WO2020054649A1 - 搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム - Google Patents

搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム Download PDF

Info

Publication number
WO2020054649A1
WO2020054649A1 PCT/JP2019/035324 JP2019035324W WO2020054649A1 WO 2020054649 A1 WO2020054649 A1 WO 2020054649A1 JP 2019035324 W JP2019035324 W JP 2019035324W WO 2020054649 A1 WO2020054649 A1 WO 2020054649A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
load
main body
contact
unit
Prior art date
Application number
PCT/JP2019/035324
Other languages
English (en)
French (fr)
Inventor
太一 熊谷
裕志 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2020546004A priority Critical patent/JP7226451B2/ja
Priority to US17/274,588 priority patent/US20220050465A1/en
Publication of WO2020054649A1 publication Critical patent/WO2020054649A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling

Definitions

  • the present invention is based on the priority claim of Japanese Patent Application: Japanese Patent Application No. 2018-168683 (filed on Sep. 10, 2018), the entire contents of which are incorporated herein by reference. Shall be.
  • the present invention relates to a transfer system, a transfer robot, a control device, a control method, and a program.
  • a turntable position error absorbing mechanism
  • a transfer target packet
  • the transfer system of Patent Document 3 has a configuration in which an arm and a hand are provided for each of a plurality of transfer robots, the transfer target is rotatably supported by the plurality of hands from below, and the transfer target is transferred. ing.
  • a robot arm and a hook are provided for each of a plurality of transfer robots, and the transfer target is lifted by the plurality of hooks to transfer the transfer target.
  • the transfer system of Patent Document 5 has a configuration in which a movable arm and a gripping mechanism are provided in each of a plurality of transfer robots, and a plurality of gripping mechanisms grip the transfer target and transfer the transfer target. .
  • trucks of various forms are used by shippers, etc., but we want to be able to carry them stably without modifying the trucks (objects to be loaded) that carry the load.
  • a main object of the present invention is to provide a transfer system, a transfer robot, a traffic control device, and the like, which can contribute to stably transfer various types of transfer objects without modification without reloading the transfer target objects.
  • a control method and a program are provided.
  • the transport system is a transport system that transports the transport object while sandwiching the transport object by a plurality of transport robots.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • the transport system uses a hardware resource, based on information about the load detected by the load sensor, such that the load when the contact portion contacts the transport target approaches the first target value.
  • the driving unit controls the driving unit such that the rotation angle of the contact unit with respect to the main body approaches a second target value based on the process of controlling the driving unit and information on the rotation angle detected by the angle sensor. And a process of controlling.
  • the transfer robot according to the second aspect is a transfer robot configured to cooperate with another transfer robot to transfer the object to be transferred while sandwiching the object.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a driving unit that drives, a control unit that controls the driving unit, a load sensor that detects a load when the contact unit comes into contact with the transfer target, and an angle that detects a rotation angle of the contact unit with respect to the main body.
  • a sensor is a transfer robot configured to cooperate with another transfer robot to transfer the object to be transferred while sandwiching the object.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a driving unit that drives, a control
  • the control unit controls the driving unit based on information on the load detected by the load sensor, such that a load when the contact unit comes into contact with the object to be transported approaches a first target value. And a process of controlling the drive unit such that a rotation angle of the contact unit with respect to the main body approaches a second target value based on information on the rotation angle detected by the angle sensor.
  • a traffic control device is a traffic control device that sandwiches a transfer target and controls a plurality of transfer robots that transfer the transfer target in cooperation with each other.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • the control device controls the driving unit based on information on the load detected by the load sensor such that a load when the contact unit contacts the object to be transported approaches a first target value. And a process of controlling the drive unit such that a rotation angle of the contact unit with respect to the main body approaches a second target value based on information on the rotation angle detected by the angle sensor.
  • the control method of a transfer robot is a control method of a transfer robot that sandwiches a transfer target and controls a plurality of transfer robots that transfer the transfer target in cooperation with each other.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • the control method of the transfer robot may be configured such that, based on the information on the load detected by the load sensor, the drive is performed such that a load when the contact portion contacts the transfer target object approaches a first target value. Controlling the drive unit, and controlling the drive unit based on the information on the rotation angle detected by the angle sensor, such that the rotation angle of the contact unit with respect to the main body approaches a second target value.
  • the program according to the fifth aspect is a program executed by a transfer robot configured to transfer an object to be transferred while sandwiching the transfer object in cooperation with another transfer robot.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a driving unit that drives, a control unit that controls the driving unit, a load sensor that detects a load when the contact unit comes into contact with the transfer target, and an angle that detects a rotation angle of the contact unit with respect to the main body.
  • a sensor is a program executed by a transfer robot configured to transfer an object to be transferred while sandwiching the transfer object in cooperation with another transfer robot.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • the program controls the drive unit based on information on the load detected by the load sensor, such that a load when the contact unit contacts the object to be transported approaches a first target value. Processing, based on information about the rotation angle detected by the angle sensor, the rotation angle of the contact portion with respect to the main body, the process of controlling the drive unit so as to approach a second target value, Cause the control unit to execute.
  • the program according to the sixth aspect is a program executed by a control device that sandwiches the object to be transported and controls a plurality of transport robots that transport the object to be transported in cooperation with each other.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • the program controls the drive unit based on information on the load detected by the load sensor, such that a load when the contact unit contacts the object to be transported approaches a first target value. Processing, based on information about the rotation angle detected by the angle sensor, the rotation angle of the contact portion with respect to the main body, the process of controlling the drive unit so as to approach a second target value, Let the traffic controller execute.
  • the program can be recorded on a computer-readable storage medium.
  • the storage medium can be non-transient, such as a semiconductor memory, hard disk, magnetic recording medium, optical recording medium, and the like.
  • the present invention can be embodied as a computer program product.
  • the program is input to a computer device from an input device or an external device via a communication interface, stored in a storage device, drives a processor according to predetermined steps or processes, and, if necessary, outputs the processing results including intermediate states in stages. Can be displayed via a display device, or can be communicated with the outside via a communication interface.
  • the computer device for that purpose includes, as an example, a processor, a storage device, an input device, a communication interface, and a display device as needed, which are typically connectable to each other by a bus.
  • FIG. 2 is a plan view schematically illustrating an example of a state in which the transport system according to the first embodiment is transporting the transport target.
  • FIG. 2 is a side view schematically illustrating an example of a state in which the transport system according to the first embodiment is transporting the transport target.
  • FIG. 2 is an external perspective view schematically illustrating a configuration of a transfer robot in the transfer system according to the first embodiment.
  • FIG. 2 is a block diagram schematically illustrating a circuit configuration of a main body of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 5 is a partial left side view illustrating the operation of the contact unit of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 4 is a schematic partial plan view illustrating operations of a rotation mechanism and a restoration mechanism of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 4 is a schematic partial plan view when an arm of a rotation mechanism of the transfer robot in the transfer system according to the first embodiment is turned in a first direction.
  • FIG. 4 is a schematic partial plan view when the arm of the rotation mechanism of the transfer robot in the transfer system according to the first embodiment is turned in a second direction.
  • FIG. 4 is a schematic bottom view illustrating the operation of the guide mechanism of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 5 is a schematic bottom view when the arm of the rotation mechanism of the transfer robot in the transfer system according to the first embodiment is turned in a first direction.
  • FIG. 5 is a schematic bottom view when the arm of the rotation mechanism of the transfer robot in the transfer system according to the first embodiment is turned in the second direction.
  • 4 is a flowchart schematically illustrating an operation when the transfer robot moves alone in the transfer system according to the first embodiment.
  • FIG. 7 is an image diagram of an intermediate destination and a final destination when the transfer robot in the transfer system according to the first embodiment moves alone.
  • 5 is a flowchart schematically illustrating an operation of the transfer robot when the transfer system according to the first embodiment sandwiches a transfer target object.
  • FIG. 5 is an image diagram of an operation of the transfer robot when the transfer system according to the first embodiment sandwiches a transfer target object.
  • FIG. 5 is a flowchart schematically illustrating an operation of a subsequent transfer robot when the transfer system according to the first embodiment cooperatively transfers the transfer target object.
  • FIG. 5 is an image diagram of a target value of a rotation angle of a rotation mechanism of a subsequent transfer robot at a curve when the transfer system according to the first embodiment cooperatively transfers an object to be transferred.
  • 5 is a flowchart schematically illustrating an operation of the transfer robot when releasing the transfer target object to the transfer system according to the first embodiment.
  • FIG. 7 is an image diagram of an operation of the transport robot when the transport system according to the first embodiment releases the transport target.
  • FIG. 9 is a block diagram schematically illustrating a configuration of a transport system according to a second embodiment.
  • FIG. 13 is a block diagram schematically illustrating a configuration of a transport system according to a third embodiment.
  • FIG. 13 is a block diagram schematically illustrating a configuration of a modified example of the transport system according to the third embodiment.
  • FIG. 2 is a block diagram schematically illustrating a configuration of the information processing apparatus.
  • the transport system according to mode 1 and its deformation mode can be appropriately selected and combined.
  • the transport system according to the mode 1 may be a transport system that transports the transport object while sandwiching the transport object by a plurality of transport robots.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a drive unit that drives, a load sensor that detects a load when the contact unit comes into contact with the transport target, and an angle sensor that detects a rotation angle of the contact unit with respect to the main body can be provided.
  • the transport system uses a hardware resource, based on information about the load detected by the load sensor, such that the load when the contact portion contacts the transport target approaches the first target value.
  • the driving unit controls the driving unit such that the rotation angle of the contact unit with respect to the main body approaches a second target value based on the process of controlling the driving unit and information on the rotation angle detected by the angle sensor. And a process of controlling
  • a process of determining the first target value according to at least a weight of the transport target, and a process of detecting the first target value by the load sensor Based on the processing for acquiring the information related to the load and the information related to the acquired load, the load when the contact unit comes into contact with the object to be conveyed approaches the determined first target value. And controlling the driving unit.
  • the contact portion includes two plates and an elastic member disposed between the two plates, and the load sensor includes the two plates. Based on the distance between the plates, it is possible to detect a load when the contact portion comes into contact with the object to be conveyed.
  • the transport robot may include, as the hardware resource, a control unit that performs processing for controlling the drive unit.
  • the transport system can include a control device that controls the transport robot as the hardware resource.
  • the control device can perform a process of controlling the driving unit.
  • the process of controlling the driving unit from the transport robot, obtain information on the load detected by the load sensor, based on the information on the obtained load, control the driving unit, A process of acquiring information on the rotation angle detected by the angle sensor from a transfer robot and controlling the driving unit based on the acquired information on the rotation angle.
  • the transfer robot according to the mode 2 may be a transfer robot configured to transfer the object to be transferred in a state of being sandwiched by cooperating with another transfer robot.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a driving unit that drives, a control unit that controls the driving unit, a load sensor that detects a load when the contact unit comes into contact with the transfer target, and an angle that detects a rotation angle of the contact unit with respect to the main body. And a sensor.
  • the control unit controls the driving unit based on information on the load detected by the load sensor, such that a load when the contact unit comes into contact with the object to be transported approaches a first target value. And a process of controlling the drive unit such that a rotation angle of the contact unit with respect to the main body approaches a second target value based on information on the rotation angle detected by the angle sensor. It can be carried out.
  • control device may be a control device that controls a plurality of transfer robots that sandwich the transfer target and transfer the transfer target in cooperation with each other.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a drive unit that drives, a load sensor that detects a load when the contact unit comes into contact with the transport target, and an angle sensor that detects a rotation angle of the contact unit with respect to the main body can be provided.
  • the control device controls the driving unit based on information on the load detected by the load sensor such that a load when the contact unit contacts the object to be transported approaches a first target value. And a process of controlling the drive unit such that a rotation angle of the contact unit with respect to the main body approaches a second target value based on information on the rotation angle detected by the angle sensor. It can be carried out.
  • a transfer robot control method that sandwiches the transfer target and controls a plurality of transfer robots that transfer the transfer target in cooperation with each other can be used. It is.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a drive unit that drives, a load sensor that detects a load when the contact unit comes into contact with the transport target, and an angle sensor that detects a rotation angle of the contact unit with respect to the main body can be provided.
  • the control method of the transfer robot may be configured such that, based on the information on the load detected by the load sensor, the drive is performed such that a load when the contact portion contacts the transfer target object approaches a first target value. Controlling the drive unit, and controlling the drive unit based on the information on the rotation angle detected by the angle sensor, such that the rotation angle of the contact unit with respect to the main body approaches a second target value. And can be included.
  • the program related to the mode 5 may be a program executed by a transfer robot configured to transfer an object to be transferred while sandwiching the transfer object in cooperation with another transfer robot.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a driving unit that drives, a control unit that controls the driving unit, a load sensor that detects a load when the contact unit comes into contact with the transfer target, and an angle that detects a rotation angle of the contact unit with respect to the main body. And a sensor.
  • the program controls the drive unit based on information on the load detected by the load sensor, such that a load when the contact unit contacts the object to be transported approaches a first target value. Processing, based on information about the rotation angle detected by the angle sensor, the rotation angle of the contact portion with respect to the main body, the process of controlling the drive unit so as to approach a second target value, It can be executed by the control unit.
  • the program according to the mode 6 may be a program executed by a control device that controls a plurality of transport robots that sandwich the transport target and transport the transport target in cooperation with each other.
  • the transfer robot has a main body, wheels, a contact portion that contacts the object to be transferred, a rotation mechanism that allows the contact portion to be rotatable with respect to the main body, and a wheel attached to the main body and the wheels.
  • a drive unit that drives, a load sensor that detects a load when the contact unit comes into contact with the transport target, and an angle sensor that detects a rotation angle of the contact unit with respect to the main body can be provided.
  • the program controls the drive unit based on information on the load detected by the load sensor, such that a load when the contact unit contacts the object to be transported approaches a first target value. Processing, based on information about the rotation angle detected by the angle sensor, the rotation angle of the contact portion with respect to the main body, the process of controlling the drive unit so as to approach a second target value, It can be executed by a control device.
  • connection lines between blocks in the drawings and the like referred to in the following description include both bidirectional and unidirectional.
  • the one-way arrow schematically indicates the flow of a main signal (data), and does not exclude bidirectionality.
  • a circuit diagram, a block diagram, an internal configuration diagram, a connection diagram, and the like shown in the disclosure of the present application although not explicitly shown, an input port and an output port exist at an input terminal and an output terminal of each connection line.
  • the program is executed via a computer device, and the computer device includes, for example, a processor, a storage device, an input device, a communication interface, and a display device as necessary, and the computer device is provided in the device or via the communication interface. It is configured to be able to communicate with external devices (including computers) regardless of whether it is wired or wireless.
  • FIG. 1 is a plan view schematically illustrating an example of a state in which the transport system according to the first embodiment is transporting an object to be transported.
  • FIG. 2 is a side view schematically illustrating an example of a state in which the transport system according to the first embodiment is transporting the transport target.
  • FIG. 3 is an external perspective view schematically illustrating the configuration of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 4 is a block diagram schematically illustrating a circuit configuration of a main body of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 5 is a partial left side view illustrating the operation of the contact unit of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 6 is a schematic partial plan view illustrating the operation of the rotation mechanism and the restoration mechanism of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 7 is a schematic partial plan view when the arm of the rotation mechanism of the transfer robot in the transfer system according to the first embodiment is turned in the first direction.
  • FIG. 8 is a schematic partial plan view when the arm of the rotation mechanism of the transfer robot in the transfer system according to the first embodiment is turned in the second direction.
  • FIG. 9 is a schematic bottom view illustrating the operation of the guide mechanism of the transfer robot in the transfer system according to the first embodiment.
  • FIG. 10 is a schematic bottom view when the arm of the rotation mechanism of the transfer robot in the transfer system according to the first embodiment is turned in the first direction.
  • FIG. 11 is a schematic bottom view when the arm of the rotation mechanism of the transfer robot in the transfer system according to the first embodiment is turned in the second direction.
  • the transfer system 1 is a system including a plurality of (two in FIG. 1; three or more transfer robots) 2A and 2B (see FIGS. 1 and 2).
  • the transfer robot 2 (for example, 2A in FIGS. 1 and 2) transfers another transfer robot (for example, 2B in FIGS. 1 and 2) when transferring a transfer target (for example, 5 in FIGS. 1 and 2).
  • This is a robot that transports the transport object 5 in a state of being sandwiched by cooperating with the robot (see FIGS. 1 to 4 and FIGS. 6 to 11).
  • the transfer robot 2 (2A, 2B) has a main body 10, wheels 20, 21, a contact portion 30, a rotating mechanism 40, and a guide mechanism 60.
  • the transport robots 2 (2A, 2B) may be configured to cooperate by being connected to each other so as to be able to communicate (whether wireless communication or wired communication).
  • the main body 10 is a unit having basic components (11 to 17 in FIG. 4, and 20 to 22 in FIG. 9) for functioning as the transfer robot 2 (2A, 2B) (FIGS. 1 to 4, FIGS. 6 to 11).
  • the main body 10 has a frame 11 and mounts various components (12 to 17 in FIG. 4 and 20 to 22 in FIG. 9) for functioning as a transfer robot in the frame 11.
  • the frame 11 is a structure for mounting various components (11 to 17 in FIG. 4, and 20 to 22 in FIG. 9) for functioning as the transfer robot 2 (2A, 2B) (FIGS. 3, FIG. 4, see FIGS. 6 to 11).
