WO2020057025A1 - 两步法分离回收线路板焚烧烟灰中溴的方法 - Google Patents

两步法分离回收线路板焚烧烟灰中溴的方法 Download PDF

Info

Publication number
WO2020057025A1
WO2020057025A1 PCT/CN2019/071755 CN2019071755W WO2020057025A1 WO 2020057025 A1 WO2020057025 A1 WO 2020057025A1 CN 2019071755 W CN2019071755 W CN 2019071755W WO 2020057025 A1 WO2020057025 A1 WO 2020057025A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
zinc
solution
alkali leaching
lead
Prior art date
Application number
PCT/CN2019/071755
Other languages
English (en)
French (fr)
Inventor
潘德安
吴玉锋
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US16/627,721 priority Critical patent/US11858822B2/en
Publication of WO2020057025A1 publication Critical patent/WO2020057025A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/09Bromine; Hydrogen bromide
    • C01B7/096Bromine
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/10Bromides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/20Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/06Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/04Obtaining lead by wet processes
    • C22B13/045Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/24Obtaining zinc otherwise than by distilling with leaching with alkaline solutions, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/044Recovery of noble metals from waste materials from pyrometallurgical residues, e.g. from ashes, dross, flue dust, mud, skim, slag, sludge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of high-efficiency separation and recovery of bromine by the full wet method, in particular to a method of high-efficiency separation of bromine salt and lead-zinc recovery by a two-step method of incineration of circuit board by soot.
  • E-waste contains a large amount of heavy metals and other toxic and harmful components, such as lead, mercury, hexavalent chromium, polychlorinated biphenyls, and Australian flame retardants, etc. If these materials are not handled properly, they will easily enter the environment, Soil and atmosphere cause serious pollution and threaten human health. For example, heavy metals such as mercury, lead, and chromium are easily taken away by flue gas during the incineration of electronic waste, and are concentrated in fly ash, causing serious air pollution. Lead can damage human nerves, blood systems and kidneys; chromium compounds can penetrate the skin and penetrate cells, and a small amount can cause severe allergies, even cause asthma, and damage DNA; mercury can damage brain nerves. In addition, circuit boards generally also contain Australian chemical flame retardants, which will release Australian chemical compounds such as dioxin and furan when burned, which endangers human health. The main pollution components of some typical electronic waste gases are shown in the following table:
  • the principle of pyrometallurgical technology is to use high temperature to separate non-metallic materials and metal materials from waste printed circuit boards, and some of the non-metallic materials become gas and escape from the melting system; the other part floats on the upper layer of the molten metal material in the form of scum.
  • the noble metal forms an alloy with the base metal in the molten state. After removing the scum on the surface, the molten alloy is poured into the corresponding mold to cool, and then the precious metal is separated from the metal by refining or electrolytic treatment, while the target metal is separated from other precious metals.
  • this soot contains iron, tin, antimony, zinc, lead, copper, gold and silver, etc., which has great recycling value, but at the same time, due to the complex types and quantities of impurity ions (such as halogen elements such as chlorine and bromine) ), which has adversely affected recycling, and the existing pure metal recycling process cannot meet the comprehensive recycling requirements for incineration of circuit boards.
  • impurity ions such as halogen elements such as chlorine and bromine
  • bromine Due to the large amount of brominated flame retardants in circuit boards, there is a large amount of bromine in the bromine incineration of circuit boards.
  • bromine mainly exists in the form of hydrogen bromide and bromide salts.
  • the circuit board uses bag dust during the incineration process to collect dust in the flue gas at the same time.
  • XRF and XRD analysis showed that the main valuable elements in soot were bromine, lead, zinc, copper and precious metals.
  • bromine salts are mainly stored in the form of soluble bromide and insoluble cuprous bromide. If ordinary alkali leaching is used, cuprous bromide cannot be effectively treated, resulting in a low bromine recovery rate.
  • Sodium peroxide is highly oxidizing in alkaline aqueous solution. The treatment of incinerated soot with sodium peroxide can effectively oxidize cuprous bromide and efficiently separate bromide salts.
  • the water solubility of sodium peroxide is strongly alkaline, and it is hydrogen-soluble Similar to sodium oxide, it has good solubility for lead and zinc, but has low solubility for copper, precious metals, etc. It can achieve the purpose of separating and extracting lead and zinc.
  • the invention adopts a two-step treatment method, using sodium hydroxide and sodium peroxide as alkali leaching media, to efficiently separate bromine salts, and recover lead and zinc at the same time to achieve the copper and precious metal enrichment effect, and provide a basis for the efficient recovery of copper and precious metals.
  • the pretreatment and recovery process can realize the efficient separation and recovery of valuable elements, at the same time, there is no tail liquid discharge, no secondary wastewater is brought, and it has significant environmental and economic benefits.
  • the purpose of the present invention is mainly to solve the recovery of valuable metals such as lead, zinc, and the like in the bromide incineration of circuit board incineration soot, which has the characteristics of high recovery added value, no tail liquid discharge, and the like.
  • the two-step method for separating and recovering bromine in circuit board incineration soot according to the present invention is performed as follows:
  • Alkali leaching Alkali leaching of the circuit board incineration soot in a sodium hydroxide solution, wherein the concentration of sodium hydroxide is 5 to 15% by mass, and the solid-liquid ratio of the soot to the leaching solution is 1:10 to 1:15.
  • Kg / l leaching temperature is 55 ⁇ 75 °C
  • leaching time is 0.5 ⁇ 1 hour
  • one leaching residue and one alkali leaching solution are obtained by filtration;
