WO2020051766A1 - 一种广谱抗流感疫苗免疫原及其应用 - Google Patents

一种广谱抗流感疫苗免疫原及其应用 Download PDF

Info

Publication number
WO2020051766A1
WO2020051766A1 PCT/CN2018/105020 CN2018105020W WO2020051766A1 WO 2020051766 A1 WO2020051766 A1 WO 2020051766A1 CN 2018105020 W CN2018105020 W CN 2018105020W WO 2020051766 A1 WO2020051766 A1 WO 2020051766A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaccine
influenza
recombinant
immunogen
vector
Prior art date
Application number
PCT/CN2018/105020
Other languages
English (en)
French (fr)
Inventor
徐建青
张晓燕
谢辛慈
Original Assignee
上海市公共卫生临床中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市公共卫生临床中心 filed Critical 上海市公共卫生临床中心
Priority to US17/275,253 priority Critical patent/US20220118077A1/en
Priority to EP18933057.4A priority patent/EP3851120A4/en
Priority to CN201880001963.XA priority patent/CN111315407B/zh
Priority to JP2021513962A priority patent/JP7320601B2/ja
Priority to PCT/CN2018/105020 priority patent/WO2020051766A1/zh
Priority to US16/737,546 priority patent/US11471523B2/en
Publication of WO2020051766A1 publication Critical patent/WO2020051766A1/zh
Priority to AU2020421142A priority patent/AU2020421142A1/en
Priority to CN202080098295.4A priority patent/CN116096403A/zh
Priority to PCT/US2020/066059 priority patent/WO2021141758A1/en
Priority to BR112022013573A priority patent/BR112022013573A2/pt
Priority to EP20911565.8A priority patent/EP4087603A4/en
Priority to JP2022542402A priority patent/JP2023510542A/ja
Priority to US17/837,861 priority patent/US20220347287A1/en
Priority to JP2023061353A priority patent/JP2023093541A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/275Poxviridae, e.g. avipoxvirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • C12N2710/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10341Use of virus, viral particle or viral elements as a vector
    • C12N2795/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to the research, design and production of engineering vaccines, in particular to a broad-spectrum vaccine immunogen against influenza virus and its application, which includes a new type of immunogen, a recombinant vector vaccine and an immunization method thereof.
  • Influenza is an acute respiratory infectious disease caused by influenza virus infection, which is extremely contagious and extremely fast. Influenza virus belongs to the family Orthomyxoviridae and is an antisense single-stranded RNA virus. Seasonal influenza caused by influenza viruses and frequent and unpredictable influenza pandemics have seriously harmed human health and public health. According to the World Health Organization (World Health Organization) report, worldwide, 3 to 5 million people are infected with the influenza A virus each year, of which about 250,000 to 500,000 die. Due to the frequent outbreaks of highly pathogenic influenza such as H5N1, H1N1, H3N2, and H7N9 in recent years, it is of great significance to study a universal influenza vaccine that has a cross-protection effect on different subtypes of influenza viruses.
  • World Health Organization World Health Organization
  • influenza vaccines approved by the World Health Organization are seasonal influenza vaccines, and most of the research hotspots of influenza vaccines in the world have focused on the induction of antibody response to the influenza virus envelope Haemagglutinin (HA) to achieve protective effects.
  • HA Haemagglutinin
  • the HA head has a significant immune advantage in inducing the production of neutralizing antibodies, this site is most susceptible to antigen drift, so neutralizing antibodies against the HA head have strong strain specificity, and the virus will Selective mutation to escape neutralizing antibodies makes it difficult for antibodies to achieve cross-protection effects.
  • studies have found some broad-spectrum neutralizing antibodies that target the HA rods, but they lack cross-protection against different groups of influenza viruses.
  • influenza-specific CD8 + T cells have a broad-spectrum anti-influenza effect and can kill cells infected by different subtypes of influenza.
  • influenza virus antigen-specific CD8 + memory T cells can be maintained in the respiratory tract for up to one year, and the number of these specific CD8 + cells is related to the host's cross-protection ability against influenza infection. Efficient and broad-spectrum anti-virus influenza vaccines provide the theoretical basis.
  • influenza vaccines approved by WHO are seasonal influenza vaccines.
  • the most widely used are trivalent inactivated vaccines, which include two influenza A viruses (H1N1 and H3N2) and one influenza B virus.
  • subcutaneous vaccines and live attenuated vaccines administered by nasal spray are also approved.
  • these vaccines share a common challenge, that is, the protective effect of the vaccine depends on the consistency of the influenza strains and vaccine strains that prevailed in those years.
  • Influenza viruses are constantly mutating, WHO monitoring and forecasting is time-consuming, laborious and inaccurate. In order to ensure seasonal vaccine supply, production needs to be performed at least seven or eight months in advance, which greatly increases the uncertainty of vaccine prediction, and A possible pandemic flu is also largely ineffective.
  • the current vaccine production still mainly depends on chicken embryos, the production cycle is too long, the process is complicated, it takes time and effort, and the cost is relatively high.
  • DNA vaccines and viral vector vaccines are widely used.
  • DNA vaccines have been proven to be one of the most effective forms of priming vaccines.
  • the use of DNA vaccines and protein vaccines or viral vector vaccines to strengthen the strategy of combined immunization is also the study of vaccine immunization strategies hot spot.
