WO2020054085A1 - 除電装置及びプラズマ発生装置 - Google Patents

除電装置及びプラズマ発生装置 Download PDF

Info

Publication number
WO2020054085A1
WO2020054085A1 PCT/JP2018/043779 JP2018043779W WO2020054085A1 WO 2020054085 A1 WO2020054085 A1 WO 2020054085A1 JP 2018043779 W JP2018043779 W JP 2018043779W WO 2020054085 A1 WO2020054085 A1 WO 2020054085A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
plasma source
static eliminator
vacuum chamber
magnetic circuit
Prior art date
Application number
PCT/JP2018/043779
Other languages
English (en)
French (fr)
Inventor
信雄 野村
最上 智史
和樹 峯村
大樹 神田
貴都 森下
聡史 細田
均 國中
Original Assignee
春日電機株式会社
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 春日電機株式会社, 国立研究開発法人宇宙航空研究開発機構 filed Critical 春日電機株式会社
Priority to EP18933511.0A priority Critical patent/EP3852503B1/en
Priority to KR1020197029846A priority patent/KR102168952B1/ko
Priority to CN201880024348.0A priority patent/CN110574500B/zh
Priority to KR1020207028857A priority patent/KR102302182B1/ko
Priority to US16/495,123 priority patent/US10984989B2/en
Publication of WO2020054085A1 publication Critical patent/WO2020054085A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32678Electron cyclotron resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/004Charge control of objects or beams
    • H01J2237/0041Neutralising arrangements
    • H01J2237/0044Neutralising arrangements of objects being observed or treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/182Obtaining or maintaining desired pressure