  • Secondary alkaline leaching Add water to the alkaline leaching slag obtained in step (1) to perform secondary alkaline leaching.
  • the solid-liquid ratio of the primary alkaline leaching slag to water is 1: 5 to 1:10 kg / liter.
  • the temperature is room temperature.
  • sodium peroxide is added, and the solid-liquid ratio of sodium peroxide to water is 20: 1 to 50: 1 kg / cubic.
  • the mixture is stirred for 0.5 to 2 hours and filtered to obtain a secondary alkali.
  • Centralized treatment of slag leaching and secondary alkali leaching solution
  • De-lead zinc combining the primary alkali leaching solution obtained in step (1) and the secondary alkali leaching solution obtained in step (2) to obtain a combined liquid, and the mass ratio of the primary alkali leaching solution to the secondary alkali leaching solution is 1: 3 ⁇ 3: 1, add 98% industrial concentrated sulfuric acid to the combined solution until the pH of the combined solution reaches 6.5 ⁇ 8, and filter to obtain deleaded zinc slag and deleaded zinc solution;
  • step (6) Evaporation and crystallization of zinc:
  • the lead separation liquid obtained in step (5) is subjected to evaporation and crystallization to obtain crude zinc sulfate.
  • the invention technology uses sodium hydroxide to dissolve bromine salts, lead and zinc, and the strong oxidizing property of sodium peroxide in an alkaline environment, oxidizing and leaching bromine containing copper bromide and the like
  • the two-step method high-efficiency leaching of bromine salts, lead, and zinc is realized, and at the same time, precious metals such as silver are enriched, which is conducive to the subsequent recovery of precious metals. It has the characteristics of short process and no tail liquid discharge.
  • Figure 1 shows the flow chart of a two-step method for separating and recovering bromine from circuit board incineration soot
  • Alkali leaching Alkali leaching of circuit board incineration soot in sodium hydroxide solution, where the concentration of sodium hydroxide is 5% by mass, the solid-liquid ratio of soot and leachate is 1:10 kg / liter, leaching temperature The temperature is 55 ° C, and the leaching time is 0.5 hour.
  • One leaching residue and one alkali leaching solution are obtained by filtration;
  • Secondary alkaline leaching Add water to the alkaline leaching slag obtained in step (1) for secondary alkaline leaching.
  • the solid-liquid ratio of the primary alkaline leaching slag to water is 1: 5 kg / liter, and the leaching temperature is room temperature.
  • sodium peroxide was added.
  • the solid-liquid ratio of sodium peroxide to water was 20: 1 kg / cubic. After adding sodium peroxide, the mixture was stirred for 0.5 hours.
  • the secondary alkali leaching residue and secondary alkali leaching solution were obtained by filtration. Centralized treatment of secondary alkali leaching slag;
  • De-lead zinc combining the primary alkali leaching solution obtained in step (1) and the secondary alkali leaching solution obtained in step (2) to obtain a combined liquid, and the mass ratio of the primary alkali leaching solution to the secondary alkali leaching solution is 1: 3.
  • Add 98% industrial concentrated sulfuric acid to the combined solution (the concentration percentages of the industrial concentrated sulfuric acid in the examples are both 98%), until the pH of the combined solution reaches 6.5, and filter to obtain a deleaded zinc slag and a deleaded zinc solution;
  • Lead separation Add the lead-free zinc slag obtained in step (3) to water, and the solid-liquid ratio of the lead-free zinc slag to water is 1: 1 kg / l. Stir and add 98% industrial concentrated sulfuric acid until the pH of the solution reaches 4.5, filtering to obtain lead sulfate and lead separation solution;
  • step (6) Evaporation and crystallization of zinc:
  • the lead separation liquid obtained in step (5) is subjected to evaporation and crystallization to obtain crude zinc sulfate.
  • the recovery rate of bromine salt was 98.3%, the recovery rate of lead was 97.1%, and the recovery rate of zinc was 98.3%.
  • Alkali leaching Alkali leaching of circuit board incineration soot in sodium hydroxide solution, where the concentration of sodium hydroxide is 15% by mass, the solid-liquid ratio of soot and leachate is 1:15 kg / liter, and the leaching temperature The temperature is 75 ° C, and the leaching time is 1 hour.
  • One leaching residue and one alkali leaching solution are obtained by filtration;
  • Secondary alkali leaching Add water to the alkaline leaching slag obtained in step (1) for secondary alkali leaching.
  • the solid-liquid ratio of the primary alkali leaching slag to water is 1:10 kg / liter, and the leaching temperature is room temperature.
  • sodium peroxide is added.
  • the solid-liquid ratio of sodium peroxide to water is 50: 1 kg / cubic. After the sodium peroxide is added, the mixture is stirred for 2 hours.
  • the secondary alkali leaching residue and secondary alkali leaching solution are obtained by filtration. Centralized treatment of secondary alkali leaching slag;
  • Deleading zinc combining the primary alkali leaching solution obtained in step (1) and the secondary alkali leaching solution obtained in step (2) to obtain a combined liquid, and the mass ratio of the primary alkali leaching solution to the secondary alkali leaching solution is 3: 1. Add 98% industrial concentrated sulfuric acid to the combined solution until the combined solution reaches pH 8 and filter to obtain the deleaded zinc slag and the deleaded zinc solution;
  • step (6) Evaporation and crystallization of zinc:
  • the lead separation liquid obtained in step (5) is subjected to evaporation and crystallization to obtain crude zinc sulfate.
  • the recovery rate of bromine salt was 99.3%, the recovery rate of lead was 99.5%, and the recovery rate of zinc was 99.3%.
  • Alkali leaching Alkali leaching of circuit board incineration ash in sodium hydroxide solution, where the concentration of sodium hydroxide is 10% by mass, solid-liquid ratio of soot and leachate is 1:12 kg / liter, leaching temperature The temperature is 65 ° C, and the leaching time is 1 hour.
  • One leaching residue and one alkali leaching solution are obtained by filtration;
  • Secondary alkaline leaching Add water to the alkaline leaching slag obtained in step (1) for secondary alkaline leaching.
  • the solid-liquid ratio of the primary alkaline leaching slag to water is 1: 8 kg / liter, and the leaching temperature is room temperature.
