)
64   :硫酸濃度計
108  :スピンチャック(基板保持ユニット)
122  :過酸化水素水供給ユニット
137  :過酸化水素水流量調整バルブ(混合比変更ユニット)
143  :第1のガード
144  :第2のガード
146  :ガード昇降ユニット(ガード切り換えユニット)
156  :回収配管
157  :第2の排液配管(排液配管)
209  :第1の硫酸含有液供給装置
211  :第1の貯液部
213  :第3の貯液部
221  :第3の循環タンク(第3のタンク)
223  :第3の循環配管(第3の配管)
224  :第2の循環ヒータ(第3のヒータ)
248  :導出配管
309  :第1の硫酸含有液供給装置
311  :第1の貯液部
401  :クーラー
W    :基板

Claims (17)

  1.  硫酸および過酸化水素水の混合液であるSPMで基板からレジストを除去する基板処理装置であって、
     少なくとも一部がレジストで覆われた基板を保持する基板保持ユニットと、
     吐出口を有し、前記基板保持ユニットに保持されている基板に向けて前記吐出口からSPMを吐出するノズルと、
     前記吐出口に連通する混合部と、
     前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体を回収し、回収した液体に基づいて硫酸含有液を作成し、作成後の硫酸含有液を前記混合部に供給するための硫酸含有液供給装置と、
     過酸化水素水を前記混合部に供給するための過酸化水素水供給ユニットと、
     前記硫酸含有液供給装置および前記過酸化水素水供給ユニットを制御する制御装置と、を含み、
     前記制御装置が、
     前記基板に供給され当該基板から排出されたSPMを回収して硫酸含有液を作成する硫酸含有液作成工程と、
     作成後の硫酸含有液および過酸化水素水を前記混合部に供給して前記混合部において硫酸含有液および過酸化水素水を混合することによりSPMを生成し、生成されたSPMを前記吐出口から吐出するSPM吐出工程と、を実行する、基板処理装置。
  2.  前記硫酸含有液供給装置が、第1の貯液部と、第2の貯液部と、を含み、
     前記第1の貯液部が、
     回収した液体を貯留する第1のタンクと、
     前記第1のタンクに硫酸を補充するための硫酸補充ユニットと、を含み、
     前記第2の貯液部が、
     前記第1のタンクから送られた液体を貯留する第2のタンクと、
     前記第2のタンクに両端が接続され、前記第2のタンクに貯留されている液体が循環する第1の配管と、
     前記第2のタンクおよび前記第1の配管を循環している液体を加熱するための第1のヒータと、を含み、
     前記制御装置が、前記硫酸含有液作成工程において、
     前記基板から排出されたSPMを回収して、硫酸含有液として前記第1のタンクに貯留する第1の貯留工程と、
     前記硫酸補充ユニットによって前記第1のタンクに硫酸を補充する硫酸補充工程と、
     前記第1のタンクから送られた硫酸含有液を前記第2のタンクに貯留する第2の貯留工程と、
     前記第2のタンクおよび前記第1の配管を循環している硫酸含有液を前記第1のヒータによって加熱する第1の加熱工程と、を実行し、
     前記制御装置が、前記SPM吐出工程において、前記第2のタンクおよび前記第1の配管を循環している硫酸含有液を前記混合部に供給する工程を実行する、請求項1に記載の基板処理装置。
  3.  前記第2の貯液部が、
     前記第2のタンクおよび前記第1の配管を循環している硫酸含有液の硫酸濃度を計測する硫酸濃度計をさらに含み、
     前記制御装置が、前記硫酸濃度計による計測値が所定の判定値未満である場合に、前記硫酸補充工程を実行する、請求項2に記載の基板処理装置。
  4.  前記第1の貯液部が、
     前記第1のタンクに両端が接続され、前記第1のタンクに貯留されている硫酸含有液が循環する第2の配管と、
     前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を加熱する第2のヒータと、をさらに含み、
     前記制御装置が、前記硫酸含有液作成工程において、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を第2のヒータによって加熱する第2の加熱工程をさらに実行する、請求項2に記載の基板処理装置。
  5.  前記第1の貯液部が、