  • the most commonly used adenovirus vaccine vector is human type 5 adenovirus. Although it has a good ability to express foreign genes, it is easily neutralized by pre-existing adenovirus antibodies in most people because it is a human-derived adenovirus vector. Makes the vaccine ineffective, thereby limiting the use of the vaccine vector. In recent years, a gorilla-derived adenovirus type 68 vaccine vector has been discovered.
  • the gorilla type 68 adenovirus can infect dividing cells and non-dividing cells. It can transduce lung cells, liver cells, bone cells, blood vessels, muscles, brains, and central nervous cells, etc., has good gene stability and excellent foreign gene expression ability. It can be used for mass production of HEK293 cells and has been widely used.
  • Tiantan strain pox virus vaccine vector has a wide host range, high reproduction titer, very long-lasting immune response, and the capacity to insert foreign genes is extremely large, theoretically up to 25-50kb. Tiantan strain pox virus can be effective Stimulating the body to produce antibody responses and T cell immune responses has been proven to be extremely safe, and can also be used by immunodeficiency patients.
  • an anti-influenza vaccine immunogen comprising an amino acid sequence selected from SEQ ID Nos: 1 and SEQ ID Nos: 2 or an immunogenic fragment thereof, or A combination of these sequences.
  • the immunogen comprises a conserved protein within the influenza virus, or an immunogenic fragment of a conserved protein.
  • influenza virus matrix proteins M1, M2
  • NP nucleoproteins
  • PB1, PB2 alkaline polymerases
  • PA acid polymerases
  • the immunogen is derived from recombinant proteins of all influenza virus subtypes, or recombinant proteins sharing a sequence thereof, or a combination thereof, and the influenza virus subtypes include those of influenza A virus. H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17, H18 subtypes, influenza B viruses.
  • an anti-influenza virus recombinant vector vaccine which is prepared by expressing and constructing an anti-influenza vaccine immunogen or an immunogenic fragment thereof or a combination thereof in a plurality of different vectors as described above. Recombinant vector vaccine.
  • the recombinant vector vaccine includes a recombinant protein vaccine, a recombinant DNA vaccine, a recombinant virus vector vaccine, a recombinant bacterial vector vaccine, a recombinant yeast vector vaccine, or a recombinant virus-like particle vaccine; Including adenovirus vectors, poxvirus vectors, adeno-associated virus vectors, herpes simplex virus vectors, cytomegalovirus vectors, and the like.
  • an immunization method which uses the above-mentioned anti-influenza vaccine immunogen or its immunogenic fragment or a combination thereof to construct a recombinant influenza vaccine for immunization, including the following steps:
  • the different recombinant vector vaccines of claim 5 are sequentially vaccinated, and each recombinant vector vaccine is vaccinated at least once, and the vaccination procedure includes at least one respiratory immunization and one systemic immunization.
  • each shot is immunized with a recombinant vaccine derived from a different vector.
  • the vaccine in the above-mentioned vaccine immunization process, is immunized using the "priming-boost-re-boost" immunization strategy, and each recombinant vaccine is vaccinated at least once, and the vaccination program includes at least one One intra-respiratory vaccine immunization and one systemic immunization.
  • the systemic vaccination method includes intramuscular injection, subcutaneous vaccination, and intradermal vaccination.
  • Respiratory tract vaccination methods include nebulization and nasal drip.
  • the vaccination process is as follows: a preliminary DNA injection of a recombinant DNA vaccine, a boost of the respiratory tract immunity of the recombinant adenovirus vector vaccine, and a strategy of strengthening the recombinant poxvirus vaccine by intramuscular injection. Construction and immunization.
  • the vaccination process is: the recombinant poxvirus vaccine is vaccinated as the last shot.
  • the interval between each two vaccination is at least 1 week, preferably 2 weeks or more.
  • the vaccine and immunization technology of the present invention can be used to inoculate avian animals to prevent the transmission of avian influenza to humans, and can also be used to inoculate humans to reduce the pathogenicity of human infection with avian influenza. Disease, can also be used to vaccinate people to prevent people from spreading to others after being infected with the flu.
  • a treatment method which comprises using an anti-flu vaccine as described above for intratumoral vaccination to treat a tumor, wherein the tumor includes lung cancer, liver cancer, kidney cancer, pancreatic cancer, Gastric cancer, breast cancer, esophageal cancer, bladder cancer, osteosarcoma.
  • a method of immunization comprising using an anti-influenza vaccine as described above as an additional vaccine adjuvant to enhance an immune response against other immunogens, wherein the other vaccine comprises an antiviral Vaccine, antitumor vaccine.
  • the other vaccines also include anti-ZIKV, anti-hepatitis B, anti-hepatitis C, anti-tuberculosis, anti-HIV, anti-malaria, anti-dengue vaccine and the like.
  • the other vaccines also include vaccines against lung cancer, liver cancer, kidney cancer, pancreatic cancer, gastric cancer, breast cancer, esophageal cancer, bladder cancer, and osteosarcoma.
  • an anti-influenza vaccine immunogen or an immunogenic fragment thereof or a combination thereof as an adjuvant for other vaccines.