  • sodium peroxide was added, and the solid-liquid ratio of sodium peroxide to water was 35: 1 kg / cubic.
  • the mixture was stirred for 1 hour, and filtered to obtain a secondary alkali leaching residue and a secondary alkali leaching solution.
  • Centralized treatment of secondary alkali leaching slag
  • De-lead zinc combining the primary alkali leaching solution obtained in step (1) and the secondary alkali leaching solution obtained in step (2) to obtain a combined liquid, and the mass ratio of the primary alkali leaching solution to the secondary alkali leaching solution is 1: 1. Add 98% industrial concentrated sulfuric acid to the combined liquid until the pH of the combined liquid reaches 7, and filter to obtain a deleaded zinc slag and a deleaded zinc solution;
  • step (6) Evaporation and crystallization of zinc:
  • the lead separation liquid obtained in step (5) is subjected to evaporation and crystallization to obtain crude zinc sulfate.
  • the recovery rate of bromine salt was 97.8%, the recovery rate of lead was 98.2%, and the recovery rate of zinc was 99.1%.
  • Alkali leaching Alkali leaching of the circuit board incineration soot in sodium hydroxide solution, where the concentration of sodium hydroxide is 5% by mass, the solid-liquid ratio of soot and leachate is 1:15 kg / liter, and the leaching temperature The temperature is 55 ° C, and the leaching time is 1 hour. The leaching residue and the alkali leaching solution are obtained by filtration.
  • Secondary alkaline leaching Add water to the alkaline leaching slag obtained in step (1) for secondary alkaline leaching.
  • the solid-liquid ratio of the primary alkaline leaching slag to water is 1: 5 kg / liter, and the leaching temperature is room temperature.
  • sodium peroxide is added, and the solid-liquid ratio of sodium peroxide to water is 50: 1 kg / cubic.
  • the mixture is stirred for 0.5 hours.
  • the secondary alkali leaching residue and secondary alkali leaching solution are obtained by filtration. Centralized treatment of secondary alkali leaching slag;
  • Deleading zinc Combine the primary alkali leaching solution obtained in step (1) and the secondary alkali leaching solution obtained in step (2) to obtain a combined liquid.
  • the mass ratio of the primary alkali leaching solution to the secondary alkali leaching solution is 2: 1.
  • Lead separation Add the lead-free zinc slag obtained in step (3) to water, and the solid-liquid ratio of the lead-free zinc slag to water is 1: 1 kg / l. Stir and add 98% industrial concentrated sulfuric acid until the solution pH reaches 6. Filter to obtain lead sulfate and lead separation solution;
  • step (6) Evaporation and crystallization of zinc:
  • the lead separation liquid obtained in step (5) is subjected to evaporation and crystallization to obtain crude zinc sulfate.
  • the recovery rate of bromine salt was 96.9%, the recovery rate of lead was 96.8%, and the recovery rate of zinc was 97.2%.
  • Alkali leaching Alkali leaching of circuit board incineration ash in sodium hydroxide solution, where the concentration of sodium hydroxide is 15% by mass, the solid-liquid ratio of soot and leachate is 1:10 kg / liter, leaching temperature The temperature is 75 ° C, the leaching time is 0.5 hours, and the leaching residue and the alkali leaching solution are obtained by filtration;
  • Secondary alkali leaching Add water to the alkaline leaching slag obtained in step (1) for secondary alkali leaching.
  • the solid-liquid ratio of the primary alkali leaching slag to water is 1:10 kg / liter, and the leaching temperature is room temperature.
  • sodium peroxide was added, and the solid-liquid ratio of sodium peroxide to water was 20: 1 kg / cubic.
  • the mixture was stirred for 2 hours, and filtered to obtain a secondary alkali leaching residue and a secondary alkali leaching solution.
  • Centralized treatment of secondary alkali leaching slag
  • De-lead zinc combining the primary alkali leaching solution obtained in step (1) and the secondary alkali leaching solution obtained in step (2) to obtain a combined liquid, and the mass ratio of the primary alkali leaching solution to the secondary alkali leaching solution is 1: 2. Add 98% industrial concentrated sulfuric acid to the combined solution until the pH of the combined solution reaches 6.5, and filter to obtain a deleaded zinc slag and a deleaded zinc solution;
  • step (6) Evaporation and crystallization of zinc:
  • the lead separation liquid obtained in step (5) is subjected to evaporation and crystallization to obtain crude zinc sulfate.
  • the recovery rate of bromine salt was 97.2%, the recovery rate of lead was 99.1%, and the recovery rate of zinc was 96.1%.
  • Alkali leaching Alkali leaching of circuit board incineration ash in sodium hydroxide solution, where the concentration of sodium hydroxide is 12% by mass, the solid-liquid ratio of soot and leachate is 1:14 kg / liter, leaching temperature The temperature is 70 ° C, the leaching time is 1 hour, and the leaching residue and the alkali leaching solution are obtained by filtration;
  • Secondary alkaline leaching Add water to the alkaline leaching slag obtained in step (1) for secondary alkaline leaching.
  • the solid-liquid ratio of the primary alkaline leaching slag to water is 1: 6 kg / liter, and the leaching temperature is room temperature.
  • sodium peroxide was added, and the solid-liquid ratio of sodium peroxide to water was 30: 1 kg / cubic.
  • the mixture was stirred for 1.5 hours, and filtered to obtain a secondary alkali leaching residue and a secondary alkali leaching solution.
  • Centralized treatment of secondary alkali leaching slag Centralized treatment of secondary alkali leaching slag;
  • De-lead zinc Combine the primary alkali leaching solution obtained in step (1) and the secondary alkali leaching solution obtained in step (2) to obtain a combined liquid.
  • the mass ratio of the primary alkali leaching solution to the secondary alkali leaching solution is 2.5: 1.
  • Lead separation Add the lead-free zinc slag obtained in step (3) to water.
  • the solid-liquid ratio of the lead-free zinc slag to water is 1: 1.6 kg / L. Stir and add 98% industrial concentrated sulfuric acid until the pH of the solution reaches 5.8, filtering to obtain lead sulfate and lead separation solution;
  • step (6) Evaporation and crystallization of zinc:
  • the lead separation liquid obtained in step (5) is subjected to evaporation and crystallization to obtain crude zinc sulfate.
  • the recovery rate of bromine salt was 99.1%, the recovery rate of lead was 98.0%, and the recovery rate of zinc was 96.9%.

