JP2011022531A - 放電電極、放電器、プロセスカートリッジ、並びに画像形成装置 - Google Patents

放電電極、放電器、プロセスカートリッジ、並びに画像形成装置 Download PDF

Info

Publication number
JP2011022531A
JP2011022531A JP2009169866A JP2009169866A JP2011022531A JP 2011022531 A JP2011022531 A JP 2011022531A JP 2009169866 A JP2009169866 A JP 2009169866A JP 2009169866 A JP2009169866 A JP 2009169866A JP 2011022531 A JP2011022531 A JP 2011022531A
Authority
JP
Japan
Prior art keywords
discharge electrode
discharge
surface layer
atomic
discharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009169866A
Other languages
English (en)
Inventor
Masayuki Torigoe
誠之 鳥越
Takeshi Iwanaga
剛 岩永
Shigeru Yagi
茂 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2009169866A priority Critical patent/JP2011022531A/ja
Publication of JP2011022531A publication Critical patent/JP2011022531A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

【課題】放電器への放電生成物の付着を抑制し、放電安定性を向上させる。
【解決手段】放電電極用基体1と、前記放電電極用基体1の表面に設けられた、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層12と、を有する放電電極20である。
【選択図】図3

Description

本発明は、放電電極、放電器、プロセスカートリッジ、並びに画像形成装置に関する。
従来より、電子写真方式の複写機・プリンタでは、露光による画像書き込みの前に感光体を均一に帯電したり感光体上のトナー画像を記録媒体に転写したりするための帯電手段や、転写前のトナー電荷を適切な範囲に調整したり転写後に感光体上に残留したトナー電荷をクリーニング前に低減するための除電手段としてコロナ放電器が広く用いられている。
近年、コロナ放電器に関し、種々の検討が行われている。
例えば、コロナ放電器のワイヤ表面を絶縁性の樹脂等で覆い、ワイヤの一部を露出させコロナの発生点を特定してオゾンの発生を減らす技術が知られている(例えば、特許文献1参照)。
また、導電コアを絶縁シースで被覆した電荷ストリーム分割ロッドを有する走査型コロトロンが知られている(例えば、特許文献2参照)。
また、誘電体で被覆されたワイヤに交流電圧を印加し、ワイヤ近くの電位制御板に直流電圧を加えて感光体へのイオン量を制御し安定な表面電位を得る技術が知られている(例えば、特許文献3参照)。
また、コロナ放電器の放電電極へのシリカ粒子付着抑制と耐磨耗性向上のためテトラヘドラルアモルファスカーボン(t−aC)層で被覆する技術が知られている(例えば、特許文献4参照)。
更には、コロナ放電器の放電電極表面を0.05μm以上2.0μm以下の酸化ケイ素などの無機酸化物で被覆する技術が知られている(例えば、特許文献5参照)。
特開平5−173403号公報 特開平10−10843号公報 特開2002−23460号公報 特開2008−102433号公報 特開2008−309996号公報
本発明の課題は、表面層を有しない場合や、表面層における酸素の含有量が15原子%以上55原子%以下の範囲外である場合と比較して、放電生成物の付着が抑制され、かつ、放電安定性に優れた放電電極を提供することである。
上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
放電電極用基体と、
前記放電電極用基体の表面に設けられた、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層と、
を有する放電電極。
請求項2に係る発明は、
前記表面層が、更に、10原子%以上30原子%以下の水素を含む請求項1に記載の放電電極。
請求項3に係る発明は、
前記表面層の体積抵抗率が、10Ω・cm以上1013Ω・cm以下である請求項1又は請求項2に記載の放電電極。
請求項4に係る発明は、
請求項1〜請求項3のいずれか1項に記載の放電電極と、前記放電電極の周囲の一部を囲って配置された筐体と、を備えた放電器。
請求項5に係る発明は、
感光体と、前記感光体を帯電する帯電手段と、を備え、
前記帯電手段が請求項4に記載の放電器であるプロセスカートリッジ。
請求項6に係る発明は、
更に、前記感光体を除電する除電手段を備え、前記除電手段が請求項4に記載の放電器である請求項5に記載のプロセスカートリッジ。
請求項7に係る発明は、
感光体と、
前記感光体を帯電する帯電手段と、
帯電した前記感光体の表面に潜像を形成する潜像形成手段と、
前記感光体の表面に形成された潜像をトナーにより現像してトナー像を形成する現像手段と、
前記感光体の表面に形成されたトナー像を記録媒体に転写する転写手段と、
を備え、
前記帯電手段が請求項4に記載の放電器である画像形成装置。
請求項8に係る発明は、
更に、前記転写後の前記感光体を除電する除電手段を備え、
前記除電手段が請求項4に記載の放電器である請求項7に記載の画像形成装置。
請求項1に係る発明によれば、表面層を有しない場合や、表面層における酸素の含有量が15原子%以上55原子%以下の範囲外である場合と比較して、放電生成物の付着が抑制され、かつ、放電安定性に優れる。
請求項2に係る発明によれば、表面層における水素の含有量が10原子%以上30原子%以下の範囲外である場合と比較して、放電生成物の付着が抑制され、かつ、表面層の強度が向上する。
請求項3に係る発明によれば、前記表面層の体積抵抗率が、10Ω・cm以上1013Ω・cm以下の範囲外である場合と比較して、放電生成物の付着が抑制され、かつ、放電安定性に優れる。
請求項4に係る発明によれば、放電電極が表面層を有しない場合や、放電電極の表面層における酸素の含有量が15原子%以上55原子%以下の範囲外である場合と比較して、放電生成物の付着が抑制され、かつ、放電安定性に優れる。
請求項5に係る発明によれば、帯電手段が本構成を有しない場合と比較して、放電器に付着した放電生成物に起因する画像異常が抑制され、かつ、放電安定性の低下に起因する画像濃度ムラが抑制される。
請求項6に係る発明によれば、除電手段が本構成を有しない場合と比較して、放電器に付着した放電生成物に起因する画像異常が抑制され、かつ、放電安定性の低下に起因する画像濃度ムラが抑制される。
請求項7に係る発明によれば、帯電手段が本構成を有しない場合と比較して、放電器に付着した放電生成物に起因する画像異常が抑制され、かつ、放電安定性の低下に起因する画像濃度ムラが抑制される。
請求項8に係る発明によれば、除電手段が本構成を有しない場合と比較して、放電器に付着した放電生成物に起因する画像異常が抑制され、かつ、放電安定性の低下に起因する画像濃度ムラが抑制される。
(A)、(B)、及び(C)は、いずれも本実施形態における放電電極用基体の形状を示した概念図である。 本実施形態の放電電極の一例を示す概略断面図である。 本実施形態の放電電極の別の一例を示す概略断面図である。 本実施形態における表面層の形成に用いられる成膜装置の一例を示す概略模式図である。 本実施形態に好適な成膜ジグ及び放電電極用基体の一例を示す概略斜視図である。 本実施形態に好適な成膜ジグ及び放電電極用基体の別の一例を示す概略斜視図である。 本実施形態の放電器の一例を示す概略断面図である。 本実施形態の放電器の別の一例を示す概略断面図である。 本実施形態に好適な感光体の層構成の一例を示す概略断面図である。 本実施形態の画像形成装置の構成の一例を示す概略構成図である。 本実施形態の画像形成装置の構成の別の一例を示す概略構成図である。
以下、本発明の放電電極、放電器、プロセスカートリッジ、並びに画像形成装置の実施形態について、詳細に説明する。
<放電電極>
本実施形態に係る放電電極は、放電電極用基体と、前記放電電極用基体の表面に設けられた、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層と、を有する。
本実施形態に係る放電電極は、電圧が印加されることにより放電を発生させる部材である。
一般に、放電器(例えばコロナ放電器)は使用中(放電中)に、シリカ、オゾン、アンモニア、アンモニウム塩、窒素酸化物などの放電生成物を生じることが知られている。これらの放電生成物が放電器の放電電極(例えば、放電ワイヤ)に付着すると、異常放電を生じることがある。
そこで、放電電極を放電電極用基体の表面に、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層を設けた構成とすることにより、放電生成物の付着が抑制される。また、仮に放電生成物が付着したとしても、容易に除去される。
また、本実施形態に係る放電電極は、上記構成としたことにより、放電安定性に優れる。放電安定性に優れるため、例えば、直流電源のみにより電圧を印加した場合においても安定した放電が発生する。