  • the frame 11 can have, for example, a housing structure, a box-like structure, or the like.
  • a pair of wheels 20 and 21 are rotatably mounted on both left and right sides of the frame 11.
  • a caster 22 is attached to the bottom surface of the frame 11.
  • the drive units 12 and 13 are functional units that drive the wheels 20 and 21 (see FIG. 4).
  • a driving unit including a motor, a speed reducer, a driver, various sensors (current sensor, torque sensor, position sensor, and the like), a regulator, and the like can be used.
  • the drive units 12 and 13 are attached to the frame 11.
  • the rotational power of the drive unit 12 can be transmitted to the wheels 20 via the shaft 14.
  • the rotational power of the drive unit 13 can be transmitted to the wheels 21 via the shaft 15.
  • the shafts 14 and 15 are shaft members that transmit the rotational power of the corresponding drive units 12 and 13 to the wheels 20 and 21 (see FIGS. 3, 4, and 9 to 11).
  • the shaft 14 is connected to an output shaft (not shown) of the drive unit 12 and extends to one side outside the frame 11.
  • the shaft 14 is attached to the shaft of the wheel 20 outside the frame 11.
  • the shaft 15 is connected to an output shaft (not shown) of the drive unit 13 and extends to another outside surface of the frame 11.
  • the shaft 15 is attached to the shaft of the wheel 21 outside the frame 11.
  • the shafts 14 and 15 are arranged so as to be substantially coaxial with each other on an imaginary line (axle 81) shown by a dashed line in FIG. 9 (see FIG. 9).
  • the shafts 14 and 15 may be arranged so that the wheels 20 and 21 are inclined (have a camber angle), and the inclination of the wheels 20 and 21 is changed using a suspension, a constant velocity joint, or the like. (So that the camber angle fluctuates).
  • the control unit 16 is a functional unit that controls the pair of drive units 12 and 13 by cooperating with another transfer robot (2A or 2B) (see FIG. 4).
  • the control unit 16 for example, a control unit including a memory, a processor, and the like can be used. In this case, the control unit may be configured to execute a control process by executing a program in the processor while using the memory.
  • the control unit 16 can adjust the moving speed, the moving direction, and the driving torque of the transfer robot 2 (2A or 2B) by controlling the driving units 12 and 13.
  • the control unit 16 is attached to the frame 11.
  • the control unit 16 communicates with another transport robot (2A or 2B) or an external device (not shown; for example, a tablet terminal or a portable communication terminal) via the communication unit 17 (for example, a wireless LAN (Local Area Network). ), Infrared communication, and communication using Bluetooth (registered trademark).
  • the control unit 16 autonomously performs control (local control) in response to the transport instruction.
  • the control unit 16 controls the load when the contact unit 30 comes into contact with the transfer target 5 based on the information on the load acquired (received) from the load sensor 23 so as to approach the target value (first target value). , And controls (feedback control) the pair of driving units 12 and 13. That is, the control unit 16 uses the load from the load sensor 23 (the distance between the plate members 31 and 32 is also a guide) to maintain the state in which the transfer target object 5 is sandwiched by a constant force. 13 is adjusted.
  • the control unit 16 When the control unit 16 is the control unit 16 mounted on the subsequent transfer robot 2B, the load is applied to the transfer target 5 and the leading transfer robot 2A based on the information on the load acquired (received) from the load sensor 23.
  • the load When the load is smaller than the target value (when the distance between the plate members 31 and 32 is too large), the control is performed so as to follow the leading transport robot 2A while pressing so as to approach the value. If the value is larger than the value (the distance between the plate members 31 and 32 is too close), the speed is reduced.
  • the control unit 16 determines the transfer target object 5 pressed by the subsequent transfer robot 2B based on the information on the load acquired (received) from the load sensor 23.
  • the load is controlled so as to proceed while being approached to the target value.
  • the load is smaller than the target value (when the distance between the plate members 31 and 32 is too large), the load is reduced, and the load is larger than the target value. In this case (when the distance between the plate members 31 and 32 is too close), the acceleration is performed.
  • the control unit 16 sets the pair of rotation angles of the arms 41 and 43 of the rotation mechanism 40 to a target value (second target value) based on the information on the angle acquired (received) from the angle sensor 24.
  • the drive units 12 and 13 are controlled (feedback control).
  • each drive unit of the subsequent transfer robot 2B is configured to follow the traveling direction of the leading transfer robot 2A based on the angle from the angle sensor 24.
  • the speed difference between the driving units 12 and 13 is adjusted so that the speed difference between the driving units 12 and 13 is set in the direction in which the leading transport robot 2A is located.
  • the rotation speed of the drive portion 12 related to the left wheel 20 is accelerated, and The rotation speed of the drive unit 13 related to the wheel 21 of the vehicle is reduced or maintained.
  • the target values of the rotation angles of the arms 41 and 43 of the rotating mechanism 40 are set to 0 degrees so that the trailing transfer robot 2B comes behind the leading transfer robot 2A when the leading transfer robot 2A moves straight, and the leading transfer robot 2A Is set to an angle at which the subsequent transfer robot 2B makes a larger turn than the leading transfer robot 2A.
  • the target value of the rotation angle of the arms 41 and 43 of the rotating mechanism 40 at the time of the curve is determined in advance from the size of the transfer object 5 (the distance between the transfer robots 2A and 2B) and the traveling course (the radius of the curve). be able to.
  • the communication unit 17 is a functional unit that enables communication with another transfer robot (2A or 2B) (see FIG. 4).
  • the communication unit 17 may be configured to be able to communicate with an external device (not shown; for example, a tablet terminal, a mobile communication terminal, or the like).
  • Wheels 20 and 21 are drive wheels that realize the movement of the transfer robot 2 (2A and 2B) (see FIGS. 1 to 4 and FIGS. 6 to 11).
  • the wheel 20 is fixed to the shaft 14 at the axis of the wheel 20.
  • the wheel 21 is fixed to the shaft 15 at the axis of the wheel 21.
  • the wheels 20 and 21 are arranged so as to be substantially coaxial with each other on a virtual line (the axle 81 in FIGS. 6 and 9).
  • the wheels 20 and 21 may be arranged so as to be inclined (to have a camber angle), and to be inclined (to change the camber angle) using a suspension, a constant velocity joint or the like. May be designed.
  • the caster 22 is a non-drive wheel that functions as an auxiliary wheel for the wheels 20 and 21 (see FIGS. 1, 2, and 9 to 11).
  • the caster 22 is configured to be freely rotatable so that the traveling direction can be changed.
  • the load sensor 23 detects a load (pressure, plate-to-plate force) applied to the contact portion 30 when the contact portion 30 and the transfer object 5 come into contact with the transfer object 5 sandwiched by the plurality of transfer robots 2 (2A, 2B). Distance) (see FIG. 4).
  • a distance sensor that detects a load applied to the contact portion 30 based on the distance between the plate members 31 and 32 sandwiching the elastic members 34 to 37 in the contact portion 30 can be used.
  • the load sensor 23 is not limited to this, and a piezoelectric element (piezo element), a strain gauge, or the like can also be used. Information on the load detected by the load sensor 23 is transmitted to the control unit 16.
  • the angle sensor 24 is a sensor that detects a rotation angle (corresponding to a rotation angle of the contact portion 30) of the arms 41 and 43 of the rotation mechanism 40 with respect to the main body 10 (see FIG. 4).
  • the angle sensor 24 includes, for example, a position encoder for angle measurement, a position angle sensor (magnetic) connected to a part of a shaft 42 (a part interlocked with the rotation of the arm 41) serving as a rotation part of the rotation mechanism 40. , Resolver type, contact type) and the like. Information on the angle detected by the angle sensor 24 is transmitted to the control unit 16.
  • the contact portion 30 is a portion that comes into contact with the transfer target object 5 (see FIGS. 1 to 3, FIG. 5, and FIGS. 9 to 11).
  • the contact part 30 is fixed to one end of the arms 41 and 43 of the rotation mechanism 40.
  • the arms 41 and 43 are rotatably supported by the main body 10 on a shaft 42 provided near the other ends of the arms 41 and 43. Thereby, the contact portion 30 can rotate together with the arm 41 of the rotation mechanism 40 around the shaft portion 42 extending in the direction perpendicular to the paper surface of FIG. 6, as shown in FIGS.
  • the rotation direction of the contact portion 30 includes at least a longitude direction (for example, a horizontal direction, a left-right direction) with respect to the main body 10, and may include a latitude direction (for example, a vertical direction, a vertical direction).
  • a longitude direction for example, a horizontal direction, a left-right direction
  • a latitude direction for example, a vertical direction, a vertical direction.
  • the contact portion 30 is configured so that the load sensor 23 can detect a contact load between the contact portion 30 and the transport target 5 (see FIGS. 1 to 4).
  • the contact portion 30 shown in FIG. 3 is configured to detect a contact load between the contact portion 30 and the transfer target object 5 by detecting a distance between the plate members 31 and 32.
  • the load sensor 23 (distance sensor) shown in FIG. The contact portion 30 has plate members 31 and 32, a friction portion 33, and elastic members 34 to 37.
  • the plate member 31 is supported by the plate member 32 via the elastic members 34 to 37 (see FIGS. 3, 5, and 9 to 11).
  • the plate member 31 has a friction portion 33 on a surface that comes into contact with the transport target 5.
  • the plate member 32 supports the plate member 31 via the elastic members 34 to 37 (see FIGS. 3, 5, and 9 to 11).
  • the plate member 32 is attached to the arm 43 by stays 44 and 45, and is attached to the arm 41 by stays 46 and 47.
  • the plate member 32 is slidably in contact with the guide surface 61 a of the guide member 61 in the guide mechanism 60, and supports the pressing of the contact portion 30 against the transfer target object 5 by the guide mechanism 60.
  • the friction portion 33 increases the frictional force generated between the object 5 and the object 5 when the object comes into contact with the object 5 (see FIGS. 3 and 5). Thereby, the friction part 33 prevents or suppresses the relative movement of the transport target 5 when the rotation mechanism 40 rotates in a state of contact with the friction part 33.
  • a material having a higher friction coefficient than a material used for the plate member 31, or an elastic material (for example, rubber) having a restoring force can be used.
  • the elastic members 34 to 37 are interposed between the plate members 31 and 32 (see FIGS. 3 and 5).
  • the elastic members 34 to 37 act so as to return to the original non-compressed state (to increase the distance between the plate members 31 and 32) when the distance between the plate members 31 and 32 is reduced due to compression.
  • As the elastic members 34 to 37 for example, a coil spring guided in the expansion and contraction direction can be used.
  • the spring coefficients of the elastic members 34 to 37 can be used for calculating the load detected by the load sensor 23.
  • the turning mechanism 40 is a mechanism that makes the contact portion 30 turnable with respect to the main body 10 (see FIGS. 1 to 3 and FIGS. 5 to 11).
  • the angle at which the rotation mechanism 40 can rotate is not particularly limited, but may be 45 ° left and right.
  • the rotation mechanism 40 has a shaft portion 42 and arms 41 and 43.
  • the shaft 42 is attached to the upper surface of the frame 11 of the main body 10.
  • the center axis of the shaft portion 42 is preferably designed to pass through the midpoint of the width W between the wheels 20 and 21 (see FIG. 6), but is not limited to this design.
  • the shaft portion 42 includes a portion fixed to the frame 11 and another portion rotatably attached to the portion in a longitude direction (for example, a horizontal direction, a left-right direction).
  • the arm 41 is attached to the other portion. , 43 are fixed.
  • the arms 41 and 43 are set so that the contact portion 30 does not contact the main body 10 or the wheels 20 and 21 when the contact portion 30 is rotated.
  • the plate member 31 of the contact portion 30 is attached to the arm 43 by stays 44 and 45.
  • the plate member 31 of the contact portion 30 is attached to the arm 41 by stays 46 and 47.
  • the arm 41 and the arm 43 are arranged at a predetermined interval.
  • the number of the arms 41 and 43 is two in FIG. 3, but may be one or three or more.
  • Pin portions 41 a and 41 b are fixed to arm 41 at a position radially away from shaft portion 42.
  • the pin portions 41a and 41b function as cams of the restoration mechanism 50.
  • the pin portions 41a and 41b are arranged apart from each other.
  • the pin portion 41a is in contact with the receiving surface 51a of the swinging member 51 in the restoring mechanism 50 so that the pin portion 41a can come and go and can slide.
  • the pin portion 41b is in contact with the receiving surface 51b of the swinging member 51 in the restoring mechanism 50 so as to be able to come and go and to be slidable.
  • the rotating mechanism 40 moves the contact portion 30 that has been rotated (for example, the state shown in FIGS. 7 and 8) from a predetermined position (for example, the center point in the rotating direction: the front, the origin, and the state shown in FIG. 6) to the predetermined position.
  • a restoring mechanism 50 for restoring so as to return to.
  • the restoration mechanism 50 is a mechanism that acts on the rotation mechanism 40 so as to restore the contact portion 30 that has been rotated from a predetermined position to the predetermined position (see FIGS. 3 and 6 to 8).
  • the restoration mechanism 50 has a swing member 51, a shaft 52, a pin 53, and an elastic member 54.
  • the swing member 51 is a member that can swing (rotate) around a shaft portion 52 attached to the frame 11 of the main body 10 as a central axis.
  • the swing member 51 has receiving surfaces 51a and 51b and a pin portion 51c.
  • the receiving surface 51a is a surface that comes into contact with the pin portion 41a of the arm 41 of the rotating mechanism 40 so as to be able to come and go and to be slidable.
  • the receiving surface 51b is a surface that is slidably and slidably in contact with the pin portion 41b of the arm 41 in the rotating mechanism 40.
  • the pin portion 51c is fixed to a predetermined position of the swing member 51 away from the shaft portion 52 so as not to come into contact with the arm 41.
  • the pin portion 51c is connected to one end of the elastic member 54, and is set so as to be attracted toward the pin portion 53 connected to the other end of the elastic member 54.
  • the shaft 52 is attached to the frame 11 of the main body 10 at a position away from the shaft 42.
  • a swing member 51 is attached to the shaft 52 so as to be swingable (rotatable).
  • the pin 53 is attached to the frame 11 of the main body 10 at a position away from the shaft 52 so as not to conflict with the arm 41.
  • the pin portion 53 is connected to the other end of the elastic member 54, and is set to attract the pin portion 51c connected to one end of the elastic member 54.
  • the elastic member 54 is a member that acts to attract the pin 51c of the swing member 51 to the pin 53 by elastic force when the elastic member 54 is extended.
  • the elastic member 54 has a pin 51c of the swinging member 51 attached to one end, and a pin 53 attached to the other end.
  • a coil spring, a torsion spring, or the like can be used as the elastic member 54.
  • the restoring mechanism 50 changes from the state in FIG. 6 to the state in FIG. 7, that is, when the arm 41 in the rotating mechanism 40 rotates leftward from a predetermined position (center position) about the shaft 42,
  • the pin 41a of the arm 41 presses the receiving surface 51a of the swinging member 51 (and the pin 41b is separated from the receiving surface 51b), and the distance between the pin 51c and the pin 53 of the swinging member 51 increases.
  • the swing member 51 rotates about the shaft portion 52, the elastic member 54 between the pin portions 51c and 53 extends, and the arm 41 acts to return to the predetermined position (center position).
  • the restoration mechanism 50 changes from the state shown in FIG. 6 to the state shown in FIG. 8, that is, when the arm 41 of the rotation mechanism 40 rotates rightward from a predetermined position (center position) about the shaft 42.
  • the pin portion 41b of the arm 41 presses the receiving surface 51b of the swing member 51 (and the pin portion 41a is separated from the receiving surface 51a), and the distance between the pin portion 51c and the pin portion 53 of the swing member 51.
  • the swing member 51 rotates about the shaft portion 52 so that is increased, the elastic member 54 between the pin portions 51c and 53 is extended, and the arm 41 acts so as to return to a predetermined position (center position).
  • the rotation mechanism 40 may have a configuration including an attenuation mechanism (not shown) that attenuates the vibration generated by the elastic member 54 in the restoration mechanism 50.
  • the damping mechanism can attenuate the vibration generated by the elastic member 54 in the restoration mechanism 50 due to friction, viscosity, and hysteresis.
  • the guide mechanism 60 is a mechanism for guiding the rotation of the contact portion 30 with respect to the main body 10 (see FIGS. 1 to 3, FIG. 5, and FIGS. 9 to 11).
  • the guide mechanism 60 supports pressing of the contact portion 30 against the transport target 5.
  • the guide mechanism 60 has a guide member 61 attached to the frame 11 of the main body 10.
  • the guide mechanism 60 has a guide surface 61a formed along a trajectory when the contact portion 30 rotates.
  • the guide surface 61a is slidably in contact with the plate member 32 in the contact portion 30.
  • a trolley, a dolly or the like having a plurality of casters 71 to 74 (wheels) rotatable on a pedestal 70 on which the load 6 is placed can be used.
  • the transfer target object 5 may be one that does not have wheels such as casters (for example, cardboard).
  • the plurality of transfer robots 2 in the transfer system 1 as described above have a role of either the leading transfer robot 2A or the subsequent transfer robot 2B.
  • the leading transport robot 2A calculates the speed based on the current location and the destination, for example, according to an instruction (destination, speed input) from an external device (not shown; for example, a tablet terminal, a mobile communication terminal, or the like). Then, move to the destination. For example, it moves following a trajectory (a straight line, a curve (a parabola, a spline curve, a clothoid curve, etc.), a circular arc) connecting the current position and the destination.
  • the current location here is the current location of the leading transport robot 2A itself, and may be acquired from the outside via the communication unit 17, or may be calculated and acquired by itself based on the encoder values of the driving units 12 and 13 and the control history.
  • the leading transport robot 2A may be obtained from a position detection unit (not shown; for example, a GPS (Global Positioning System) receiver, a beacon receiver, or the like) provided in the leading transport robot 2A.
  • the leading transport robot 2A measures the distance d between the plate members 31 and 32 with the load sensor 23 (a distance sensor in this case), and keeps the distance d constant (so that the load approaches the first target value). Are controlled (feedback control).
  • the leading transport robot 2A measures the rotation angles ⁇ of the arms 41 and 43 of the rotation mechanism 40 with the angle sensor 24 (here, an encoder) and adjusts the rotation angle ⁇ to the target value (the rotation angle is set to the second rotation angle). It controls its own drive units 12 and 13 (to approach the target value) (feedback control).
  • the feedback control by the load sensor 23 and the angle sensor 24 in the leading transfer robot 2A may be omitted, and the feedback control by the load sensor 23 and the angle sensor 24 may be performed only in the subsequent transfer robot 2B.
  • the feedback control may be, for example, PID (Proportional Integral Differential) control for controlling an input value by using three elements of a deviation between an output value and a target value, its integration, and differentiation.
  • the subsequent transfer robot 2B follows the leading transfer robot 2A by pressing the transfer target object 5 against the leading transfer robot 2A with a load of the target value determined according to the weight of the transfer target object 5.
  • the subsequent transfer robot 2B moves so as to approach the target value.
  • the subsequent transport robot 2B measures the distance d between the plate members 31 and 32 with the load sensor 23 (here, a distance sensor), and controls its own drive units 12 and 13 to keep the distance d constant (feedback control). I do.
  • the subsequent transfer robot 2B measures the rotation angles ⁇ of the arms 41 and 43 of the rotation mechanism 40 with the angle sensor 24 (here, an encoder), and drives its own driving units 12 and 13 to adjust the rotation angle ⁇ to a target value. Is controlled (feedback control).
  • the speeds v r and v l of the control signals input to the driving units 12 and 13 of the left and right wheels 20 and 21 are, for example, the following equations. It can be expressed as 1.
  • v base in Equation 1 is set in advance in consideration of the surrounding environment, safety, and the like, and includes the moving speed of the leading transfer robot 2A (the moving speed of the center of gravity, the rotational speed of the left and right wheels, (Equivalent to the average value).
  • v ⁇ is a speed corresponding to the load detected by the load sensor 23 (the distance d between the plate members 31 and 32 in the case of the distance sensor), and can be expressed, for example, as in Expression 2 below. it can.
  • v ⁇ is, for example, when the load is small (when the distance d between the plate members 31 and 32 is large ( ⁇ d ⁇ 0)), the acceleration is performed, and when the load is small (the plate member 31, When the distance d between the distances 32 approaches ( ⁇ d> 0), the speed decreases.
  • v ⁇ can be increased when the load is large, and decreased when the load is small, depending on the gradient of the road surface and the situation (such as unevenness).
  • T is a control loop time
  • k a , k b , and k c are gain coefficients
  • d target is a target value of the distance between the plate members 31 and 32.
  • d target is set in advance.
  • V ⁇ in Expression 1 is a speed corresponding to the rotation angle ⁇ of the arms 41 and 43 of the rotating mechanism 40, and can be expressed, for example, as in Expression 3 below.
  • Equation 3 T is the time of one cycle of the control loop, k d , k e , and k f are gain coefficients, and ⁇ target is a target value of the rotation angles of the arms 41 and 43 of the rotation mechanism 40. is there. ⁇ target is set in advance.
  • FIG. 12 is a flowchart schematically illustrating an operation when the transfer robot moves alone in the transfer system according to the first embodiment.
  • FIG. 13 is an image diagram of an intermediate destination and a final destination when the transport robot in the transport system according to the first embodiment moves alone. For the components of the transport system, refer to FIGS.