Abstract

两步法分离回收线路板焚烧烟灰中溴的方法,属于烟灰全湿法有价元素综合回收领域,特别涉及线路板焚烧烟灰采用两次碱浸工艺对溴盐高效分离及铅、锌分离提取的方法。主要包括一次氢氧化钠碱浸、二次过氧化钠碱浸、工业硫酸分步调pH分离提取铅和锌、溴盐蒸发结晶回收粗溴盐等步骤。与传统烟灰综合回收工艺相比,该技术对利用氢氧化钠对溴盐、铅及锌的溶解,过氧化钠碱性环境中的强氧化性,将溴化亚铜等含溴氧化并浸出,通过两步法,实现溴盐、铅及锌的高效浸出,同时对银等贵金属进行富集,有利于后续贵金属回收,具有流程短、无尾液排放等特点。

Description

两步法分离回收线路板焚烧烟灰中溴的方法 技术领域
本发明涉及溴的全湿法高效分离回收领域,特别涉及线路板焚烧烟灰两步法溴盐高效分离及铅锌回收的方法。
背景技术
电子废弃物中含有大量的重金属和其他有毒,有害成分,如铅、汞、六价铬、多氯联苯和澳化阻燃剂等,这些物质一旦处理不当,就容易进入环境,对地下水、土壤和大气等造成严重污染,威胁人类健康。比如,汞、铅、铬等重金属在电子废弃物焚烧过程中,容易被烟气带走而富集于飞灰中造成严重的大气污染。铅会破坏人的神经、血液系统以及肾脏;铬化合物可以透过皮肤,经细胞渗透,少量便会造成严重过敏,甚至引起哮喘、破坏DNA;汞则可以破坏脑部神经。此外,线路板中一般都还有澳化阻燃剂,燃烧时会释放出澳化的二嗯英和呋喃等致癌物质,危害人体健康。一些典型的电子废气物的主要污染成分如下表所示:
Figure PCTCN2019071755-appb-000001
火法冶金技术其原理是利用高温使废弃印刷线路板中的非金属物质和金属物质相互分离,部分非金属物质变成气体逸出熔融体系;另一部分呈浮渣形式浮于金属熔融物料上层。贵金属在熔融状态下与贱金属形成合金,除去表面的浮渣后,将熔融合金注入相应的模具中冷却,再通过精炼或电解处理使贵金属与金属分离,同时使目的金属与其他贵金属相分离。
2014年,贵屿采用国际先进环保的熔池熔炼技术处理废旧印刷电路板技术 应用平台。该技术的成功实施,将有利于从根本上改变传统的焚烧模式,有利于减少因焚烧线路板产生的烟气而带来的环境问题,同时也为集团公司进军城市矿产领域奠定坚实的技术基础,具有较好的经济效益、环境效益和长远的社会效益。
以年处理2万吨线路板示范线产生10886m 3/h烟气量计算,烟气含尘量为5g/Nm 3,运行时间为300天,每天24小时,其一年将产生约360吨烟灰。我国线路板产生量在百万吨以上,其线路板焚烧烟灰将在几万吨,处理量可观。如上表所述,该烟灰中含有铁、锡、锑、锌、铅、铜、金银等,极具回收价值,但同时由于冶炼过程中杂质离子种类及数量复杂(如氯、溴等卤素元素),给回收带来了不利影响,现有的单纯的有价金属回收工艺无法满足线路板焚烧烟灰的综合回收要求。
由于线路板中大量的溴化阻燃剂,使得在线路板焚烧烟灰中溴存在大量的溴。由于线路板在焚烧过程中,溴主要以溴化氢及溴化盐的形式存在,为了避免烟灰中溴的污染,线路板在焚烧过程中采用布袋除尘,先收集烟气中的粉尘,同时采用两级溴素吸收和活性炭吸附,达到烟气达标排放。因此,线路板焚烧烟灰中,存在大量的溴盐,溴含量很高。通过XRF和XRD分析得知,烟灰中主要有价元素为溴、铅、锌、铜和贵金属。由于溴、锌、铅等元素含量高,贵金属含量偏低,如直接回收贵金属,造成溴盐污染、浪费、影响贵金属回收率,因此,对溴盐的回收,成为焚烧烟灰资源化的重要环节。溴盐中主要以可溶性溴化物和不溶性溴化亚铜形式存下,如果采用普通碱浸,无法对溴化亚铜进行有效处理,造成溴回收率低。过氧化钠在碱性水溶液中呈现很强的氧化性,以过氧化钠处理焚烧烟灰,可以有效氧化溴化亚铜,高效分离溴盐,同时,过氧化钠水溶性呈强碱性,与氢氧化钠类似,可对铅和锌较好的溶解性,但是对铜、贵金属等溶解性很低,可达到分离提取铅和锌的目的。本发明采用两步处理方法,以氢氧化钠和过氧化钠为碱浸介质,高效分离溴盐,同时回收铅和锌,达到铜和贵金属富集效果,为铜和贵金属的高效回收提供基础。该预处理和回收工艺可实现有价元素高效分离回收,同时无尾液排放,不带来二次废水,具有显著的环境效益和经济效益。
发明内容
本发明的目的主要解决线路板焚烧烟灰中溴盐高效分离并回收其中的铅和锌等有价金属回收,具有回收附加值高、无尾液排放等特点。
本发明所述的两步法分离回收线路板焚烧烟灰中溴的方法按照如下步骤进行:
(1)一次碱浸:将线路板焚烧烟灰在氢氧化钠溶液中进行一次碱浸,其中氢氧化钠质量百分比浓度为5~15%,烟灰与浸出液的固液比1:10~1:15公斤/升, 浸出温度为55~75℃,浸出时间为0.5~1小时,过滤得到一次浸出渣和一次碱浸液;