前記表面層における酸素の含有量が15原子%未満であると、酸素量の不足により表面層を構成する化合物の安定性が低下し、放電電極に放電生成物が付着し易くなる。即ち、この場合には表面層を設けた効果が低減する。
一方、前記表面層における酸素の含有量が55原子%を超えると、表面層の抵抗が高くなり、放電安定性が低下する。即ち、この場合には、直流電源のみでは安定した放電を発生させることが困難となり、安定した放電を得るために交流電源を用いる必要を生じる場合がある。また、前記表面層における酸素の含有量が55原子%を超えると、硬度や表面粗さが低下する傾向がある。
前記表面層における酸素の含有量は、放電生成物の付着抑制の効果と、放電安定性向上の効果と、をより効果的に両立させる観点より、30原子%以上55原子%以下が好ましく、40原子%以上55原子%以下がより好ましい。
次に、本実施形態における放電電極用基体の例を、図1乃至図3を参照して説明する。
図1(A)、図1(B)、及び図1(C)は、いずれも本実施形態に係る放電電極用基体の形状を示した概念図である。
本実施形態における放電電極用基体の形状には特に限定はないが、細長い形状であることが好ましく、例えば、図1(A)中の放電電極用基体1のようなワイヤ形状であってもよいし(本明細書中では、この形状の放電電極用基体を「放電ワイヤ」ともいう)、図1(B)中の放電電極用基体2のような細長い薄板状の形状であってもよいし、図1(C)中の放電電極用基体3のように、長手方向について一列に配列された複数の突起を有する、細長い薄板状の形状(例えば、糸鋸の歯のような形状)であってもよい。
本実施形態における放電電極用基体の材質には特に限定はないが、例えば、導電性を有する材質が用いられる。具体的には、金属又は金属化合物(例えば、タングステン、モリブデン、鉄、ニッケル、コバルト、クロム、チタンから選ばれる少なくとも1種の金属(又は該金属を含む化合物))が挙げられる。中でも、タングステン(又はタングステンを含む化合物)が好ましい。
本実施形態における放電電極用基体は、例えば、上述した材質の部材を、公知の加工方法により上述した形状に加工して作製される。
なお、本明細書中において「導電性」とは、体積抵抗率が1013Ω・cm未満である性質を指し、「絶縁性」とは、体積抵抗率が1013Ω・cm以上である性質を指す。
本実施形態における表面層は、放電電極用基体の表面の少なくとも1部(好ましくは被処理体と対向する側)に形成されていればよく、該表面層の膜厚は、均一であっても不均一であってもよい。
図2及び図3は、いずれも本実施形態に係る放電電極を、長手方向に垂直な平面で切断したときの模式断面図である。
図2に示す放電電極10は、放電電極用基体としての放電電極用基体1の表面に表面層11を有している。表面層11は、放電電極用基体1の表面において、位置により膜厚が異なっている。具体的には、放電電極用基体1の表面の一部(図2中の下側)の膜厚が最も厚くなっており、膜厚が最も厚い位置からの反対側(裏側)の位置(図2中の上側)に向かうにつれ、膜厚が次第に薄くなっている。該反対側では、膜厚が最も薄くなっているか又は表面層が形成されていない。このような放電電極10を用いる形態としては、表面層の膜厚が厚い側を被処理体と対向させて用いる形態が好ましい。
図3に示す放電電極20は、放電電極用基体としての放電電極用基体1の表面に表面層12を有している。表面層12は、図2の表面層11と比較して放電電極用基体1の表面における膜厚の均一性が高くなっている。
本実施形態における表面層の膜厚は、0.01μm以上10.0μm以下の範囲が好ましく、0.1μm以上1.0μm以下の範囲がより好ましく、0.2μm以上0.8μm以下の範囲が更に好ましく、0.3μm以上0.5μm以下の範囲が特に好ましい。
表面層の膜厚が0.01μm未満であると、放電生成物の付着抑制の効果が低下する場合がある。また、表面層の膜厚が10.0μmを超えると成膜時間が増大するにもかかわらず放電生成物の付着に対する効果は同等であるため生産性に劣る傾向がある。
なお、表面層の膜厚は、放電電極用基体との屈折率の差を利用した光干渉法や、マスキングにより放電電極用基体を露出させた部分との高低差を触針式表面粗さ計により読み取る段差法、光切断法などによって測定する。
本実施形態における表面層は、少なくとも酸素とガリウムとを含んで構成されることを特徴としており、この2つの元素のみから構成されているものであってもよいが、本実施形態の効果を損なわない範囲において、窒素、水素、炭素、アルミニウム、インジウムなどの元素を含んでいてもよい。
本実施形態における表面層中の組成は、均一であってもよいが、酸素とガリウムを含んで構成され、且つ、酸素の含有量が15原子%以上55原子%以下であれば、膜厚方向において傾斜していてもよい。また、本実施形態における表面層は、酸素及びガリウムを含んで構成され、且つ、酸素の含有量が15原子%以上55原子%以下であれば、組成の異なる層を積層してなる多層構造を有していてもよい。
また、本実施形態における表面層では、膜厚方向における酸素の濃度分布は、均一でも不均一でもよいが、表面層の表面側から基体側に向かって減少(すなわち、基体側から表面層の表面側に向かって増加)していることが好ましい。
なお、表面層膜厚方向の酸素濃度の分布プロファイルは特に限定されず、例えば、直線状、曲線状、階段状のいずれでもよい。
表面層中のガリウムの含有量は、0.1原子%以上50原子%以下の範囲内であることが好ましく、5原子%以上40原子%以下の範囲内であることがより好ましい。ガリウムの含有量が0.1原子%未満の場合は、表面層の形成自体を行い難くなる場合がある。また、含有量が50原子%を超える場合は、放電電極用基体への接着性が低下する場合がある。
本実施形態における表面層に窒素が含まれる場合、その含有量は、30原子%以下が好ましく、15原子%以下がより好ましい。窒素の含有量が30原子%を超える場合には、表面層の耐水性が不充分となるため実用性に欠ける場合がある。また、表面層の膜厚方向における窒素の濃度分布は、均一でも不均一でもよいが、最表面には含まれないことが好ましい。
本実施形態における表面層に炭素が含まれる場合、その含有量は、2原子%以上15原子%以下であることが望ましく、2原子%以上10原子%以下であることが更に望ましい。表面層中の炭素の含有量を2原子%以上15原子%以下とすることで、高撥水性な低エネルギー表面になるという効果が得られる。
また、本実施形態における表面層は、0.1原子%以上30原子%以下の水素を含むことが好ましい。
水素の含有量が0.1原子%未満の場合には、層内部に構造的な乱れを内蔵したままとなり、電気的に不安定となったり機械的な特性も不十分となる場合がある。
また、30原子%を超える場合には水素がガリウムに2原子以上結合する確率が増加して、三次元構造を保つことができにくくなり、硬度や化学的安定性(特に耐水性)などが低下する場合がある。
表面層における水素の含有量は、表面層への放電生成物付着抑制の観点や表面層の強度(特に曲げ強度)向上の観点からは、より好ましくは10原子%以上30原子%以下であり、更に好ましくは15原子%以上25原子%以下である。
本実施形態における表面層全体中における各元素の含有量については、例えば、ラザフォードバックスキャタリング法(RBS)や、ハイドロジェンフォワードスキャタリング法(HFS)などを用いられる。
以下、これらの測定方法について説明する。
なお、本実施形態において、表面層中のガリウム、酸素、炭素、窒素等の元素の含有量は、膜厚方向の分布も含めてラザフォードバックスキャタリング法(RBS)により求めた値を意味している。
RBSとして、加速器:NEC社 3SDH Pelletron、エンドステーション:CE&A社 RBS−400を用い、システムとしては3S−R10を用いた。解析にはCE&A社のHYPRAプログラム等を用いた。
RBSの測定条件は、以下の通りである。
He++イオンビームエネルギーは2.275eV
検出角度 160°
入射ビームに対してGrazing Angle 109°
RBS測定は、He++イオンビームを試料に対して垂直に入射し、検出器をイオンビームに対して、160°にセットし、後方散乱されたHeのシグナルを測定する。検出したHeのエネルギーと強度から組成比と膜厚を決定する。更に、組成比と膜厚を求める精度を向上させるために二つの検出角度でスペクトルを測定してもよい。また、深さ方向分解能や後方散乱力学の異なる二つの検出角度で測定しクロスチェックすることにより精度を向上してもよい。
なお、ターゲット原子によって後方散乱されるHe原子の数は、1)ターゲット原子の原子番号、2)散乱前のHe原子のエネルギー、3)散乱角度、の3つの要素だけにより決まる。測定された組成から密度を計算によって仮定して、これを用いて膜厚を算出する。密度の誤差は20%以内である。
また、本実施形態において、表面層中の水素の含有量は、ハイドロジェンフォワードスキャタリング法(HFS)により求められた値を意味する。
上記HFSとしては、
加速器:NEC社 3SDH Pelletron、エンドステーション:CE&A社 RBS−400を用い、システムとして、3S−R10を用いた。解析にはCE&A社のHYPRAプログラムを用いた。
HFSの測定条件は、以下の通りである。
He++イオンビームエネルギー:2.275eV
検出角度160°入射ビームに対してGrazing Angle30°
HFSによる測定は、He++イオンビームに対して検出器が30°に、試料が法線から75°になるようにセットすることにより、試料の前方に散乱する水素のシグナルを拾う。この時検出器を薄い(10μm)アルミ箔で覆い、水素とともに散乱するHe原子を取り除くことがよい。定量は参照用試料と被測定試料との水素のカウントを阻止能で規格化した後に比較することによっておこなう。参照用試料としてSi中にHをイオン注入した試料と白雲母を使用した。