Definitions

  • the present invention relates to a static eliminator and a plasma generator.
  • Priority is claimed on Japanese Patent Application No. 2018-170898, filed on Sep. 12, 2018, the content of which is incorporated herein by reference.
  • a static eliminator having a vacuum chamber, which performs a process such as vacuum deposition and static elimination on a charged substance in the vacuum chamber.
  • the inside of the vacuum chamber of such a static eliminator is a high vacuum area which is a space for processing such as vacuum deposition and has a high degree of vacuum, and a low vacuum area which is a space for static elimination and has a low degree of vacuum. It is necessary to have two spaces with the vacuum area.
  • Such a static eliminator neutralizes a charged object by ejecting a gas toward a charged object to be neutralized in a vacuum chamber evacuated (see Patent Document 1). More specifically, such a static eliminator neutralizes a charged object by passively discharging the charged object.
  • Such a static eliminator discharges a charged material by flowing a gas such as argon through a gas introduction pipe into a low vacuum region where static elimination is performed, generating plasma by a DC power supply, and contacting the plasma with the static elimination target.
  • an object of the present invention is to provide a static eliminator that does not need to include a high vacuum region and a low vacuum region.
  • One embodiment of the present invention includes a vacuum chamber in which a charged object can be installed inside, a high-vacuum processing unit, and a plasma generator that supplies plasma by electron cyclotron resonance to the inside of the vacuum chamber,
  • the plasma generator is a static eliminator that includes a plasma source that generates the plasma, and a flange that installs the plasma source inside the vacuum chamber.
  • FIG. 2 is a schematic sectional view of a plasma source 501 according to the embodiment.
  • FIG. 2 is a schematic top view of a plasma source 501 according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view illustrating an operation of a plasma source 501 according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of an arrangement of the openings 610 when the nozzle unit 60 according to the embodiment has a plurality of openings 610.
  • FIG. 9 is a diagram showing experimental results showing an effect of extracting plasma from a plasma source 501 by an extraction electrode 507 in the embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a static elimination device 100 according to the embodiment.
  • the static eliminator 100 neutralizes the charged object 9. Furthermore, the static eliminator 100 performs a process that requires a high vacuum such as vapor deposition on the charged material 9.
  • a process requiring a high vacuum is referred to as a high vacuum process.
  • the charged material 9 may be any material as long as it can be charged.
  • the charged material 9 may be a film sheet to be subjected to a vapor deposition process.
  • the static eliminator 100 neutralizes the film sheet, for example, in order to suppress a decrease in processing accuracy in processing the film sheet and a decrease in processing accuracy due to charging of the film sheet.
  • the charging of the film sheet is caused by the movement or friction of the polymer material constituting the film sheet.
  • the static elimination device 100 performs static elimination in a process that requires static elimination during a process of transporting an insulator such as a polymer material, for example.
  • the static elimination device 100 performs static elimination in a process that requires static elimination, for example, among processes executed by the high vacuum processing unit 3 described below.
  • the static eliminator 100 includes, for example, a vacuum chamber 1, a vacuum pump 2, a high vacuum processing section 3, a sending section 4-1, guide sections 4-2 to 4-5, a winding section 4-6, a conveyor 4-7, and a static eliminator.
  • a processing unit 5 is provided.
  • the vacuum chamber 1 is a housing having a hollow inside.
  • the vacuum chamber 1 does not deform if the difference between the external pressure and the internal pressure is less than a predetermined pressure.
  • a charged object 9 can be installed inside.
  • the vacuum pump 2 draws air in the vacuum chamber 1 and makes the pressure in the vacuum chamber 1 a predetermined pressure.
  • the predetermined pressure is, for example, 10 ⁇ 5 Pa or more and 1 Pa or less.
  • the high vacuum processing unit 3 performs high vacuum processing on the charged object 9. High vacuum processing is processing performed in high vacuum.
  • High vacuum is a vacuum of 10 ⁇ 5 Pa or more and 1 Pa or less.
  • the high vacuum processing unit 3 may be any unit that performs high vacuum processing, and may be, for example, a vapor deposition unit.
  • High vacuum processing unit 3 for example, the transport process of the insulating material such as a polymer material in a vacuum chamber in which a high vacuum is maintained, aluminum, nickel, titanium, metal deposition process such as chromium, SiO, SiO 2, Al 2 O 3 , CaF 2 , SnO 2, etc., ceramic deposition process, VLSI (very large scale integration) production process of semiconductor material such as wafer fine process, thin film formation process, organic EL (electro-luminescence) production process A thin film forming step of a material, an aluminum vapor deposition step used as a cathode, and the like are performed.
  • the transport process of the insulating material such as a polymer material in a vacuum chamber in which a high vacuum is maintained
  • aluminum, nickel, titanium, metal deposition process such as chromium, SiO, SiO 2, Al 2 O 3 , CaF 2 , SnO 2, etc.
  • ceramic deposition process VLSI (very large scale integration) production process of semiconductor material such as wa
  • the charged material 9 is transported by the feed-out unit 4-1, the guide units 4-2 to 4-5, the winding unit 4-6, and the conveyor 4-7. More specifically, the charged material 9 is sent out by the sending-out unit 4-1, and is conveyed by the conveyor 4-7 to the winding unit 4-6 via the guide units 4-2 to 4-5. .
  • the charge removing section 5 removes charges from the charged material 9 and includes a plasma generator 500.
  • the plasma generator 500 generates plasma and is connected to the vacuum chamber 1 by a flange.
  • the plasma generated by the plasma generator 500 fills the inside of the vacuum chamber 1.
  • FIG. 2 is a diagram illustrating an example of a configuration of the plasma generator 500 according to the embodiment.
  • the plasma generator 500 includes, for example, a plasma source 501, a connection unit 502, a heat transfer unit 503, a flange 504, a gas port 505, a microwave feedthrough 506, an extraction electrode 507, a microwave tuner 508, a filament 509, a gas source 510, A flow meter 511, an RF oscillator 512, and a power meter 513 are provided.
  • the plasma source 501 generates plasma using electron cyclotron resonance.
  • the plasma source 501 is electrodeless because it generates plasma using electron cyclotron resonance.
  • the detailed configuration of the plasma source 501 will be described later.
  • connection unit 502 connects the flange 504 to the plasma source 501 and transfers heat generated in the plasma source 501 to the flange 504 via the heat transfer unit 503.
  • the connection section 502 suppresses the temperature of the plasma source 501 from becoming equal to or higher than a predetermined temperature.
  • the connection section 502 may be of any type as long as it has a thermal conductivity sufficient to prevent the temperature of the plasma source 501 from reaching a predetermined temperature or higher.
  • the connection portion 502 may be, for example, an aluminum block, a copper block, or a carbon block.
  • the heat transfer section 503 transfers the heat transferred by the connection section 502 to the flange 504.
  • the heat transfer unit 503 suppresses the temperature of the plasma source 501 from being equal to or higher than a predetermined temperature.
  • the heat transfer section 503 has a thermal conductivity sufficient to prevent the temperature of the plasma source 501 from being equal to or higher than a predetermined temperature, and may have any thermal conductivity higher than that of the connection section 502. It may be something.
  • the heat transfer section 503 may be, for example, a copper mesh or a carbon sheet.
  • the flange 504 connects the plasma source 501 to the vacuum chamber 1 and places the plasma source 501 inside the vacuum chamber 1.
  • the flange 504 is connected to the connecting portion 502 and radiates heat transferred through the connecting portion 502 and the heat transfer portion 503 to the outside of the vacuum chamber 1.
  • the flange may be any flange, for example, a flange based on the ICF standard.
  • the gas port 505 supplies gas to the plasma source 501.
  • the gas port 505 supplies gas to the space 21 described later.
  • the gas supplied by the gas port 505 may be any gas that promotes generation of plasma.
  • the gas supplied by the gas port 505 may be, for example, an inert gas such as xenon, argon, or nitrogen, or may be an active gas such as air or oxygen.
  • the gas supplied by the gas port 505 is referred to as a discharge gas.
  • the microwave feedthrough 506 transmits microwaves from outside the vacuum chamber 1 to the plasma source 501.
  • the microwave feedthrough 506 may be any type as long as microwaves can be transmitted from outside the vacuum chamber 1 to the plasma source 501.
  • the microwave feedthrough 506 may be, for example, a coaxial cable for microwaves connected to the SMA terminal.
  • the frequency of the microwave transmitted by the microwave feedthrough 506 may be any frequency as long as the frequency satisfies the electron cyclotron resonance condition, and may be, for example, 4.25 GHz.
  • the extraction electrode 507 attracts the plasma generated by the plasma source 501.
  • the extraction electrode 507 has a predetermined potential when a predetermined voltage is applied, and draws plasma by a potential difference between the extraction electrode 507 and the plasma source 501.
  • the extraction electrode 507 may have any shape as long as it does not confine the plasma, and may be, for example, a circle having a diameter of 2 cm.
  • the microwave tuner 508 suppresses a decrease in microwave transmission efficiency to the plasma source 501.
  • the microwave tuner 508 suppresses a decrease in transmission efficiency by reflecting the microwave reflected by the plasma source 501 without being absorbed by the plasma source 501 toward the plasma source 501. This means that the microwave tuner 508 matches the impedance between the microwave feedthrough 506 and the plasma generated in the plasma source 501.
  • the filament 509 ignites the gas supplied inside the plasma source 501.
  • the filament 509 is a filament for plasma ignition, and is capable of igniting a gas having a small flow rate and a gas having a large ionization energy. Note that the plasma generator 500 does not necessarily need to include the filament 509.
  • the gas source 510 supplies a discharge gas to the gas port 505.
  • the gas source 510 may be any type as long as a discharge gas can be supplied to the gas port 505, and may be, for example, a container containing a discharge gas.
  • the flow meter 511 measures the flow rate of the gas flowing through the gas port 505.
  • the RF oscillator 512 generates a microwave.
  • the microwave generated by the RF oscillator 512 is transmitted to the plasma source 501 via the microwave feedthrough 506.
  • the wattmeter 513 measures the power of the microwave transmitted through the microwave feedthrough 506 and reflected by the plasma source 501. The user can read the measured value of the wattmeter 513 and determine whether the plasma has been ignited based on the read measured value.
  • the plasma generator 500 includes the flange 504 as described above, the user can install the plasma source 501 at an arbitrary position in the vacuum chamber 1.
  • the plasma source 501 generates plasma in a high vacuum. More specifically, the plasma source 501 generates plasma at a degree of vacuum substantially equal to the degree of vacuum of the high vacuum processing unit 3. Hereinafter, the details of the plasma source 501 will be described.
  • FIG. 3 is a schematic sectional view of the plasma source 501 in the embodiment.
  • FIG. 4 is a schematic top view of the plasma source 501 according to the embodiment.
  • FIG. 3 shows a cross section taken along the line A1-A2 in FIG.
  • the plasma source 501 includes a cylindrical magnet unit 10, a cylindrical body 20, a first magnetic circuit unit 30, a second magnetic circuit unit 40, an antenna 50, a nozzle unit 60, a gas port 505, an insulating member. 70.
  • the cylindrical magnet section 10 is a cylindrical magnetic body, and the inside thereof is hollow.
  • the cylindrical magnet portion 10 has an open end 10a (first open end) and an open end 10b (second open end) located on the opposite side to the open end 10a.
  • the open end 10a has S polarity (first polarity)