  • the present invention provides a broad-spectrum immunogen or an immunogenic fragment thereof or a combination thereof and an immunological method, characterized in that the immunogen sequence includes, for example, SEQ ID No .: 1 and SEQ ID No .: The amino acid sequence shown in FIG. 2 or an immunogenic fragment thereof, wherein two sequences can be used separately or simultaneously, and the entire paragraph is used or truncated.
  • the immunogenic fragment has the same biology as the sequence of the present invention.
  • the immunogen sequence of the present invention comprises an influenza virus-specific CD8 + T cell epitope that binds to human MHC class I molecules with high affinity.
  • the above-mentioned immunogen is used to construct a recombinant vaccine by using a plurality of different vaccine vectors.
  • Each immunization is sequentially inoculated with a different recombinant vector vaccine.
  • Each recombinant vaccine is vaccinated at least once.
  • the vaccination program includes at least one respiratory vaccine immunization and one whole body vaccine. Systemic vaccination; the combination of the recombinant vector vaccine and the vaccination method used can obtain a high level of T-cell immune response in the respiratory tract and the whole system, so that the vaccinee can obtain immunity against different subtypes of influenza.
  • the immunogen according to the present invention comprises a conserved matrix protein (M1, M2), a nucleoprotein (NP), an alkaline polymerase (PB1, PB2), an acid polymerase (PA) or an immunogenic fragment thereof that are conserved inside the influenza virus. Recombinant protein.
  • the immunogen sequence of the present invention is two sequences named as SEQ ID No .: 1 and SEQ ID No .: 2 respectively.
  • the immunogen according to the present invention can be used to construct recombinant vector vaccines for different vaccine vectors, including but not limited to recombinant protein vaccines, recombinant DNA vaccines, recombinant virus vector vaccines, recombinant bacterial vector vaccines, recombinant yeast vector vaccines, or recombinant virus-like particle vaccines, etc. .
  • the method of immunizing the multiple recombinant vector vaccines of the present invention adopts a "primary immunization-boost-re-boost" approach, that is, a combination of systemic system immunity and local respiratory tract immunity, using different vectors for each immunization Sequential application of vaccines.
  • the present invention preferably uses the intramuscular injection of the recombinant DNA vaccine to establish a systemic immune response, then strengthens the respiratory system immunity with the recombinant 68 adenovirus vaccine, and finally establishes the systemic system immunity by intramuscular injection of the recombinant poxvirus vaccine. Responding to the re-strengthening strategy for vaccine construction and immunization.
  • the recombinant poxvirus vector vaccine is preferably used as the third vaccine to be strengthened again, which can effectively establish a broad-spectrum influenza-specific immune response in the local and systemic respiratory tract and help to enhance the broad-spectrum of vaccine protection.
  • the interval between every two vaccinations is at least one week, which can be 2 or more weeks.
  • the systemic immunization method of the present invention includes, but is not limited to, intramuscular injection, subcutaneous injection, intradermal injection, and the like, and the local immunization method of respiratory tract includes, but is not limited to, nebulization and nose drip.
  • the immunogen described in the present invention can be applied to the research, design and production of vaccines and drugs for preventing or treating influenza virus infection in birds and mammals.
  • the immune method of the present invention can induce the characteristics of high-level antigen-specific CD8 + T cell response locally in the respiratory tract, making it applicable to prevent respiratory tract pathogen infection, reduce the pathogenicity of respiratory tract pathogens, and prevent and treat respiratory tract tumors. .
  • the advantage of the present invention is that the immunogen contains highly conserved influenza CD8 T cell epitopes that bind to human MHC class I molecules with high affinity, and can induce a broad spectrum and high level of influenza-specific T cell immunity.
  • the response can effectively respond to the existing immune response of the influenza virus escaping from the host due to antigen drift and antigen transformation, and has a certain cross-protection effect on different subtypes of influenza viruses.
  • the advantage of the present invention is that the immunization method uses sequential immunization with a variety of different carriers, and uses different inoculation methods to effectively activate the broad-spectrum T-cell immune response of the local and systemic respiratory tracts to enhance the vaccine's effectiveness against different subtypes of influenza viruses. Protection effect.
  • the advantage of the invention is that the immunogen and immunization method can be used for immunization of any respiratory pathogen vaccine; at the same time, using the immunogen to prepare a recombinant vaccine with a viral vector can be used for intratumoral vaccination to treat tumors, said Tumors include but are not limited to anti-lung cancer, liver cancer, kidney cancer, pancreatic cancer, gastric cancer, breast cancer, esophageal cancer, bladder cancer, osteosarcoma, and the like.
  • Figure 1 shows western immunoblot experiments to detect immunogen expression.
  • A shows that Western blot experiments verify that the DNA vector pSV1.0, the adenoviral vector AdC68, and the poxvirus vector TTV can effectively express the immunogen SEQ ID ID No.:1 of the present invention. After the influenza matrix protein 1 antibody was incubated, no specific bands were found in the empty vectors pSV1.0, AdC68, and TTV that did not contain the immunogen SEQ ID ID No.:1 sequence of the present invention, which contained the immunogen SEQ of the present invention.