白雲母は水素濃度が60原子%であることが知られている。
例えば、最表面に吸着しているHは、清浄なSi表面に吸着しているH量を差し引くことによって行う。
また、半導体膜中の水素の含有の有無は赤外吸収スペクトル測定を利用して、13族−水素結合やN−H結合の強度からも推定する。
本実施形態において、上述した各元素のうち窒素を除く元素の含有量、特に酸素及びガリウムの両元素の含有量の好ましい範囲については、表面層の最表面で満たされていることが好ましい。
ここで、表面層の最表面とは、表面からの深さが少なくとも数nmの範囲内(具体的には、表面から1nm以上50nm以下の範囲)の領域を意味し、実質的には、XPS(X線光電子分光法)により固体表面を測定した際の、深さ方向の測定範囲に相当する部分の領域を意味する。
表面層の最表面における、ガリウムや酸素等の元素の含有量は、例えばXPS(X線光電子分光法)により求められる。
例えば、XPSの測定装置として日本電子社製JPS9010MXを用い、X線ソースにはMgKα線を用い、10kV,20mAで照射することにより測定する。この場合、光電子の測定は1eVのステップで行い、元素の含有量は、ガリウム元素に対しては3d5/2、Oは1s,Nは1sスペクトルを測定し、スペトクルの面積強度と感度因子により求められる。なお、測定前にArイオンエッチングを500Vで10s程度行う。
本実施形態における表面層は、微結晶、多結晶、或いは、非晶質のいずれであってもよいが、表面層表面の平滑性を向上させる点からは非晶質であることが特に好ましい。なお、結晶性/非晶質性は、例えば、RHEED(反射高速電子線回折)測定により得られた回折像の点や線の有無により判別する。
表面層中には、導電型の制御のために種々のドーパントを添加してもよい。導電性をn型に制御する場合には、例えば、Si,Ge,Snから選ばれる一つ以上の元素を用いることができ、p型に制御する場合には、例えば、Be,Mg,Ca,Zn,Srから選ばれる一つ以上の元素を用いてもよい。
表面層は、微結晶、多結晶或いは非晶質のいずれの場合においても、その内部構造に結合欠陥や、転位欠陥、結晶粒界の欠陥などが多く含まれる傾向にある。このため、これらの欠陥の不活性化のために表面層中には、水素及び/又はハロゲン元素が含まれていてもよい。表面層中の水素やハロゲン元素は結晶内の結合欠陥や結晶粒界の欠陥などに取り込まれて、反応活性点を消失させ、電気的な補償を行う働きを有する。
また、本実施形態における表面層は、体積抵抗率が10Ω・cm以上1013Ω・cm以下であることが好ましい。
体積抵抗率が10Ω・cm未満であると放電生成物の付着抑制の効果が低減する場合がある。また、体積抵抗率が1013Ω・cmを超えると、直流電流のみでは放電が不安定となり、放電均一性が低下する場合がある。即ち、この場合には、安定した放電のために交流電源を用いる必要を生じる場合がある。
前記体積抵抗率は、10Ω・cm以上1012Ω・cm以下がより好ましく、10Ω・cm以上1011Ω・cm以下が特に好ましい。
前記表面層の形成方法については特に限定はなく、例えば、有機金属気相成長法、化学的気相成長法(CVD(Chemical Vapor Deposition)法;例えば、プラズマCVD法、熱CVD法、等)、物理的気相成長法(スパッタ法、加熱蒸着法、分子線エピタキシー法、等)が使用される。
本実施形態の放電電極を製造する方法としては、例えば、下記の本実施形態の放電電極の製造方法が好適である。
<放電電極の製造方法>
本実施形態の放電電極の製造方法は、放電電極用基体を準備する工程(以下、「放電電極用基体準備工程」ともいう)と、前記放電電極用基体の表面に、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層を形成する工程(以下、「表面層形成工程」ともいう)と、を有する。
本実施形態の放電電極の製造方法は、必要に応じ、その他の工程を有していてもよい。
(放電電極用基体準備工程)
放電電極用基体準備工程においては、放電電極の作製ごとに放電電極用基体を製造してもよいし、予め準備された放電電極用基体を用いてもよい。
放電電極用基体の詳細については、前述の「本実施形態に係る放電電極」の項で説明したとおりであり、好ましい形態も同様である。
(表面層形成工程)
表面層形成工程は、前記放電電極用基体の表面に、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層を形成する工程である。
ここで、表面層については、前述の「本実施形態に係る放電電極」の項で説明したとおりであり、好ましい形態も同様である。
表面層の形成は、例えば、プラズマCVD法等の化学的気相成長法によって行う。
図4は、本実施形態の放電電極の製造方法において、プラズマCVD法により前記表面層を形成するための成膜装置(プラズマCVD装置)の一例を示す概略模式図である。
図4に示されるように、成膜装置100は、仕切り部101aを有する真空容器101と、放電電極用基体102(例えば、放電ワイヤ)を保持する成膜ジグ103と、高周波電源部105a及び放電電極105bからなる放電部105と、プロセスガスを供給する供給口107aと接続するプロセスガス供給部107と、材料ガスを供給する供給口109aを接続する材料ガス供給部109と、排気口111aと接続する排気装置111と、を有する。
図4に示される成膜装置において、真空容器101の一端には、排気口111aを介して排気装置111が設けられており、また、真空容器101の排気装置111(排気口111a)が設けられた側と反対側に、プロセスガスを供給する供給口107a、材料ガスを供給する供給口109a、及び放電部105が設けられている。
また、真空容器101内には、放電電極用基体102を保持する成膜ジグ103が設けられている。この成膜ジグ103は、図4及び図5に示すように、円形の断面を有する円柱形である。また成膜ジグ103は、その軸方向が、供給口107aから排気口111aに向う方向(z方向)に対し、垂直となるように取り付けられている。放電電極用基体102は、成膜ジグ103の外周面にらせん状に巻きつけられた状態で成膜ジグ103に保持されている(図4中では、簡単のため、放電電極用基体102をリング状に図示している)。また、成膜ジグ103は、図示されない回転装置により、放電電極用基体102を保持したまま矢印方向に回転する。
図5は、この成膜ジグ103が、外周面に放電電極用基体102をらせん状に巻きつけた状態で保持している様子を示す斜視図である(図5中の矢印も、成膜ジグ103の回転方向を示している)。
放電部105は、放電面が排気装置111(排気口111a)側に設けられた放電電極105bと、放電電極105bの放電面と反対側の面に接続された高周波電源部105aとから構成されている。
また、放電電極105bに近接して、プロセスガスを供給するための供給口107aが設けられており、この供給口107aはプロセスガス供給部107に接続されている。
更に、仕切り部101aに対して、供給口107aとは反対の箇所には、材料ガスを供給するための供給口109aが設けられており、この供給口109aは材料ガス供給部109に接続されている。
真空容器101は、一端が真空容器101の内壁に固定され、他端が回転する成膜ジグ103とこれに保持される放電電極用基体102と接触しないよう微小な間隔をもって成膜ジグ103に対向する仕切り部101aを有する。
この仕切り部101aは、真空容器101内部の放電電極105b及びプロセスガスが供給口107aより供給される領域と、材料ガスが供給口109aより供給される領域とを、前記微小な間隔を除いて空間的に分離することに用いられる。なお、この仕切り部101aの位置は真空容器101の中央である必要はない。
表面層の形成は、例えば、以下のように実施する。
まず、プロセスガスを供給口107aからに導入すると共に、高周波電源部105aから放電電極105bに、例えば、周波数13.56MHzの高周波電力を供給する。この際、放電電極105bの放電面側から排気口111a側へと発光領域が放射状に広がるようにプラズマが形成される。ここで、供給口107aから導入されたプロセスガスは真空容器101内を放電電極105bを含む領域から排気口111a側へと流れる。
なお、放電電極105bは電極の周りをアースシールドで囲んだものでもよい。
ここで、プロセスガスには、少なくとも酸素を含み、窒素、水素、ヘリウムやアルゴンなどの希ガスが用いられる。
次に、材料ガスとして、例えば、水素をキャリアガスとして用いて希釈したトリメチルガリウム(以下、「TMG」ともいう)や必要に応じその他のガスを、供給口109aから導入することによって、放電電極用基体102表面にガリウムと酸素を含む非単結晶膜を成膜する。
ここで、材料ガスとしては、例えば、ガリウムを含む有機金属化合物として、トリメチルガリウム、トリエチルガリウム、t−ブチルガリウムなどを用いる。
これらの液体や固体を気化して単独に或いはキャリアガスでバブリングすることによる混合状態で使用してもよい。
また、これらを2種類以上混合してもよい。
成膜時の表面層の形成温度は特に限定されないが、放電電極用基体102表面の温度が、10℃以上100℃以下の範囲内で形成することが好ましく、20℃以上60℃以下の範囲内で形成することが好ましい。