  • the open end 10b has N polarity (second polarity) opposite to S polarity.
  • a plurality of block-shaped magnets 10M made of samarium cobalt are arranged annularly in the XY axis plane.
  • the polarity of the cylindrical magnet portion 10 is not limited to the above example, and the opening end 10a may indicate N polarity and the opening end 10b may indicate S polarity.
  • the outer shape of the cylindrical magnet portion 10 is, for example, a circular shape.
  • the outer diameter of the cylindrical magnet portion 10 is, for example, 50 mm or less, and the size of the plasma source 501 is reduced.
  • the outer shape of the cylindrical magnet unit 10 is not limited to a circle, but may be a polygon such as a triangle, a square, a pentagon, a hexagon, and so on.
  • the cylindrical body 20 is surrounded by the cylindrical magnet part 10.
  • the inside of the tubular body 20 is hollow.
  • the tubular body 20 has an open end 20a and an open end 20b located on the opposite side to the open end 20a.
  • the opening end 20a is flush with the opening end 10a.
  • the open end 20b is flush with the open end 10b.
  • the cylindrical body 20 and the cylindrical magnet part 10 are located concentrically.
  • the cylindrical body 20 and the cylindrical magnet part 10 do not necessarily need to be located concentrically, and their respective central axes may be slightly shifted from each other.
  • the outer shape of the cylindrical body 20 is appropriately changed according to the outer shape of the cylindrical magnet portion 10.
  • the outer shape of the cylindrical body 20 is circular.
  • the tubular body 20 includes, for example, molybdenum (Mo).
  • the magnetic circuit section 30 contacts the open end 10 a of the cylindrical magnet section 10 and the open end 20 a of the cylindrical body 20.
  • the magnetic circuit unit 30 closes the open ends 10a and 20a.
  • the term “closed” does not mean that the magnetic circuit unit 30 completely closes the opening ends 10 a and 20 a without any gap, but also has a small gap or a small diameter that allows other members to penetrate the magnetic circuit unit 30. This includes the case of closing with the hole provided.
  • the magnetic circuit unit 30 has a plate shape.
  • the magnetic circuit unit 30 is a ferromagnetic material and is made of, for example, soft iron.
  • the outer shape of the magnetic circuit unit 30 is appropriately changed according to the outer shape of the cylindrical magnet unit 10. In the example of FIG. 4, the outer shape of the magnetic circuit unit 30 is circular.
  • the magnetic circuit section 30 has a protruding section 90 provided in the space 21.
  • the protruding portion 90 protrudes from the magnetic circuit portion 30 toward a corner portion 410 described later.
  • the protrusion 90 has a cylindrical shape and surrounds a part of the antenna 50.
  • the tip portion 91 of the protruding portion 90 becomes thinner toward the corner portion 410 of the magnetic circuit portion 40 (second magnetic circuit portion).
  • the angle of the distal end portion 91 is, for example, an acute angle.
  • the mirror ratio of the magnetic field formed between the tip part 91 and the corner part 410 is 1.5 or more.
  • the cross section of the protruding portion 90 viewed from the Z-axis direction may have any shape as long as it has a genus 1 in the topology, and may be, for example, an annular shape.
  • the magnetic field intensity at the tip 91 and the corner 410 must be higher than the magnetic field satisfying the electron cyclotron resonance conditions.
  • There is a relationship of 2 ⁇ f eB / m between the microwave frequency f and the magnetic field B satisfying the electron cyclotron resonance condition.
  • e is the elementary charge
  • m is the electron mass.
  • the microwave frequency is 2.45 GHz
  • the magnetic field satisfying the electron cyclotron resonance condition is 875 Gauss.
  • the magnetic circuit section 40 is in contact with the open end 10 b of the cylindrical magnet section 10 and the open end 20 b of the cylindrical body 20.
  • the magnetic circuit section 40 is disposed to face the magnetic circuit section 30 via the cylindrical magnet section 10.
  • the magnetic circuit section 40 has a plate shape.
  • the magnetic circuit unit 40 is a ferromagnetic material and is made of, for example, soft iron.
  • the outer shape of the magnetic circuit unit 40 is appropriately changed according to the outer shape of the cylindrical magnet unit 10. In the example of FIG. 4, the outer shape of the magnetic circuit unit 40 is circular.
  • the magnetic circuit section 40 has an opening 420 (first opening) that opens the space 21 surrounded by the cylindrical body 20.
  • the opening 420 is arranged concentrically with respect to the magnetic circuit units 30 and 40.
  • the opening 420 does not need to be arranged concentrically with respect to the magnetic circuit units 30 and 40, and the respective central axes may be slightly shifted.
  • the inner diameter of the opening 420 is larger than the outer diameter of the protrusion 90.
  • the outer diameter of the protrusion 90 is the maximum value of the diagonal length of the outer periphery passing through the center in a cross section orthogonal to the Z axis.
  • the diagonal length of the outer circumference is the diameter of a circle formed by the outer edge line of the projecting portion 90 formed in an annular shape. Further, from another viewpoint, the outer diameter of the protrusion 90 is inside a region surrounded by the inner peripheral line of the opening 420.
  • the corner 410 is a position where the main surface 40 a of the second magnetic circuit unit 40 on the first magnetic circuit unit 30 side and the inner wall 420 w of the first opening 420 intersect in the second magnetic circuit unit 40.
  • the angle formed by the main surface 40a and the inner wall 420w is referred to as the angle of the corner 410. Since the opening 420 is provided in the magnetic circuit unit 40, in the magnetic circuit unit 40, a corner where the main surface 40 a of the magnetic circuit unit 40 on the magnetic circuit unit 30 side and the inner wall 420 w of the opening 420 intersect. 410 is formed.
  • the angle of the corner 410 is approximately 90 ° in the example of FIG.
  • the angle of the corner 410 may be an acute angle.
  • the cross-sectional shape of the opening portion 420 has a tapered shape that gradually widens as the inner diameter becomes farther from the magnetic circuit portion 30.
  • the main surface of the magnetic circuit section 40 located on the opposite side to the main surface 40a is referred to as a main surface 40b.
  • the antenna 50 is introduced into the plasma source 501 from outside the plasma source 501.
  • the antenna 50 penetrates the magnetic circuit unit 30 and is introduced into the space 21.
  • the antenna 50 is a so-called microwave launcher.
  • the antenna 50 includes, for example, molybdenum.
  • the antenna 50 is connected to the microwave feedthrough 506.
  • the antenna 50 is connected to the RF oscillator 512 via the microwave feedthrough 506, and receives a supply of microwave power from the RF oscillator 512. Thereby, the antenna 50 radiates the microwave to the space 21.
  • the wavelength of the microwave may be any wavelength that satisfies the electron cyclotron resonance condition.
  • the wavelength of the microwave may be, for example, 122 mm (2.45 GHz).
  • the antenna 50 has, for example, a rod shape, and is bent in the middle.
  • the antenna 50 includes a first antenna unit 51 and a second antenna unit 52 connected to the first antenna unit 51.
  • the shape of the antenna 50 is not necessarily a rod shape, and it is not necessary that the antenna 50 be bent in the middle.
  • the shape of the antenna 50 may be any shape as long as it is connected to the microwave feedthrough 506 and can radiate microwaves to the space 21.
  • the shape of the antenna 50 may be, for example, a linear shape.
  • the first antenna unit 51 extends, for example, orthogonal to the magnetic circuit unit 30 and in a direction from the magnetic circuit unit 30 to a nozzle unit 60 described later.
  • the first antenna unit 51 is located, for example, on the central axis of the magnetic circuit unit 30.
  • the second antenna section 52 intersects with the first antenna section 51.
  • the first antenna unit 51 and the second antenna unit 52 are orthogonal to each other, and the antenna 50 has an L-shape.
  • the second antenna section 52 is further located between the tip section 91 and the corner section 410. That is, the second antenna unit 52 is inserted into the magnetic field B1.
  • the magnetic field B1 is a magnetic field formed in the space 21 by the magnetic circuit unit 30, the magnetic circuit unit 40, and the cylindrical magnet unit 10.
  • the antenna 50 is bent so that microwaves are efficiently absorbed in the plasma.
  • the angle formed between the first antenna unit 51 and the second antenna unit 52 is not limited to orthogonal, and may be an obtuse angle or an acute angle.
  • the nozzle unit 60 contacts the magnetic circuit unit 40 on the side opposite to the magnetic circuit unit 30.
  • the nozzle unit 60 is in contact with the main surface 40b of the magnetic circuit unit 40.
  • the nozzle unit 60 has an opening 610 (second opening). Opening 610 communicates with opening 420.
  • the opening area of the opening 610 is smaller than the opening area of the opening 420.
  • the nozzle unit 60 may be any type as long as it has an opening.
  • the nozzle unit 60 may be, for example, a punching metal.
  • the opening 610 is arranged concentrically with respect to the opening 420.
  • the opening 610 does not need to be arranged concentrically with respect to the opening 420, and the respective central axes may be slightly shifted from each other.
  • the inner diameter of the opening 610 is, for example, 5 mm. Since the space 21 communicates with the outside of the apparatus via the opening 610, plasma generated in the space 21 can be extracted from the opening 610.
  • the nozzle unit 60 includes, for example, molybdenum.
  • the thickness of the opening is, for example, 5 mm, 2.5 mm, or 1 mm.
  • the gas port 505 is introduced into the space 21 from outside the plasma source 501.
  • the gas port 505 penetrates, for example, the magnetic circuit unit 30 and is introduced into the space 21.
  • the gas port 505 penetrates, for example, the cylindrical magnet part 10 and the cylindrical body 20 and is introduced into the space 21.
  • the gas port 505 penetrates, for example, the magnetic circuit unit 40 and the nozzle unit 60 and is introduced into the space 21.
  • the supply port to which the discharge gas is supplied in the gas port 505 is referred to as a supply port 505p, and the supply port 505p is arranged such that the distance between the supply port 505p and the tip 50p of the antenna 50 is the shortest.
  • the supply port 505p and the tip 50p face each other.
  • the insulating member 70 is provided between the antenna 50 and the magnetic circuit unit 30.
  • the insulating member 70 includes a fluorocarbon resin, quartz, or the like. Thereby, the insulation between the antenna 50 and the magnetic circuit unit 30 is maintained.
  • the plasma source 501 when the inner diameter of the cylindrical body 20 is a (mm) and the microwave cutoff wavelength of the microwave power supplied to the space 21 is ⁇ (mm), the plasma source 501 has ⁇ > 3. It is configured to satisfy a relational expression of 41 ⁇ (a / 2).
  • the inner diameter a is the maximum inner diameter passing through the central axis of the cylindrical body 20.
  • FIG. 5 is a schematic sectional view illustrating the operation of the plasma source 501 in the embodiment.
  • the magnetic circuit unit 30 connected to the cylindrical magnet unit 10 and the magnetic circuit unit 40 connected to the cylindrical magnet unit 10 each function as a yoke material.
  • the magnetic circuit section 30 has a protruding section 90
  • the magnetic circuit section 40 has a corner section 410.
  • a magnetic field B1 mirror magnetic field
  • the magnetic field B1 is formed in an annular shape because the projecting portion 90 is cylindrical and the opening 420 of the magnetic circuit portion 40 is circular.
  • the plasma source 501 is configured to satisfy the relational expression of ⁇ > 3.41 ⁇ (a / 2). This makes it difficult for the microwaves to resonate in the space 21 and suppresses the progress of the microwaves in the space 21. As a result, microwaves hardly leak from the plasma source 501. Further, if no resonance occurs, the microwave electric field does not increase, and the microwave loss on the container wall surface, which is proportional to the microwave electric field, can be suppressed.
  • a mirror magnetic field (magnetic field B1) is formed between the protrusion 90 and the corner 410, and the electrons confined in the magnetic field B1 are continuously heated by electron cyclotron resonance.
  • the inner diameter of the opening 420 is larger than the outer diameter of the protruding part 90.
  • the lines of magnetic force become sparser as going from the protrusion 90 to the corner 410.
  • the magnetic flux density on the nozzle portion 60 side becomes smaller than the magnetic flux density on the protrusion portion 90 side.