  • control unit 16 of the transport robot 2 sends a destination (intermediate destination) from the outside (not shown; for example, an information communication terminal capable of short-range communication, a network to which an information processing device is connected) through a communication unit 17. , Including the final destination; see FIG. 13) and an instruction to move (step A1).
  • Step A1 the control unit 16 of the transfer robot 2 starts a control loop of the driving units 12 and 13 for a predetermined time (for example, several tens ms (milliseconds)) (Steps A2 to A7).
  • a predetermined time for example, several tens ms (milliseconds)
  • step A2 the control unit 16 of the transfer robot 2 itself (hereinafter, may be abbreviated as “own”).
  • the information for example, position coordinates) related to the current location is obtained (step A2).
  • the current position of the user may be obtained from the outside through the communication unit 17 or may be calculated and obtained by himself based on the encoder values and the control history of the driving units 12 and 13. It may be obtained from a designated position detection unit (not shown; for example, a GPS (Global Positioning System) receiver, a beacon receiver, or the like).
  • GPS Global Positioning System
  • step A3 the control unit 16 of the transfer robot 2 determines that the acquired current location has reached the acquired destination (the nearest destination ahead) (for example, within a predetermined radius of the destination). Is determined) (step A3). If the vehicle has reached the destination (YES in step A3), the process proceeds to step A6.
  • control unit 16 of the transfer robot 2 controls the drive amount of each of the drive units 12 and 13 (for example, the rotation speed of the wheels 20 and 21). Is calculated (step A4).
  • control unit 16 of the transfer robot 2 controls its own drive units 12 and 13 based on the calculated control amount (step A5), and thereafter returns to step A2.
  • step A3 If the destination has been reached (YES in step A3), in the control loop, the control unit 16 of the transport robot 2 has reached its final destination (for example, within a predetermined radius of the final destination). Is determined) (step A6). If the vehicle has reached the final destination (YES in step A6), the process proceeds to step A8.
  • step A6 If the vehicle has not reached the final destination (NO in step A6), in the control loop, the control unit 16 of the transfer robot 2 updates the destination to the nearest destination ahead (step A7), and thereafter, It returns to step A2.
  • step A6 If the vehicle has reached the final destination (YES in step A6), the control unit 16 of the transfer robot 2 goes out of the control loop, stops control of its own drive units 12 and 13 (step A8), and then ends. I do.
  • FIG. 12 shows the operation when the transfer robot 2 moves alone, but the operation of the leading transfer robot 2A when the transfer system cooperates and transfers can be the same as that in FIG.
  • FIG. 14 is a flowchart schematically illustrating the operation of the transfer robot when the transfer system according to the first embodiment sandwiches the transfer target object.
  • FIG. 15 is an image diagram of an operation of the transfer robot when the transfer system according to the first embodiment sandwiches the transfer target object.
  • control unit 16 of the transport robots 2A and 2B is connected to a destination from outside (not shown; for example, an information communication terminal capable of short-range communication, a network to which an information processing device is connected) via the communication unit 17.
  • Information and an instruction to pinch the transport object 5 are acquired (step B1).
  • control unit 16 of the transfer robots 2A and 2B controls the drive units 12 and 13 so that the transfer robots 2A and 2B move to the vicinity of the transfer target 5 (step B2; see FIG. 15A). .
  • control unit 16 of the transfer robots 2A and 2B causes the transfer robots 2A and 2B to turn to the transfer target 5 (the transfer robots 2A and 2B rotate and the front of the transfer robots 2A and 2B changes to the transfer target 5). (Step B3; see FIG. 15B).
  • Step B3 the control unit 16 of the transfer robots 2A and 2B starts a control loop of the driving units 12 and 13 for a predetermined time (for example, several tens of ms) (Steps B4 to B6).
  • a predetermined time for example, several tens of ms
  • control unit 16 of the transfer robots 2A and 2B transmits information on the load from the load sensor 23 (in the case of a distance sensor, the distance d between the plate members 31 and 32). Is obtained (step B4).
  • control unit 16 of the transfer robots 2A and 2B determines whether or not the acquired load is larger than a predetermined value (if the distance is d, whether or not d ⁇ predetermined value) (step B5).
  • a predetermined value if the distance is d, whether or not d ⁇ predetermined value
  • control unit 16 of the transfer robots 2A and 2B controls the drive units 12 and 13 so that the transfer robots 2A and 2B move forward at a low speed (step B6; FIG. 15 (C)), and then return to step B4.
  • step B5 If the load is larger than the predetermined value (YES in step B5), the control unit 16 of the transfer robots 2A and 2B goes out of the control loop, stops the control of the drive units 12 and 13 (step B7), and then ends.
  • FIG. 16 is a flowchart schematically illustrating an operation of the subsequent transfer robot when the transfer system according to the first embodiment cooperatively transfers the transfer target object.
  • FIG. 17 is an image diagram of a target value (target ⁇ ) of the rotation angle of the rotating mechanism of the subsequent transfer robot at a curve when the transfer system according to the first embodiment cooperatively transfers the transfer target object.
  • control unit 16 of the subsequent transfer robot 2B is connected to an external device (not shown; for example, an information communication terminal capable of short-range communication, an information processing device) when the transfer system is sandwiching the transfer object 5.
  • an external device not shown; for example, an information communication terminal capable of short-range communication, an information processing device
  • From the network information on destinations (including intermediate destinations and final destinations) and instructions for collaborative transportation are acquired via the communication unit 17 (step C1).
  • step C1 the control unit 16 of the subsequent transfer robot 2B starts a control loop of the drive units 12 and 13 for a predetermined time (for example, several tens of ms) (steps C2 to C9).
  • the control unit 16 of the subsequent transfer robot 2B obtains information (for example, position coordinates) related to the current position of the leading transfer robot 2A.
  • the current location of the leading transport robot 2A may be obtained from the leading transport robot 2A through the communication unit 17, or may be acquired from outside through the communication unit 17.
  • the current position of the leading transfer robot 2A is determined by a position detection unit (not shown; for example, a GPS (Global Positioning System) receiver, a beacon receiver, or the like) provided in the transfer robot 2; It may be calculated and acquired by itself based on the size of the object 5 (the distance between the transfer robots 2A and 2B) and the rotation angles of the arms 41 and 43 of the rotation mechanism 40.
  • a position detection unit not shown; for example, a GPS (Global Positioning System) receiver, a beacon receiver, or the like
  • step C3 the control unit 16 of the subsequent transfer robot 2B determines that the acquired current position of the leading transfer robot 2A has reached the acquired destination (the nearest destination ahead) (for example, the destination). Is determined to be within a predetermined radius (step C3). If the vehicle has reached the destination (YES in step C3), the process proceeds to step C8.
  • the control unit 16 of the subsequent transport robot 2B determines the load (the distance between the plate members 31 and 32 is also possible) and the rotation angle of the subsequent transport robot 2B. Is determined (step C4). For example, when the movable range of the plate member 31 with respect to the plate member 32 is 10 mm to 30 mm, the target value related to the distance (corresponding to the load) between the plate members 31 and 32 is determined at least according to the weight of the transfer target object 5. (For example, determined to be 20 mm).
  • the target value related to the rotation angle depends on at least the curvature (radius r of the leading transport robot 2A) and the size of the transport target 5 (the distance l between the transport robots 2A and 2B) when the transport target 5 is transported. It can be determined, and it can be set to 0 ° for straight ahead and to arctan2 (l, r) for a curve (see FIG. 17).
  • “l” indicates the distance between the centers of gravity of the transfer robots 2A and 2B
  • “r” indicates the radius of curvature of the trajectory of the center of gravity of the leading transfer robot 2A
  • target ⁇ indicates the distance of the subsequent transfer robot 2B.
  • control unit 16 of the subsequent transfer robot 2B receives information on the load (the distance d between plates in the case of a distance sensor) from the load sensor 23 of the subsequent transfer robot 2B, the arm 41 of the rotation mechanism 40 from the angle sensor 24, The information related to the rotation angle ⁇ of 43 is obtained (step C5).
  • control unit 16 of the subsequent transfer robot 2B sets the load and the rotation angle to the target values based on the determined target value, the acquired load (the distance d between plates in the case of a distance sensor) and the rotation angle ⁇ .
  • the control amounts of the left and right driving units 12 and 13 of the subsequent transfer robot 2B are calculated so as to approach (step C6).
  • control unit 16 of the subsequent transfer robot 2B controls each of the drive units 12, 13 of the subsequent transfer robot 2B based on the calculated control amount (step C7), and thereafter returns to step C2.
  • step C3 the control unit 16 of the subsequent transfer robot 2B determines that the current position of the leading transfer robot 2A has reached the final destination (for example, the final destination). Is determined to be within the predetermined radius (step C8). If the vehicle has reached the final destination (YES in step C8), the process proceeds to step C10.
  • step C8 If the vehicle has not reached the final destination (NO in step C8), in the control loop, the control unit 16 of the subsequent transport robot 2B updates the destination to the nearest destination ahead (step C9), and thereafter Then, the process returns to step C2.
  • control unit 16 of the subsequent transfer robot 2B goes out of the control loop and stops controlling the driving units 12 and 13 of the subsequent transfer robot 2B (step C10). And then exit.
  • FIG. 18 is a flowchart schematically illustrating an operation of the transfer robot when releasing the transfer target object to the transfer system according to the first embodiment.
  • FIG. 19 is an image diagram of the operation of the transport robot when the transport system according to the first embodiment releases the transport target.
  • control unit 16 of the transfer robots 2A and 2B transmits the transfer object 5 from the outside (not shown; for example, an information communication terminal capable of short-range communication, a network to which an information processing device is connected) through the communication unit 17.
  • An instruction to open is obtained (step D1).
  • Step D1 the control unit 16 of the transfer robots 2A and 2B starts a control loop of the drive units 12 and 13 for a predetermined time (for example, several tens of ms) (Steps D2 to D4).
  • step D2 the control unit 16 of the transfer robots 2A and 2B acquires information (for example, position coordinates) on the current position of the transfer robots 2A and 2B (step D2).
  • the own current position may be obtained from the outside through the communication unit 17 or may be calculated and obtained by itself based on the encoder values of the driving units 12 and 13 and the control history, and the transfer robots 2A and 2B May be obtained from a position detection unit (not shown; for example, a GPS (Global Positioning System) receiver, a beacon receiver, or the like) provided in the device.
  • a position detection unit not shown; for example, a GPS (Global Positioning System) receiver, a beacon receiver, or the like
  • control unit 16 of the transfer robots 2A and 2B determines whether or not the transfer robots 2A and 2B have retreated a predetermined distance from the transfer target object 5 based on the acquired current location (step D3).
  • the process proceeds to step D5.
  • step D3 If the transfer robots 2A and 2B have not moved backward by a predetermined distance (NO in step D3), the control unit 16 controls the drive units 12 and 13 so that the transfer robots 2A and 2B move backward at a low speed (step D4; FIG. 19 (B)), and then return to step D2.
  • step D3 If the robot has retreated a predetermined distance (YES in step D3), the control unit 16 of the transfer robots 2A and 2B goes out of the control loop, stops controlling the drive units 12 and 13 (step D5), and thereafter ends.
  • the plurality of transport robots 2A and 2B are controlled using the control device 3, and the transport target 2 is sandwiched between the transport robots 2A and 2B.
  • FIG. 20 is a block diagram schematically illustrating the configuration of the transport system according to the second embodiment.
  • the second embodiment is a modification of the first embodiment.
  • the control device 3 instead of the plurality of transfer robots 2A and 2B having received the transfer instruction performing autonomous control (local control), the control device 3 having received the transfer request The transfer robots 2A and 2B are remotely controlled (see FIG. 20).
  • the transfer robots 2A and 2B can be connected to the control device 3 in a communicable manner (for example, communication using a wireless LAN, infrared rays, or Bluetooth (registered trademark)).
  • the transfer robots 2A and 2B are remotely controlled by the control device 3.
  • the transfer robots 2A and 2B have a function of transmitting information (sensor information) relating to the load and the rotation angle detected by the load sensor (23 in FIG. 4) and the angle sensor (24 in FIG. 4) to the control device 3.
  • Other configurations of the transfer robots 2A and 2B are the same as those of the first embodiment (see FIGS. 1 to 11).
  • the control device 3 is a device that manages and remotely controls the transfer robots 2A and 2B.
  • the control device 3 for example, a computer device including a memory, a processor, and the like can be used.
  • the control device 3 is capable of communicating with the transfer robots 2A and 2B and an external device (not shown; for example, a tablet terminal, a portable communication terminal, or the like) (for example, communication using wireless LAN, infrared rays, or Bluetooth (registered trademark)). Can be connected.
  • the control device 3 has a function of acquiring information on the current location of the plurality of transport robots 2A and 2B.
  • the information on the current positions of the transfer robots 2A and 2B may be obtained by using photographing data from a camera (not shown) that photographs the transfer robots 2A and 2B. 12, 13) may be calculated and acquired based on the encoder value or the control history, and may be a position detection unit (not shown; for example, a GPS (Global Positioning System) receiver) provided in the transfer robots 2A and 2B. , A beacon receiver, etc.).
  • the control device 3 receives a transport request from outside (not shown; for example, an information communication terminal capable of short-range communication, a network to which an information processing device is connected) and a destination (including an intermediate destination and a final destination). Then, remote control of the transfer robots 2A and 2B is started.
  • the control device 3 has a function of acquiring, from the transfer robots 2A and 2B, information on loads detected by the load sensors (23 in FIG. 4) of the transfer robots 2A and 2B.
  • the control device 3 determines the load when the contact portion (30 in FIG. 1) and the transfer target (5 in FIG. 1) come into contact with each other based on the information on the load obtained (received) from the transfer robots 2A and 2B.
  • the drive units 12 and 13 of the transfer robots 2A and 2B are controlled (feedback control) so as to approach the target value. In other words, the control device 3 maintains the state in which the transfer robots 2A and 2B sandwich the transfer target (5 in FIG. 1) with a constant force, and therefore loads the load (plate member (23 in FIG.
  • the driving force of the driving units 12 and 13 of the transfer robots 2A and 2B is adjusted with reference to the distance between 31 and 32) in FIG. 5).
  • the target value of the load is the same as in the first embodiment.
  • the traffic control device 3 controls the transport target 5 and the leading transport robot 2A based on the information on the load acquired (received) from the load sensor (23 in FIG. 4) of the subsequent transport robot 2B so that the load approaches the target value.
  • the load is smaller than the target value (when the distance between the plate members (31, 32 in FIG. 5) is too large), the load is accelerated, and the load is reduced. If it is larger than the target value (when the distance between the plate members (31, 32 in FIG. 5) is too close), the speed is reduced.
  • the traffic controller pressed by the subsequent transport robot 2B so that the load approaches the target value based on the information on the load acquired (received) from the load sensor (23 in FIG. 4) of the leading transport robot 2A.
  • the load is smaller than the target value (when the distance between the plate members (31, 32 in FIG. 5) is too large)
  • the vehicle is decelerated, and the load becomes smaller than the target value.
  • acceleration is performed.
  • the control device 3 has a function of acquiring, from the transfer robots 2A and 2B, information on the rotation angles detected by the angle sensors (24 in FIG. 4) of the transfer robots 2A and 2B.
  • the control device 3 sets the rotation angle of the arm (41 in FIG. 6) of the rotating mechanism (40 in FIG. 6) to the target value based on the information on the angle acquired (received) from the angle sensor (24 in FIG. 4).
  • the control device 3 controls each drive unit (12 in FIG.
  • the rotational speed of the drive unit (12, 13 in FIG. 4) is adjusted so as to proceed in the direction where the leading transport robot 2A is located.
  • the rotation angle of the contact portion (20 in FIG. 1) is right (the position of the leading transport robot 2A) with respect to the main body (10 in FIG. 1) of the subsequent transport robot 2B, the left wheel (FIG.
  • the rotation speed of the drive unit (12 in FIG. 4) according to (20) is accelerated, and the rotation speed of the drive unit (13 in FIG. 4) according to the right wheel (21 in FIG. 1) is reduced or maintained.
  • the target value of the rotation angle is the same as in the first embodiment.
  • the plurality of transport robots 2A and 2B are controlled using the control device 3, and the transport target 2 is sandwiched between the transport robots 2A and 2B.
  • the control device 3 controls the transfer robots 2A and 2B by the control device 3, the load of information processing on the transfer robots 2A and 2B is reduced, and the operation can be performed for a long time.
  • FIG. 21 is a block diagram schematically illustrating the configuration of the transport system according to the third embodiment.
  • the transfer system 1 is a system for transferring the transfer object 5 in a state where the transfer object 5 is sandwiched by a plurality of (two in FIG. 21, three or more as illustrated in FIG. 22) transfer robots 2A and 2B. is there.
  • the transfer robots 2A and 2B include a main body 10, wheels 20 and 21, a contact portion 30 that comes into contact with the transfer target object 5, and a rotating mechanism 40 in which the contact portion 30 is rotatably attached to the main body 10.
  • a driving unit 18 attached to the main body 10 and driving the wheels 20 and 21; a load sensor 23 for detecting a load when the contact unit 30 comes into contact with the object 5 to be conveyed; and a rotation angle of the contact unit 30 with respect to the main body 10
  • an angle sensor 24 for detecting the
  • the transport system 1 uses the hardware resources 90 based on the information on the load detected by the load sensor 23 so that the load when the contact unit 30 contacts the transport target 5 approaches the first target value.
  • the drive unit is controlled so that the rotation angle of the contact unit 30 with respect to the main body 10 approaches the second target value. 12 and 13 are controlled.
  • the third embodiment similarly to the first embodiment, it is possible to contribute to stably transporting various types of transport objects without remodeling, without changing the transport objects.
  • the contact portions 30 and the rotation mechanism 40 on the transfer robots 2A and 2B and performing feedback control by the load sensor 23 and the angle sensor 24, it is possible to contribute to stably transfer the transfer target object 5. it can.
  • the control unit and the communication unit of the transport robot according to the first embodiment, the control device according to the second embodiment, and the hardware resources according to the third embodiment can be configured by so-called information processing devices (computers, hardware resources).
  • a device having the configuration illustrated in FIG. 23 can be used.
  • the information processing apparatus 100 includes a processor 101, a memory 102, a network interface 103, and the like, which are mutually connected by an internal bus 104.
  • the configuration illustrated in FIG. 23 is not intended to limit the hardware configuration of the information processing device 100.
  • the information processing apparatus 100 may include hardware (not shown) (for example, an input / output interface).
  • the number of units such as the processor 101 included in the information processing apparatus 100 is not limited to the example illustrated in FIG. 23.
  • a plurality of processors 101 may be included in the information processing apparatus 100.
  • a CPU Central Processing Unit
  • MPU Micro Processor Unit
  • RAM random access memory
  • ROM read only memory
  • HDD hard disk drive
  • SSD solid state drive
  • a network interface 103 for example, a LAN (Local Area Network) card, a network adapter, a network interface card, or the like can be used.
  • LAN Local Area Network
  • the function of the information processing device 100 is realized by the above-described processing module.
  • the processing module is realized, for example, by the processor 101 executing a program stored in the memory 102. Also, the program can be downloaded via a network or updated using a storage medium storing the program. Further, the processing module may be realized by a semiconductor chip. That is, the function performed by the processing module may be realized by executing software on some hardware.
  • the contact unit has two plates and an elastic member disposed between the two plates, and the load sensor is configured to contact the contact unit based on a distance between the two plates. 3.
  • the transfer system includes, as the hardware resource, a control device that controls the transfer robot, the control device performs a process of controlling the driving unit, and in a process of controlling the drive unit, Acquiring the information related to the load detected by the load sensor, and processing the drive unit based on the acquired information related to the load; and the rotation angle detected by the angle sensor from the transfer robot. 5.
  • the transport system according to any one of appendices 1 to 4, wherein information related to the rotation angle is obtained, and processing for controlling the drive unit is performed based on the obtained information related to the rotation angle.
  • Appendix 7 In the present invention, a form of the transfer robot according to the second viewpoint is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)