放電電極用基体102表面の温度は加熱及び/又は冷却手段(図中、不図示)によって制御してもよいし、放電時の自然な温度の上昇に任せてもよい。放電電極用基体102を加熱する場合にはヒータを放電電極用基体102の隣接した箇所に設置してもよい。放電電極用基体102を冷却する場合には放電電極用基体102を保持する成膜ジグ103の内側に冷却用の気体又は液体を循環させてもよい。
放電による放電電極用基体102表面の温度の上昇を避けたい場合には、放電電極用基体102表面に当たる高エネルギーの気体流を調節することが効果的である。この場合、ガス流量や放電出力、圧力などの条件を所要温度となるように調整する。また、放電による放電電極105b自体の温度上昇にともなう放電電極用基体102の温度上昇を防ぐため、放電電極の内部に冷却用の気体又は液体を循環させてもよい。
なお、本実施形態における表面層のように、ガリウムと酸素とを主に含む表面層を形成する場合、真空容器101内には活性水素が存在することが好ましい。活性水素は、キャリアガスとして使用する水素ガスや有機金属化合物に含まれる水素原子から供給されるものでもよい。
以上のようにして、放電電極用基体102表面のプラズマ雰囲気に晒された箇所に、表面層が形成される。
形成された表面層は、図2中の放電電極10における表面層11に示すように、位置により膜厚が異なっている。具体的には、放電電極用基体の表面のうち、成膜ジグ103によって保持されていた際、成膜ジグ103の中心から最も離れた位置において、表面層の膜厚が最も厚くなっている(例えば、図2中の下側の位置)。放電電極用基体の表面のうち成膜ジグ103によって保持されていた際、成膜ジグ103に接していた位置においては、表面層の膜厚が最も薄くなっているか、または表面層が形成されていない(例えば、図2中の上側の位置)。
図3中の表面層12のように、膜厚の均一性が高い表面層を形成するには、上記のようにして表面層を形成した後、放電電極用基体102の表面のうち成膜ジグ103に接していた部分を、成膜ジグ103の軸中心から最も離れた位置となるように放電電極用基体102の成膜面(成膜側)を反転させて巻き直し、改めて上記と同様にして表面層を形成すればよい。
また、図4に示す成膜装置100内部の成膜ジグとしては、単体である上記成膜ジグ103(図4及び図5)以外にも、図6に示す成膜ジグの対(巻き出し側の成膜ジグ114及び巻き取り側の成膜ジグ113)を用いてもよい。
成膜ジグ114及び成膜ジグ113は、それぞれ円柱形であり、それらの軸方向が、前記z方向に対し垂直となるような配置で成膜装置100内部に取り付けられる。このとき、成膜ジグ114及び成膜ジグ113は、それらの軸方向が互いに平行となる配置で取り付けられる。また、成膜ジグ114から供給口107aまでのz方向についての距離と、成膜ジグ113から供給口107aまでのz方向についての距離と、が等しくなるような配置で取り付けられることが好ましい。
図6に示す成膜ジグの対を用いる場合、まず準備として、放電電極用基体112の一端を巻き出し側の成膜ジグ114に固定し、放電電極用基体112の残りの部分を、該成膜ジグ114にらせん状に巻き付ける。次に、放電電極用基体112の他端を引き出し、巻き取り側の成膜ジグ113に固定する。
次に、前記と同様にしてプラズマを発生させ、放電電極用基体112に対し表面層を形成する。
表面層の形成中、成膜ジグ114及び成膜ジグ113を、図示されない回転装置により、それぞれ矢印の方向に軸回転させることにより、成膜ジグ114から放電電極用基体112が巻き出されるとともに、該放電電極用基体112が成膜ジグ113に巻き取られる。このようにして、放電電極用基体112のうち成膜ジグ114に接していた側(表面層が薄く形成されるか又は表面層が形成されない側)は、成膜ジグ113上では成膜ジグ113の軸中心からみて外側(表面層が厚く形成される側)に位置することとなる。
以上により、放電電極用基体の成膜面(成膜側)を反転させる操作が自動で行われ、放電電極用基体112の表面に、膜厚のバラツキが少ない表面層(例えば、図3中の表面層12)が形成される。
また、成膜中は、成膜ジグ114及び成膜ジグ113を、軸方向について互いに反対向きに移動させ(図6中、成膜ジグ114の軸方向についての矢印の向き及び成膜ジグ113の軸方向についての矢印の向き)、放電電極用基体112が成膜ジグ114から巻き出される位置と、放電電極用基体112が成膜ジグ113によって巻き取られる位置と、が前記軸方向について等しい位置となるように調整することが好ましい。このように調整することで、成膜ジグ114と成膜ジグ113との間において、放電電極用基体112の長さや張力が一定に保たれ、より膜厚の均一性が高い表面層が形成される。
また、図4に示される成膜装置100のプラズマ発生手段は、高周波電源部を用いたものであるが、これに限定されるものではなく、例えば、マイクロ波発振装置を用いたり、エレクトロサイクロトロン共鳴方式やヘリコンプラズマ方式の装置を用いてもよい。また、高周波発振装置の場合は、誘導型でも容量型でもよい。
更に、これらの装置を2種類以上組み合わせて用いてもよく、例えば、プロセスガス供給口107aより活性水素を供給するリモートプラズマ装置を付加してもよい。或いは、同種の装置を2つ以上用いてもよい。プラズマの照射によって放電電極用基体102表面の温度が上昇しないようにするためには高周波発振装置が好ましいが、熱の照射を防止する装置を設けてもよい。
2種類以上の異なるプラズマ発生装置(プラズマ発生手段)を用いる場合には、同じ圧力で同時に放電が生起されるようにしてもよい。また、放電する領域と、成膜する領域(放電電極用基体102が設置された部分)とに圧力差を設けてもよい。これらの装置は、成膜装置内をガスが導入される部分から排出される部分へと形成されるガス流に対して直列に配置してもよいし、いずれの装置も基体の成膜面に対向するように配置してもよい。
また、異なる2種類のプラズマ発生装置を同一の圧力下で利用する場合、例えば、マイクロ波発振装置と高周波発振装置とを用いる場合、励起種の励起エネルギーを大きく変えることができ、膜質の制御に有効である。また、放電は大気圧近傍(3×10Pa以上1.2×10Pa以下の範囲)で行ってもよい。大気圧近傍で放電を行う場合にはキャリアガスとしてHeを使用することが望ましい。
<放電器>
本実施形態の放電器は、前述の本実施形態の放電電極と、前記放電電極の周囲の一部を囲って配置された筐体と、を備えて構成される。
図7は、放電器の一実施形態であるコロナ放電器30の概略断面図である。詳しくは、図7は、放電電極31の長手方向に垂直な平面で、コロナ放電器30を切断したときの切断面を表した図である。
図7に示すように、コロナ放電器30は、放電電極31と、放電電極31の周囲の一部を囲って配置された筐体32と、を備えている。放電電極31の長手方向と筐体32の長手方向とは平行となっている(これらの方向は、図7の紙面に対し法線方向である)。
ここで、放電電極31は、前述の本実施形態の放電電極として説明したとおり、放電電極用基体と、前記放電電極用基体の表面の少なくとも1部に設けられた、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層と、を有する構成となっている。図7中の放電電極31は、図3中の放電電極20と同様の構成となっているが、放電電極はこの構成には限定されない。
放電電極31の長手方向両端部は、図示しないが、直接又は固定部材を介して筐体32に固定されている。このとき、放電電極31と筐体32とは電気的に絶縁されていることが好ましい。これにより、放電電極31と筐体32とに別個の電圧が印加される。
なお、本明細書中において2つの部材が電気的に絶縁されているとは、2つの部材間の抵抗値が20MΩ以上であることを指す。
筐体32は、放電電極31の周囲のうちの一部(詳しくは、放電電極31の周囲のうち、被処理体50に対し放電を照射するための放電照射領域36以外の領域)を囲っている。従って、筐体32は、放電電極31と相対する面(即ち、放電電極31から見える面)を有している。
なお、図1では筐体32の断面がコの字型となっているが、放電電極31の周囲の一部を囲う形状であれば筐体32の断面はコの字型に限定されることはなく、例えば、円弧型であってもよい。
コロナ放電器30では、放電電極31(または放電電極31の芯体である放電電極用基体)に電圧が印加されると、放電電極31周囲にコロナ放電が生じ、被処理体50がコロナ放電に晒される(即ち、被処理体50にコロナ放電が照射される)。筐体32は、コロナ放電により生じた放電生成物(例えば、荷電粒子)の流れを制限する。
コロナ放電器30は、例えば被処理体50(例えば、電子写真感光体ドラム)に対する帯電装置や除電装置、転写装置として利用される。
放電電極31は、放電電極用基体の表面に、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層を有しているため、その表面への放電生成物の付着が抑制され、異常放電が抑制される。
このため、コロナ放電器30を画像形成装置の帯電装置として用いることにより、異常放電に起因する帯電異常が抑制され、形成された画像における画像異常が抑制される。
さらに、表面層における酸素の含有量を55原子%以下としたことにより、放電安定性が向上し、例えば、直流電源のみにより電圧を印加した場合でも、安定した放電が発生する。
このため、放電安定性の低下に起因する画像濃度ムラが抑制される。
図2は、放電器の別の実施形態であるコロナ放電器(スコロトロン)40の概略断面図である。
図2に示すように、コロナ放電器(スコロトロン)40は、前記コロナ放電器30と同様に、本実施形態に係る放電電極である放電電極41と、放電電極41の周囲の一部(放電電極41の周囲のうち、被処理体50への放電照射領域46の以外)を囲って配置された筐体42と、を備えている。