     前記第1のタンクに両端が接続され、前記第1のタンクに貯留されている硫酸含有液が循環する第2の配管をさらに含み、
     前記第1の貯液部には、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を加熱するためのユニットが設けられていない、請求項2に記載の基板処理装置。
  6.  前記第1の貯液部が、
     前記第2の配管に介装され、当該前記第2の配管を流通する硫酸含有液に含まれる異物を捕獲するフィルタをさらに含む、請求項5に記載の基板処理装置。
  7.  前記硫酸含有液供給装置が、第3の貯液部をさらに含み、
     前記第3の貯液部が、
     前記第1のタンクから送られる液体を貯留する第3のタンクと、
     前記第3のタンクに両端が接続され、前記第3のタンクに貯留されている液体が循環する第3の配管と、
     前記第3のタンクおよび前記第3の配管を循環している液体を加熱するための第2のヒータと、を含み、
     前記制御装置が、前記硫酸含有液作成工程において、
     前記第1のタンクから送られた硫酸含有液を前記第3のタンクに貯留する第3の貯留工程と、
     前記第3のタンクおよび前記第3の配管を循環している硫酸含有液を前記第2のヒータによって加熱する第2の加熱工程と、をさらに実行し、
     前記制御装置が、前記SPM吐出工程において、前記第3のタンクおよび前記第3の配管を循環している硫酸含有液を前記第2のタンクに送る工程をさらに実行する、請求項5に記載の基板処理装置。
  8.  前記第1の貯液部が、
     前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を冷却するためのクーラーをさらに含み、
     前記制御装置が、前記硫酸含有液作成工程において、前記第1のタンクおよび前記第2の配管を循環している硫酸含有液を前記クーラーによって冷却する冷却工程をさらに実行する、請求項5~7のいずれか一項に記載の基板処理装置。
  9.  前記第1のタンクおよび前記第2の配管を循環している硫酸含有液が自然冷却のみによって冷却される、請求項5~7のいずれか一項に記載の基板処理装置。
  10.  前記第1のヒータによる加熱温度である第1の加熱温度が、前記第2のヒータによる加熱温度である第2の加熱温度よりも高い、請求項4または7に記載の基板処理装置。
  11.  前記第2のタンクまたは前記第1の配管と前記混合部とを接続する硫酸含有液供給配管と、
     前記硫酸含有液供給配管を流通している硫酸含有液を加熱するための第3のヒータと、をさらに含み、
     前記制御装置が、前記硫酸含有液作成工程において、前記硫酸含有液供給配管を流通している硫酸含有液を前記第3のヒータによって加熱する第3の加熱工程をさらに実行する、請求項2に記載の基板処理装置。
  12.  前記混合部における過酸化水素水に対する硫酸含有液の比を変更する混合比変更ユニットと、
     前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体を回収して前記硫酸含有液供給装置に送るための回収配管と、
     前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体が流入する排液配管と、
     前記基板保持ユニットに保持されている基板から排出された液体が流入する配管を、前記排液配管および前記回収配管の間で切り換える切り換えユニットと、をさらに含み、
     前記制御装置が、
     前記混合比変更ユニットを制御することにより、過酸化水素水に対する硫酸含有液の比を表す第1の混合比で硫酸含有液および過酸化水素水を混合して第1のSPMを作成し、作成された前記第1のSPMを、前記基板保持ユニットに保持されている基板に供給する第1のSPM供給工程と、
     前記混合比変更ユニットを制御することにより、過酸化水素水に対する硫酸含有液の比を表し、前記第1の混合比よりも大きい第2の混合比で硫酸および過酸化水素水を混合して第2のSPMを作成し、作成された前記第2のSPMを、前記第1のSPM供給工程において前記第1のSPMの供給が停止された後に、前記基板保持ユニットに保持されている基板に供給する第2のSPM供給工程と、
     前記切り換えユニットを制御することにより、前記第1のSPM供給工程において前記基板に供給され前記基板から排出された前記第1のSPMを、前記排液配管に流入させる排液工程と、