  • IDS No.:1 pSV1.0-SEQ ID No.:1, AdC68-SEQ ID No.:1, TTV-SEQ ID No.:1/2 A significant band with a protein size of about 130kD can be seen, confirming the DNA
  • the vector pSV1.0, the adenoviral vector AdC68 and the poxvirus vector TTV can effectively express the immunogen SEQ ID No .: 1 of the present invention; and after incubation with ⁇ -actin antibody, it can be seen that the protein size is approximately 42kD.
  • the bands further prove that the experimental steps are accurate and the experimental results are reliable.
  • FIG. 2 shows that the Western vector pSV1.0, the adenovirus vector AdC68, and the poxvirus vector TTV can effectively express the immunogen SEQ ID No .: 2 of the present invention.
  • the influenza matrix protein 2 antibody was incubated, no specific bands were found in the empty vectors pSV1.0, AdC68, and TTV that did not contain the sequence of the immunogen SEQ ID ID No .: 2 of the present invention, which contained the immunogen SEQ of the present invention.
  • FIG. 2 shows immunogen-based detection of influenza-specific T-cell immune responses.
  • A Shows the level of influenza-specific T cell immune response in mouse spleen cells by ELISA dot assay. The results showed that the mice in the control group had no spot-forming cells and no influenza-specific T-cell immune response; the mice in the adenovirus group had more spot-forming cells against the two epitopes of NP-2 and PB2-1, with high levels T cell immune response; mice in the poxvirus group have spot-forming cells against epitopes such as NP-2, NP-3, PB1-1, PB1-3, and PA-3, and have higher T-cell immune responses; B) Shows the level of influenza-specific immune response in mouse spleen cells detected by intracellular factor interferon gamma and tumor necrosis factor alpha staining.
  • FIG. 3 shows the evaluation of the protective effects of H1N1 and H7N9 influenza based on immunogens.
  • a and B are the weight curves of mice. After H1N1 and H7N9 influenza virus challenge, the weight of mice in the control group continued to decline, and the weight of mice in the adenovirus group and poxvirus group first decreased and then increased;
  • C And (D) show the survival curves of mice. After H1N1 influenza virus challenge, all mice in the control group died, and mice in the adenovirus group and poxvirus group survived to 14 days;
  • Figure 4 shows the detection of influenza-specific T cell immune responses induced by different immunization methods.
  • A Shows the level of influenza-specific T cell immune response in mouse spleen cells by ELISA dot assay. The results showed that in the control group 1 mice, no spot-forming cells and no influenza-specific T-cell immune response were shown; in control groups 2, 3 and experimental groups 1, 2, spot-forming cells were seen for each single peptide, with high levels of T Cellular immune response;
  • (B) shows the level of influenza-specific immune response in mouse lung lavage fluid cells detected by enzyme-linked immunospot assay. Under the stimulation of NP-2 and PB2-1 peptides, no spot-forming cells were found in the control groups 1, 2 and 3, and no influenza-specific immune response could be established in the lungs.
  • (C) shows intracellular factor interferon ⁇ and tumor necrosis factor ⁇ staining to detect the level of influenza-specific immune response in mouse spleen cells.
  • the results showed that T cells expressing interferon gamma and tumor necrosis factor alpha were not seen in control group 1, T cells expressing interferon gamma and tumor necrosis factor alpha were seen in control group 2, 3 and experimental groups 1 and 2, and therefore showed influenza Characteristic T-cell immune response.
  • (D) represents the intracellular factor CD107a staining to detect the level of influenza-specific immune response in mouse spleen cells. The results show that T cells expressing CD107a can be seen in control group 3 and experimental group 2, and therefore have a T-cell immune response with influenza characteristics.
  • FIG 5 shows the protective effects of mice against H1N1 and H7N9 influenza viruses after immunization with different methods.
  • (A) and (B) show the weight curves of mice. After H1N1 and H7N9 influenza virus challenge, the mice in experimental groups 1 and 2 lost weight and then rose after H1N1 and H7N9 influenza virus infection, which was better than the control group. 1, 2, 3; (C) and (D) are the survival curves of mice. After H1N1 and H7N9 influenza virus challenge, mice in experimental groups 1 and 2 survived to 14 after H1N1 and H7N9 influenza virus infection.
  • mice in the control groups 1, 2, and 3 died before the 14th day; (E) and (F) show the lung viral load of the mice on the 5th day after challenge, in H1N1 and H7N9 influenza After virus challenge, the viral load of mice in experimental groups 1 and 2 was slightly lower than that in control groups 1, 2, and 3.
  • FIG. 6 shows the evaluation of the protective effect of mice in the nasal drip immune boosting experimental group after influenza virus challenge.
  • a and B are the weight curves of mice. After the H1N1 and H7N9 influenza viruses were challenged, the weights of the experimental group 1 + FTY720 and experimental groups 2 + FTY720 decreased and then rose, which was better than that of the control group 1+.
  • FTY720; (C) and (D) show mouse survival curves. After H1N1 and H7N9 influenza virus challenge, some mice in experimental group 1 + FTY720 and experimental group 2 + FTY720 survived to 14 days, which is better than the control. Group + FTY720 mice; (E) and (F) show the lung viral load of mice on the 5th day after challenge. After H1N1 and H7N9 influenza virus challenge, experimental group 1 + FTY720, experimental group 2 + FTY720 mouse virus load was lower than the control group + FTY720.