(2)二次碱浸:向步骤(1)得到一次碱浸渣中加入水进行二次碱浸,一次碱浸渣与水的固液比为1:5~1:10公斤/升,浸出温度为室温,浸出过程中加入过氧化钠,过氧化钠与水的固液比为20:1~50:1公斤/立方,加完过氧化钠后搅拌0.5~2小时,过滤得到二次碱浸渣和二次碱浸液,二次碱浸渣集中处理;
(3)脱铅锌:将步骤(1)得到的一次碱浸液和步骤(2)得到的二次碱浸液合并得到合并液,一次碱浸液与二次碱浸液质量比为1:3~3:1,向合并液中加入98%工业浓硫酸,直到合并液pH到6.5~8,过滤得到脱铅锌渣和脱铅锌液;
(4)溴盐蒸发结晶:将步骤(3)得到的脱铅锌液进行蒸发结晶,得到粗溴盐;
(5)分铅:将步骤(3)得到的脱铅锌渣加入水中,脱铅锌渣与水的固液比1:1~1:2公斤/升,搅拌并加入98%工业浓硫酸,直到溶液pH到4.5~6,过滤得到硫酸铅和分铅液;
(6)锌蒸发结晶:将步骤(5)得到的分铅液进行蒸发结晶,得到粗硫酸锌。
与传统烟灰综合回收工艺相比,该发明技术对利用氢氧化钠对溴盐、铅及锌的溶解,过氧化钠碱性环境中的强氧化性,将溴化亚铜等含溴氧化并浸出,通过两步法,实现溴盐、铅及锌的高效浸出,同时对银等贵金属进行富集,有利于后续贵金属回收,具有流程短、无尾液排放等特点。
附图说明
图1表示两步法分离回收线路板焚烧烟灰中溴的方法流程图
具体实施方式
实施例1
按照如下步骤进行处理:
(1)一次碱浸:将线路板焚烧烟灰在氢氧化钠溶液中进行一次碱浸,其中氢氧化钠质量百分比浓度为5%,烟灰与浸出液的固液比1:10公斤/升,浸出温度为55℃,浸出时间为0.5小时,过滤得到一次浸出渣和一次碱浸液;
(2)二次碱浸:向步骤(1)得到一次碱浸渣中加入水进行二次碱浸,一次碱浸渣与水的固液比为1:5公斤/升,浸出温度为室温,浸出过程中加入过氧化钠,过氧化钠与水的固液比为20:1公斤/立方,加完过氧化钠后搅拌0.5小时,过滤 得到二次碱浸渣和二次碱浸液,二次碱浸渣集中处理;
(3)脱铅锌:将步骤(1)得到的一次碱浸液和步骤(2)得到的二次碱浸液合并得到合并液,一次碱浸液与二次碱浸液质量比为1:3,向合并液中加入98%工业浓硫酸(实施例中工业浓硫酸质量百分比浓度均为98%),直到合并液pH到6.5,过滤得到脱铅锌渣和脱铅锌液;
(4)溴盐蒸发结晶:将步骤(3)得到的脱铅锌液进行蒸发结晶,得到粗溴盐;
(5)分铅:将步骤(3)得到的脱铅锌渣加入水中,脱铅锌渣与水的固液比1:1公斤/升,搅拌并加入98%工业浓硫酸,直到溶液pH到4.5,过滤得到硫酸铅和分铅液;
(6)锌蒸发结晶:将步骤(5)得到的分铅液进行蒸发结晶,得到粗硫酸锌。
溴盐回收率98.3%,铅回收率97.1%,锌回收率98.3%。
实施例2
按照如下步骤进行处理:
(1)一次碱浸:将线路板焚烧烟灰在氢氧化钠溶液中进行一次碱浸,其中氢氧化钠质量百分比浓度为15%,烟灰与浸出液的固液比1:15公斤/升,浸出温度为75℃,浸出时间为1小时,过滤得到一次浸出渣和一次碱浸液;
(2)二次碱浸:向步骤(1)得到一次碱浸渣中加入水进行二次碱浸,一次碱浸渣与水的固液比为1:10公斤/升,浸出温度为室温,浸出过程中加入过氧化钠,过氧化钠与水的固液比为50:1公斤/立方,加完过氧化钠后搅拌2小时,过滤得到二次碱浸渣和二次碱浸液,二次碱浸渣集中处理;
(3)脱铅锌:将步骤(1)得到的一次碱浸液和步骤(2)得到的二次碱浸液合并得到合并液,一次碱浸液与二次碱浸液质量比为3:1,向合并液中加入98%工业浓硫酸,直到合并液pH到8,过滤得到脱铅锌渣和脱铅锌液;
(4)溴盐蒸发结晶:将步骤(3)得到的脱铅锌液进行蒸发结晶,得到粗溴盐;
(5)分铅:将步骤(3)得到的脱铅锌渣加入水中,脱铅锌渣与水的固液比1:2公斤/升,搅拌并加入98%工业浓硫酸,直到溶液pH到6,过滤得到硫酸铅和分铅液;
(6)锌蒸发结晶:将步骤(5)得到的分铅液进行蒸发结晶,得到粗硫酸锌。
溴盐回收率99.3%,铅回收率99.5%,锌回收率99.3%。
实施例3
按照如下步骤进行处理:
(1)一次碱浸:将线路板焚烧烟灰在氢氧化钠溶液中进行一次碱浸,其中氢氧化钠质量百分比浓度为10%,烟灰与浸出液的固液比1:12公斤/升,浸出温度为65℃,浸出时间为1小时,过滤得到一次浸出渣和一次碱浸液;
(2)二次碱浸:向步骤(1)得到一次碱浸渣中加入水进行二次碱浸,一次碱浸渣与水的固液比为1:8公斤/升,浸出温度为室温,浸出过程中加入过氧化钠,过氧化钠与水的固液比为35:1公斤/立方,加完过氧化钠后搅拌1小时,过滤得到二次碱浸渣和二次碱浸液,二次碱浸渣集中处理;