Abstract

搬送対象物を載せ替えることなく、様々な形態の搬送対象物を改造しないでそのまま安定して搬送することに貢献することができる搬送システム等を提供する。複数の搬送ロボットによって搬送対象物を挟み込んだ状態で該搬送対象物を搬送する搬送システムであって、搬送ロボットは、本体と、車輪と、搬送対象物と接触する接触部と、本体に対して接触部を回動自在に取り付けられた回動機構と、本体に取り付けられるとともに車輪を駆動する駆動部と、接触部が搬送対象物に接触したときの荷重を検出する荷重センサと、本体に対する接触部の回転角度を検出する角度センサと、を備え、ハードウェア資源を用いて、荷重センサ及び角度センサで検出した荷重及び回転角度に係る情報に基づいて、荷重及び回転角度が第1目標値及び第2目標値に近づくように、駆動部を制御する処理を行う。

Description

搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2018-168683号(2018年09月10日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、搬送システム、搬送ロボット、管制装置、制御方法、及びプログラムに関する。
 複数台の搬送ロボットを協働(協調)させて搬送対象物を搬送する搬送システムとして、以下のようなものがある。
 例えば、特許文献1、2の搬送システムでは、複数台の搬送ロボットのそれぞれにターンテーブル(位置誤差吸収機構)を設置し、複数のターンテーブル間を跨ぐように搬送対象物(荷物)を配置して、搬送対象物を搬送する構成となっている。
 また、特許文献3の搬送システムでは、複数台の搬送ロボットのそれぞれにアームとハンドを設け、複数のハンドで搬送対象物を下から回転自在に支持して、搬送対象物を搬送する構成となっている。
 また、特許文献4の搬送システムでは、複数台の搬送ロボットのそれぞれにロボットアームとフックを設け、複数のフックで搬送対象物を吊り上げて、搬送対象物を搬送する構成となっている。
 さらに、特許文献5の搬送システムでは、複数台の搬送ロボットのそれぞれに可動アームと把持機構を設け、複数の把持機構で搬送対象物を把持して、搬送対象物を搬送する構成となっている。
特許第6151159号公報 特許第5588714号公報 特開2000-42958号公報 特開2007-111826号公報 特開2009-6415号公報
 以下の分析は、本願発明者により与えられる。
 特許文献1、2の搬送システムでは、搬送対象物をターンテーブル上に載せ替えるための人手又は載せ替えロボットが必要になる。また、物流業務(搬送業務)においては、移動しやすくするため、荷物を台車(ドーリーを含む)に載せて搬送することが多いが、特許文献1、2の搬送システムでは、荷物(搬送対象物)を台車に載せたまま、当該台車を搬送することができない。
 また、特許文献3の搬送システムでは、ハンドで支持できるようにするための支持棒を搬送対象物に設けておく必要があり、支持棒がない搬送対象物を搬送することができない。
 また、特許文献4の搬送システムでは、フックで吊り下げができるようにするためのアイボルトを搬送対象物に取り付ける必要があり、アイボルトを取り付けることができない搬送対象物を搬送することができない。
 さらに、特許文献5の搬送システムでは、把持機構で把持できるようにするための把持部を搬送対象物に設けておく必要があり、把持部のない搬送対象物を搬送することができない。
 物流業務においては、荷主等によって様々な形態(形状、サイズ等)の台車が用いられているが、荷物を載せる台車(搬送対象物)を改造しないで、そのまま安定して搬送できるようにしたい。
 本発明の主な課題は、搬送対象物を載せ替えることなく、様々な形態の搬送対象物を改造しないでそのまま安定して搬送することに貢献することができる搬送システム、搬送ロボット、管制装置、制御方法、及びプログラムを提供することである。
 第1の視点に係る搬送システムは、複数の搬送ロボットによって搬送対象物を挟み込んだ状態で該搬送対象物を搬送する搬送システムである。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備える。前記搬送システムは、ハードウェア資源を用いて、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を行う。
 第2の視点に係る搬送ロボットは、他の搬送ロボットと協働することにより、搬送対象物を挟み込んだ状態で搬送するように構成される搬送ロボットである。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記駆動部を制御する制御部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備える。前記制御部は、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を行う。
 第3の視点に係る管制装置は、搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する管制装置である。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備える。前記管制装置は、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を行う。
 第4の視点に係る搬送ロボットの制御方法は、搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する搬送ロボットの制御方法である。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備える。前記搬送ロボットの制御方法は、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御するステップと、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御するステップと、を含む。
 第5の視点に係るプログラムは、他の搬送ロボットと協働することにより、搬送対象物を挟み込んだ状態で搬送するように構成される搬送ロボットで実行されるプログラムである。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記駆動部を制御する制御部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備える。前記プログラムは、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を前記制御部に実行させる。
 第6の視点に係るプログラムは、搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する管制装置で実行されるプログラムである。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備える。前記プログラムは、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を前記管制装置に実行させる。
 なお、プログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transient)なものとすることができる。また、本開示では、コンピュータプログラム製品として具現することも可能である。プログラムは、コンピュータ装置に入力装置又は外部から通信インタフェースを介して入力され、記憶装置に記憶されて、プロセッサを所定のステップないし処理に従って駆動させ、必要に応じ中間状態を含めその処理結果を段階毎に表示装置を介して表示することができ、あるいは通信インタフェースを介して、外部と交信することができる。そのためのコンピュータ装置は、一例として、典型的には互いにバスによって接続可能なプロセッサ、記憶装置、入力装置、通信インタフェース、及び必要に応じ表示装置を備える。
 前記第1~第6の視点によれば、搬送対象物を載せ替えることなく、様々な形態の搬送対象物を改造しないでそのまま安定して搬送することに貢献することができる。
実施形態1に係る搬送システムが搬送対象物を搬送している状態の一例を模式的に示した平面図である。 実施形態1に係る搬送システムが搬送対象物を搬送している状態の一例を模式的に示した側面図である。 実施形態1に係る搬送システムにおける搬送ロボットの構成を模式的に示した外観斜視図である。 実施形態1に係る搬送システムにおける搬送ロボットの本体の回路構成を模式的に示したブロック図である。 実施形態1に係る搬送システムにおける搬送ロボットの接触部の動作を説明する部分左側面図である。 実施形態1に係る搬送システムにおける搬送ロボットの回動機構及び復元機構の動作を説明する概略部分平面図である。 実施形態1に係る搬送システムにおける搬送ロボットの回動機構のアームを第1方向に回動したときの概略部分平面図である。 実施形態1に係る搬送システムにおける搬送ロボットの回動機構のアームを第2方向に回動したときの概略部分平面図である。 実施形態1に係る搬送システムにおける搬送ロボットのガイド機構の動作を説明する概略底面図である。 実施形態1に係る搬送システムにおける搬送ロボットの回動機構のアームを第1方向に回動したときの概略底面図である。 実施形態1に係る搬送システムにおける搬送ロボットの回動機構のアームを第2方向に回動したときの概略底面図である。 実施形態1に係る搬送システムにおける搬送ロボットの単独で移動するときの動作を模式的に示したフローチャートである。 実施形態1に係る搬送システムにおける搬送ロボットが単独で移動するときの中間目的地及び最終目的地のイメージ図である。 実施形態1に係る搬送システムが搬送対象物を挟み込むときの搬送ロボットの動作を模式的に示したフローチャートである。 実施形態1に係る搬送システムが搬送対象物を挟み込むときの搬送ロボットの動作のイメージ図である。 実施形態1に係る搬送システムが搬送対象物を協働搬送するときの後続搬送ロボットの動作を模式的に示したフローチャートである。 実施形態1に係る搬送システムが搬送対象物を協働搬送するときのカーブでの後続搬送ロボットの回動機構の回転角度の目標値のイメージ図である。 実施形態1に係る搬送システムに搬送対象物を開放するときの搬送ロボットの動作を模式的に示したフローチャートである。 実施形態1に係る搬送システムが搬送対象物を解放するときの搬送ロボットの動作のイメージ図である。 実施形態2に係る搬送システムの構成を模式的に示したブロック図である。 実施形態3に係る搬送システムの構成を模式的に示したブロック図である。 実施形態3に係る搬送システムの変形例の構成を模式的に示したブロック図である。 情報処理装置の構成を模式的に示したブロック図である。
 以下に説明する本開示では、モード1に係る搬送システム及びその変形モードを適宜選択して組み合わせることができる。
 前記モード1に係る搬送システムとして、複数の搬送ロボットによって搬送対象物を挟み込んだ状態で該搬送対象物を搬送する搬送システムとすることが可能である。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備えることができる。前記搬送システムは、ハードウェア資源を用いて、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を行うことができる。
 前記モード1に係る搬送システムの変形モードとして、前記駆動部を制御する処理では、少なくとも前記搬送対象物の重さに応じて、前記第1目標値を決定する処理と、前記荷重センサで検出した前記荷重に係る情報を取得する処理と、取得した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、決定された前記第1目標値に近づくように、前記駆動部を制御する処理と、を行うことができる。
 前記モード1に係る搬送システムの変形モードとして、前記接触部は、2枚の板と、前記2枚の板間に配された弾性部材と、を有し、前記荷重センサは、前記2枚の板間の距離に基づいて、前記接触部と前記搬送対象物とが接触したときの荷重を検出することができる。
 前記モード1に係る搬送システムの変形モードとして、前記駆動部を制御する処理では、少なくとも前記搬送対象物の搬送時の曲率に応じて、前記第2目標値を決定する処理と、前記角度センサで検出した前記回転角度に係る情報を取得する処理と、取得した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、決定された前記第2目標値に近づくように前記駆動部を制御する処理と、を行うことができる。
 前記モード1に係る搬送システムの変形モードとして、前記搬送ロボットは、前記ハードウェア資源として、前記駆動部を制御する処理を行う制御部を備えることができる。
 前記モード1に係る搬送システムの変形モードとして、前記搬送システムは、前記ハードウェア資源として、前記搬送ロボットを制御する管制装置を備えることができる。前記管制装置は、前記駆動部を制御する処理を行うことができる。前記駆動部を制御する処理では、前記搬送ロボットから、前記荷重センサで検出した前記荷重に係る情報を取得し、取得した前記荷重に係る情報に基づいて、前記駆動部を制御する処理と、前記搬送ロボットから、前記角度センサで検出した前記回転角度に係る情報を取得し、取得した前記回転角度に係る情報に基づいて、前記駆動部を制御する処理と、を行うことができる。
 本開示では、モード2に係る搬送ロボットとして、他の搬送ロボットと協働することにより、搬送対象物を挟み込んだ状態で搬送するように構成される搬送ロボットとすることが可能である。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記駆動部を制御する制御部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備えることができる。前記制御部は、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を行うことができる。
 本開示では、モード3に係る管制装置として、搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する管制装置とすることが可能である。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備えることができる。前記管制装置は、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を行うことができる。
 本開示では、モード4に係る搬送ロボットの制御方法として、搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する搬送ロボットの制御方法とすることが可能である。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備えることができる。前記搬送ロボットの制御方法は、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御するステップと、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御するステップと、を含むことができる。
 本開示では、モード5に係るプログラムとして、他の搬送ロボットと協働することにより、搬送対象物を挟み込んだ状態で搬送するように構成される搬送ロボットで実行されるプログラムとすることができる。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記駆動部を制御する制御部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備えることができる。前記プログラムは、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を前記制御部に実行させることができる。
 本開示では、モード6に係るプログラムとして、搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する管制装置で実行されるプログラムとすることができる。前記搬送ロボットは、本体と、車輪と、前記搬送対象物と接触する接触部と、前記本体に対して前記接触部を回動自在にする回動機構と、前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、前記本体に対する前記接触部の回転角度を検出する角度センサと、を備えることができる。前記プログラムは、前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、を前記管制装置に実行させることができる。