  • Example 1 Design and preparation of anti-influenza vaccine immunogen
  • GenBank database is a gene sequence database established by the National Center for Biotechnology Information (NCBI) in the United States. Through this database search, the gene sequences of about 40,000 influenza viruses were obtained.
  • the amino acid sequences of the M1, M2, NP, PB1, PB2, and PA proteins in the above 40,000 strains of influenza virus were calculated and analyzed.
  • the amino acid with the highest frequency at each position of the amino acid sequence was taken as the shared amino acid at that position.
  • the shared amino acid at the site constitutes the amino acid shared sequence of the protein, thereby obtaining the amino acid shared sequence of the M1, M2, NP, PB1, PB2, and PA proteins.
  • the online CD8 T cell epitope prediction software was used to analyze the amino acid shared sequences of PB1, PB2 and PA obtained above.
  • the online software used is http://tools.immuneepitope.org/main/tcell/ and http://www.syfpeithi.de/.
  • the two CD8 T cell epitopes predicted by the two software are retained, and these CD8 T cells are The epitopes were spliced to obtain the amino acid epitope sequences of PB1, PB2 and PA.
  • a vaccine sequence is designed.
  • the PA and PB1 amino acid epitope sequences obtained by epitope splicing were spliced with the amino acid shared sequence of the M1 protein to obtain a vaccine amino acid sequence named SEQ ID No.:1; the PB2 amino acid epitope sequence obtained by epitope splicing , And spliced with the amino acid shared sequence of NP and M2 proteins to obtain another vaccine amino acid sequence, named SEQ ID No.:2.
  • SEQ ID No.:1 and SEQ ID No.:2 were translated from the amino acid sequence to the nucleic acid sequence, and the eukaryotic codon optimization of the nucleic acid sequence was performed by the online software at http://www.jcat.de/ to obtain SEQ ID No .: 1 and SEQ ID No .: 2 nucleic acid sequences were synthesized by Suzhou Jinweizhi Biological Technology Co., Ltd. The synthesized sequence was sequenced by Suzhou Jinweizhi Biotechnology Co., Ltd. and verified as the sequences SEQ ID No .: 1 and SEQ ID No .: 2 of the present invention.
  • a recombinant DNA vector vaccine Using the immunogen according to the present invention, a recombinant DNA vector vaccine, a recombinant adenovirus vector vaccine and a recombinant poxvirus vector vaccine are constructed.
  • the immunogens SEQ ID No .: 1 and SEQ ID No .: 2 of the present invention were inserted into the pSV1.0 vector (preserved by the Shanghai Public Health Clinical Center) to construct a recombinant DNA vector vaccine, which was named pSV1.0-SEQ, respectively. ID No .: 1 and pSV1.0-SEQ ID No .: 2;
  • the immunogen was inserted into an AdC68 adenovirus vector (purchased from the Shanghai Pasteur Institute of the Chinese Academy of Sciences), and transfected into 293a cells (purchased from the Cell Resource Center of the Shanghai Academy of Life Sciences, Chinese Academy of Sciences) to construct a recombinant adenovirus vector vaccine.
  • AdC68-SEQ ID No.:1 and AdC68-SEQ ID No.:2 respectively;
  • Cleavage peptide p2a was used to connect the immunogens SEQ ID No.:1 and SEQ ID No.:2, inserted into the pSC65 vector (preserved by Shanghai Public Health Clinical Center), and transfected into TK143 cells (purchased from Shanghai Institute of Life Sciences, Chinese Academy of Sciences) Cell Resource Center), a recombinant poxvirus vector vaccine was constructed and named TTV-SEQ ID No.:1/2.
  • PSV1.0-SEQ ID No.:1 and pSV1.0-SEQ ID No.:2 were transfected into 293T cells (purchased from Cell Resource Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences), and 293T cells were collected 48 hours later. Resuspend the cells with 75 microliters of cell lysate, add 25 microliters of protein loading buffer, and prepare a sample by bathing at 100 ° C for 10 minutes.
  • AdC68-SEQ ID No.:1 and AdC68-SEQ ID No.:2 were infected with 293A cells, and 293A cells were collected 24 hours later. The cells were resuspended with 75 ⁇ l of cell lysate, and 25 ⁇ l of protein loading buffer was added. Prepare the sample in a 100 ° C water bath for 10 minutes.
  • TK143 cells were infected with TTV-SEQ ID No .: 1/2. TK143 cells were collected 48 hours later, and the cells were resuspended with 75 microliters of cell lysate, 25 microliters of protein loading buffer was added, and the samples were prepared by bathing at 100 ° C for 10 minutes. .
  • the results of immunogen expression detected by Western blot experiments are shown in FIG. 1.
  • the DNA vector pSV1.0, adenovirus vector AdC68, and poxvirus vector TTV can effectively express the immunogen SEQ ID No .: 1 of the present invention.
  • IDS No.:1 pSV1.0-SEQ ID No.:1, AdC68-SEQ ID No.:1, TTV-SEQ ID No.:1/2 A significant band with a protein size of about 130kD can be seen, confirming the DNA
  • the vector pSV1.0, the adenovirus vector AdC68, and the poxvirus vector TTV can effectively express the immunogen SEQ ID No .: 1 of the present invention; after the influenza matrix protein 2 antibody is incubated, it does not include the immunogen SEQ ID of the present invention.