  • a low magnetic field region is formed in the vicinity of the opening 610 of the nozzle unit 60, and in the vicinity of the opening 610, it is difficult for the plasma to be captured by the magnetic field. Therefore, the mobility of plasma near the opening 610 is increased, and electrons or ions in the plasma are efficiently ejected from the opening 610.
  • the ions in the plasma remaining in the space 21 pass through the magnetic field B1 and reach the inner wall of the cylindrical body 20 or the main surfaces of the magnetic circuit units 30 and 40.
  • the ions that have hit the cylindrical body 20 or the magnetic circuit units 30 and 40 lose their charge, return to neutral gas, and are reused as discharge gas. For this reason, the plasma source 501 can maintain the plasma with a gas flow rate as small as possible.
  • the lines of magnetic force become denser as going from the corner 410 to the protruding portion 90.
  • a high magnetic field region is formed near the insulating member 70, and in the plasma generated in the space 21, the density of the plasma exposed to the insulating member 70 is higher than the density of the plasma generated in the opening 420.
  • the foreign substances are immediately removed by the sputtering effect of the plasma. If the foreign matter contains a metal and the foreign matter accumulates on the insulating member 70, the antenna 50 and the magnetic circuit unit 30 conduct, and the microwave cannot be sufficiently supplied from the antenna 50 to the space 21.
  • the plasma source 501 foreign matter on the insulating member 70 is removed by self-cleaning as long as plasma is generated in the space 21. That is, the plasma source 501 can be operated for a long period without maintenance.
  • the plasma source 501 is configured so that the supply port 505p and the tip 50p of the antenna 50 are closest to each other, the discharge gas is supplied near the second antenna unit 52.
  • the discharge gas introduced into the space 21 from the supply port 505p is efficiently ionized by the microwave emitted from the antenna 50.
  • high-density plasma is generated in the space 21.
  • the plasma source 501 is configured to satisfy the relational expression of ⁇ > 3.41 ⁇ (L / 2). You may. This makes it more difficult for the microwave to leak from the opening 610 of the nozzle unit 60 more reliably.
  • the plasma source 501 includes the cylindrical magnet section 10, the cylindrical body 20, the first magnetic circuit section 30, the second magnetic circuit section 40, the antenna 50, the nozzle section 60, and the gas port 505. And an insulating member 70.
  • the cylindrical magnet section 10 has a first open end 10a and a second open end 10b located on a side opposite to the first open end 10a, the first open end 10a has a first polarity, The two open ends 10b have a second polarity opposite to the first polarity.
  • the cylindrical body 20 is surrounded by the cylindrical magnet part 10.
  • the first magnetic circuit unit 30 contacts the first open end 10a and closes the first open end 10a.
  • the second magnetic circuit section 40 has a first opening 420 that is in contact with the second opening end 10b, is disposed to face the first magnetic circuit section 30, and opens the space 21 surrounded by the cylindrical body 20.
  • the antenna 50 penetrates the first magnetic circuit unit 30, is introduced into the space 21, and can supply microwave power to the space 21.
  • the nozzle portion 60 is in contact with the second magnetic circuit portion 40 on the side opposite to the first magnetic circuit portion 30, and has a second opening 610 that has a smaller opening area than the first opening 420 and communicates with the first opening 420.
  • the gas port 505 can also penetrate the cylindrical magnet part 10 and the cylindrical body 20 and supply a discharge gas to the space 21.
  • the insulating member 70 is provided between the antenna 50 and the first magnetic circuit unit 30. In the plasma source 501, when the inner diameter of the cylindrical body 20 is a (mm) and the microwave cutoff wavelength of the microwave power supplied to the space 21 is ⁇ (mm), ⁇ > 3.41 ⁇ The relational expression of (a / 2) is
  • microwaves hardly leak from the plasma source 501, high-density plasma is generated by the plasma source 501, and electrons or ions can be ejected outside the plasma source 501.
  • the plasma generator 500 can generate plasma at a low flow rate because microwaves hardly leak from the plasma source 501. Therefore, the plasma generator 500 can suppress a decrease in the degree of vacuum inside the vacuum chamber 1 due to generation of plasma.
  • the low flow rate means a flow rate such as 0.05 SCM to 50 SCM that can maintain plasma.
  • the nozzle unit 60 suppresses the leakage of the microwave and the leakage of the discharge gas.
  • the size at which the nozzle unit 60 suppresses leakage of microwaves and discharge gas depends on the thickness of the nozzle unit 60 and the size or number of the openings 610.
  • the amount of plasma released from the space 21 to the inside of the vacuum chamber 1 through the opening 610 also depends on the thickness of the nozzle unit 60 and the size or number of the opening 610. Specifically, as the thickness of the nozzle portion 60 is smaller, the microwave, the discharge gas, and the plasma are more likely to leak into the vacuum chamber 1. Further, as the size or the number of the openings 610 is larger, the microwave, the discharge gas, and the plasma are more likely to leak into the vacuum chamber 1. The greater the leakage of microwaves and discharge gas, the lower the plasma generation efficiency. The lower the amount of plasma emission, the lower the efficiency of static elimination.
  • the nozzle unit 60 controls the leakage of the microwave, the leakage of the discharge gas, and the amount of discharge of the plasma. It is necessary to appropriately design the size or the number according to the purpose.
  • FIG. 6 is a diagram illustrating an example of the arrangement of the openings 610 when the nozzle unit 60 according to the embodiment has a plurality of openings 610.
  • the nozzle unit 60 includes a plurality of openings 610 that are circular and have the same diameter in a lattice shape.
  • FIG. 7 is a diagram showing experimental results showing an effect of extracting plasma from the plasma source 501 by the extraction electrode 507 in the embodiment.
  • the horizontal axis represents the reach of the ion current generated from the plasma source 501.
  • the vertical axis represents the current value of the ion current.
  • FIG. 7 shows that the current value of the ion current is increased by the extraction electrode 507. This indicates that the extraction electrode 507 has an effect of extracting plasma.
  • the static eliminator 100 configured as described above includes a plasma source 501 that can generate plasma with a low flow rate of discharge gas, and a connection unit 502 that transfers heat generated by the plasma source 501 to the outside of the device. Since the plasma generator 500 is provided, it is possible to generate plasma while suppressing a decrease in the degree of vacuum inside the vacuum chamber 1. Therefore, it is not necessary to have a high vacuum region and a low vacuum region, and it is possible to suppress an increase in the size of the apparatus.
  • the plasma generator 500 includes the flange 504. Therefore, the static eliminator 100 configured as described above includes the plasma generator 500 at an arbitrary position where the flange on the housing of the vacuum chamber 1 is mounted by mounting a flange on the housing of the vacuum chamber 1. Can be.
  • the static eliminator 100 configured as described above includes the heat transfer unit 503, heat generated in the plasma source 501 can be radiated, and unstable operation due to high heat can be suppressed.
  • the static eliminator 100 configured as described above includes the plasma generator 500, it is not necessary to have the high vacuum region and the low vacuum region as described above. Therefore, the static eliminator 100 configured as described above can reduce the load on the vacuum pump 2.
  • the static eliminator 100 thus configured includes the electrodeless plasma generator 500, there is no need to generate plasma by DC discharge. Therefore, the static eliminator 100 configured as described above can suppress a decrease in the plasma generation efficiency due to the exhaustion of the electrode for discharge and a deterioration of the static eliminator 100.
  • the static eliminator 100 configured as described above can generate plasma if the flow rate of the discharge gas is in the range of 0.05 SCM to 50 SCM. Further, the static eliminator 100 configured as described above can generate plasma using a plurality of types of discharge gases. Therefore, the charged object 9 can be neutralized by a discharge gas of a type suitable for neutralizing the charged object 9 and the flow rate. “Appropriate for the charge removal of the charged object 9” means that invasion of the charge 9 by the charge removal is lower than a predetermined degree.
  • the plasma generator 500 does not necessarily need to include only one opening 610 as the opening 610 for ejecting plasma.
  • the plasma generator 500 may include a plurality of openings 610 as openings for ejecting plasma.
  • the plasma generator 500 having a plurality of openings 610 can discharge the plasma generated in the space 21 of the plasma source 501 into the static eliminator 100 more than the case where the number of the openings 610 is one.
  • the plasma generator 500 includes, for example, a plurality of openings 610 located in a honeycomb shape, a plurality of openings 610 located in a lattice shape, and a plurality of openings having the same size as the openings for ejecting plasma.
  • An opening 610 or a plurality of openings 610 whose distance from the nearest opening is not constant may be provided.
  • the extraction electrode 507 may have any shape as long as plasma can be extracted.
  • the extraction electrode 507 may have, for example, a hollow shape in which a line connecting the center of the plasma source 501 and the center of the charged object 9 substantially passes through the center, and may have, for example, a cylindrical shape or an annular shape. There may be.
  • the static eliminator 100 may include an obstruction plate that obstructs contact between a part of the charged object 9 and the plasma.
  • FIG. 8 is a diagram illustrating an example of an inhibitor 101 according to a modification. 8, components having the same functions as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the inhibitor 101 covers a part of the charged object 9 and inhibits the contact between the plasma and the charged object 9. As described above, the portion where the contact with the plasma is inhibited by the inhibitor 101 remains charged and is not removed.
  • the inhibitor 101 may be, for example, a conductive member that blocks plasma at locations where static elimination is not required.
  • the inhibitor 101 may be, for example, a punched metal. Since the static eliminator 100 according to the modified example having the above-described configuration includes the inhibitor 101, only a part of the charged material 9 can be neutralized.
  • FIG. 9 is an explanatory diagram illustrating an experimental environment of an experiment showing an effect of the inhibitor 101 in the modification.
  • Neutralizer 900 emits plasma.
  • the inhibitor 101 is located 600 mm below the neutralizer 900.
  • the charging electrode 901 is located at a position 20 mm below the inhibitor 101.
  • the charging electrode 901 is an object to be neutralized by the neutralizer 900.
  • 100 V is applied to the charging electrode 901.
  • the discharging current is a current flowing through the charging electrode 901 when the charging electrode 901 comes into contact with plasma.
  • the decay rate at which the plasma radiated from the neutralizer 900 was attenuated by the inhibitor 101 was calculated according to the magnitude of the measured static elimination current.
  • FIG. 10 is a diagram showing an example of an experimental result showing the effect of the inhibitor 101 in the modification.
  • the vertical axis in FIG. 10 represents the transmittance of the plasma.
  • the transmittance is the ratio of the charge elimination current flowing to the charging electrode 901 when the inhibitor 101 is present to the charge elimination current flowing to the charging electrode 901 when there is no inhibitor 101.
  • the horizontal axis in FIG. 10 represents the distance L.
  • FIG. 10 shows that the plasma transmittance decreases as the distance L increases.
  • the plasma generator 500 may include a heat transfer unit 503a having a higher thermal conductivity than the connection unit 502 between the plasma source 501 and the connection unit 502.
  • the heat transfer portion 503a may be any type as long as it has a higher thermal conductivity than the connection portion 502.
  • the heat transfer section 503a may be, for example, a copper mesh or a carbon sheet.
  • the vacuum chamber 1 is an example of a connection destination.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