 以下、実施形態について図面を参照しつつ説明する。なお、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。また、下記の実施形態は、あくまで例示であり、本発明を限定するものではない。また、以降の説明で参照する図面等のブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。さらに、本願開示に示す回路図、ブロック図、内部構成図、接続図などにおいて、明示は省略するが、入力ポート及び出力ポートが各接続線の入力端及び出力端のそれぞれに存在する。入出力インタフェースも同様である。プログラムはコンピュータ装置を介して実行され、コンピュータ装置は、例えば、プロセッサ、記憶装置、入力装置、通信インタフェース、及び必要に応じ表示装置を備え、コンピュータ装置は、通信インタフェ-スを介して装置内又は外部の機器(コンピュータを含む)と、有線、無線を問わず、交信可能に構成される。
[実施形態1]
 実施形態1に係る搬送システムについて図面を用いて説明する。図1は、実施形態1に係る搬送システムが搬送対象物を搬送している状態の一例を模式的に示した平面図である。図2は、実施形態1に係る搬送システムが搬送対象物を搬送している状態の一例を模式的に示した側面図である。図3は、実施形態1に係る搬送システムにおける搬送ロボットの構成を模式的に示した外観斜視図である。図4は、実施形態1に係る搬送システムにおける搬送ロボットの本体の回路構成を模式的に示したブロック図である。図5は、実施形態1に係る搬送システムにおける搬送ロボットの接触部の動作を説明する部分左側面図である。図6は、実施形態1に係る搬送システムにおける搬送ロボットの回動機構及び復元機構の動作を説明する概略部分平面図である。図7は、実施形態1に係る搬送システムにおける搬送ロボットの回動機構のアームを第1方向に回動したときの概略部分平面図である。図8は、実施形態1に係る搬送システムにおける搬送ロボットの回動機構のアームを第2方向に回動したときの概略部分平面図である。図9は、実施形態1に係る搬送システムにおける搬送ロボットのガイド機構の動作を説明する概略底面図である。図10は、実施形態1に係る搬送システムにおける搬送ロボットの回動機構のアームを第1方向に回動したときの概略底面図である。図11は、実施形態1に係る搬送システムにおける搬送ロボットの回動機構のアームを第2方向に回動したときの概略底面図である。
 搬送システム1は、複数(図1では2つ;3つ以上でも可)の搬送ロボット2A、2Bを備えるシステムである(図1、図2参照)。
 搬送ロボット2(例えば、図1、図2の2A)は、搬送対象物(例えば、図1、図2の5)を搬送するに際して、他の搬送ロボット(例えば、図1、図2の2B)と協働することにより、搬送対象物5を挟み込んだ状態で搬送するロボットである(図1~図4、図6~図11参照)。搬送ロボット2(2A、2B)は、本体10と、車輪20、21と、接触部30と、回動機構40と、ガイド機構60と、を有する。搬送ロボット2(2A、2B)は、互いに通信(無線通信、有線通信であるかは不問)可能に接続することによって、協働する構成であってもよい。
 本体10は、搬送ロボット2(2A、2B)として機能するための基本的な構成部(図4の11~17、図9の20~22)を有するユニットである(図1~図4、図6~図11参照)。本体10は、フレーム11を有し、フレーム11において搬送ロボットとして機能するための各種の構成部(図4の12~17、図9の20~22)を実装している。
 フレーム11は、搬送ロボット2(2A、2B)として機能するための各種の構成部(図4の11~17、図9の20~22)を実装するための構造体である(図3、図4、図6~図11参照)。フレーム11は、例えば、筐体構造、箱状構造などとすることができる。フレーム11の左右の両側方には、一対の車輪20、21が回転可能に取り付けられている。フレーム11の底面には、キャスタ22が取り付けられている。
 駆動部12、13は、車輪20、21を駆動する機能部である(図4参照)。駆動部12、13として、例えば、モータ、減速機、ドライバ、各種のセンサ(電流センサ、トルクセンサ、位置センサ等)、レギュレータ等を含む駆動ユニットを用いることができる。駆動部12、13は、フレーム11に取り付けられている。駆動部12の回転動力は、シャフト14を介して車輪20に伝達可能である。駆動部13の回転動力は、シャフト15を介して車輪21に伝達可能である。
 シャフト14、15は、対応する駆動部12、13の回転動力を車輪20、21に伝達する軸部材である(図3、図4、図9~図11参照)。シャフト14は、駆動部12の出力軸(図示せず)に接続され、フレーム11の外部の一側面に延在している。シャフト14は、フレーム11の外部にて車輪20の軸に取り付けられている。シャフト15は、駆動部13の出力軸(図示せず)に接続され、フレーム11の外部の他側面に延在している。シャフト15は、フレーム11の外部にて車輪21の軸に取り付けられている。シャフト14、15は、図9に一点鎖線で示す想像線(車軸81)上で互いが実質的に同軸となるように配されている(図9参照)。なお、シャフト14、15は、車輪20、21が傾くように(キャンバー角を有するように)配されていてもよく、サスペンション、等速ジョイント等を用いて車輪20、21の傾きが変動するように(キャンバー角が変動するように)設計してもよい。
 制御部16は、他の搬送ロボット(2A又は2B)と協働することにより、一対の駆動部12、13を制御する機能部である(図4参照)。制御部16として、例えば、メモリ、プロセッサ等を含む制御ユニットを用いることができる。この場合、係る制御ユニットは、当該メモリを利用しながら、当該プロセッサにおいてプログラムを実行することにより、制御処理を行う構成であってもよい。制御部16は、駆動部12、13を制御することによって、搬送ロボット2(2A又は2B)の移動速度、移動方向、駆動トルクを調整することが可能である。制御部16は、フレーム11に取り付けられている。制御部16は、通信部17を介して、他の搬送ロボット(2A又は2B)や外部装置(図示せず;例えば、タブレット端末、携帯通信端末など)と通信(例えば、無線LAN(Local Area Network)、赤外線、Bluetooth(登録商標)を用いた通信)可能に接続することができる。制御部16は、搬送の指示を受けて、自律して制御(ローカル制御)する。
 制御部16は、荷重センサ23から取得(受信)した荷重に係る情報に基づいて、接触部30と搬送対象物5とが接触したときの荷重が目標値(第1目標値)に近づくように、一対の駆動部12、13を制御(フィードバック制御)する。つまり、制御部16は、搬送対象物5を一定の力で挟んだ状態を維持するため、荷重センサ23からの荷重(板部材31、32間の距離でも可)を目安に、駆動部12、13の駆動力を調整する。
 制御部16は、後続搬送ロボット2Bに実装された制御部16である場合、荷重センサ23から取得(受信)した荷重に係る情報に基づいて、搬送対象物5及び先導搬送ロボット2Aを荷重が目標値に近づくように押し付けながら先導搬送ロボット2Aに追従するように制御し、荷重が目標値よりも小さい場合(板部材31、32間の距離が離れすぎた場合)には加速し、荷重が目標値より大きい場合(板部材31、32間の距離が接近しすぎた場合)には減速する。
 制御部16は、先導搬送ロボット2Aに実装された制御部16である場合、荷重センサ23から取得(受信)した荷重に係る情報に基づいて、後続搬送ロボット2Bによって押し付けられた搬送対象物5を荷重が目標値に近づくように受けながら進むように制御し、荷重が目標値よりも小さい場合(板部材31、32間の距離が離れすぎた場合)には減速し、荷重が目標値より大きい場合(板部材31、32間の距離が接近しすぎた場合)には加速する。
 制御部16は、角度センサ24から取得(受信)した角度に係る情報に基づいて、回動機構40のアーム41、43の回転角度を目標値(第2目標値)に近づくように、一対の駆動部12、13を制御(フィードバック制御)する。制御部16は、後続搬送ロボット2Bに実装された制御部16である場合、角度センサ24からの角度を目安に、先導搬送ロボット2Aの進行方向に追従するように後続搬送ロボット2Bの各駆動部12、13の速度差を設定し、先導搬送ロボット2Aがいる方向に進むように、駆動部12、13の回転速度を調整する。例えば、後続搬送ロボット2Bの本体10に対して接触部30の回転角度が右側の場合(先導搬送ロボット2Aの位置)には、左側の車輪20に係る駆動部12の回転速度を加速し、右側の車輪21に係る駆動部13の回転速度を減速又は維持する。回動機構40のアーム41、43の回転角度の目標値に関しては、先導搬送ロボット2Aが直進する時は後続搬送ロボット2Bが先導搬送ロボット2Aの後ろにつくように0度とし、先導搬送ロボット2Aがカーブする時は後続搬送ロボット2Bが先導搬送ロボット2Aよりも大回りする角度とする。なお、カーブ時の回動機構40のアーム41、43の回転角度の目標値は、搬送対象物5のサイズ(搬送ロボット2A、2B間の距離)と走行コース(カーブの半径)から事前に決めることができる。
 通信部17は、他の搬送ロボット(2A又は2B)と通信可能にする機能部である(図4参照)。通信部17は、外部装置(図示せず;例えば、タブレット端末、携帯通信端末など)と通信可能な構成であってもよい。
 車輪20、21は、搬送ロボット2(2A、2B)の移動を実現する駆動輪である(図1~図4、図6~図11参照)。車輪20は、車輪20の軸心においてシャフト14に固定されている。車輪21は、車輪21の軸心においてシャフト15に固定されている。車輪20、21は、互いに仮想線(図6、図9の車軸81)上で実質的に同軸となるように配されている。なお、車輪20、21は、傾くように(キャンバー角を有するように)配されていてもよく、サスペンション、等速ジョイント等を用いて傾きが変動するように(キャンバー角が変動するように)設計してもよい。
 キャスタ22は、車輪20、21の補助輪として機能する非駆動輪である(図1、図2、図9~図11参照)。キャスタ22は、進行方向を変更できるように旋回自在に構成されている。
 荷重センサ23は、複数の搬送ロボット2(2A、2B)で搬送対象物5を挟み込んだ状態で接触部30と搬送対象物5とが接触したときの接触部30にかかる荷重(圧力、板間距離)を検出するセンサである(図4参照)。荷重センサ23は、接触部30における弾性部材34~37を挟む板部材31、32間の距離に基づいて、接触部30にかかる荷重を検出する距離センサを用いることができる。なお、荷重センサ23は、これに限るものではなく、圧電素子(ピエゾ素子)、歪みゲージなども用いることができる。荷重センサ23で検出した荷重に係る情報は、制御部16に送信される。
 角度センサ24は、本体10に対する回動機構40のアーム41、43の回転角度(接触部30の回動角度に相当)を検出するセンサである(図4参照)。角度センサ24には、例えば、回動機構40の回動部位となる軸部42の一部(アーム41の回動と連動する部分)に接続された角度測定用位置エンコーダ、位置角度センサ(磁気型、レゾルバ型、有接点型)などを用いることができる。角度センサ24で検出された角度に係る情報は、制御部16に送信される。
 接触部30は、搬送対象物5と接触する部分である(図1~図3、図5、図9~図11参照)。接触部30は、回動機構40のアーム41、43の一端部に固定されている。アーム41、43は、アーム41、43の他端部近傍に設けられた軸部42において回動自在に本体10に支持されている。これにより、接触部30は、図6の紙面に対して垂直方向に延びる軸部42周りにおいて、図7及び図8に示す如く、回動機構40のアーム41と共に回動可能である。なお、接触部30の回動方向は、本体10に対して少なくとも経度方向(例えば、水平方向、左右方向)を含み、緯度方向(例えば、鉛直方向、上下方向)を含んでもよい。接触部30は、搬送時において後続搬送ロボット2Bの接触部30である場合、搬送対象物5を押し付ける部分となり、同じく搬送時において先導搬送ロボット2Aの接触部30である場合、搬送対象物5を受ける部分となる。接触部30は、図1では搬送対象物5の幅よりも小さいが、大きくてもよい。
 接触部30は、荷重センサ23によって接触部30と搬送対象物5との接触荷重を検出できるように構成されている(図1~図4参照)。図3の接触部30では、板部材31、32間の距離を検出することにより、接触部30と搬送対象物5とが接触したときの接触荷重を検出できるように構成されており、接触荷重を検出する手段として図4の荷重センサ23(距離センサ)を用いることができる。接触部30は、板部材31、32と、摩擦部33と、弾性部材34~37と、を有する。
 板部材31は、弾性部材34~37を介して板部材32に支持されている(図3、図5、図9~図11参照)。板部材31は、搬送対象物5と接触する面に摩擦部33を有する。
 板部材32は、弾性部材34~37を介して板部材31を支持する(図3、図5、図9~図11参照)。板部材32は、ステー44、45によってアーム43に取り付けられ、かつ、ステー46、47によってアーム41に取り付けられている。板部材32は、ガイド機構60におけるガイド部材61のガイド面61aにスライド可能に接しており、ガイド機構60によって搬送対象物5への接触部30の押し付けを支持する。
 摩擦部33は、搬送対象物5に当接した際の、その搬送対象物5との間に生じる摩擦力を大きくする(図3、図5参照)。これにより、摩擦部33は、摩擦部33に当接した状態で回動機構40が回転したときに当該搬送対象物5が相対的に横滑りを起こすことを防止或いは抑制する。摩擦部33には、例えば、板部材31に用いられる材料よりも摩擦係数が高い素材、復元力がある弾性素材(例えば、ゴム)を用いることができる。
 弾性部材34~37は、板部材31、32間に介在している(図3、図5参照)。弾性部材34~37は、板部材31、32間の間隔が狭くなって圧縮変形したときに、元の非圧縮状態に戻るように(板部材31、32間の間隔が広がるように)作用する。弾性部材34~37には、例えば、伸縮方向にガイドされるコイルスプリングを用いることができる。弾性部材34~37のバネ係数は、荷重センサ23で検出する荷重の算出に用いることができる。
 回動機構40は、本体10に対して接触部30を回動自在にする機構である(図1~図3、図5~図11参照)。回動機構40の回動可能な角度は、特に限定されないが、左右に45°とすることができる。回動機構40は、軸部42と、アーム41、43と、を有する。
 軸部42は、本体10のフレーム11の上面に取り付けられている。軸部42の中心軸は、車輪20、21間の幅Wの中点を通るように設計することが好ましいが(図6参照)、この設計には限定されない。軸部42は、フレーム11に固定された部分と、当該部分に経度方向(例えば、水平方向、左右方向)に回動自在に取り付けられた他の部分を有し、当該他の部分にアーム41、43が固定されている。
 アーム41、43は、接触部30を回動させたときに、接触部30を本体10や車輪20、21に抵触しないように設定されている。アーム43には、接触部30の板部材31がステー44、45によって取り付けられている。アーム41には、接触部30の板部材31がステー46、47によって取り付けられている。アーム41とアーム43とは、所定の間隔をおいて配されている。アーム41、43は、図3では2つあるが、1つであってもよく、3つ以上であってもよい。
 アーム41には、軸部42から径方向に離れた位置にて、ピン部41a、41bが固定されている。ピン部41a、41bは、復元機構50のカムとして機能する。ピン部41a、41bは、互いに離れて配されている。ピン部41aは、復元機構50における揺動部材51の受面51aと接離可能かつ摺動可能に接する。ピン部41bは、復元機構50における揺動部材51の受面51bと接離可能かつ摺動可能に接する。
 回動機構40は、所定位置(例えば、回動方向の中心点:正面、原点、図6の状態)から回動した状態(例えば、図7、図8の状態)の接触部30を所定位置に戻すように復元する復元機構50を有する。
 復元機構50は、所定位置から回動した状態の接触部30を当該所定位置へ復元するように、回動機構40に作用する機構である(図3、図6~図8参照)。復元機構50は、揺動部材51と、軸部52と、ピン部53と、弾性部材54と、を有する。
 揺動部材51は、本体10のフレーム11に取り付けられた軸部52を中心軸として揺動可能(回動可能)な部材である。揺動部材51は、受面51a、51bと、ピン部51cと、を有する。受面51aは、回動機構40におけるアーム41のピン部41aと接離可能かつ摺動可能に接する面である。受面51bは、回動機構40におけるアーム41のピン部41bと接離可能かつ摺動可能に接する面である。ピン部51cは、アーム41と抵触しないように、軸部52から離れた揺動部材51の所定の位置に固定されている。ピン部51cは、弾性部材54の一端に接続されており、弾性部材54の他端に接続されたピン部53に向かって引き付けられるように設定されている。
 軸部52は、軸部42から離れた位置にて、本体10のフレーム11に取り付けられている。軸部52には、揺動部材51が揺動可能(回動可能)に取り付けられている。