     前記切り換えユニットを制御することにより、前記第2のSPM供給工程において前記基板に供給され前記基板から排出された前記第2のSPMを、前記回収配管に流入させる回収工程と、をさらに実行する、請求項1または2に記載の基板処理装置。
  13.  前記排液配管に接続されて、前記基板保持ユニットに保持されている基板を取り囲む第1のガードと、
     前記回収配管に接続されて、前記基板保持ユニットに保持されている基板を取り囲む第2のガードと、をさらに含み、
     前記切り換えユニットが、前記第1のガードおよび前記第2のガードの状態を、前記基板から排出された液体を前記第1のガードが受け止める第1状態と、前記基板から排出された液体を前記第2のガードが受け止める第2状態との間で切り換えるガード切り換えユニットと、を含み、
     前記制御装置が、
     前記ガード切り換えユニットを制御することにより、前記第1のSPM供給工程において前記基板から排出された前記第1のSPMを、前記第1のガードに受け止めさせる第1のSPM捕獲工程と、
     前記ガード切り換えユニットを制御することにより、前記第2のSPM供給工程において前記基板から排出された前記第2のSPMを、前記第2のガードに受け止めさせる第2のSPM捕獲工程と、をさらに実行する、請求項12に記載の基板処理装置。
  14.  基板保持ユニットに保持されている基板に向けて吐出口から、硫酸および過酸化水素水の混合液であるSPMを吐出するノズルと、前記吐出口に連通する混合部と、を含む基板処理装置において実行される基板処理方法であって、
     前記基板保持ユニットに保持されている、少なくとも一部がレジストで覆われた基板に供給され、当該基板から排出されたSPMを回収して硫酸含有液を作成する硫酸含有液作成工程と、
     作成後の硫酸含有液および過酸化水素水を前記混合部に供給することにより、前記混合部において硫酸含有液および過酸化水素水を混合してSPMを生成し、生成されたSPMを前記吐出口から吐出するSPM吐出工程と、を含む、基板処理方法。
  15.  前記硫酸含有液作成工程が、
     前記基板から排出されたSPMを回収して硫酸含有液として第1の貯液部の第1のタンクに貯留する工程と、
     前記第1のタンクに硫酸を補充する硫酸補充工程と、
     前記第1のタンクから送られた硫酸含有液を、前記第1のタンクとは異なる、第2の貯液部の第2のタンクに貯留する工程と、
     前記第2のタンク、および前記第2のタンクに両端が接続された第1の配管を循環している硫酸含有液を、第2の貯液部の第1のヒータによって加熱する加熱工程と、を含み、
     前記SPM吐出工程が、前記第2のタンクおよび前記第1の配管を循環している硫酸含有液を前記混合部に供給する工程を含む、請求項14に記載の基板処理方法。
  16.  前記混合部における過酸化水素水に対する硫酸含有液の比を変更することにより、過酸化水素水に対する硫酸含有液の比を表す第1の混合比で硫酸含有液および過酸化水素水を混合して第1のSPMを作成し、作成された前記第1のSPMを、前記基板保持ユニットに保持されている基板に供給する第1のSPM供給工程と、
     前記混合部における過酸化水素水に対する硫酸含有液の比を変更することにより、過酸化水素水に対する硫酸含有液の比を表し、前記第1の混合比よりも大きい第2の混合比で硫酸および過酸化水素水を混合して第2のSPMを作成し、作成された前記第2のSPMを、前記第1のSPM供給工程において前記第1のSPMの供給が停止された後に、前記基板保持ユニットに保持されている基板に供給する第2のSPM供給工程と、
     前記第1のSPM供給工程において前記基板に供給され前記基板から排出された前記第1のSPMを、前記基板保持ユニットに保持されている基板に供給され当該基板から排出された液体を回収するための回収配管とは異なる配管である排液配管に流入させる排液工程と、
     前記第2のSPM供給工程において前記基板に供給され前記基板から排出された前記第2のSPMを、前記回収配管に流入させる回収工程と、をさらに含む、請求項14または15に記載の基板処理方法。
  17.  前記第1のSPM供給工程において前記基板から排出された前記第1のSPMを、前記基板を取り囲んでおり、前記排液配管に接続された第1のガードに受け止めさせる第1のSPM捕獲工程と、
     前記第2のSPM供給工程において前記基板から排出された前記第2のSPMを、前記基板を取り囲んでおり、前記回収配管に接続された第2のガードに受け止めさせる第2のSPM捕獲工程と、をさらに含む、請求項16に記載の基板処理方法。
     