この除電装置は、帯電物を内部に設置可能であり、蒸着を行う高真空処理部を備える真空チャンバと、前記真空チャンバの内部に電子サイクロトロン共鳴によるプラズマを供給するプラズマ発生装置と、を備える。前記プラズマ発生装置は、前記プラズマを発生するプラズマ源と、前記プラズマ源を前記真空チャンバの内部に設置するフランジと、を備える。

Description

除電装置及びプラズマ発生装置
 本発明は、除電装置及びプラズマ発生装置に関する。
 本願は、2018年9月12日に、日本に出願された特願2018-170898号に基づき優先権を主張し、その内容をここに援用する。
 従来、真空チャンバを備える除電装置であって、真空チャンバ内の帯電物に対して、真空蒸着等の処理と除電とを行う除電装置がある。このような除電装置の真空チャンバ内は真空蒸着等の処理のための空間であって真空度の高い空間である高真空領域と、除電のための空間であって真空度の低い空間である低真空領域との二つの空間を有する必要がある。このような除電装置は、真空引きされた真空チャンバ内において除電対象である帯電物に向けてガスを噴出することにより帯電物を除電する(特許文献1参照)。より具体的には、このような除電装置は、帯電物に受動的に放電させることによって帯電物を除電する。このような除電装置は、例えば、除電を行う低真空領域にガス導入管を介してアルゴン等のガスを流し、直流電源によりプラズマを発生させ、除電対象とプラズマを接触させることにより帯電物を除電する(特許文献2参照)。
特開2009-181938号公報 特開平10-298758号公報
 しかしながら、このような除電装置は高真空領域と低真空領域とを備える必要があるため、装置が大型化してしまうという課題があった。
 上記事情に鑑み、本発明は、高真空領域と低真空領域とを備える必要がない除電装置を提供することを目的としている。
 本発明の一態様は、帯電物を内部に設置可能であり、高真空処理部を備える真空チャンバと、前記真空チャンバの内部に電子サイクロトロン共鳴によるプラズマを供給するプラズマ発生装置と、を備え、前記プラズマ発生装置は、前記プラズマを発生するプラズマ源と、前記プラズマ源を前記真空チャンバの内部に設置するフランジと、を備える除電装置である。
 本発明により、高真空領域と低真空領域とを備える必要がない除電装置を提供することが可能となる。
実施形態の除電装置100の構成の一例を示す図である。 実施形態のプラズマ発生装置500の構成の一例を示す図である。 実施形態におけるプラズマ源501の模式的断面図である。 実施形態におけるプラズマ源501の模式的上面図である。 実施形態におけるプラズマ源501の動作を説明する模式的断面図である。 実施形態におけるノズル部60が複数の開口部610を有する場合の、開口部610の配置の一例を示す図である。 実施形態における引き出し電極507によってプラズマ源501からプラズマが引き出される効果を示す実験結果を示す図である。 変形例における阻害材101の一例を示す図である。 変形例における阻害材101の効果を示す実験の実験環境を説明する説明図である。 変形例における阻害材101の効果を示す実験結果の一例を示す図である。
 図1は、実施形態の除電装置100の構成の一例を示す図である。
 除電装置100は、帯電物9を除電する。さらに、除電装置100は、帯電物9に蒸着等の高真空を必要とする処理を実行する。以下、説明の簡単のため、高真空を必要とする処理を高真空処理という。帯電物9は、帯電可能なものであればどのようなものであってもよく、例えば、蒸着処理の対象となるフィルムシートであってもよい。除電装置100は、例えば、フィルムシートの加工における加工精度の低下であってフィルムシートの帯電による加工精度の低下を抑制するために、フィルムシートを除電する。フィルムシートの帯電は、フィルムシートを構成する高分子材料の移動や摩擦等によって生じる。除電装置100は、例えば、高分子材料などの絶縁物の搬送工程中の除電が必要な工程において除電を行う。除電装置100は、例えば、後述する高真空処理部3が実行する処理のうち除電が必要な工程において除電を行う。
 除電装置100は、例えば、真空チャンバ1、真空ポンプ2、高真空処理部3、送り出し部4-1、ガイド部4-2~4-5、巻き取り部4-6、コンベア4-7及び除電処理部5を備える。
 真空チャンバ1は、内部が空洞の筐体である。真空チャンバ1は、外部の圧力と内部の圧力との差が所定の圧力未満であれば変形しない。真空チャンバ1は、帯電物9を内部に設置可能である。
 真空ポンプ2は、真空チャンバ1内の空気を引き、真空チャンバ1内の圧力を所定の圧力にする。所定の圧力は、例えば、10-5Pa以上1Pa以下である。
 高真空処理部3は、帯電物9に対して高真空処理を実行する。高真空処理は、高真空において実行される処理である。高真空は、10-5Pa以上1Pa以下の真空である。高真空処理部3は、高真空処理を実行するものであればどのようなものであってもよく、例えば、蒸着部であってもよい。
 高真空処理部3は、例えば、高真空が維持された真空チャンバー内で高分子材料などの絶縁物の搬送工程、アルミニウム、ニッケル、チタン、クロム等の金属蒸着工程、SiO、SiO、Al、CaF、SnO等のセラミック蒸着工程、VLSI(very large scale integration)製造でのウエハー等の半導体材料の微細加工程工程や薄膜形成工程、有機EL(electro-luminescence)生産工程における有機材料の薄膜生成工程や陰極として使用するアルミニウム蒸着工程等を実行する。
 送り出し部4-1、ガイド部4-2~4-5、巻き取り部4-6、コンベア4-7によって帯電物9が搬送される。より具体的には、帯電物9は送り出し部4-1によって送りだされ、コンベア4-7によって、ガイド部4-2~4-5を経由して、巻き取り部4-6まで搬送される。
 除電処理部5は、帯電物9を除電し、プラズマ発生装置500を備える。プラズマ発生装置500はプラズマを発生し、フランジによって真空チャンバ1に接続される。
 プラズマ発生装置500が発生させたプラズマは、真空チャンバ1の内部に充満する。
 図2は、実施形態のプラズマ発生装置500の構成の一例を示す図である。
 プラズマ発生装置500は、例えば、プラズマ源501、接続部502、伝熱部503、フランジ504、ガスポート505、マイクロ波フィードスルー506、引き出し電極507、マイクロ波チューナー508、フィラメント509、ガス源510、流量計511、RF発振器512及び電力計513を備える。
 プラズマ源501は、電子サイクロトロン共鳴を用いてプラズマを発生する。プラズマ源501は、電子サイクロトロン共鳴を用いてプラズマを発生するため無電極である。プラズマ源501の詳細な構成については後述する。
 接続部502は、フランジ504とプラズマ源501とを接続するとともに、プラズマ源501において発生する熱を、伝熱部503を介してフランジ504に伝熱する。接続部502は、プラズマ源501が所定の温度以上になることを抑制する。接続部502は、プラズマ源501が所定の温度以上になることを抑制するほどの熱伝導率を有するものであればどのようなものであってもよい。接続部502は、例えば、アルミニウムのブロックであってもよいし、銅のブロックであってもよいし、カーボンのブロックであってもよい。
 伝熱部503は、接続部502が伝熱した熱をフランジ504に伝熱する。伝熱部503は、プラズマ源501が所定の温度以上になることを抑制する。伝熱部503は、プラズマ源501が所定の温度以上になることを抑制するほどの熱伝導率を有するものであって、接続部502よりも高い熱伝導率を有するものであればどのようなものであってもよい。伝熱部503は、例えば、銅のメッシュであってもよいし、カーボンシートであってもよい。
 フランジ504は、プラズマ源501を真空チャンバ1に接続し、プラズマ源501を真空チャンバ1の内部に設置する。フランジ504は、接続部502に接続され、接続部502及び伝熱部503を介して伝熱された熱を真空チャンバ1の外部に放熱する。フランジは、どのようなフランジであってもよく、例えば、ICF規格に基づいたフランジであってもよい。
 ガスポート505は、プラズマ源501にガスを供給する。例えば、ガスポート505は、後述する空間21にガスを供給する。ガスポート505が供給するガスはプラズマの発生を助長するガスであればどのようなものであってもよい。ガスポート505が供給するガスは、例えば、キセノンや、アルゴンや、窒素等の不活性ガスであってもよいし、空気や酸素等の活性ガスであってもよい。以下、ガスポート505が供給するガスを放電ガスという。
 マイクロ波フィードスルー506は、マイクロ波を真空チャンバ1の外部からプラズマ源501まで伝送する。マイクロ波フィードスルー506は、マイクロ波を真空チャンバ1の外部からプラズマ源501まで伝送可能であればどのようなものであってもよい。マイクロ波フィードスルー506は、例えば、SMA端子に接続されるマイクロ用同軸ケーブルであってもよい。なお、マイクロ波フィードスルー506が伝送するマイクロ波の周波数は電子サイクロトロン共鳴条件を満たす周波数であればどのような周波数であってもよく、例えば、4.25GHzであってもよい。
 引き出し電極507は、プラズマ源501によって発生したプラズマを引き寄せる。例えば、引き出し電極507は、所定の電圧が印加されることで所定の電位を有し、プラズマ源501との間の電位差によってプラズマを引き寄せる。引き出し電極507は、プラズマを閉じ込めない形状であればどのような形状であってもよく、例えば直径2cmの円であってもよい。
 マイクロ波チューナー508は、プラズマ源501へのマイクロ波の伝送効率の低下を抑制する。例えば、マイクロ波チューナー508は、プラズマ源501によって吸収されずに反射されたマイクロ波をプラズマ源501に向けて反射することで、伝送効率の低下を抑制する。このことは、マイクロ波チューナー508が、マイクロ波フィードスルー506とプラズマ源501において発生するプラズマとの間のインピーダンスを整合させることを意味する。
 フィラメント509は、プラズマ源501内部に供給されたガスに点火する。フィラメント509は、プラズマ点火用のフィラメントであって、小流量のガスと、イオン化エネルギーの大きいガスとに点火可能である。なお、プラズマ発生装置500は必ずしもフィラメント509を備えなくてもよい。
 ガス源510は、ガスポート505に放電ガスを供給する。ガス源510は、ガスポート505に放電ガスを供給可能であればどのようなものであってもよく、例えば、放電ガスの入った容器であってもよい。
 流量計511は、ガスポート505を流れるガスの流量を測定する。
 RF発振器512は、マイクロ波を生成する。RF発振器512が生成したマイクロ波は、マイクロ波フィードスルー506を介してプラズマ源501まで伝送される。
 電力計513は、マイクロ波フィードスルー506を伝送され、プラズマ源501によって反射されたマイクロ波の電力を測定する。ユーザは電力計513の計測値を読み取り、読み取った計測値によってプラズマが点火したか否かを判断することができる。
 このようにプラズマ発生装置500は、フランジ504を備えるため、ユーザは真空チャンバ1の任意の場所にプラズマ源501を設置することができる。
 <プラズマ源501の詳細>
 ここで、図3及び図4を参照しつつ、プラズマ源501の詳細について説明する。以下、説明の簡単のため、X軸、Y軸、Z軸を有する直交座標を導入する。
 プラズマ源501は、高真空中でプラズマを発生する。より具体的には、プラズマ源501は、高真空処理部3の真空度に略同一の真空度において、プラズマを発生する。以下、プラズマ源501の詳細を説明する。
 図3は、実施形態におけるプラズマ源501の模式的断面図である。
 図4は、実施形態におけるプラズマ源501の模式的上面図である。図3には、図4のA1-A2線の位置での断面が示されている。
 プラズマ源501は、筒状磁石部10と、筒状体20と、第1磁気回路部30と、第2磁気回路部40と、アンテナ50と、ノズル部60と、ガスポート505と、絶縁部材70とを具備する。
 筒状磁石部10は、筒状の磁性体であり、その内部が中空になっている。筒状磁石部10は、開口端10a(第1開口端)と、開口端10aとは反対側に位置する開口端10b(第2開口端)とを有する。筒状磁石部10では、例えば、開口端10aがS極性(第1極性)を有し、開口端10bがS極性とは反対のN極性(第2極性)を有している。