 ピン部53は、アーム41と抵触しないように、軸部52から離れた位置にて、本体10のフレーム11に取り付けられている。ピン部53は、弾性部材54の他端に接続されており、弾性部材54の一端に接続されたピン部51cを引き付けるように設定されている。
 弾性部材54は、伸長したときに、弾性力により揺動部材51のピン部51cをピン部53に引き付けるように作用する部材である。弾性部材54は、一端に揺動部材51のピン部51cが取り付けられており、他端にピン部53が取り付けられている。弾性部材54には、例えば、コイルスプリング、ねじりバネなどを用いることができる。
 復元機構50は、図6の状態から図7の状態になったとき、すなわち、回動機構40におけるアーム41が軸部42を中心に所定位置(中央位置)から左側に回動したときに、アーム41のピン部41aが揺動部材51の受面51aを押し付け(かつ、ピン部41bが受面51bから離れ)、揺動部材51のピン部51cとピン部53との間の距離が大きくなるように揺動部材51が軸部52を中心に回動し、ピン部51c、53間の弾性部材54が伸長し、アーム41が所定位置(中央位置)に戻るように作用する。
 また、復元機構50は、図6の状態から図8の状態になったとき、すなわち、回動機構40におけるアーム41が軸部42を中心に所定位置(中央位置)から右側に回動したときに、アーム41のピン部41bが揺動部材51の受面51bを押し付け(かつ、ピン部41aが受面51aから離れ)、揺動部材51のピン部51cとピン部53との間の距離が大きくなるように揺動部材51が軸部52を中心に回動し、ピン部51c、53間の弾性部材54が伸長し、アーム41が所定位置(中央位置)に戻るように作用する。
 回動機構40は、復元機構50における弾性部材54で生じた振動を減衰する減衰機構(図示せず)を有する構成であってもよい。減衰機構は、摩擦、粘性、ヒステリシスにより復元機構50における弾性部材54で生じた振動を減衰することができる。
 ガイド機構60は、本体10に対する接触部30の回動をガイドする機構である(図1~図3、図5、図9~図11参照)。ガイド機構60は、搬送対象物5への接触部30の押し付けを支持する。ガイド機構60は、本体10におけるフレーム11に取り付けられたガイド部材61を有する。ガイド機構60は、接触部30の回動したときの軌道に沿って形成されたガイド面61aを有する。ガイド面61aは、接触部30における板部材32と摺動可能に接している。
 搬送対象物5は、荷物6を載せる台座70に、旋回自在な複数のキャスタ71~74(車輪)を有する台車、ドーリーなどを用いることができる。なお、搬送対象物5は、キャスタなどの車輪を有さないもの(例えば、ダンボールなど)であってもよい。
 以上のような搬送システム1における複数の搬送ロボット2は、先導搬送ロボット2A、後続搬送ロボット2Bのいずれかの役割を持つ。
 先導搬送ロボット2Aは、例えば、外部装置(図示せず;例えば、タブレット端末、携帯通信端末など)からの指示(目的地、速度入力)に従って、現在地と、目的地とに基づいて、速度を計算して、当該目的地に向けて移動する。例えば、現在地と目的地とを結ぶ軌道(直線、曲線(放物線、スプライン曲線、クロソイド曲線など)、円弧)に追従して移動する。ここでの現在地は、先導搬送ロボット2A自身の現在地であり、外部から通信部17を通じて取得してもよく、駆動部12、13のエンコーダ値や制御履歴に基づいて自身で算出して取得してもよく、先導搬送ロボット2Aに備えられた位置検出部(図示せず;例えば、GPS(Global Positioning System)受信機、ビーコン受信機等)から取得してもよい。先導搬送ロボット2Aは、荷重センサ23(ここでは距離センサ)で板部材31、32間の距離dを計測し、距離dを一定に保つように(荷重が第1目標値に近づくように)自身の駆動部12、13を制御(フィードバック制御)する。また、先導搬送ロボット2Aは、角度センサ24(ここではエンコーダ)で回動機構40のアーム41、43の回転角度θを計測し、回転角度θを目標値に合わせるように(回転角度が第2目標値に近づくように)自身の駆動部12、13を制御(フィードバック制御)する。なお、先導搬送ロボット2Aでの荷重センサ23及び角度センサ24によるフィードバック制御を省略し、後続搬送ロボット2Bでのみ荷重センサ23及び角度センサ24によるフィードバック制御を行ってもよい。また、フィードバック制御は、例えば、出力値と目標値との偏差、その積分、および微分の3つの要素によって入力値の制御を行うPID(Proportional Integral Differential)制御とすることができる。
 後続搬送ロボット2Bは、搬送対象物5の重さに応じて決定された目標値の荷重で、搬送対象物5を先導搬送ロボット2Aに押し付けるようにして、先導搬送ロボット2Aに追従する。後続搬送ロボット2Bは、押し付ける荷重が目標値からずれたときは、当該目標値に近づくように移動する。後続搬送ロボット2Bは、荷重センサ23(ここでは距離センサ)で板部材31、32間の距離dを計測し、距離dを一定に保つように自身の駆動部12、13を制御(フィードバック制御)する。また、後続搬送ロボット2Bは、角度センサ24(ここではエンコーダ)で回動機構40のアーム41、43の回転角度θを計測し、回転角度θを目標値に合わせるよう自身の駆動部12、13を制御(フィードバック制御)する。
 搬送ロボット2の走行速度について、現在の走行速度をvbaseとすると、左右の車輪20、21の駆動部12、13に入力する制御信号に係る速度vr、vlは、例えば、以下の数式1のように表すことができる。
[数式1]
Figure JPOXMLDOC01-appb-I000001
 ここで、数式1のvbaseは、周辺環境、安全性などを考慮して事前に設定されるものであって、先導搬送ロボット2Aの移動速度(重心の移動速度、左右の車輪の回転速度の平均値に相当)と同じ値が設定される。
 数式1のvβは、荷重センサ23で検出された荷重(距離センサの場合は板部材31、32間の距離d)に対応する速度であり、例えば、以下の数式2のように表すことができる。
[数式2]
Figure JPOXMLDOC01-appb-I000002
 数式2のvβは、例えば、荷重が小さくなった場合(板部材31、32間の距離dが離れた場合(Δd<0))は加速し、荷重が小さくなった場合(板部材31、32間の距離dが接近した場合(Δd>0))は減速する。vβは、路面の勾配、状況(凹凸等)に応じて、荷重が大きいと高くし、小さいと低くすることができる。なお、数式2において、Tは制御ループの時間であり、ka、kb、kcはゲイン係数であり、dtargetは板部材31、32間の距離の目標値である。dtargetは事前に設定する。
 数式1のvγは、回動機構40のアーム41、43の回転角度θに対応する速度であり、例えば、以下の数式3のように表すことができる。
[数式3]
Figure JPOXMLDOC01-appb-I000003
 数式3のvγの値で搬送時の曲率が決まる。つまり、vγが大きいほど急カーブになる。なお、数式3において、Tは制御ループの1サイクルの時間であり、kd、ke、kfはゲイン係数であり、θtargetは回動機構40のアーム41、43の回転角度の目標値である。θtargetは事前に設定する。
 次に、実施形態1に係る搬送システムにおける搬送ロボットの単独で移動するときの動作について図面を用いて説明する。図12は、実施形態1に係る搬送システムにおける搬送ロボットの単独で移動するときの動作を模式的に示したフローチャートである。図13は、実施形態1に係る搬送システムにおける搬送ロボットが単独で移動するときの中間目的地及び最終目的地のイメージ図である。なお、搬送システムの構成部については、図1~図11を参照されたい。
 まず、搬送ロボット2の制御部16は、外部(図示せず;例えば、近距離通信可能な情報通信端末、情報処理装置が接続されたネットワーク)から、通信部17を通じて、目的地(中間目的地、最終目的地を含む;図13参照)に係る情報、及び、移動の指示を取得する(ステップA1)。
 ステップA1の後、搬送ロボット2の制御部16は、所定時間(例えば、数10ms(ミリ秒))で駆動部12、13の制御ループを開始する(ステップA2~A7)。
 ステップA1の後、又は、ステップA5の後、若しくは、ステップA7の後、制御ループにおいて、搬送ロボット2の制御部16は、搬送ロボット2自身(以下、「自身の」と省略する場合がある)の現在地に係る情報(例えば、位置座標)を取得する(ステップA2)。ここで、自身の現在地は、外部から通信部17を通じて取得してもよく、駆動部12、13のエンコーダ値や制御履歴に基づいて自身で算出して取得してもよく、搬送ロボット2に備えられた位置検出部(図示せず;例えば、GPS(Global Positioning System)受信機、ビーコン受信機等)から取得してもよい。
 次に、制御ループにおいて、搬送ロボット2の制御部16は、取得した自身の現在地が、取得した目的地(前方にある直近の目的地)に到達している(例えば、目的地の所定半径内にある)か否かを判定する(ステップA3)。目的地に到達している場合(ステップA3のYES)、ステップA6に進む。
 目的地に到達していない場合(ステップA3のNO)、制御ループにおいて、搬送ロボット2の制御部16は、自身の各駆動部12、13の制御量(例えば、車輪20、21の回転速度)を算出する(ステップA4)。
 次に、制御ループにおいて、搬送ロボット2の制御部16は、算出された制御量に基づいて、自身の駆動部12、13を制御し(ステップA5)、その後、ステップA2に戻る。
 目的地に到達している場合(ステップA3のYES)、制御ループにおいて、搬送ロボット2の制御部16は、自身の現在地が最終目的地に到達している(例えば、最終目的地の所定半径内にある)か否かを判定する(ステップA6)。最終目的地に到達している場合(ステップA6のYES)、ステップA8に進む。
 最終目的地に到達していない場合(ステップA6のNO)、制御ループにおいて、搬送ロボット2の制御部16は、目的地を、前方に有る直近の目的地に更新し(ステップA7)、その後、ステップA2に戻る。
 最終目的地に到達している場合(ステップA6のYES)、搬送ロボット2の制御部16は、制御ループから外れ、自身の駆動部12、13の制御を停止し(ステップA8)、その後、終了する。
 なお、図12では搬送ロボット2が単独で移動するときの動作を示したが、搬送システムが協働搬送するときの先導搬送ロボット2Aの動作についても図12と同じ動作をすることができる。
 次に、実施形態1に係る搬送システムが搬送対象物を挟み込むときの搬送ロボットの動作について図面を用いて説明する。図14は、実施形態1に係る搬送システムが搬送対象物を挟み込むときの搬送ロボットの動作を模式的に示したフローチャートである。図15は、実施形態1に係る搬送システムが搬送対象物を挟み込むときの搬送ロボットの動作のイメージ図である。
 まず、搬送ロボット2A、2Bの制御部16は、外部(図示せず;例えば、近距離通信可能な情報通信端末、情報処理装置が接続されたネットワーク)から、通信部17を通じて、目的地に係る情報、及び、搬送対象物5の挟み込みの指示を取得する(ステップB1)。
 次に、搬送ロボット2A、2Bの制御部16は、搬送ロボット2A、2Bが搬送対象物5の近傍まで移動するように駆動部12、13を制御する(ステップB2;図15(A)参照)。
 次に、搬送ロボット2A、2Bの制御部16は、搬送ロボット2A、2Bが搬送対象物5に向くように(搬送ロボット2A、2Bが旋回して搬送ロボット2A、2Bの正面が搬送対象物5と対向するように)駆動部12、13を制御する(ステップB3;図15(B)参照)。
 ステップB3の後、搬送ロボット2A、2Bの制御部16は、所定時間(例えば、数10ms)で駆動部12、13の制御ループを開始する(ステップB4~B6)。
 ステップB3の後、又は、ステップB6の後、制御ループにおいて、搬送ロボット2A、2Bの制御部16は、荷重センサ23から荷重に係る情報(距離センサの場合は板部材31、32間の距離dに係る情報でも可)を取得する(ステップB4)。
 次に、搬送ロボット2A、2Bの制御部16は、取得した荷重が所定値より大きいか否か(距離dの場合、d<所定値であるか否か)を判定する(ステップB5)。荷重が所定値より大きい場合(ステップB5のYES)、ステップB7に進む。
 荷重が所定値以下の場合(ステップB5のNO)、搬送ロボット2A、2Bの制御部16は、搬送ロボット2A、2Bが低速で前進するように駆動部12、13を制御し(ステップB6;図15(C)参照)、その後、ステップB4に戻る。
 荷重が所定値より大きい場合(ステップB5のYES)、搬送ロボット2A、2Bの制御部16は、制御ループから外れ、駆動部12、13の制御を停止し(ステップB7)、その後、終了する。
 次に、実施形態1に係る搬送システムが搬送対象物を協働搬送するときの後続搬送ロボットの動作について図面を用いて説明する。図16は、実施形態1に係る搬送システムが搬送対象物を協働搬送するときの後続搬送ロボットの動作を模式的に示したフローチャートである。図17は、実施形態1に係る搬送システムが搬送対象物を協働搬送するときのカーブでの後続搬送ロボットの回動機構の回転角度の目標値(targetθ)のイメージ図である。
 まず、後続搬送ロボット2Bの制御部16は、搬送システムが搬送対象物5を挟み込んでいるときに、外部(図示せず;例えば、近距離通信可能な情報通信端末、情報処理装置が接続されたネットワーク)から、通信部17を通じて、目的地(中間目的地、最終目的地を含む)に係る情報、及び、協働搬送の指示を取得する(ステップC1)。
 ステップC1の後、後続搬送ロボット2Bの制御部16は、所定時間(例えば、数10ms)で駆動部12、13の制御ループを開始する(ステップC2~C9)。
 ステップC1の後、又は、ステップC7の後、若しくは、ステップC9の後、制御ループにおいて、後続搬送ロボット2Bの制御部16は、先導搬送ロボット2Aの現在地に係る情報(例えば、位置座標)を取得する(ステップC2)。ここで、先導搬送ロボット2Aの現在地は、先導搬送ロボット2Aから通信部17を通じて取得してもよく、外部から通信部17を通じて取得してもよい。または、先導搬送ロボット2Aの現在地は、搬送ロボット2に備えられた位置検出部(図示せず;例えば、GPS(Global Positioning System)受信機、ビーコン受信機等)から取得した自身の位置、搬送対象物5のサイズ(搬送ロボット2A、2B間の距離)、及び、回動機構40のアーム41、43の回転角度に基づいて自身で算出して取得してもよい。
 次に、制御ループにおいて、後続搬送ロボット2Bの制御部16は、取得した先導搬送ロボット2Aの現在地が、取得した目的地(前方にある直近の目的地)に到達している(例えば、目的地の所定半径内にある)か否かを判定する(ステップC3)。目的地に到達している場合(ステップC3のYES)、ステップC8に進む。
 目的地に到達していない場合(ステップC3のNO)、制御ループにおいて、後続搬送ロボット2Bの制御部16は、後続搬送ロボット2Bの荷重(板部材31、32間の距離でも可)及び回転角度の目標値を決定する(ステップC4)。例えば、板部材32に対する板部材31の可動域が10mm~30mmの場合、板部材31、32間の距離(荷重に相当)に係る目標値は、少なくとも搬送対象物5の重さに応じて決定(例えば、20mmに決定)することができる。また、回転角度に係る目標値は、少なくとも搬送対象物5の搬送時の曲率(先導搬送ロボット2Aの半径r)及び搬送対象物5のサイズ(搬送ロボット2A、2B間の距離l)に応じて決定することができ、直進の場合は0°、カーブの場合は、例えば、arctan2(l, r)に設定することができる(図17参照)。なお、図17において、「l」は搬送ロボット2A、2Bの重心間の距離を表し、「r」は先導搬送ロボット2Aの重心の軌道の曲率半径を表し、「targetθ」は後続搬送ロボット2Bの本体10に対する回動機構40のアーム41、43の回転角度(先導搬送ロボット2Aの進行方向と後続搬送ロボット2Bの進行方向とのなす角度に相当)の目標値を表す。
 次に、後続搬送ロボット2Bの制御部16は、後続搬送ロボット2Bの荷重センサ23から荷重(距離センサの場合は板間距離d)に係る情報、角度センサ24から回動機構40のアーム41、43の回転角度θに係る情報を取得する(ステップC5)。
 次に、後続搬送ロボット2Bの制御部16は、決定した目標値、及び、取得した荷重(距離センサの場合は板間距離d)及び回転角度θに基づいて、荷重及び回転角度が目標値に近づくように、後続搬送ロボット2Bの左右の駆動部12、13の制御量(例えば、車輪20、21の回転速度)を算出する(ステップC6)。
 次に、後続搬送ロボット2Bの制御部16は、算出された制御量に基づいて、後続搬送ロボット2Bの各駆動部12、13を制御し(ステップC7)、その後、ステップC2に戻る。
 目的地に到達している場合(ステップC3のYES)、制御ループにおいて、後続搬送ロボット2Bの制御部16は、先導搬送ロボット2Aの現在地が最終目的地に到達している(例えば、最終目的地の所定半径内にある)か否かを判定する(ステップC8)。最終目的地に到達している場合(ステップC8のYES)、ステップC10に進む。