  • a DNA vaccine, an adenovirus vector vaccine and a poxvirus vector vaccine were constructed. Mice were immunized with the recombinant influenza vaccine, and four weeks after the completion of immunization, the immunogenicity evaluation of the recombinant influenza vaccine was performed.
  • mice Six-week-old C57BL / 6 mice were randomly divided into three groups and named the control group, the adenovirus group and the poxvirus group, respectively.
  • the specific immunization procedure is shown in Table 1.
  • the immunization method is intramuscular injection, pSV1.0 inoculation dose is 100 micrograms, AdC68 inoculation dose is 10 11 virus particles, pSV1.0-SEQ ID No.:1 and pSV1.0-SEQ ID No .: 2 inoculation doses are 50 micrograms each, AdC68-SEQ ID No .: 1 and AdC68-SEQ ID No .: 2 inoculation doses are 5x10 10 virus particles each, and TTV-SEQ ID No .: 1/2 inoculation doses are 10 7 plaque-forming units, the vaccine is inoculated every two weeks.
  • Recombinant influenza vaccine was tested for immunogenicity using Enzyme-linked Immunospot Assay (ELISpot) and Intracellular staining of cytokines (ICS) methods to detect mouse spleen cells.
  • ELISpot Enzyme-linked Immunospot Assay
  • ICS Intracellular staining of cytokines
  • 16 epitope monopeptides were selected to stimulate the mouse T cell immune response, respectively Named: M1-1, M1-2, M1-3, M2, NP-1, NP-2, NP-3, PB1-1, PB1-2, PB1-3, PB2-1, PB2, PB2 -3, PA-1, PA-2, PA-3.
  • the mouse interferon ⁇ protein was diluted to a final concentration of 5 ⁇ g / ml, 100 ⁇ l per well was added to the detection plate, and coated at 4 ° C. overnight. The next day, the coating liquid was discarded, 200 microliters of complete medium was added to each well and washed once, and then 200 microliters of complete medium was added, and the cells were blocked for 2 hours at room temperature. After blocking, the mouse spleen cell concentration was adjusted to 4 per ml.
  • mice in the control group had no spot-forming cells and no influenza-specific T-cell immune response; the mice of the adenovirus group had more spots on the two epitopes of NP-2 and PB2-1.
  • Cells, with a high level of T-cell immune response; mice in the poxvirus group have spot-forming cells against epitopes such as NP-2, NP-3, PB1-1, PB1-3, PA-3, and have higher T Cellular immune response
  • Intracellular factor interferon gamma, tumor necrosis factor alpha, and CD107a staining were used to detect the level of influenza-specific immune response in mouse spleen cells. The results showed that no T cells expressing interferon ⁇ , tumor necrosis factor ⁇ , and CD107a were seen in the control group, and T cells expressing interferon ⁇ , tumor necrosis factor ⁇ , and CD107a were seen in the adenovirus and poxvirus groups, and therefore showed influenza characteristics. T cell immune response.
  • Example 2 using the immunogen according to the present invention, a DNA vaccine, an adenovirus vector vaccine and a poxvirus vector vaccine were constructed. As described in Example 3, mice were immunized with the recombinant influenza vaccine, and four weeks after the completion of immunization, the offensive protection effect of the recombinant influenza vaccine was evaluated.
  • H1N1 and H7N9 influenza challenge models were used to evaluate the protective effect of the immunogen.
  • the H1N1 influenza challenge experiment was performed in a biosafety secondary laboratory, and the H7N9 influenza challenge experiment was performed in a biosafety third laboratory.
  • Each mouse was anesthetized by intraperitoneal injection of 50 microliters of 10% chloral hydrate, and each mouse was challenged with 50 microliters of influenza virus by nasal drip.
  • the H1N1 influenza virus challenge dose was half the tissue infection dose of 500 viruses per mouse.
  • the H7N9 influenza virus challenge dose is 100% of the virus tissue infection dose per mouse.
  • 5 mice were sacrificed in each group, and the lungs were taken for viral load measurement.
  • mice in the control group continued to decline and all died on the 12th day; the weight of mice in the adenovirus group began to rise on the 9th day and all survived to 14 days; the poxvirus group was small The weight loss of the rats slowed down significantly, the weight began to rise on day 9, and all mice survived to 14 days.
  • mice in the control group After challenge with the non-lethal dose of H7N9 influenza virus, the weight of mice in the control group decreased by nearly 20%, and the weight recovered on the ninth day; the mice of the adenovirus group and poxvirus group lost less than 10%, and their weight Rapid recovery in 7 days.
  • Example 5 Detection of immunogenicity of influenza vaccines based on different immunization methods
  • Example 2 using the anti-influenza immunogen according to the present invention, a DNA vaccine, an adenovirus vector vaccine and a poxvirus vector vaccine were constructed. Immunization of mice is carried out by using the immunization method according to the present invention. Immunogenicity testing is performed as described in Example 3 four weeks after the completion of immunization.
  • 6-week-old C57BL / 6 mice were randomly divided into 5 groups, named control group 1, control group 2, control group 3, experimental group 1 and experimental group 2, respectively, in which experimental group 1 and experimental group 2 adopt the present invention
  • the immunization method The specific immunization procedures are shown in Table 2.