(3)脱铅锌:将步骤(1)得到的一次碱浸液和步骤(2)得到的二次碱浸液合并得到合并液,一次碱浸液与二次碱浸液质量比为1:1,向合并液中加入98%工业浓硫酸,直到合并液pH到7,过滤得到脱铅锌渣和脱铅锌液;
(4)溴盐蒸发结晶:将步骤(3)得到的脱铅锌液进行蒸发结晶,得到粗溴盐;
(5)分铅:将步骤(3)得到的脱铅锌渣加入水中,脱铅锌渣与水的固液比1:1.5公斤/升,搅拌并加入98%工业浓硫酸,直到溶液pH到5,过滤得到硫酸铅和分铅液;
(6)锌蒸发结晶:将步骤(5)得到的分铅液进行蒸发结晶,得到粗硫酸锌。
溴盐回收率97.8%,铅回收率98.2%,锌回收率99.1%。
实施例4
按照如下步骤进行处理:
(1)一次碱浸:将线路板焚烧烟灰在氢氧化钠溶液中进行一次碱浸,其中氢氧化钠质量百分比浓度为5%,烟灰与浸出液的固液比1:15公斤/升,浸出温度为55℃,浸出时间为1小时,过滤得到一次浸出渣和一次碱浸液;
(2)二次碱浸:向步骤(1)得到一次碱浸渣中加入水进行二次碱浸,一次碱浸渣与水的固液比为1:5公斤/升,浸出温度为室温,浸出过程中加入过氧化钠,过氧化钠与水的固液比为50:1公斤/立方,加完过氧化钠后搅拌0.5小时,过滤得到二次碱浸渣和二次碱浸液,二次碱浸渣集中处理;
(3)脱铅锌:将步骤(1)得到的一次碱浸液和步骤(2)得到的二次碱浸 液合并得到合并液,一次碱浸液与二次碱浸液质量比为2:1,向合并液中加入98%工业浓硫酸,直到合并液pH到8,过滤得到脱铅锌渣和脱铅锌液;
(4)溴盐蒸发结晶:将步骤(3)得到的脱铅锌液进行蒸发结晶,得到粗溴盐;
(5)分铅:将步骤(3)得到的脱铅锌渣加入水中,脱铅锌渣与水的固液比1:1公斤/升,搅拌并加入98%工业浓硫酸,直到溶液pH到6,过滤得到硫酸铅和分铅液;
(6)锌蒸发结晶:将步骤(5)得到的分铅液进行蒸发结晶,得到粗硫酸锌。
溴盐回收率96.9%,铅回收率96.8%,锌回收率97.2%。
实施例5
按照如下步骤进行处理:
(1)一次碱浸:将线路板焚烧烟灰在氢氧化钠溶液中进行一次碱浸,其中氢氧化钠质量百分比浓度为15%,烟灰与浸出液的固液比1:10公斤/升,浸出温度为75℃,浸出时间为0.5小时,过滤得到一次浸出渣和一次碱浸液;
(2)二次碱浸:向步骤(1)得到一次碱浸渣中加入水进行二次碱浸,一次碱浸渣与水的固液比为1:10公斤/升,浸出温度为室温,浸出过程中加入过氧化钠,过氧化钠与水的固液比为20:1公斤/立方,加完过氧化钠后搅拌2小时,过滤得到二次碱浸渣和二次碱浸液,二次碱浸渣集中处理;
(3)脱铅锌:将步骤(1)得到的一次碱浸液和步骤(2)得到的二次碱浸液合并得到合并液,一次碱浸液与二次碱浸液质量比为1:2,向合并液中加入98%工业浓硫酸,直到合并液pH到6.5,过滤得到脱铅锌渣和脱铅锌液;
(4)溴盐蒸发结晶:将步骤(3)得到的脱铅锌液进行蒸发结晶,得到粗溴盐;
(5)分铅:将步骤(3)得到的脱铅锌渣加入水中,脱铅锌渣与水的固液比1:2公斤/升,搅拌并加入98%工业浓硫酸,直到溶液pH到4.5,过滤得到硫酸铅和分铅液;
(6)锌蒸发结晶:将步骤(5)得到的分铅液进行蒸发结晶,得到粗硫酸锌。
溴盐回收率97.2%,铅回收率99.1%,锌回收率96.1%。
实施例6
按照如下步骤进行处理:
(1)一次碱浸:将线路板焚烧烟灰在氢氧化钠溶液中进行一次碱浸,其中氢氧化钠质量百分比浓度为12%,烟灰与浸出液的固液比1:14公斤/升,浸出温度为70℃,浸出时间为1小时,过滤得到一次浸出渣和一次碱浸液;
(2)二次碱浸:向步骤(1)得到一次碱浸渣中加入水进行二次碱浸,一次碱浸渣与水的固液比为1:6公斤/升,浸出温度为室温,浸出过程中加入过氧化钠,过氧化钠与水的固液比为30:1公斤/立方,加完过氧化钠后搅拌1.5小时,过滤得到二次碱浸渣和二次碱浸液,二次碱浸渣集中处理;
(3)脱铅锌:将步骤(1)得到的一次碱浸液和步骤(2)得到的二次碱浸液合并得到合并液,一次碱浸液与二次碱浸液质量比为2.5:1,向合并液中加入98%工业浓硫酸,直到合并液pH到7.5,过滤得到脱铅锌渣和脱铅锌液;
(4)溴盐蒸发结晶:将步骤(3)得到的脱铅锌液进行蒸发结晶,得到粗溴盐;
(5)分铅:将步骤(3)得到的脱铅锌渣加入水中,脱铅锌渣与水的固液比1:1.6公斤/升,搅拌并加入98%工业浓硫酸,直到溶液pH到5.8,过滤得到硫酸铅和分铅液;
(6)锌蒸发结晶:将步骤(5)得到的分铅液进行蒸发结晶,得到粗硫酸锌。
溴盐回收率99.1%,铅回收率98.0%,锌回收率96.9%。