 最終目的地に到達していない場合(ステップC8のNO)、制御ループにおいて、後続搬送ロボット2Bの制御部16は、目的地を、前方に有る直近の目的地に更新し(ステップC9)、その後、ステップC2に戻る。
 最終目的地に到達している場合(ステップC8のYES)、後続搬送ロボット2Bの制御部16は、制御ループから外れ、後続搬送ロボット2Bの駆動部12、13の制御を停止し(ステップC10)、その後、終了する。
 次に、実施形態1に係る搬送システムが搬送対象物を開放するときの搬送ロボットの動作について図面を用いて説明する。図18は、実施形態1に係る搬送システムに搬送対象物を開放するときの搬送ロボットの動作を模式的に示したフローチャートである。図19は、実施形態1に係る搬送システムが搬送対象物を解放するときの搬送ロボットの動作のイメージ図である。
 まず、搬送ロボット2A、2Bの制御部16は、外部(図示せず;例えば、近距離通信可能な情報通信端末、情報処理装置が接続されたネットワーク)から、通信部17を通じて、搬送対象物5の開放の指示を取得する(ステップD1)。
 ステップD1の後、搬送ロボット2A、2Bの制御部16は、所定時間(例えば、数10ms)で駆動部12、13の制御ループを開始する(ステップD2~D4)。
 ステップD1の後、又は、ステップD4の後、制御ループにおいて、搬送ロボット2A、2Bの制御部16は、搬送ロボット2A、2B自身の現在地に係る情報(例えば、位置座標)を取得する(ステップD2)。ここで、自身の現在地は、外部から通信部17を通じて取得してもよく、駆動部12、13のエンコーダ値や制御履歴に基づいて自身で算出して取得してもよく、搬送ロボット2A、2Bに備えられた位置検出部(図示せず;例えば、GPS(Global Positioning System)受信機、ビーコン受信機等)から取得してもよい。
 次に、搬送ロボット2A、2Bの制御部16は、取得した現在地に基づいて、搬送ロボット2A、2Bが搬送対象物5から所定距離後退したか否かを判定する(ステップD3)。所定距離後退した場合(ステップD3のYES)、ステップD5に進む。
 所定距離後退していない場合(ステップD3のNO)、搬送ロボット2A、2Bの制御部16は、搬送ロボット2A、2Bが低速で後退するように駆動部12、13を制御し(ステップD4;図19(B)参照)、その後、ステップD2に戻る。
 所定距離後退した場合(ステップD3のYES)、搬送ロボット2A、2Bの制御部16は、制御ループから外れ、駆動部12、13の制御を停止し(ステップD5)、その後、終了する。
 実施形態1によれば、搬送対象物5を搬送するに際して、管制装置3を用いて複数の搬送ロボット2A、2Bを制御して、複数の搬送ロボット2A、2Bで搬送対象物5を挟み込んだ状態で搬送することにより、搬送対象物5を載せ替えることなく、様々な形態の搬送対象物を改造しないでそのまま搬送することに貢献することができる。特に、搬送ロボット2A、2Bに接触部30及び回動機構40を設け、荷重センサ23及び角度センサ24によるフィードバック制御を行うことで、搬送対象物5を安定して搬送することに貢献することができる。
[実施形態2]
 実施形態2に係る搬送システムについて図面を用いて説明する。図20は、実施形態2に係る搬送システムの構成を模式的に示したブロック図である。
 実施形態2は、実施形態1の変形例であり、搬送の指示を受けた複数の搬送ロボット2A、2Bが自律して制御(ローカル制御)する代わりに、搬送の要求を受けた管制装置3が搬送ロボット2A、2Bを遠隔制御するようにしたものである(図20参照)。
 搬送ロボット2A、2Bは、管制装置3と通信(例えば、無線LAN、赤外線、Bluetooth(登録商標)を用いた通信)可能に接続することができる。搬送ロボット2A、2Bは、管制装置3によって遠隔制御される。搬送ロボット2A、2Bは、荷重センサ(図4の23)及び角度センサ(図4の24)で検出した荷重及び回転角度に係る情報(センサ情報)を管制装置3に送信する機能を有する。搬送ロボット2A、2Bのその他の構成については、実施形態1と同様な構成(図1~図11参照)である。
 管制装置3は、搬送ロボット2A、2Bを管理及び遠隔制御する装置である。管制装置3には、例えば、メモリ、プロセッサ等を含むコンピュータ装置を用いることができる。管制装置3は、搬送ロボット2A、2Bや外部装置(図示せず;例えば、タブレット端末、携帯通信端末など)と通信(例えば、無線LAN、赤外線、Bluetooth(登録商標)を用いた通信)可能に接続することができる。管制装置3は、複数の搬送ロボット2A、2Bの現在地に係る情報を取得する機能を有する。搬送ロボット2A、2Bの現在地に係る情報は、搬送ロボット2A、2Bを撮影するカメラ(図示せず)からの撮影データを用いて取得してもよく、搬送ロボット2A、2Bの駆動部(図4の12、13)のエンコーダ値や制御履歴に基づいて算出して取得してもよく、搬送ロボット2A、2Bに備えられた位置検出部(図示せず;例えば、GPS(Global Positioning System)受信機、ビーコン受信機等)から取得してもよい。管制装置3は、外部(図示せず;例えば、近距離通信可能な情報通信端末、情報処理装置が接続されたネットワーク)から目的地(中間目的地、最終目的地を含む)、搬送要求を受けると、搬送ロボット2A、2Bの遠隔制御を開始する。
 管制装置3は、搬送ロボット2A、2Bから、搬送ロボット2A、2Bの荷重センサ(図4の23)で検出した荷重に係る情報を取得する機能を有する。管制装置3は、搬送ロボット2A、2Bから取得(受信)した荷重に係る情報に基づいて、接触部(図1の30)と搬送対象物(図1の5)とが接触したときの荷重が目標値に近づくように、搬送ロボット2A、2Bの駆動部12、13を制御(フィードバック制御)する。つまり、管制装置3は、搬送ロボット2A、2Bが搬送対象物(図1の5)を一定の力で挟んだ状態を維持するため、荷重センサ(図4の23)からの荷重(板部材(図5の31、32)間の距離でも可)を目安に、搬送ロボット2A、2Bの駆動部12、13の駆動力を調整する。なお、荷重の目標値に関しては、実施形態1と同様である。
 管制装置3は、後続搬送ロボット2Bの荷重センサ(図4の23)から取得(受信)した荷重に係る情報に基づいて、荷重が目標値に近づくように、搬送対象物5及び先導搬送ロボット2Aを押し付けながら先導搬送ロボット2Aに追従するように制御し、荷重が目標値よりも小さい場合(板部材(図5の31、32)間の距離が離れすぎた場合)には加速し、荷重が目標値より大きい場合(板部材(図5の31、32)間の距離が接近しすぎた場合)には減速する。
 管制装置3は、先導搬送ロボット2Aの荷重センサ(図4の23)から取得(受信)した荷重に係る情報に基づいて、荷重が目標値に近づくように、後続搬送ロボット2Bによって押し付けられた搬送対象物5を受けて進むように制御し、荷重が目標値よりも小さい場合(板部材(図5の31、32)間の距離が離れすぎた場合)には減速し、荷重が目標値より大きい場合(板部材(図5の31、32)間の距離が接近しすぎた場合)には加速する。
 管制装置3は、搬送ロボット2A、2Bから、搬送ロボット2A、2Bの角度センサ(図4の24)で検出した回転角度に係る情報を取得する機能を有する。管制装置3は、角度センサ(図4の24)から取得(受信)した角度に係る情報に基づいて、回動機構(図6の40)のアーム(図6の41)の回転角度を目標値に近づくように、搬送ロボット2A、2Bの駆動部(図4の12、13)を制御(フィードバック制御)する。管制装置3は、後続搬送ロボット2Bの角度センサ(図4の24)からの角度を目安に、先導搬送ロボット2Aの進行方向に追従するように後続搬送ロボット2Bの各駆動部(図4の12、13)の速度差を設定し、先導搬送ロボット2Aがいる方向に進むように、駆動部(図4の12、13)の回転速度を調整する。例えば、後続搬送ロボット2Bの本体(図1の10)に対して接触部(図1の20)の回転角度が右側の場合(先導搬送ロボット2Aの位置)には、左側の車輪(図1の20)に係る駆動部(図4の12)の回転速度を加速し、右側の車輪(図1の21)に係る駆動部(図4の13)の回転速度を減速又は維持する。なお、回転角度の目標値に関しては、実施形態1と同様である。
 実施形態2によれば、搬送対象物5を搬送するに際して、管制装置3を用いて複数の搬送ロボット2A、2Bを制御して、複数の搬送ロボット2A、2Bで搬送対象物5を挟み込んだ状態で搬送することにより、実施形態1と同様に、荷物を載せ替えることなく、様々な形態の搬送対象物をそのまま搬送することに貢献することができる。特に、搬送ロボット2A、2Bに接触部30及び回動機構40を設け、荷重センサ23及び角度センサ24によるフィードバック制御を行うことで、搬送対象物5を安定して搬送することに貢献することができる。また、管制装置3で搬送ロボット2A、2Bを制御することにより、搬送ロボット2A、2Bでの情報処理の負担が軽減され、時間的に長く運用することができるようになる。
[実施形態3]
 実施形態3に係る搬送システムについて図面を用いて説明する。図21は、実施形態3に係る搬送システムの構成を模式的に示したブロック図である。
 搬送システム1は、複数(図21では2つ、図22のように3つ以上でも可)の搬送ロボット2A、2Bによって搬送対象物5を挟み込んだ状態で該搬送対象物5を搬送するシステムである。
 搬送ロボット2A、2Bは、本体10と、車輪20、21と、搬送対象物5と接触する接触部30と、本体10に対して接触部30を回動自在に取り付けられた回動機構40と、本体10に取り付けられるとともに車輪20、21を駆動する駆動部18と、接触部30が搬送対象物5に接触したときの荷重を検出する荷重センサ23と、本体10に対する接触部30の回転角度を検出する角度センサ24と、を備える。
 搬送システム1は、ハードウェア資源90を用いて、荷重センサ23で検出した荷重に係る情報に基づいて、接触部30が搬送対象物5に接触したときの荷重が、第1目標値に近づくように、駆動部12、13を制御する処理と、角度センサ24で検出した回転角度に係る情報に基づいて、本体10に対する接触部30の回転角度が、第2目標値に近づくように、駆動部12、13を制御する処理と、を行う。
 実施形態3によれば、実施形態1と同様に、搬送対象物を載せ替えることなく、様々な形態の搬送対象物を改造しないでそのまま安定して搬送することに貢献することができる。特に、搬送ロボット2A、2Bに接触部30及び回動機構40を設け、荷重センサ23及び角度センサ24によるフィードバック制御を行うことで、搬送対象物5を安定して搬送することに貢献することができる。
 なお、実施形態1に係る搬送ロボットの制御部及び通信部、実施形態2に係る管制装置、実施形態3に係るハードウェア資源は、いわゆる情報処理装置(コンピュータ、ハードウェア資源)により構成することができ、図23に例示する構成を備えたものを用いることができる。例えば、情報処理装置100は、内部バス104により相互に接続される、プロセッサ101、メモリ102、ネットワークインタフェース103等を備える。
 なお、図23に示す構成は、情報処理装置100のハードウェア構成を限定する趣旨ではない。情報処理装置100は、図示しないハードウェア(例えば、入出力インタフェース)を含んでもよい。あるいは、情報処理装置100に含まれるプロセッサ101等のユニットの数も図23の例示に限定する趣旨ではなく、例えば、複数のプロセッサ101が情報処理装置100に含まれていてもよい。
 プロセッサ101には、例えば、CPU(Central Processing Unit)、MPU(Micro Processor Unit)等を用いることができる。
 メモリ102には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)等を用いることができる。
 ネットワークインタフェース103には、例えば、LAN(Local Area Network)カード、ネットワークアダプタ、ネットワークインタフェースカード等を用いることができる。
 情報処理装置100の機能は、上述の処理モジュールにより実現される。当該処理モジュールは、例えば、メモリ102に格納されたプログラムをプロセッサ101が実行することで実現される。また、そのプログラムは、ネットワークを介してダウンロードするか、あるいは、プログラムを記憶した記憶媒体を用いて、更新することができる。さらに、上記処理モジュールは、半導体チップにより実現されてもよい。即ち、上記処理モジュールが行う機能は、何らかのハードウェアにおいてソフトウェアが実行されることによって実現できればよい。
 上記実施形態の一部または全部は以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
 本発明では、前記第1の視点に係る搬送システムの形態が可能である。
[付記2]
 前記駆動部を制御する処理では、少なくとも前記搬送対象物の重さに応じて、前記第1目標値を決定する処理と、前記荷重センサで検出した前記荷重に係る情報を取得する処理と、取得した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、決定された前記第1目標値に近づくように、前記駆動部を制御する処理と、を行う、付記1記載の搬送システム。
[付記3]
 前記接触部は、2枚の板と、前記2枚の板間に配された弾性部材と、を有し、前記荷重センサは、前記2枚の板間の距離に基づいて、前記接触部と前記搬送対象物とが接触したときの荷重を検出する、付記1又は2記載の搬送システム。
[付記4]
 前記駆動部を制御する処理では、少なくとも前記搬送対象物の搬送時の曲率に応じて、前記第2目標値を決定する処理と、前記角度センサで検出した前記回転角度に係る情報を取得する処理と、取得した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、決定された前記第2目標値に近づくように前記駆動部を制御する処理と、を行う、付記1乃至3のいずれか一に記載の搬送システム。
[付記5]
 前記搬送ロボットは、前記ハードウェア資源として、前記駆動部を制御する処理を行う制御部を備える、付記1乃至4のいずれか一に記載の搬送システム。
[付記6]
 前記搬送システムは、前記ハードウェア資源として、前記搬送ロボットを制御する管制装置を備え、前記管制装置は、前記駆動部を制御する処理を行い、前記駆動部を制御する処理では、前記搬送ロボットから、前記荷重センサで検出した前記荷重に係る情報を取得し、取得した前記荷重に係る情報に基づいて、前記駆動部を制御する処理と、前記搬送ロボットから、前記角度センサで検出した前記回転角度に係る情報を取得し、取得した前記回転角度に係る情報に基づいて、前記駆動部を制御する処理と、を行う、付記1乃至4のいずれか一に記載の搬送システム。
[付記7]
 本発明では、前記第2の視点に係る搬送ロボットの形態が可能である。
[付記8]
 本発明では、前記第3の視点に係る管制装置の形態が可能である。
[付記9]
 本発明では、前記第4の視点に係る搬送ロボットの制御方法の形態が可能である。
[付記10]
 本発明では、前記第5の視点に係るプログラムの形態が可能である。
[付記11]
 本発明では、前記第6の視点に係るプログラムの形態が可能である。
 なお、上記の特許文献の各開示は、本書に引用をもって繰り込み記載されているものとし、必要に応じて本発明の基礎ないし一部として用いることが出来るものとする。本発明の全開示(特許請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択(必要により不選択)が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、本願に記載の数値及び数値範囲については、明記がなくともその任意の中間値、下位数値、及び、小範囲が記載されているものとみなされる。さらに、上記引用した文献の各開示事項は、必要に応じ、本発明の趣旨に則り、本発明の開示の一部として、その一部又は全部を、本書の記載事項と組み合わせて用いることも、本願の開示事項に含まれるものと、みなされる。
 1 搬送システム
 2、2A、2B 搬送ロボット
 3 管制装置
 5 搬送対象物
 6 荷物
 10 本体
 11 フレーム
 12、13 駆動部
 14、15 シャフト
 16 制御部
 17 通信部
 18 駆動部
 20、21 車輪
 22 キャスタ
 23 荷重センサ
 24 角度センサ
 30 接触部
 31、32 板部材
 33 摩擦部
 34、35、36、37 弾性部材
 40 回動機構
 41 アーム
 41a、41b ピン部
 42 軸部
 43 アーム
 44、45、46、47 ステー
 50 復元機構
 51 揺動部材
 51a、51b 受面
 51c ピン部
 52 軸部
 53 ピン部
 54 弾性部材
 60 ガイド機構
 61 ガイド部材
 61a ガイド面
 70 台座
 71、72、73、74 キャスタ
 80 床面
 81 車軸
 90 ハードウェア資源
 100 情報処理装置
 101 プロセッサ
 102 メモリ
 103 ネットワークインタフェース
 104 内部バス