  • the inoculation dose of pSV1.0 is 100 micrograms
  • the inoculation dose of AdC68 is 10 11 virus particles
  • AdC68-SEQ ID No.:1 and AdC68-SEQ ID No.:2 were inoculated at 5x10 10 virus particles each, and TTV and TTV-SEQ ID No.:1/2 were inoculated at 10 7 phage Plaque-forming units, vaccines are given every two weeks.
  • mice in control group 1 had no spot-forming cells and no influenza-specific T cell immune response; control groups 2, 3 and experimental groups 1, 2 were Spot-forming cells were found in single peptides, and there was a high level of T-cell immune response; in mouse lung lavage fluid, no spot-forming cells were found in the control groups 1, 2, and 3, and influenza-specific immune responses could not be established in the lungs.
  • control groups 2, 3 and experimental groups 1, 2 were Spot-forming cells were found in single peptides, and there was a high level of T-cell immune response; in mouse lung lavage fluid, no spot-forming cells were found in the control groups 1, 2, and 3, and influenza-specific immune responses could not be established in the lungs
  • T cells expressing interferon gamma and tumor necrosis factor alpha were not found in control group 1, control group 2, T cells expressing interferon ⁇ and tumor necrosis factor ⁇ can be seen in both 3 and experimental groups 1 and 2, and therefore show T-cell immune response with influenza characteristics.
  • Example 6 Evaluation of the effect of influenza vaccine challenge protection based on different immunization methods
  • mice were immunized with the immunization method of the present invention, and four weeks after the mice were immunized with the last vaccine, H1N1 and H7N9 influenza challenge models were used to evaluate the protective effect of the immunogen.
  • the H1N1 influenza challenge experiment was performed in a biosafety secondary laboratory, and the H7N9 influenza challenge experiment was performed in a biosafety third laboratory.
  • Each mouse was anesthetized by intraperitoneal injection of 50 microliters of 10% chloral hydrate, and each mouse was challenged with 50 microliters of influenza virus by nasal drip.
  • the H1N1 influenza virus challenge dose was half the tissue infection dose of 500 viruses per mouse.
  • the H7N9 influenza virus challenge dose is half the tissue infection dose of 500 virus per mouse.
  • 5 mice were sacrificed in each group, and the lungs were taken for viral load measurement.
  • mice in control group 1 died on day 13 and control groups 2 and 3 showed partial protection effects. 80% and 60% of mice survived to day 14 respectively; The mice of the experimental group 1 and the experimental group 2 of the vaccine immunization method recovered their weight on the 10th day, and all survived to the 14th day. The virus load of the experimental group 2 was significantly reduced, showing an excellent protective effect.
  • mice in the experimental group 1 and the experimental group 2 using the vaccination method of the present invention After challenge with the H7N9 influenza virus, the weight of the mice in the experimental group 1 and the experimental group 2 using the vaccination method of the present invention rapidly recovered on the 10th day, and all the mice survived to the 14th day, showing excellent protection effects ; No significant protective effect was observed in the other groups of mice.
  • Example 7 Evaluation of the Protective Effect of Mice in the Nasal Drop Immunization Test Group After Influenza Virus Challenge
  • mice were immunized with the immunization method of the present invention.
  • H1N1 and H7N9 influenza challenge models were used to evaluate the protective effect of the immunogens.
  • Specific influenza challenge The poisoning method is as described in Example 6.
  • mice continued to drink drinking water containing 2 ⁇ g / ml FTY720.
  • FTY720 is an immunosuppressant, which can effectively reduce the number of peripheral circulating lymphocytes and retain the lungs established by nasal inoculation.
  • Tissue in situ memory T cells were continuously used during the challenge of lethal doses of H1N1 and H7N9 influenza viruses to evaluate whether the nasal drip immunization method had a strengthening effect.