以上の構成はコロナ放電器30と同様である。
更に、コロナ放電器(スコロトロン)40では、前記放電電極41の周囲のうち少なくとも前記筐体42によって囲われていない領域(前記放電電極41の周囲のうち被処理体50への放電照射領域46)に、更に、格子状部材であるグリッド部材43が備えられている。即ち、グリッド部材43は放電電極41と被処理体50との間に配置されている。グリッド部材43は、前記筐体42によって囲われていない領域に加え、前記筐体42によって囲われている領域に備えられていてもよい。
グリッド部材43は、図示しないが、直接又は固定部材を介して筐体42に固定されている。このとき、グリッド部材43、筐体42、及び放電電極41は、互いに電気的に絶縁されていることが好ましい。これにより、グリッド部材43、筐体42、及び放電電極41に、それぞれ別個の電圧が印加される。
具体的には、グリッド部材43には、放電電極41の電位とは異なる電圧(バイアス電圧)が印加される。これにより、コロナ放電器40を帯電装置として用いたときの被処理体50の帯電電位が調整される。従って、被処理体50の帯電電位の均一性が向上する。
コロナ放電器40では、前記コロナ放電器30と同様に、放電電極41に電圧が印加されると、放電電極41周囲にコロナ放電が生じ、生じたコロナ放電がグリッド部材43を経由して被処理体50に照射される。
従って、コロナ放電器40は、例えば被処理体50(例えば、電子写真感光体ドラム)に対する帯電装置、除電装置、転写装置、等として利用される。特に、コロナ放電器40は、帯電電位を調整するグリッド部材43を備えるため、帯電装置として好適に用いられる。
以上、本実施形態に係る放電器について、図1乃至図2を参照して説明したが、本実施形態はこれらの構造に限定されることはなく、公知のコロトロン放電器の構造やスコロトロン放電器の構造が特に制限無く適用される。
また、本実施形態における表面層は、放電電極用基体の表面のみならず、筐体や格子状部材の表面に形成されていてもよい。
<プロセスカートリッジ及び画像形成装置>
次に、本実施形態に係るプロセスカートリッジ及び本実施形態に係る画像形成装置について説明する。
本実施形態に係るプロセスカートリッジは、感光体(例えば、電子写真感光体(感光体ドラム)。以下同じ。)と、前記感光体を帯電する帯電手段と、を備え、前記帯電手段が前述の本実施形態に係る放電器である。
また、本実施形態に係るプロセスカートリッジは、更に、前記感光体を除電する除電手段を備え、前記除電手段が前述の本実施形態に係る放電器である構成がより好ましい。
なお、本実施形態に係るプロセスカートリッジは、画像形成装置本体に脱着自在に構成される機構を備えていることが好ましい。
本実施形態に係る画像形成装置は、感光体と、前記感光体を帯電する帯電手段と、帯電した前記感光体の表面に潜像を形成する潜像形成手段と、前記感光体の表面に形成された潜像をトナーにより現像してトナー像を形成する現像手段と、前記感光体の表面に形成されたトナー像を記録媒体に転写する転写手段と、を備え、前記帯電手段が前述の本実施形態に係る放電器である。
また、本実施形態に係る画像形成装置は、更に、前記転写後の前記感光体を除電する除電手段を備え、前記除電手段が本実施形態に係る放電器である形態がより好ましい。
なお、本実施形態の画像形成装置は、各色のトナーに対応した感光体を複数有するいわゆるタンデム機であってもよい。また、トナー像の転写は、中間転写体を利用した中間転写方式であってもよい。
本実施形態に係るプロセスカートリッジや画像形成装置において、感光体は、その表面に、酸素とガリウム元素を含んで構成され、且つ、酸素の含有量が15原子%以上である耐磨耗層を有し、該耐磨耗層の膜厚の差が0.1μm以下であることが好ましい。これは、帯電性制御や粉体特性改善のためにトナー表面に付着させた酸化ケイ素や酸化チタンなどの粒子が脱離して、感光体表面に移行・付着し帯電性が不均一になることを防ぐためである。また、耐磨耗層の膜厚の差が0.1μm以下であれば、耐磨耗層を設けたことで露光手段において生じる光の吸収や反射の差による露光状態のばらつきが原因となる画像の濃度ムラが問題とならないため、好ましい。
より具体的には、本実施形態に係るプロセスカートリッジや画像形成装置においては、感光体として、図9に示される層構成を有する感光体を用いることが好ましい。
以下、図9を参照して、本実施形態に好適な感光体の一態様について説明する。
ここで、図9は、本実施形態に好適な感光体の層構成の一例を示す概略断面図である。
図9に示される感光体210は、感光体用基体211、下引き層213、電荷発生層215aと電荷輸送層215bとからなる感光層215、及び耐磨耗層217をこの順に有する。
ここで、感光層215は、有機高分子から形成されたものでもよいし、無機材料から形成されたものでもよいし、それらが組み合わされたものでもよい。
図9に示される感光体210を構成する感光体用基体、下引き層213、電荷発生層215aと電荷輸送層215bとからなる感光層215については、具体的には、例えば、特開2006−267507号公報に記載の基体及び各層を適用する。
また、耐磨耗層217については、前述の本実施形態の放電器における表面層と同様な材質で、同様に形成されたものであってもよい。耐磨耗層217の材質、及び形成方法としては、具体的には、例えば、特開2006−267507号公報や、特開2007−300001号公報に記載の技術を適用する。
次に、図10を参照して、本実施形態の画像形成装置の一例について、説明する。
ここで、図10は、本実施形態の画像形成装置の構成の一例を示す概略構成図である。
図10に示されるように、画像形成装置200は、上記で図9を参照して説明した感光体210を有し、感光体210の回転方向Cに沿って順に、前述の本実施形態に係るコロナ放電器(スコロトロン)40である帯電装置(帯電手段)220、潜像形成手段である露光装置(露光手段)230、現像装置(現像手段)240、前述の本実施形態に係るコロナ放電器30である転写装置(転写手段)250、及びクリーニング装置(クリーニング手段)260が設けられている。また、画像形成装置200は、記録媒体P上に転写されたトナー像を記録媒体Pに定着させるための定着装置270を含んで構成されている。
帯電装置220は、感光体210の外周面を帯電する。露光装置230は、帯電装置220によって帯電された感光体210の外周面に、画像データに応じて変調した光を露光することで感光体210上に画像データの画像に応じた静電潜像を形成する。現像装置240は、感光体210上に形成された静電潜像にトナーを含む現像剤を供給することで静電潜像をトナーによって現像してトナー像を形成する。転写装置250は、コロナ放電により感光体210上のトナー像を記録媒体P上へと転写する。なお、この記録媒体Pは、図示を省略する用紙貯留部に予め貯留され、この用紙貯留部からローラ等によって搬送されることによって、感光体210と転写装置250との間に到り、感光体210上のトナー像を転写される。
トナー像を転写された記録媒体Pは、図示を省略するローラ等によって定着装置270の設置箇所に搬送され、定着装置270によって未定着のトナー像を該記録媒体P上に定着される。定着装置270によってトナー像を定着された記録媒体Pは、図示を省略するローラ等によって画像形成装置200の外部へと排出される。
なお、画像形成装置200に含まれる、感光体210及び帯電装置220は、画像形成装置200本体に対して着脱自在に設けられていてもよく、これらの着脱自在に設けられた各装置がプロセスカートリッジとなる。
以上、本実施形態に係る画像形成装置及びプロセスカートリッジについて、図10を参照して説明したが、本実施形態は図10に示した形態に限定されることはない。
例えば、帯電装置220は本実施形態の放電器である限り、格子状部材(グリッド部材)を有するコロナ放電器(スコロトロン)40であることには限定されず、例えば格子状部材(グリッド部材)を有しない放電器(例えば、前述のコロナ放電器30)であってもよい。
また、転写装置250はコロナ放電器30であることに限定されず、コロナ放電器(スコロトロン)40や、本実施形態における表面層を有しない公知のコロナ放電器であってもよい。また、転写装置250は転写ロール等、放電器以外の転写手段であってもよい。
また、クリーニング装置260は省略されていてもよい。
図11は、本実施形態の画像形成装置の構成の別の一例を示す概略構成図である。
図11に示す画像形成装置300では、図10に示した前述の画像形成装置200の構成に加え、感光体210の回転方向Cについて、クリーニング装置260と帯電装置220との間に(クリーニング装置260が省略されている場合には転写装置250と帯電装置220との間に)、感光体210を除電する除電装置222を備えている。そしてこの除電装置222が、格子状部材(グリッド部材)を有しない前述のコロナ放電器30となっている。但し、除電装置222は格子状部材(グリッド部材)を有する前述のコロナ放電器(スコロトロン)40であってもよい。
画像形成装置300における、感光体210、帯電装置(帯電手段)220、露光装置(露光手段)230、現像装置(現像手段)240、転写装置(転写手段)250、クリーニング装置(クリーニング手段)260、及び定着装置270については、図10で説明した画像形成装置200と同様であるので説明を省略する。図11中の回転方向C及び記録媒体Pについても、図10中の回転方向C及び記録媒体Pと同様である。
以上、図10及び図11を参照して、本実施形態の画像形成装置の例である画像形成装置200及び画像形成装置300について説明したが、画像形成装置200及び画像形成装置300は、各色のトナーに対応した感光体を複数有するいわゆるタンデム機であってもよい。