PCT/JP2019/028345 2018-09-20 2019-07-18 基板処理装置および基板処理方法 WO2020059280A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/273,123 US11318504B2 (en) 2018-09-20 2019-07-18 Substrate processing device and substrate processing method
CN201980061522.3A CN112740361A (zh) 2018-09-20 2019-07-18 衬底处理装置及衬底处理方法
KR1020217007433A KR102525270B1 (ko) 2018-09-20 2019-07-18 기판 처리 장치 및 기판 처리 방법
US17/704,343 US11883858B2 (en) 2018-09-20 2022-03-25 Substrate processing device and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-176394 2018-09-20
JP2018176394A JP7220537B2 (ja) 2018-09-20 2018-09-20 基板処理装置および基板処理方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/273,123 A-371-Of-International US11318504B2 (en) 2018-09-20 2019-07-18 Substrate processing device and substrate processing method
US17/704,343 Continuation US11883858B2 (en) 2018-09-20 2022-03-25 Substrate processing device and substrate processing method

Publications (1)

Publication Number Publication Date
WO2020059280A1 true WO2020059280A1 (ja) 2020-03-26

Family

ID=69888685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028345 WO2020059280A1 (ja) 2018-09-20 2019-07-18 基板処理装置および基板処理方法

Country Status (6)