 筒状磁石部10では、図4に示すように例えば、サマリウムコバルトで構成された複数のブロック状の磁石10MがX-Y軸平面において環状に並べられている。筒状磁石部10の極性は、上記の例に限らず、開口端10aがN極性を示し、開口端10bがS極性を示してよい。
 筒状磁石部10の外形は、例えば、円状である。筒状磁石部10の外径は、例えば、50mm以下に構成され、プラズマ源501の小型化が実現されている。筒状磁石部10の外形は、円状に限らず、三角形、四角形、五角形、六角形・・、といった多角形であってもよい。
 筒状体20は、筒状磁石部10に囲まれている。筒状体20の内部は、中空である。筒状体20は、開口端20aと、開口端20aとは反対側に位置する開口端20bとを有する。開口端20aは、開口端10aに面一に構成される。開口端20bは、開口端10bに面一に構成される。X-Y軸平面において、筒状体20と筒状磁石部10とは、同心円状に位置する。筒状体20と筒状磁石部10とは、必ずしも、同心円状に位置する必要はなく、それぞれの中心軸同士が若干ずれてもよい。
 筒状体20の外形は、筒状磁石部10の外形に応じて適宜変更される。図4の例では、筒状体20の外形は、円状である。筒状体20は、例えば、モリブデン(Mo)を含む。
 磁気回路部30(第1磁気回路部)は、筒状磁石部10の開口端10a及び筒状体20の開口端20aに接する。磁気回路部30は、開口端10a、20aを閉塞する。ここで、「閉塞」とは、磁気回路部30が開口端10a、20aを隙間なく封じ切ることに限らず、微小の隙間がある場合、または、磁気回路部30に他の部材を貫通させる小径孔が設けられた状態で閉じる場合も含む。磁気回路部30は、板状である。磁気回路部30は、強磁性体であり、例えば、軟鉄で構成されている。磁気回路部30の外形は、筒状磁石部10の外形に応じて適宜変更される。図4の例では、磁気回路部30の外形は、円状である。
 磁気回路部30は、空間21に設けられた突出部90を有する。突出部90は、磁気回路部30から後述する角部410に向かって突出している。突出部90は、筒状であり、アンテナ50の一部を囲む。突出部90の先端部91は、磁気回路部40(第2磁気回路部)の角部410に向かうほど、その肉厚が薄くなっている。先端部91の角度は、例えば、鋭角に構成されている。先端部91と角部410との間に形成される磁場のミラー比は、1.5以上である。突出部90をZ軸方向から見た断面は、位相幾何学における種数1の形状であればどのような形状であってもよく、例えば、円環であってもよい。
 また、電子サイクロトロン共鳴によって加熱された電子をミラー閉じ込めするために、先端部91と角部410との磁場強度は電子サイクロトロン共鳴条件を満たす磁場より高くなければならない。マイクロ波周波数fと電子サイクロトロン共鳴条件を満たす磁場Bとには、2πf=eB/mの関係がある。ここでeは電気素量、mは電子質量。マイクロ波周波数が2.45GHzの場合、電子サイクロトロン共鳴条件を満たす磁場は875Gaussになる。
 磁気回路部40は、筒状磁石部10の開口端10b及び筒状体20の開口端20bに接する。磁気回路部40は、筒状磁石部10を介して磁気回路部30に対向配置される。磁気回路部40は、板状である。磁気回路部40は、強磁性体であり、例えば、軟鉄で構成されている。磁気回路部40の外形は、筒状磁石部10の外形に応じて適宜変更される。
 図4の例では、磁気回路部40の外形は、円状である。
 磁気回路部40は、筒状体20によって囲まれた空間21を開口する開口部420(第1開口部)を有する。開口部420は、磁気回路部30及び40に対して、同心円状に配置されている。開口部420は、磁気回路部30及び40に対して、同心円状に配置されている必要はなく、それぞれの中心軸同士が若干ずれてもよい。開口部420の内径は、突出部90の外径よりも大きい。突出部90の外径とは、Z軸に直交する断面における中心を通る外周対角線長の最大値である。なお、外周対角線長とは、円環状に形成された突出部90の外縁線がなす円の直径である。また、別の観点では、突出部90の外径は、開口部420の内周線で囲まれる領域の内側である。
 ここで角部410について説明する。角部410は、第2磁気回路部40において、第2磁気回路部40の第1磁気回路部30側の主面40aと、第1開口部420の内壁420wとが交差する位置である。以下、主面40aと内壁420wとがなす角を角部410の角度という。磁気回路部40に開口部420が設けられたことにより、磁気回路部40においては、磁気回路部40の磁気回路部30側の主面40aと、開口部420の内壁420wとが交差する角部410が形成される。角部410の角度は、図3の例では、略90°となっている。角部410の角度は、鋭角であってもよい。例えば、角部410の角度が鋭角の場合、開口部420の断面形状は、その内径が磁気回路部30から遠ざかるほど、徐々に広がるテーパ状になる。なお、磁気回路部40の主面40aと反対側に位置する主面を主面40bとする。
 アンテナ50は、プラズマ源501外からプラズマ源501内に導入される。例えば、アンテナ50は、磁気回路部30を貫通し、空間21に導入される。アンテナ50は、いわゆるマイクロ波ランチャーである。アンテナ50は、例えば、モリブデンを含む。
 アンテナ50は、マイクロ波フィードスルー506に接続される。アンテナ50は、マイクロ波フィードスルー506を介してRF発振器512に接続され、RF発振器512によるマイクロ波電力の供給を受ける。これにより、アンテナ50は、マイクロ波を空間21に放射する。マイクロ波の波長は電子サイクロトロン共鳴条件を満たす波長であればどのような波長であってもよい。マイクロ波の波長は、例えば、122mm(2.45GHz)であってもよい。
 アンテナ50は、例えば、棒状であり、その途中が折り曲がっている。例えば、アンテナ50は、第1アンテナ部51と、第1アンテナ部51に連結する第2アンテナ部52とを有する。
 アンテナ50の形状は、必ずしも棒状であり、その途中が折り曲がっている形状である必要はない。アンテナ50の形状は、マイクロ波フィードスルー506に接続され、マイクロ波を空間21に放射可能であればどのような形状であってもよい。アンテナ50の形状は、例えば、直線の形状であってもよい。
 第1アンテナ部51は、例えば、磁気回路部30に直交し、磁気回路部30から後述するノズル部60に向かう方向に延在する。第1アンテナ部51は、例えば、磁気回路部30の中心軸上に位置する。
 第2アンテナ部52は、第1アンテナ部51と交差する。図3の例では、第1アンテナ部51と第2アンテナ部52とが直交し、アンテナ50がL字型になっている。第2アンテナ部52は、さらに、先端部91と角部410との間に位置している。つまり、第2アンテナ部52は、磁場B1に挿入されている。なお、磁場B1の詳細は後述するが、磁場B1は磁気回路部30、磁気回路部40、及び筒状磁石部10によって空間21内に形成される磁場である。このように、アンテナ50が折れ曲がった構成になることにより、マイクロ波がプラズマ中に効率よく吸収される。第1アンテナ部51と第2アンテナ部52とがなす角度は、直交に限らず、鈍角または鋭角であってもよい。
 ノズル部60は、磁気回路部30とは反対側において磁気回路部40に接する。例えば、ノズル部60は、磁気回路部40の主面40bに接している。ノズル部60は、開口部610(第2開口部)を有する。開口部610は、開口部420に連通する。開口部610の開口面積は、開口部420の開口面積よりも小さい。ノズル部60は、開口部を有するものであればどのようなものであってもよい。ノズル部60は、例えば、パンチングメタルであってもよい。
 開口部610は、開口部420に対して、同心円状に配置されている。開口部610は、開口部420に対して、同心円状に配置されている必要はなく、それぞれの中心軸同士が若干ずれてもよい。開口部610の内径は、例えば、5mmである。空間21が開口部610を介して装置外と通じていることにより、空間21に発生したプラズマを開口部610から取り出すことができる。ノズル部60は、例えば、モリブデンを含む。開口部の厚さは、例えば、5mmや、2.5mmや、1mmである。
 ガスポート505は、プラズマ源501の外部から空間21に導入される。ガスポート505は、例えば、磁気回路部30を貫通し、空間21に導入される。ガスポート505は、例えば、筒状磁石部10及び筒状体20を貫通し、空間21に導入される。ガスポート505は、例えば、磁気回路部40及びノズル部60を貫通し、空間21に導入される。
 ガスポート505において放電ガスが供給される供給口を供給口505pとして、供給口505pは、供給口505pとアンテナ50の先端50pとの距離が最も短くなるように配置される。例えば、ガスポート505及びアンテナ50をZ軸方向から上面視した場合、供給口505pと先端50pとは、互いに対向する。
 絶縁部材70は、アンテナ50と磁気回路部30との間に設けられている。絶縁部材70は、フッ化炭素樹脂、石英等を含む。これにより、アンテナ50と磁気回路部30との絶縁が保たれる。
 プラズマ源501において、筒状体20の内径をa(mm)、空間21に供給されるマイクロ波電力のマイクロ波遮断波長をλ(mm)としたときに、プラズマ源501は、λ>3.41×(a/2)の関係式を満たすように構成されている。筒状体20が多角径の場合は、内径aは、筒状体20の中心軸を通過する内径の最大内径とする。
 図5は、実施形態におけるプラズマ源501の動作を説明する模式的断面図である。
 プラズマ源501において、筒状磁石部10に接続された磁気回路部30及び筒状磁石部10に接続された磁気回路部40は、それぞれヨーク材として機能する。さらに、磁気回路部30は、突出部90を有し、磁気回路部40は、角部410を有する。これにより、双方の突起間(突出部90と角部410との間)に、ミラー比の高い磁場B1(ミラー磁場)が形成される。さらに、磁場B1は、突出部90が筒状であり、磁気回路部40の開口部420が円状であることから、円環状に形成される。
 このような状況下で、空間21に供給口505pから放電ガスが供給され、アンテナ50から空間21にマイクロ波が供給されると、放電ガスが放電し、マイクロ波と磁場B1との相互作用によって、空間21に電子サイクロトロン共鳴が起こる。これにより、プラズマ中の電子に選択的かつ直接的にエネルギーが供給され、高いエネルギーを持った電子と、放電ガスとが衝突して空間21に高密度プラズマが発生する。
 ここで、プラズマ源501は、λ>3.41×(a/2)の関係式を満たすように構成されている。これにより、空間21では、マイクロ波が共振しにくくなり、空間21におけるマイクロ波の進行が抑制される。この結果、プラズマ源501からはマイクロ波が漏洩しにくくなる。また、共振させなければ、マイクロ波電界が高くならず、マイクロ波電界に比例する容器壁面でのマイクロ波損失を抑制することができる。
 さらに、プラズマ源501においては、突出部90と角部410との間に、ミラー磁場(磁場B1)を形成し、磁場B1に閉じ込めた電子が連続的に電子サイクロトロン共鳴により加熱される。これにより、マイクロ波の電界が弱くても、放電ガスを電離できるほどの高エネルギー電子を生成できる。
 また、プラズマ源501においては、開口部420の内径が突出部90の外径よりも大きく構成されている。これにより、磁場B1においては、磁力線が突出部90から角部410に向かうほど、より疎になる。この結果、ノズル部60側の磁束密度は、突出部90側の磁束密度よりも小さくなる。
 これにより、空間21においては、ノズル部60の開口部610付近に低磁場領域が形成され、開口部610付近では、プラズマが磁場によって捕捉されにくくなっている。このため、開口部610付近でのプラズマの移動度が高まり、プラズマ中の電子またはイオンが開口部610から効率よく噴射される。
 例えば、空間21に供給口505pから流量0.3sccm程度のキセノンガスを導入し、8Wのマイクロ波をアンテナ50に投入したとき、開口部610から200mA程度の電子電流と、5mA程度のイオン電流とが得られている。
 なお、空間21に残ったプラズマ中のイオンは、磁場B1を通り抜けて、筒状体20の内壁または磁気回路部30、40の主面に到達する。筒状体20または磁気回路部30、40に当たったイオンは、電荷を失い、中性ガスに戻り、放電ガスとして再利用される。