また、トナー像の転写は、感光体から記録媒体に直接転写する方式に限られず、感光体から中間転写体にトナー像を転写した後に、中間転写体から記録媒体に転写する中間転写方式であってもよい。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、以下の実施例において「部」は質量部を意味する。
〔実施例1〕
<放電電極の作製>
まず、放電電極用基体(放電ワイヤ)として、直径60μm、長さ1000mのタングステンワイヤを準備した。
次に、図4に示す成膜装置100の真空容器101内の成膜ジグ103に、放電電極用基体102として上記タングステンワイヤをらせん状に巻きつけて固定した。
ここで、成膜ジグ103としては、直径150mm×長さ350mmの円柱形の成膜ジグを用いた。
また、成膜ジグ103の回転中における、真空容器101内の仕切り部101aと、成膜ジグ103に取り付けられた放電電極用基体102と、の最近接距離は1.5mmであった。
次に、排気装置111を用いて真空容器101内を、圧力が1.0×10−2Paとなるまで真空排気した。
その後、プロセスガスとして、水素ガス(1.00slm=1000sccm)と酸素ガス(7.50sccm)とを含む混合ガスをプロセスガス供給部107から供給口107aを介して真空容器101内へと供給し、高周波電源部(13.56MHz)105aから放電面の寸法が500mm×70mmの放電電極105bに、300Wの電力を供給した。
次に、材料ガスとして、トリメチルガリウム(TMG)ガス(3.00sccm)を、材料ガス供給部109から供給口109aを介して真空容器101内へと供給した。
この時、バラトロン真空計(MKS社製、絶対圧トランスデューサタイプ622A)で測定した真空容器101内の反応圧力は50Paであった。
以上の状態で、成膜ジグ103を200rpmの速度で回転させ、成膜時間12分間として、放電電極用基体102表面に表面層を形成した。
次に、一旦、放電を止めて真空容器101を大気開放し、放電電極用基体102表面のうち成膜ジグ103に接していた部分を、成膜ジグ103の軸中心からみて最も離れた位置となるように放電電極用基体102を反転させて巻き直し、改めて上記と同様にして、成膜時間12分間として、表面層を形成した。
以上により、放電ワイヤ表面に表面層が形成された放電電極を得た。
表面層の成膜時間は合計24分間である。
<表面層の組成>
上記で作製した放電電極の表面層の組成を、上記放電電極用基体102と同時にシリコンウエハ片に成膜した膜(成膜時間24分間)を以下の方法で分析することにより求めた。結果は表1に示す通りである。
水素:HFS法
水素以外(ガリウム、酸素、窒素、炭素):RBS法及びXPS法(表面領域)
<表面層の体積抵抗率>
上記で作製した放電電極の表面層の体積抵抗率を、上記放電電極用基体102と同時にシリコンウエハ片に成膜した膜(成膜時間24分間)の体積抵抗率を電圧降下法により測定することにより求めた。結果は表1に示す通りである。
<表面層の膜厚>
上記で作製した放電電極の表面層の膜厚を、上記放電電極用基体102と同時にシリコンウエハ片に成膜した膜(成膜時間24分間)の膜厚を段差法により測定することにより求めた。結果は表1に示す通りである。
<表面層の付着強度>
上記で作製した放電電極の表面を、ウレタンフォーム(ブリヂストン社エバーライト マイクロセルUSN)を加重10g/cmにて押し当てて1000往復擦り、表面層の付着状況を光学顕微鏡(倍率1000倍)により観察した。
−評価基準−
A:1000往復擦る前後において、表面層に変化は見られなかった。
B:1000往復擦る前後において、表面層に変化が見られるものの脱落(剥がれ)は見られなかった。
C:1000往復擦った後において、表面層に脱落(剥がれ)が見られた。
<表面層の曲げ強度>
上記で作製した放電電極を直径30mmのリールに巻き付けた。
次に、前記放電電極を再び前記リールから引き出し、引き出した後の放電電極の表面層の状態を光学顕微鏡(倍率1000倍)により観察した。
−評価基準−
A:リールに巻き付ける前と、リールから引き出した後と、において、表面層に変化は見られなかった。
B:リールに巻き付ける前と、リールから引き出した後と、において、表面層に変化が見られるものの脱落(剥がれ)は見られなかった。
C:リールから引き出した後において、表面層に脱落(剥がれ)が見られた。
<コロナ放電器(スコロトロン)及び画像形成装置の作製>
富士ゼロックス(株)製の画像形成装置(DocuCentre Color 500)における帯電装置(スコロトロン)の放電ワイヤを、上記で作製された放電電極(長さ380mmに切断したものを用いた)に置き換えて画像形成装置の改造機を作製した。
ここで、作製された改造機における帯電装置は、長手方向に垂直な平面で切断したときの断面が、図8中のコロナ放電器(スコロトロン)40と同様の構成となっている。
<実機評価>
上記の画像形成装置を用い、高湿度(28℃、85%RH)の環境下で5万枚の連続印刷を行ない、以下の評価を行った。ここで、帯電装置の放電電極には、直流電源のみにより、−4000Vの電圧を印加した。
また、印刷画像は画像濃度20%のハーフトーンとした。
(放電生成物の付着状態)
5万枚の連続印刷後、帯電装置から放電電極を取り外し、放電電極表面(表面層の表面)を光学顕微鏡(倍率1000倍)により観察した。また、この放電電極表面を、ウレタンフォーム(ブリヂストン社エバーライト マイクロセルUSN)を加重10g/cmにて押し当てて擦り、放電生成物が除去されるかどうかを確認した。
−評価基準−
A:光学顕微鏡観察により放電生成物の付着が確認されなかった。
B:光学顕微鏡観察により放電生成物の付着が確認されたものの、放電生成物はウレタンフォームにより5往復以内擦ることにより除去された。
C:光学顕微鏡観察により、放電生成物の付着が確認されたものの、放電生成物はウレタンフォームにより5往復を超えて50往復以内擦ることにより除去された。
D:光学顕微鏡観察により、放電生成物の付着が確認され、放電生成物はウレタンフォームにより50往復を超えて擦っても除去できなかった。
(放電生成物の付着に起因する画像異常)
5万枚の連続印刷後、5万枚目の印刷画像(画像濃度20%のハーフトーン)において、放電電極への放電生成物の付着位置に対応した筋状の画像異常の有無を確認した。
−評価基準−
A:放電電極への放電生成物の付着に起因する画像異常は確認されなかった
B:放電電極への放電生成物の付着に起因する画像異常が確認されたものの、実用上許容範囲内であった。
C:放電電極への放電生成物の付着に起因する画像異常が確認され、実用上の許容範囲を超えていた。
(放電安定性)
5万枚の連続印刷後、5万枚目の印刷画像(画像濃度20%のハーフトーン)において10点の画像濃度を測定し、下記式に従って、放電安定性の低下に起因する濃度ムラを測定した。
濃度ムラ(%)=((最大値−最小値)/平均値)×100
−評価基準−
A:放電安定性の低下に起因する濃度ムラが10%以下であった。
B:放電安定性の低下に起因する濃度ムラが10%を超えて20%未満であった。
C:放電安定性の低下に起因する濃度ムラが20%を超えていた。
〔実施例2乃至実施例7、比較例1乃至比較例2〕
実施例1において、放電電極用基体表面への表面層の成膜条件を下記表1に示すように変更することにより、表面層の組成を下記表1に示すように変更した以外は実施例1と同様にしてコロナ放電器及び画像形成装置を作製し、実施例1と同様の評価を行った。
評価結果を下記表1に示す。
〔比較例3〕
実施例1において、放電電極用基体表面への表面層の形成に代えて、放電電極用基体表面に、膜厚0.5μmの金めっき(Auめっき)を施した以外は実施例1と同様にしてコロナ放電器及び画像形成装置を作製し、実施例1と同様の評価を行った。
評価結果を下記表1に示す。
〔比較例4〕
実施例1において、放電電極用基体表面に表面層を形成しなかった以外は実施例1と同様にしてコロナ放電器及び画像形成装置を作製し、実施例1と同様の評価を行った。
評価結果を下記表1に示す。
Figure 2011022531
表1中、抵抗率欄の「7.9E(8)」等の数値は、「7.9×10」等であることを示す。
表1に示すように、酸素の含有量が15原子%以上55原子%以下である表面層を有する放電電極を用いた実施例1乃至実施例6では、放電生成物の付着が抑制され、放電安定性に優れ、放電安定性の低下に起因する画像濃度ムラが抑制されていた。
一方、表面層における酸素の含有量が55原子%を超える比較例1では、放電安定性が低下し、放電安定性の低下に起因する画像濃度ムラが確認された。
また、表面層における酸素の含有量が15原子%未満である比較例2、及び表面層として金(Au)めっきを用いた比較例3、表面層を形成しなかった比較例4では、放電電極に放電生成物が付着し、形成された画像では、放電生成物の付着に起因する画像異常が見られた。
1、2、3、102、112 放電電極用基体
10、20、31、41 放電電極
30、40 コロナ放電器
32、42 筐体
36、46 放電照射領域
50 被処理体
100 成膜装置
101 真空容器
103 成膜ジグ
113 成膜ジグ(巻き取り側)
114 成膜ジグ(巻き出し側)
105 放電部
107 プロセスガス供給部
109 材料ガス供給部
111 排気装置
200、300 画像形成装置
210 感光体
211 感光体用基体
213 下引き層
215 感光層
217 耐磨耗層
220 帯電装置
222 除電装置
230 露光装置
240 現像装置
250 転写装置
260 クリーニング装置
270 定着装置
300 画像形成装置