Claims (10)

  1.  複数の搬送ロボットによって搬送対象物を挟み込んだ状態で該搬送対象物を搬送する搬送システムであって、
     前記搬送ロボットは、
     本体と、
     車輪と、
     前記搬送対象物と接触する接触部と、
     前記本体に対して前記接触部を回動自在にする回動機構と、
     前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、
     前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、
     前記本体に対する前記接触部の回転角度を検出する角度センサと、
    を備え、
     ハードウェア資源を用いて、
     前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、
     前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、
    を行う、
    搬送システム。
  2.  前記駆動部を制御する処理では、
     少なくとも前記搬送対象物の重さに応じて、前記第1目標値を決定する処理と、
     前記荷重センサで検出した前記荷重に係る情報を取得する処理と、
     取得した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、決定された前記第1目標値に近づくように、前記駆動部を制御する処理と、
    を行う、
    請求項1記載の搬送システム。
  3.  前記駆動部を制御する処理では、
     少なくとも前記搬送対象物の搬送時の曲率に応じて、前記第2目標値を決定する処理と、
     前記角度センサで検出した前記回転角度に係る情報を取得する処理と、
     取得した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、決定された前記第2目標値に近づくように前記駆動部を制御する処理と、
    を行う、
    請求項1又は2記載の搬送システム。
  4.  前記搬送ロボットは、前記ハードウェア資源として、前記駆動部を制御する処理を行う制御部を備える、
    請求項1乃至3のいずれか一に記載の搬送システム。
  5.  前記搬送システムは、前記ハードウェア資源として、前記搬送ロボットを制御する管制装置を備え、
     前記管制装置は、前記駆動部を制御する処理を行い、
     前記駆動部を制御する処理では、
     前記搬送ロボットから、前記荷重センサで検出した前記荷重に係る情報を取得し、取得した前記荷重に係る情報に基づいて、前記駆動部を制御する処理と、
     前記搬送ロボットから、前記角度センサで検出した前記回転角度に係る情報を取得し、取得した前記回転角度に係る情報に基づいて、前記駆動部を制御する処理と、
    を行う、
    請求項1乃至3のいずれか一に記載の搬送システム。
  6.  他の搬送ロボットと協働することにより、搬送対象物を挟み込んだ状態で搬送するように構成される搬送ロボットであって、
     本体と、
     車輪と、
     前記搬送対象物と接触する接触部と、
     前記本体に対して前記接触部を回動自在にする回動機構と、
     前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、
     前記駆動部を制御する制御部と、
     前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、
     前記本体に対する前記接触部の回転角度を検出する角度センサと、
    を備え、
     前記制御部は、
     前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、
     前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、
    を行う、
    搬送ロボット。
  7.  搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する管制装置であって、
     前記搬送ロボットは、
     本体と、
     車輪と、
     前記搬送対象物と接触する接触部と、
     前記本体に対して前記接触部を回動自在にする回動機構と、
     前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、
     前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、
     前記本体に対する前記接触部の回転角度を検出する角度センサと、
    を備え、
     前記管制装置は、
     前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、
     前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、
    を行う、
    管制装置。
  8.  搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する搬送ロボットの制御方法であって、
     前記搬送ロボットは、
     本体と、
     車輪と、
     前記搬送対象物と接触する接触部と、
     前記本体に対して前記接触部を回動自在にする回動機構と、
     前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、
     前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、
     前記本体に対する前記接触部の回転角度を検出する角度センサと、
    を備え、
     前記搬送ロボットの制御方法は、
     前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御するステップと、
     前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御するステップと、
    を含む、
    搬送ロボットの制御方法。
  9.  他の搬送ロボットと協働することにより、搬送対象物を挟み込んだ状態で搬送するように構成される搬送ロボットで実行されるプログラムであって、
     前記搬送ロボットは、
     本体と、
     車輪と、
     前記搬送対象物と接触する接触部と、
     前記本体に対して前記接触部を回動自在にする回動機構と、
     前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、
     前記駆動部を制御する制御部と、
     前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、
     前記本体に対する前記接触部の回転角度を検出する角度センサと、
    を備え、
     前記プログラムは、
     前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、
     前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、
    を前記制御部に実行させる、
    プログラム。
  10.  搬送対象物を挟み込み、互いに協働して前記搬送対象物を搬送する複数の搬送ロボットを制御する管制装置で実行されるプログラムであって、
     前記搬送ロボットは、
     本体と、
     車輪と、
     前記搬送対象物と接触する接触部と、
     前記本体に対して前記接触部を回動自在にする回動機構と、
     前記本体に取り付けられるとともに前記車輪を駆動する駆動部と、
     前記接触部が前記搬送対象物に接触したときの荷重を検出する荷重センサと、
     前記本体に対する前記接触部の回転角度を検出する角度センサと、
    を備え、
     前記プログラムは、
     前記荷重センサで検出した前記荷重に係る情報に基づいて、前記接触部が前記搬送対象物に接触したときの荷重が、第1目標値に近づくように、前記駆動部を制御する処理と、
     前記角度センサで検出した前記回転角度に係る情報に基づいて、前記本体に対する前記接触部の回転角度が、第2目標値に近づくように、前記駆動部を制御する処理と、
    を前記管制装置に実行させる、
    プログラム。
PCT/JP2019/035324 2018-09-10 2019-09-09 搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム WO2020054649A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020546004A JP7226451B2 (ja) 2018-09-10 2019-09-09 搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム
US17/274,588 US20220050465A1 (en) 2018-09-10 2019-09-09 Transport system, transport robot, control apparatus, control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018168683 2018-09-10
JP2018-168683 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020054649A1 true WO2020054649A1 (ja) 2020-03-19

Family

ID=69778295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035324 WO2020054649A1 (ja) 2018-09-10 2019-09-09 搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム

Country Status (3)

Country Link
US (1) US20220050465A1 (ja)
JP (1) JP7226451B2 (ja)
WO (1) WO2020054649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114571433A (zh) * 2022-02-15 2022-06-03 王之健 一种矿用机器人全方位探测机械臂

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196264B (zh) * 2022-06-28 2024-03-29 西安优艾智合机器人科技有限公司 一种具有车载夹持器的协同搬运机器人及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334609A (ja) * 1986-07-29 1988-02-15 Matsushita Electric Ind Co Ltd 複腕装置
JPH02232513A (ja) * 1989-03-06 1990-09-14 Mitsubishi Electric Corp 車載レーダ装置
JPH05177566A (ja) * 1991-12-27 1993-07-20 Yaskawa Electric Corp マニピュレータの協調制御装置
JP2000203799A (ja) * 1999-01-14 2000-07-25 Toyota Autom Loom Works Ltd フォ―クリフトのクランプ装置
JP2000343470A (ja) * 1999-06-01 2000-12-12 Agency Of Ind Science & Technol 物体協調運搬ロボットの制御方法及びその装置
JP2004337918A (ja) * 2003-05-15 2004-12-02 Yaskawa Electric Corp プレス間搬送ロボットおよびプレス間搬送装置
JP2009006415A (ja) * 2007-06-26 2009-01-15 Ihi Corp 搬送ロボットとその動作制御方法並びに協調搬送システム及び方法
WO2016192857A2 (de) * 2015-06-05 2016-12-08 Thomas Buck Robotergestütztes transportieren eines verfahrbaren gegenstands

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198067A (ja) * 1998-01-08 1999-07-27 Honda Motor Co Ltd 双腕型マニピュレータ操縦装置
JP2000042958A (ja) * 1998-07-24 2000-02-15 Fuji Electric Co Ltd 移動ロボットによる協調搬送方式
JP2001213597A (ja) * 2000-01-31 2001-08-07 Mitsubishi Heavy Ind Ltd 搬送物搬送方法および搬送装置
US7826919B2 (en) * 2006-06-09 2010-11-02 Kiva Systems, Inc. Method and system for transporting inventory items
NO2966067T3 (ja) * 2013-08-12 2018-03-24
JP6151159B2 (ja) * 2013-11-20 2017-06-21 株式会社東芝 協調搬送ロボットシステム
DE102013020833A1 (de) * 2013-12-12 2015-06-18 Grenzebach Maschinenbau Gmbh Fahrerloses Transportfahrzeug für den sicheren Transport schwerer Lasten
JP6496584B2 (ja) * 2015-03-20 2019-04-03 倉敷紡績株式会社 物品の受け渡し装置、物品の受け渡し方法、および物品の検査方法
US10549916B2 (en) * 2018-03-23 2020-02-04 Amazon Technologies, Inc. Mobile drive unit having a conveyor module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334609A (ja) * 1986-07-29 1988-02-15 Matsushita Electric Ind Co Ltd 複腕装置
JPH02232513A (ja) * 1989-03-06 1990-09-14 Mitsubishi Electric Corp 車載レーダ装置
JPH05177566A (ja) * 1991-12-27 1993-07-20 Yaskawa Electric Corp マニピュレータの協調制御装置
JP2000203799A (ja) * 1999-01-14 2000-07-25 Toyota Autom Loom Works Ltd フォ―クリフトのクランプ装置
JP2000343470A (ja) * 1999-06-01 2000-12-12 Agency Of Ind Science & Technol 物体協調運搬ロボットの制御方法及びその装置
JP2004337918A (ja) * 2003-05-15 2004-12-02 Yaskawa Electric Corp プレス間搬送ロボットおよびプレス間搬送装置
JP2009006415A (ja) * 2007-06-26 2009-01-15 Ihi Corp 搬送ロボットとその動作制御方法並びに協調搬送システム及び方法
WO2016192857A2 (de) * 2015-06-05 2016-12-08 Thomas Buck Robotergestütztes transportieren eines verfahrbaren gegenstands

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRATA, YASUHISA ET AL.: "Non-official translation: Cooperative transport of unknown shaped objects by multiple mobile robots", PREPRINTS OF THE 18TH ACADEMIC LECTURE CONFERENCE OF THE ROBOTICS SOCIETY OF JAPAN, vol. 3, 12 September 2000 (2000-09-12), pages 1025 - 1026 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114571433A (zh) * 2022-02-15 2022-06-03 王之健 一种矿用机器人全方位探测机械臂

Also Published As

Publication number Publication date
US20220050465A1 (en) 2022-02-17
JPWO2020054649A1 (ja) 2021-08-30
JP7226451B2 (ja) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2020022479A1 (ja) 搬送ロボット、搬送システム、及び搬送方法
CN108140160B (zh) 主动平衡的移动驱动单元
US9731641B2 (en) Tilting platform for stability control
WO2020054649A1 (ja) 搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム
US8151912B2 (en) Wheeled inverted pendulum mobile unit
US11378968B2 (en) Autonomous ground vehicle (AGV) cart for item distribution
US7468592B2 (en) Apparatus for moving center of gravity of robot, and system and method using the same
JP2015178141A (ja) 搬送ロボット及び搬送方法
WO2018165907A1 (en) Self leveling autonomous guided vehicle
JP7199003B2 (ja) 搬送装置、受信機能付き搬送装置、搬送システム、上位システム、搬送装置の制御方法、及びプログラム
JP6332018B2 (ja) 搬送ロボット、及びその制御方法
JP7485446B2 (ja) 搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム
JP7333220B2 (ja) 多目的移動装置の制御方法
WO2021064802A1 (ja) 搬送制御方法、搬送制御装置、及び搬送制御システム
JP4862383B2 (ja) 協調搬送方法および協調搬送装置
JP2021137901A (ja) 空中搬送装置
US20240111307A1 (en) Movement control system, movement control apparatus, and movement control method
JP6558036B2 (ja) 自律移動体及びその制御方法
KR102458749B1 (ko) 주차 시스템 및 라이다 모듈을 통해 팔레트를 인식하는 주차 수행 로봇
US20230302653A1 (en) Apparatus and method for transporting a machine of a production line
JP2022066058A (ja) 無人搬送システム
CN117355396A (zh) 移动机器人及其控制方法
JP2023051013A (ja) 搬送カートおよび搬送カートの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860805

Country of ref document: EP

Kind code of ref document: A1