 このため、プラズマ源501では、極力少ないガス流量でプラズマの維持が可能になっている。
 一方、突出部90側では、磁力線が角部410から突出部90に向かうほど、より密になっている。これにより、絶縁部材70付近には、高磁場領域が形成され、空間21に発生するプラズマにおいては、絶縁部材70に晒されるプラズマの密度が開口部420に発生するプラズマの密度よりも高くなる。
 これにより、放電中に、絶縁部材70にコンタミ、被膜等の異物が堆積したとしても、異物は、プラズマによるスパッタリング効果によって即座に除去される。仮に、異物が金属を含み、絶縁部材70に異物が堆積することになれば、アンテナ50と磁気回路部30とが導通し、アンテナ50から空間21にマイクロ波を充分に供給できないことになる。
 これに対し、プラズマ源501では、空間21にプラズマを発生さえすれば、絶縁部材70上の異物がセルフクリーニングにより除去される。すなわち、プラズマ源501は、メンテナンスフリーで長期間にわたり稼動することができる。
 また、プラズマ源501では、供給口505pとアンテナ50の先端50pとが最も近くなるように構成されていることから、第2アンテナ部52付近に放電ガスが供給される。これにより、供給口505pから空間21に導入された放電ガスは、アンテナ50から発せられるマイクロ波によって効率よく電離する。この結果、高密度のプラズマが空間21に発生する。
 また、磁気回路部30とノズル部60との間の距離をL(mm)としたときに、プラズマ源501は、λ>3.41×(L/2)の関係式を満たすように構成されてもよい。これにより、マイクロ波は、ノズル部60の開口部610からより確実に漏洩しにくくなる。
 このように、プラズマ源501は、筒状磁石部10と、筒状体20と、第1磁気回路部30と、第2磁気回路部40と、アンテナ50と、ノズル部60と、ガスポート505と、絶縁部材70とを備える。
 筒状磁石部10は、第1開口端10aと、第1開口端10aとは反対側に位置する第2開口端10bとを有し、第1開口端10aが第1極性を有し、第2開口端10bが第1極性とは反対の第2極性を有する。
 筒状体20は、筒状磁石部10に囲まれる。
 第1磁気回路部30は、第1開口端10aに接し、第1開口端10aを閉塞する。
 第2磁気回路部40は、第2開口端10bに接し、第1磁気回路部30に対向配置され、筒状体20によって囲まれた空間21を開口する第1開口部420を有する。
 アンテナ50は、第1磁気回路部30を貫通し、空間21に導入され、空間21にマイクロ波電力を供給することが可能である。
 ノズル部60は、第1磁気回路部30とは反対側において第2磁気回路部40に接し、第1開口部420よりも開口面積が小さく第1開口部420に連通する第2開口部610を有する。
 ガスポート505は、筒状磁石部10及び筒状体20を貫通し、空間21に放電ガスを供給することも可能である。
 絶縁部材70は、アンテナ50と第1磁気回路部30との間に設けられる。
 また、プラズマ源501においては、筒状体20の内径をa(mm)、空間21に供給されるマイクロ波電力のマイクロ波遮断波長をλ(mm)としたときに、λ>3.41×(a/2)の関係式が満たされる。
 このようなプラズマ源501は、プラズマ源501からマイクロ波が漏洩しにくく、プラズマ源501によって高密度のプラズマが発生し、電子またはイオンをプラズマ源501の外に噴射することができる。
 より具体的には、プラズマ発生装置500は、プラズマ源501からマイクロ波が漏洩しにくいため、低流量でのプラズマの生成が可能である。そのため、プラズマ発生装置500は、プラズマの生成にともなう真空チャンバ1内部の真空度の低下を抑制することができる。なお、低流量とは、0.05SCM~50SCMなどのプラズマの維持が可能な流量を意味する。
 上記において説明したように、ノズル部60は、マイクロ波の漏洩と、放電ガスの漏洩とを抑制する。ノズル部60が、マイクロ波及び放電ガスの漏洩を抑制する大きさは、ノズル部60の厚さと、開口部610の大きさ又は数に依存する。また、プラズマが開口部610を介して空間21から真空チャンバ1の内部に放出される量も、ノズル部60の厚さと、開口部610の大きさ又は数に依存する。
 具体的には、ノズル部60の厚さが薄いほど、マイクロ波、放電ガス及びプラズマは真空チャンバ1内部に漏洩しやすくなる。また、開口部610の大きさ又は数が大きいほど、マイクロ波、放電ガス及びプラズマは真空チャンバ1内部に漏洩しやすくなる。マイクロ波及び放電ガスの漏洩が大きいほど、プラズマの発生効率が下がる。プラズマの放出の量が低いほど、除電の効率が下がる。
 このように、ノズル部60は、マイクロ波の漏洩と、放電ガスの漏洩と、プラズマの放出の量とを制御するため、除電装置100の設計者は、ノズル部60の厚さと、開口部610の大きさ又は数とを目的に応じて適切に設計する必要がある。
 図6は、実施形態におけるノズル部60が複数の開口部610を有する場合の、開口部610の配置の一例を示す図である。
 図6において、ノズル部60は、円形であり径の長さが同じ複数の開口部610を格子状に備える。
 図7は、実施形態における引き出し電極507によってプラズマ源501からプラズマが引き出される効果を示す実験結果を示す図である。
 図7において横軸は、プラズマ源501から発生するイオン電流の到達距離を表す。図7において縦軸は、イオン電流の電流値を表す。図7は、引き出し電極507によって、イオン電流の電流値が大きくなることを示す。このことは、引き出し電極507がプラズマを引き出す効果を有することを示す。
 <まとめ>
 このように構成された除電装置100は、低流量の放電ガスによってプラズマを発生することができるプラズマ源501と、プラズマ源501によって発生する熱を装置の外部に伝熱する接続部502とを備えるプラズマ発生装置500を備えるため、真空チャンバ1内部の真空度の低下を抑制しながらプラズマを発生することができる。そのため、高真空領域と低真空領域とを有する必要がなく、装置の大型化を抑制することができる。
 このように構成された除電装置100は、プラズマ発生装置500がフランジ504を備える。そのため、このように構成された除電装置100は、真空チャンバ1の筐体上にフランジを取り付けることで、真空チャンバ1の筐体上のフランジが位置する任意の箇所にプラズマ発生装置500を備えることができる。
 また、このように構成された除電装置100は、伝熱部503を備えるため、プラズマ源501において発生した熱を放熱することができ、高熱による不安定な動作の発生を抑制することができる。
 また、このように構成された除電装置100は、プラズマ発生装置500を備えるため、上述したように高真空領域と低真空領域とを有する必要がない。そのため、このように構成された除電装置100は、真空ポンプ2の負荷を軽減することができる。
 また、このように構成された除電装置100は、無電極なプラズマ発生装置500を備えるため、直流放電によってプラズマを発生する必要がない。そのため、このように構成された除電装置100は、放電のための電極が消耗することによるプラズマの発生効率の低下と、除電装置100の劣化とを抑制することができる。
 また、このように構成された除電装置100は、放電ガスの流量が0.05SCM~50SCMの範囲内であれば、プラズマを発生することができる。また、このように構成された除電装置100は、複数種類の放電ガスによってプラズマを発生することができる。
 そのため、帯電物9の除電に適した種類の放電ガスと流量とによって、帯電物9を除電することができる。帯電物9の除電に適したとは、除電による帯電物9への侵襲が所定の度合よりも低いことを意味する。
(変形例)
 なお、プラズマ発生装置500は、プラズマを噴出する開口部610として、必ずしもひとつの開口部610のみを備える必要は無い。プラズマ発生装置500は、プラズマを噴出する開口部として、複数の開口部610を備えてもよい。複数の開口部610を有するプラズマ発生装置500は、開口部610がひとつの場合よりも多く、プラズマ源501の空間21において発生したプラズマを除電装置100内部に放出することができる。
 プラズマ発生装置500は、プラズマを噴出する開口部として、例えば、ハニカム状に位置する複数の開口部610、格子状に位置する複数の開口部610、各開口部の大きさが同一ではない複数の開口部610、または最近接の開口部との距離が一定ではない複数の開口部610、を備えてもよい。
 なお、引き出し電極507は、プラズマを引き出し可能であればどのような形状であってもよい。
 引き出し電極507は、例えば、プラズマ源501の中心と帯電物9の中心とを結ぶ線が略中心を通る中空の形状であってもよく、例えば、筒状であってもよいし、円環状であってもよい。
 なお、除電装置100は、帯電物9の一部の箇所とプラズマとの接触を阻害する阻害板を備えてもよい。
 図8は、変形例における阻害材101の一例を示す図である。
 図8において、図2と同様の機能を有するものは、同じ符号を付すことで説明を省略する。図8において、阻害材101は、帯電物9の一部を覆い、プラズマと帯電物9との接触を阻害する。このように、阻害材101によってプラズマとの接触が阻害された箇所は、帯電したままであり、除電されない。阻害材101は、例えば、除電を必要としない箇所においてプラズマを遮断する導電性部材であってよい。阻害材101は、例えば、パンチングメタルであってよい。
 このように構成された変形例の除電装置100は、阻害材101を備えるため、帯電物9の一部のみを除電できる。
 図9は、変形例における阻害材101の効果を示す実験の実験環境を説明する説明図である。
 中和器900は、プラズマを放射する。中和器900からの下方600mmの位置に、阻害材101が位置する。阻害材101から下方20mmの位置に、帯電電極901が位置する。帯電電極901は、中和器900による除電対象である。帯電電極901には、100Vが印加されている。実験においては、阻害材101の一端と帯電電極901の一端との間の距離をLとして、距離Lを変化させた場合に流れる除電電流を測定した。除電電流は、帯電電極901がプラズマと接触した場合に帯電電極901に流れる電流である。実験においては、測定された除電電流の大きさによって中和器900から放射されたプラズマが阻害材101によって減衰する減衰率が算出された。
 図10は、変形例における阻害材101の効果を示す実験結果の一例を示す図である。
 図10の縦軸は、プラズマの透過率を表す。透過率は阻害材101が無い場合に帯電電極901に流れた除電電流に対する阻害材101がある場合に帯電電極901に流れた除電電流の比率である。図10の横軸は、距離Lを表す。図10は、距離Lが大きくなるほどプラズマの透過率が下がることを示す。
 なお、プラズマ発生装置500は、プラズマ源501と接続部502との間に、接続部502よりも高い熱伝導率を有する伝熱部503aを備えてもよい。伝熱部503aは、接続部502よりも高い熱伝導率を有するものであればどのようなものであってもよい。
 伝熱部503aは、例えば、銅のメッシュであってもよいし、カーボンシートであってもよい。
 なお、真空チャンバ1は接続先の一例である。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 上記した除電装置及びプラズマ発生装置によれば、高真空領域と低真空領域とを備える必要がない除電装置を提供することが可能となる。
 1  真空チャンバ
 2  真空ポンプ
 3  高真空処理部
 4-1  送り出し部
 4-2  ガイド部
 4-3  ガイド部
 4-4  ガイド部
 4-5  ガイド部
 4-6  巻き取り部
 4-7  コンベア
 5  除電処理部
 100  除電装置
 500  プラズマ発生装置
 501  プラズマ源
 502  接続部
 503  伝熱部
 503a  伝熱部
 504  フランジ
 505  ガスポート
 506  マイクロ波フィードスルー
 507  引き出し電極
 508  マイクロ波チューナー
 509  フィラメント
 510  ガス源
 511  流量計
 512  RF発振器512
 513  電力計
 10  筒状磁石部
 20  筒状体
 30  第1磁気回路部
 40  第2磁気回路部
 50  アンテナ
 60  ノズル部
 70  絶縁部材
 101  阻害材