Country Link
US (3) US11318504B2 (ja)
JP (1) JP7220537B2 (ja)
KR (1) KR102525270B1 (ja)
CN (1) CN112740361A (ja)
TW (3) TWI839024B (ja)
WO (1) WO2020059280A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI846004B (zh) * 2021-09-22 2024-06-21 日商斯庫林集團股份有限公司 基板處理裝置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7382164B2 (ja) * 2019-07-02 2023-11-16 東京エレクトロン株式会社 液処理装置および液処理方法
JP7321052B2 (ja) * 2019-10-17 2023-08-04 東京エレクトロン株式会社 基板処理装置および装置洗浄方法
KR102622445B1 (ko) 2020-04-24 2024-01-09 세메스 주식회사 기판 처리 장치 및 액 공급 방법
JP7499622B2 (ja) 2020-06-23 2024-06-14 東京エレクトロン株式会社 液処理装置および液処理方法
JP2022146507A (ja) * 2021-03-22 2022-10-05 株式会社Screenホールディングス 基板処理装置および基板処理方法
JPWO2023026828A1 (ja) * 2021-08-27 2023-03-02
JP7470759B2 (ja) * 2022-09-22 2024-04-18 株式会社Screenホールディングス 基板処理装置および基板処理方法
WO2024154418A1 (ja) * 2023-01-19 2024-07-25 株式会社Screenホールディングス 基板処理装置、および、基板処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095144A (ja) * 2006-10-11 2008-04-24 Kurita Water Ind Ltd 高温高濃度過硫酸溶液の生成方法および生成装置
JP2010010422A (ja) * 2008-06-27 2010-01-14 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2013021198A (ja) * 2011-07-13 2013-01-31 Dainippon Screen Mfg Co Ltd 薬液温調装置および薬液温調方法
JP2013074090A (ja) * 2011-09-28 2013-04-22 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2016072613A (ja) * 2014-09-30 2016-05-09 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法
WO2017135064A1 (ja) * 2016-02-03 2017-08-10 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP2018056293A (ja) * 2016-09-28 2018-04-05 東京エレクトロン株式会社 基板処理装置および処理液供給方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024793A (ja) 2004-07-08 2006-01-26 Dainippon Screen Mfg Co Ltd 薬液回収方法および基板処理装置
JP5668914B2 (ja) 2010-08-27 2015-02-12 栗田工業株式会社 洗浄方法および洗浄システム
JP2012076979A (ja) 2010-10-06 2012-04-19 Tokyo Electron Ltd 硫酸再生装置、硫酸再生方法および記憶媒体
JP2013207207A (ja) * 2012-03-29 2013-10-07 Tokyo Electron Ltd 基板液処理装置及び基板液処理方法
US9966282B2 (en) * 2014-09-30 2018-05-08 Shibaura Mechatronics Corporation Substrate processing apparatus and substrate processing method
JP6815873B2 (ja) * 2017-01-18 2021-01-20 株式会社Screenホールディングス 基板処理装置
JP6839990B2 (ja) * 2017-01-31 2021-03-10 株式会社Screenホールディングス 処理液供給装置、基板処理装置、および処理液供給方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095144A (ja) * 2006-10-11 2008-04-24 Kurita Water Ind Ltd 高温高濃度過硫酸溶液の生成方法および生成装置
JP2010010422A (ja) * 2008-06-27 2010-01-14 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2013021198A (ja) * 2011-07-13 2013-01-31 Dainippon Screen Mfg Co Ltd 薬液温調装置および薬液温調方法
JP2013074090A (ja) * 2011-09-28 2013-04-22 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2016072613A (ja) * 2014-09-30 2016-05-09 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法
WO2017135064A1 (ja) * 2016-02-03 2017-08-10 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP2018056293A (ja) * 2016-09-28 2018-04-05 東京エレクトロン株式会社 基板処理装置および処理液供給方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI846004B (zh) * 2021-09-22 2024-06-21 日商斯庫林集團股份有限公司 基板處理裝置

Also Published As

Publication number Publication date
TW202013491A (zh) 2020-04-01
KR102525270B1 (ko) 2023-04-24
JP7220537B2 (ja) 2023-02-10
TWI839024B (zh) 2024-04-11
US20220219209A1 (en) 2022-07-14
US11883858B2 (en) 2024-01-30
US20240116087A1 (en) 2024-04-11
KR20210042380A (ko) 2021-04-19
CN112740361A (zh) 2021-04-30
TW202141615A (zh) 2021-11-01
TW202314925A (zh) 2023-04-01
US20210252560A1 (en) 2021-08-19
US11318504B2 (en) 2022-05-03
TWI736934B (zh) 2021-08-21
JP2020047857A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2020059280A1 (ja) 基板処理装置および基板処理方法
KR102206730B1 (ko) 기판 처리 방법 및 기판 처리 장치
US7404407B2 (en) Substrate processing apparatus
JP7128099B2 (ja) 基板処理装置および基板処理方法
KR102189980B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP6762184B2 (ja) 回収配管洗浄方法および基板処理装置
JP2009267167A (ja) 基板処理装置
JP2008034428A (ja) 基板処理装置および基板処理方法
JP4692997B2 (ja) 処理装置及び処理方法
KR102240493B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP4995237B2 (ja) 基板処理装置および基板処理方法
WO2024157595A1 (ja) 基板処理方法及び基板処理装置
WO2020189327A1 (ja) 基板処理装置、基板処理方法および半導体製造方法
KR101553361B1 (ko) 기판 처리 장치 및 방법
KR20150012848A (ko) 기판 처리 장치
JP2005327837A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217007433

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863007

Country of ref document: EP

Kind code of ref document: A1