Claims (3)

  1. 两步法分离回收线路板焚烧烟灰中溴的方法,其特征在于,步骤如下:
    (1)一次碱浸:将线路板焚烧烟灰在氢氧化钠溶液中进行一次碱浸,过滤得到一次浸出渣和一次碱浸液;
    (2)二次碱浸:向步骤(1)得到一次碱浸渣中加入水进行二次碱浸,过滤得到二次碱浸渣和二次碱浸液,二次碱浸渣集中处理;
    (3)脱铅锌:将步骤(1)得到的一次碱浸液和步骤(2)得到的二次碱浸液合并得到合并液,一次碱浸液与二次碱浸液质量比为1:3~3:1,向合并液中加入98%工业浓硫酸,直到合并液pH到6.5~8,过滤得到脱铅锌渣和脱铅锌液;
    (4)溴盐蒸发结晶:将步骤(3)得到的脱铅锌液进行蒸发结晶,得到粗溴盐;
    (5)分铅:将步骤(3)得到的脱铅锌渣加入水中,脱铅锌渣与水的固液比1:1~1:2公斤/升,搅拌并加入98%工业浓硫酸,直到溶液pH到4.5~6,过滤得到硫酸铅和分铅液;
    (6)锌蒸发结晶:将步骤(5)得到的分铅液进行蒸发结晶,得到粗硫酸锌。
  2. 如权利要求1所述的两步法分离回收线路板焚烧烟灰中溴的方法,其特征在于,步骤(1)中氢氧化钠溶液中氢氧化钠质量百分比浓度为5~15%,烟灰与浸出液的固液比1:10~1:15公斤/升,浸出温度为55~75℃,浸出时间为0.5~1小时。
  3. 如权利要求1所述的两步法分离回收线路板焚烧烟灰中溴的方法,其特征在于,步骤(2)中一次碱浸渣与水的固液比为1:5~1:10公斤/升,浸出温度为室温,浸出过程中加入过氧化钠,过氧化钠与水的固液比为20:1~50:1公斤/立方,加完过氧化钠后搅拌0.5~2小时。
PCT/CN2019/071755 2018-09-17 2019-01-15 两步法分离回收线路板焚烧烟灰中溴的方法 WO2020057025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,721 US11858822B2 (en) 2018-09-17 2019-01-15 Method of separating and recovering bromine from printed circuit board incineration ash by two-step process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811083253.4 2018-09-17
CN201811083253.4A CN109112313A (zh) 2018-09-17 2018-09-17 两步法分离回收线路板焚烧烟灰中溴的方法

Publications (1)

Publication Number Publication Date
WO2020057025A1 true WO2020057025A1 (zh) 2020-03-26

Family

ID=64859533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071755 WO2020057025A1 (zh) 2018-09-17 2019-01-15 两步法分离回收线路板焚烧烟灰中溴的方法

Country Status (3)