Claims (9)

  1.  帯電物を内部に設置可能であり、高真空処理部を備える真空チャンバと、
     前記真空チャンバの内部に電子サイクロトロン共鳴によるプラズマを供給するプラズマ発生装置と、
     を備え、
     前記プラズマ発生装置は、
     前記プラズマを発生するプラズマ源と、
     前記プラズマ源を前記真空チャンバの内部に設置するフランジと、
     を備える除電装置。
  2.  前記プラズマ発生装置は、
     前記プラズマ源と前記フランジとの間に位置し、前記プラズマ源と前記フランジとを接続し、前記プラズマ源で発生した熱を伝熱する接続部と、
     前記フランジと前記接続部との間と、前記プラズマ源と前記接続部との間とのいずれか一方又は両方に位置し、前記接続部よりも高い熱伝導率を有する伝熱部と、
     をさらに備える請求項1に記載の除電装置。
  3.  前記プラズマ源と前記帯電物との間に位置し、前記プラズマ源が発生した前記プラズマを引き寄せる引き出し電極、
     をさらに備える請求項1又は2に記載の除電装置。
  4.  前記引き出し電極は、前記プラズマ源の中心と前記帯電物の中心とを結ぶ線が略中心を通る中空の形状である、
     請求項3に記載の除電装置。
  5.  前記プラズマ源は、前記プラズマが発生する空間と、前記空間において発生した前記プラズマを外部に噴射する複数の開口部と、
     を備える請求項1から4のいずれか一項に記載の除電装置。
  6.  前記真空チャンバ内の圧力は、10-5Pa以上1Pa以下である、
     請求項1から5のいずれか一項に記載の除電装置。
  7.  前記帯電物の一部と前記プラズマとの接触を阻害する阻害材、
     をさらに備える請求項1から6のいずれか一項に記載の除電装置。
  8.  前記高真空処理部は、金属蒸着工程と、セラミック蒸着工程と、半導体材料の微細加工程工程と、半導体薄膜の形成工程と、有機材料の薄膜生成工程と、陰極として使用されるアルミニウムの蒸着工程との少なくともひとつを実行する、
     請求項1から7のいずれか一項に記載の除電装置。
  9.  電子サイクロトロン共鳴によってプラズマを発生するプラズマ源と、
     前記プラズマ源を真空チャンバに接続するフランジと、
     を備えるプラズマ発生装置。
PCT/JP2018/043779 2018-09-12 2018-11-28 除電装置及びプラズマ発生装置 WO2020054085A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18933511.0A EP3852503B1 (en) 2018-09-12 2018-11-28 Electricity removal device and plasma generation device
KR1020197029846A KR102168952B1 (ko) 2018-09-12 2018-11-28 제전 장치 및 플라즈마 발생 장치
CN201880024348.0A CN110574500B (zh) 2018-09-12 2018-11-28 静电消除装置以及等离子体发生装置
KR1020207028857A KR102302182B1 (ko) 2018-09-12 2018-11-28 제전 장치 및 플라즈마 발생 장치
US16/495,123 US10984989B2 (en) 2018-09-12 2018-11-28 Charge neutralizer and plasma generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-170898 2018-09-12
JP2018170898A JP6579635B1 (ja) 2018-09-12 2018-09-12 除電装置及びプラズマ発生装置

Publications (1)

Publication Number Publication Date
WO2020054085A1 true WO2020054085A1 (ja) 2020-03-19

Family

ID=68053612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043779 WO2020054085A1 (ja) 2018-09-12 2018-11-28 除電装置及びプラズマ発生装置

Country Status (7)

Country Link
US (1) US10984989B2 (ja)
EP (1) EP3852503B1 (ja)
JP (1) JP6579635B1 (ja)
KR (2) KR102302182B1 (ja)
CN (1) CN111885806A (ja)
TW (1) TWI742320B (ja)
WO (1) WO2020054085A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258855A (ja) * 1994-03-25 1995-10-09 Shin Meiwa Ind Co Ltd Ecrプラズマ発生装置
JPH10298758A (ja) 1997-04-25 1998-11-10 Kao Corp 薄膜製造方法及び装置
JP2009181938A (ja) 2008-02-01 2009-08-13 Sumitomo Metal Mining Co Ltd プラスチックフィルム除電装置及びプラスチックフィルム用加熱搬送装置
JP2011022531A (ja) * 2009-07-21 2011-02-03 Fuji Xerox Co Ltd 放電電極、放電器、プロセスカートリッジ、並びに画像形成装置
JP2018170898A (ja) 2017-03-30 2018-11-01 本田技研工業株式会社 複数ブラシ付dcモータ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336723A (ja) 1989-07-04 1991-02-18 Fujitsu Ltd 半導体装置の製造方法及び電子サイクロトロン共鳴エッチング装置
CN1028588C (zh) 1990-03-23 1995-05-24 四川大学 微波等离子体的产生方法和装置
ES2078735T3 (es) * 1991-05-21 1995-12-16 Materials Research Corp Modulo de grabado suave mediante util de agrupacion y generador de plasma ecr para el mismo.
CN2208742Y (zh) 1994-08-09 1995-09-27 南京双兴高技术应用开发公司 电子回旋共振等离子体刻蚀机
JP3225855B2 (ja) 1996-06-06 2001-11-05 株式会社島津製作所 薄膜形成装置
US5792522A (en) * 1996-09-18 1998-08-11 Intel Corporation High density plasma physical vapor deposition
JPH11279764A (ja) 1998-03-27 1999-10-12 Sony Corp 除電装置
KR100298758B1 (ko) 1998-10-26 2001-09-06 고준영 쓰레기매립경화처리방법
KR20010044059A (ko) 2000-06-29 2001-06-05 박용석 유리기판 또는 웨이퍼 처리용 전자 사이클로트론 공명에슁장치
JP2002088479A (ja) 2000-09-14 2002-03-27 Shimadzu Corp 薄膜形成装置
JP3619989B2 (ja) 2000-09-26 2005-02-16 春日電機株式会社 減圧下での除電方法
KR100520635B1 (ko) * 2003-12-10 2005-10-13 삼성전자주식회사 플레어 각이 변화하는 혼 안테나를 구비하는 전자사이클로트론 공명 장비
US7005591B1 (en) 2004-09-01 2006-02-28 Phillips & Temro Industries, Inc. Thermostatic cord
CN1800441B (zh) 2005-01-05 2010-09-01 鸿富锦精密工业(深圳)有限公司 等离子体增强薄膜沉积方法及装置
JP2007234437A (ja) 2006-03-02 2007-09-13 Trinc:Kk プラズマ放電式除電器
DE102006037144B4 (de) * 2006-08-09 2010-05-20 Roth & Rau Ag ECR-Plasmaquelle
FR2969372B1 (fr) 2010-12-21 2015-04-17 Commissariat Energie Atomique Dispositif d’ionisation a la resonance cyclotron electronique
WO2013100073A1 (ja) * 2011-12-28 2013-07-04 大日本印刷株式会社 プラズマを使った前処理装置を有した蒸着装置
CN103695839B (zh) 2013-12-07 2016-05-18 深圳市金凯新瑞光电有限公司 一种应用在镀膜设备中的离子源清洗装置
US20160042916A1 (en) 2014-08-06 2016-02-11 Applied Materials, Inc. Post-chamber abatement using upstream plasma sources
US9084334B1 (en) 2014-11-10 2015-07-14 Illinois Tool Works Inc. Balanced barrier discharge neutralization in variable pressure environments
JP6865417B2 (ja) * 2016-09-23 2021-04-28 国立大学法人茨城大学 除電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258855A (ja) * 1994-03-25 1995-10-09 Shin Meiwa Ind Co Ltd Ecrプラズマ発生装置
JPH10298758A (ja) 1997-04-25 1998-11-10 Kao Corp 薄膜製造方法及び装置
JP2009181938A (ja) 2008-02-01 2009-08-13 Sumitomo Metal Mining Co Ltd プラスチックフィルム除電装置及びプラスチックフィルム用加熱搬送装置
JP2011022531A (ja) * 2009-07-21 2011-02-03 Fuji Xerox Co Ltd 放電電極、放電器、プロセスカートリッジ、並びに画像形成装置
JP2018170898A (ja) 2017-03-30 2018-11-01 本田技研工業株式会社 複数ブラシ付dcモータ

Also Published As

Publication number Publication date
KR20200031558A (ko) 2020-03-24
JP6579635B1 (ja) 2019-09-25
KR20200120749A (ko) 2020-10-21
JP2020043013A (ja) 2020-03-19
EP3852503A1 (en) 2021-07-21
KR102168952B1 (ko) 2020-10-22
TWI742320B (zh) 2021-10-11
EP3852503B1 (en) 2023-10-25
US10984989B2 (en) 2021-04-20
EP3852503A4 (en) 2022-06-08
TW202011778A (zh) 2020-03-16
CN111885806A (zh) 2020-11-03
KR102302182B1 (ko) 2021-09-14
US20200279722A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US8039772B2 (en) Microwave resonance plasma generating apparatus and plasma processing system having the same
KR100971559B1 (ko) 플라즈마 프로세싱에서 마이크로-제트 인에이블되는 저 에너지 이온 생성 및 이송을 위한 방법과 장치
US7777178B2 (en) Plasma generating apparatus and method using neutral beam
TW201545196A (zh) 離子產生裝置及熱電子放出部
US20070013284A1 (en) Plasma accelerating apparatus and plasma processing system having the same
JP2010123467A (ja) プラズマ発生装置
US20040217713A1 (en) Magnetron plasma source
JP6656685B1 (ja) 除電装置及び除電方法
WO2020054085A1 (ja) 除電装置及びプラズマ発生装置
CN110574500B (zh) 静电消除装置以及等离子体发生装置
JP5798454B2 (ja) マイクロ波プラズマ改質方法
US11259397B2 (en) Microwave plasma source
JP5026732B2 (ja) マイクロ波導入器、プラズマ発生装置及びプラズマ処理装置
JP2012084624A (ja) プラズマ発生装置
JP2005290442A (ja) Ecrスパッタリング装置
JP3624986B2 (ja) ビーム加工方法及び装置
JPH0945255A (ja) マイクロ波型イオン源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018933511

Country of ref document: EP

Effective date: 20210412