Claims (8)

  1. 放電電極用基体と、
    前記放電電極用基体の表面に設けられた、酸素とガリウムとを含み酸素の含有量が15原子%以上55原子%以下である表面層と、
    を有する放電電極。
  2. 前記表面層が、更に、10原子%以上30原子%以下の水素を含む請求項1に記載の放電電極。
  3. 前記表面層の体積抵抗率が、10Ω・cm以上1013Ω・cm以下である請求項1又は請求項2に記載の放電電極。
  4. 請求項1〜請求項3のいずれか1項に記載の放電電極と、前記放電電極の周囲の一部を囲って配置された筐体と、を備えた放電器。
  5. 感光体と、前記感光体を帯電する帯電手段と、を備え、
    前記帯電手段が請求項4に記載の放電器であるプロセスカートリッジ。
  6. 更に、前記感光体を除電する除電手段を備え、前記除電手段が請求項4に記載の放電器である請求項5に記載のプロセスカートリッジ。
  7. 感光体と、
    前記感光体を帯電する帯電手段と、
    帯電した前記感光体の表面に潜像を形成する潜像形成手段と、
    前記感光体の表面に形成された潜像をトナーにより現像してトナー像を形成する現像手段と、
    前記感光体の表面に形成されたトナー像を記録媒体に転写する転写手段と、
    を備え、
    前記帯電手段が請求項4に記載の放電器である画像形成装置。
  8. 更に、前記転写後の前記感光体を除電する除電手段を備え、
    前記除電手段が請求項4に記載の放電器である請求項7に記載の画像形成装置。
JP2009169866A 2009-07-21 2009-07-21 放電電極、放電器、プロセスカートリッジ、並びに画像形成装置 Pending JP2011022531A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169866A JP2011022531A (ja) 2009-07-21 2009-07-21 放電電極、放電器、プロセスカートリッジ、並びに画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169866A JP2011022531A (ja) 2009-07-21 2009-07-21 放電電極、放電器、プロセスカートリッジ、並びに画像形成装置