Country Link
US (1) US11858822B2 (zh)
CN (1) CN109112313A (zh)
WO (1) WO2020057025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526747A (zh) * 2021-08-30 2021-10-22 江苏理工学院 一种pta残渣高浓度含溴废水高值化利用的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112313A (zh) * 2018-09-17 2019-01-01 北京工业大学 两步法分离回收线路板焚烧烟灰中溴的方法
CN110724823B (zh) * 2019-11-28 2021-06-11 北京工业大学 一种废线路板熔炼烟灰强化碱浸脱溴的回收方法
CN110980771A (zh) * 2019-12-25 2020-04-10 北京工业大学 一种废线路板裂解焦炭提纯溴化钠的方法
CN111172402B (zh) * 2020-02-09 2021-11-12 北京工业大学 一种线路板冶炼烟灰机械强化浸出的脱溴方法和装置
CN113528845B (zh) * 2021-07-15 2023-05-26 广东省科学院资源利用与稀土开发研究所 一种废弃电路板冶炼烟灰全资源化回收方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132319A1 (en) * 2015-02-18 2016-08-25 Elcon Recycling Center (2003) Ltd Recovering bromine from solid waste containing bromine compounds, and applications thereof
CN106011488A (zh) * 2016-07-27 2016-10-12 中南大学 一种高砷铜烟灰综合回收有价金属的方法
CN108118157A (zh) * 2017-12-30 2018-06-05 北京工业大学 线路板焚烧烟灰预处理及溴的回收方法
CN108165754A (zh) * 2017-12-30 2018-06-15 北京工业大学 线路板熔池熔炼烟灰贵金属循环氯化富集的方法
CN109095496A (zh) * 2018-09-17 2018-12-28 北京工业大学 一种从含溴冶炼烟灰中回收溴盐的方法
CN109112313A (zh) * 2018-09-17 2019-01-01 北京工业大学 两步法分离回收线路板焚烧烟灰中溴的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9901586D0 (en) * 1999-01-25 1999-03-17 Alpha Fry Ltd Process for the recovery of lead and/or tin or alloys thereof from substrate surfaces
CN101857299B (zh) * 2010-06-23 2012-05-30 张维睿 一种印制线路板生产中产生的化学镀铜污水的处理方法
CN102061008A (zh) * 2010-11-09 2011-05-18 佛山市高明区(中国科学院)新材料专业中心 高温骤热降低废印刷线路板热解气体中溴化物含量的方法
CN102776376B (zh) * 2012-08-08 2013-10-30 汉源县广超有色金属综合回收有限责任公司 湿法-火法联合工艺回收含铅锌废渣中有价金属的方法
CN103846272A (zh) * 2014-02-27 2014-06-11 广东工业大学 一种废旧印刷线路板两步脱溴的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132319A1 (en) * 2015-02-18 2016-08-25 Elcon Recycling Center (2003) Ltd Recovering bromine from solid waste containing bromine compounds, and applications thereof
CN106011488A (zh) * 2016-07-27 2016-10-12 中南大学 一种高砷铜烟灰综合回收有价金属的方法
CN108118157A (zh) * 2017-12-30 2018-06-05 北京工业大学 线路板焚烧烟灰预处理及溴的回收方法
CN108165754A (zh) * 2017-12-30 2018-06-15 北京工业大学 线路板熔池熔炼烟灰贵金属循环氯化富集的方法
CN109095496A (zh) * 2018-09-17 2018-12-28 北京工业大学 一种从含溴冶炼烟灰中回收溴盐的方法
CN109112313A (zh) * 2018-09-17 2019-01-01 北京工业大学 两步法分离回收线路板焚烧烟灰中溴的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526747A (zh) * 2021-08-30 2021-10-22 江苏理工学院 一种pta残渣高浓度含溴废水高值化利用的方法

Also Published As

Publication number Publication date
US20230192488A1 (en) 2023-06-22
CN109112313A (zh) 2019-01-01
US11858822B2 (en) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2020057025A1 (zh) 两步法分离回收线路板焚烧烟灰中溴的方法
US11198615B2 (en) Method of pretreatment and bromine recovery of PCB incineration ash
CN102534228B (zh) 一种从高砷铜冶炼烟灰中综合回收有价元素的方法
WO2019128863A1 (zh) 线路板熔池熔炼烟灰贵金属循环氯化富集的方法
CN105779770B (zh) 一种回收废电路板中有价金属的方法
CN105755289A (zh) 一种废弃线路板有价金属综合回收的方法
CN105603190B (zh) 一种铜电解液净化回收有价金属的方法
CN108624759B (zh) 一种从白烟尘中综合回收有价金属的方法
CN110643815B (zh) 黑铜泥资源化无害化的处理方法
JP2023063319A (ja) リチウムイオン電池廃棄物の処理方法および、硫酸塩の製造方法
WO2020057026A1 (zh) 一种从含溴冶炼烟灰中回收溴盐的方法
KR20000052340A (ko) 아연페라이트가 함유된 제강분진으로부터 염산과 금속아연의 회수방법
CN108754167A (zh) 一种铜冶炼烟尘高效分离铜砷的方法
CN103981369B (zh) 含砷烟灰多金属综合回收工艺
CN111500869A (zh) 一种铜冶炼副产物协同处理工艺
Che et al. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals
US6264903B1 (en) Method for recycling industrial waste streams containing zinc compounds
Li et al. Current status and technological progress in lead recovery from electronic waste
JP6996723B1 (ja) リチウムイオン電池からの金属回収方法
Wang et al. Extraction of precious metals by synergetic smelting of spent automotive catalysts and waste printed circuit boards
CN105568002A (zh) 一种污酸硫化渣中铋富集与回收的方法
CN107299228A (zh) 一种湿法炼锌净化铜渣提取金属铜的方法
CN110055425A (zh) 一种电镀污泥重金属资源化方法
CN113528845B (zh) 一种废弃电路板冶炼烟灰全资源化回收方法
CN115537569A (zh) 一种湿法炼锌福美钠钴渣综合利用的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863309

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19863309

Country of ref document: EP

Kind code of ref document: A1