Publications (1)

Publication Number Publication Date
JP2011022531A true JP2011022531A (ja) 2011-02-03

Family

ID=43632626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169866A Pending JP2011022531A (ja) 2009-07-21 2009-07-21 放電電極、放電器、プロセスカートリッジ、並びに画像形成装置

Country Status (1)

Country Link
JP (1) JP2011022531A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054085A1 (ja) * 2018-09-12 2020-03-19 春日電機株式会社 除電装置及びプラズマ発生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054085A1 (ja) * 2018-09-12 2020-03-19 春日電機株式会社 除電装置及びプラズマ発生装置
US10984989B2 (en) 2018-09-12 2021-04-20 Kasuga Denki, Inc. Charge neutralizer and plasma generator

Similar Documents

Publication Publication Date Title
JP3155413B2 (ja) 光受容部材の形成方法、該方法による光受容部材および堆積膜の形成装置
JP3530667B2 (ja) 電子写真感光体およびその製造方法
JP5653186B2 (ja) 電子写真装置
JP2011028218A (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
EP0957404A1 (en) Electrophotographic, photosensitive member and image forming apparatus
JP5675289B2 (ja) 電子写真感光体および電子写真装置
US6435130B1 (en) Plasma CVD apparatus and plasma processing method
JP2004077650A (ja) 電子写真装置
JP4562163B2 (ja) 電子写真感光体の製造方法及び電子写真感光体
JP2007327091A (ja) 薄膜形成方法、薄膜形成装置、薄膜材料、電子写真用感光体、プロセスカートリッジ、及び画像形成装置
JP3566621B2 (ja) 電子写真感光体及びそれを用いた装置
JP5489426B2 (ja) 電子写真感光体および該電子写真感光体を備える画像形成装置
JP5018589B2 (ja) 画像形成装置用ブレード、プロセスカートリッジ、及び画像形成装置
JP2011022531A (ja) 放電電極、放電器、プロセスカートリッジ、並びに画像形成装置
US8330161B2 (en) Electronic photosensitive body and manufacturing method for same, as well as image forming apparatus
JP4811473B2 (ja) 放電器、プロセスカートリッジ及び画像形成装置
US6686109B2 (en) Electrophotographic process and apparatus
JP4110053B2 (ja) 電子写真用感光体製造方法、及び電子写真感光体、並びにそれを用いた電子写真装置
JP5440068B2 (ja) 画像形成装置
JP3289011B2 (ja) 堆積膜形成装置の洗浄方法
JP2011065066A (ja) 画像形成装置、及びプロセスカートリッジ
JP5440062B2 (ja) 画像形成装置、及びプロセスカートリッジ
JP2024049447A (ja) 電子写真感光体および電子写真感光体の製造方法
JP4143491B2 (ja) 電子写真感光体の製造方法
JP2022117736A (ja) 電子写真感光体および画像形成装置