Abstract

本发明提供了一种新型的抗流感免疫原,其序列包括如SEQ ID No.:1和SEQ ID No.:2所示的氨基酸序列,或其免疫原性片段,或其组合。此外,本发明还提供了采用该免疫原的重组载体疫苗及其免疫方法在抗流感疫苗中的应用。通过表达该新型流感免疫原的多种载体疫苗序贯应用,并采用全身系统免疫和局部免疫的组合,在呼吸道局部诱导高水平T细胞免疫应答,可对多种流感病毒感染产生广谱性保护作用。

Description

一种广谱抗流感疫苗免疫原及其应用 技术领域:
本发明涉及工程性疫苗的研究、设计和生产,特别涉及一种广谱抗流感病毒的疫苗免疫原及其应用,其包括一种新型的免疫原、重组载体疫苗及其免疫方法。
背景技术:
流感是由流感病毒感染引起的传染力极强、传染速度极快的急性呼吸道传染病。流感病毒属正粘病毒科,为反义单链RNA病毒。流感病毒引起的季节性流感和频繁且不可预测的流感大流行已严重危害人类健康和公共卫生。根据世界卫生组织(World Health Organization,WHO)报告统计,在全世界范围内,每年有300-500万人感染A型流感病毒,其中约25万-50万人死亡。由于近年来H5N1、H1N1、H3N2、H7N9等高致病性流感的频繁爆发,研究对不同亚型流感病毒均具有交叉保护作用的通用型流感疫苗意义重大。
预防流感最为有效和经济的措施是接种疫苗。目前世界卫生组织批准使用的流感疫苗均为季节性流感疫苗,和国际上多数流感疫苗的研究热点,均集中在针对流感病毒包膜血凝素蛋白(Haemagglutinin,HA)诱导抗体应答来达到保护效果。虽然,HA头部在诱导中和抗体的产生时具有显著得免疫优势,但此部位最易发生抗原漂变,因此针对HA头部的中和抗体具有较强的毒株特异性,且病毒会选择性的向逃逸中和抗体方向突变,抗体很难实现交叉保护效果。近年来研究发现了一些靶向HA杆部的广谱中和抗体,但对不同组的流感病毒缺乏交叉保护作用,由于自然感染状态下HA杆部的免疫原性属次优势部位,且对病毒的中和能力较弱,很难成功应用。目前已有研究证实,在H7N9流感患者体内,流感特异性CD8+T细胞具有广谱抗流感的作用,可以杀死被不同亚型流感感染的细胞。并且,在流感感染之后,流感病毒抗原特异性CD8+记忆T细胞可以在呼吸道内维持长达一年的时间,并且这群特异性CD8+细胞的数量与宿主抵抗流感感染的交叉保护能力相关,为设计高效和广谱抗病毒的流感疫苗提供理论基础。
目前WHO批准使用的流感疫苗均为季节性流感疫苗,其中最为广泛使用的为三价灭活疫苗,包含2种A型流感病毒(H1N1和H3N2)和1种B型流感病 毒。另外,以皮下接种的疫苗、以鼻腔喷雾方式接种的减毒活疫苗等也获批准使用。然而,这些疫苗都存在共同的挑战,即疫苗的保护效果依赖于当年流行的流感毒株与疫苗毒株的一致性。流感病毒不断变异,WHO的监测与预测费时费力且准确性不够,为了保证当季的疫苗供应,需提前至少七、八个月的时间进行生产,大大增加了疫苗预测的不确定性,且对可能发生的大流行流感也基本无效。目前的疫苗生产主要依然依赖于鸡胚,生产周期过长,工艺复杂,费时费力,成本相对较高。目前有很多策略用于尝试构建流感疫苗,其中常用的灭活疫苗和减毒活疫苗缺乏有效性且生产工艺复杂,生产时间长。
目前DNA疫苗与病毒载体疫苗应用较多,DNA疫苗已被证实是一种最为有效的初免疫苗形式,采用DNA疫苗初免,蛋白疫苗或病毒载体疫苗加强的策略组合免疫也是疫苗免疫策略的研究热点。目前最常用的腺病毒疫苗载体为人五型腺病毒,虽具有较好的外源基因表达能力,但由于是人来源的腺病毒载体,很容易被大多数人体内预存的腺病毒抗体中和,使得疫苗失效,由此限制了该疫苗载体的应用。近年来发现了大猩猩来源的68型腺病毒疫苗载体,人体内极少有针对该腺病毒的抗体,很好的克服了上述问题,且大猩猩68型腺病毒可感染分裂细胞和非分裂细胞,可转导肺细胞、肝细胞、骨细胞、血管、肌肉、脑、中枢神经细胞等,具有很好地基因稳定性和优异的外源基因表达能力,可用HEK293细胞进行大量生产,已被广泛用于艾滋、埃博拉、流感、疟疾、丙肝等疫苗的研究。天坛株痘病毒疫苗载体具有很广的宿主范围,繁殖滴度高,诱导的免疫反应非常持久,且可插入外源基因的容量极大,理论上可达25-50kb,天坛株痘病毒可有效刺激机体产生抗体应答和T细胞免疫应答,已被证实具有极高的安全性,免疫缺陷人群也可使用。
因此,如何有效利用流感病毒内部保守蛋白,设计针对流感病毒内部CD8 T细胞表位的免疫原,通过多种不同的疫苗载体及其免疫组合策略,更为全面、有效、持久地激发免疫系统,提供更广泛有效的保护作用,是目前广谱流感疫苗面临的严峻挑战。
发明内容:
在本发明的一个方面,提供了一种抗流感疫苗免疫原,所述免疫原包括选自SEQ ID No.:1和SEQ ID No.:2所示的氨基酸序列或其免疫原性片段,或这些序列的组合。
在本发明的一个具体实施方案中,所述免疫原包含流感病毒内部保守蛋白,或保守蛋白的免疫原性片段。
在本发明的又一具体实施方案中,所述流感病毒内部保守蛋白包括流感病毒基质蛋白(M1、M2)、核蛋白(NP)、碱性聚合酶(PB1、PB2)和酸性聚合酶(PA)。
在本发明的又一具体实施方案中,所述免疫原源自所有流感病毒亚型的重组蛋白,或其共享序列的重组蛋白,或其组合,所述流感病毒亚型包括甲型流感病毒的H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16、H17、H18亚型、乙型流感病毒。
在本发明的另一方面,提供了一种抗流感病毒重组载体疫苗,其是通过使如上所述的抗流感疫苗免疫原或其免疫原性片段或其组合在多种不同载体中表达并构建的重组载体疫苗。
在本发明的一个具体实施方案中,所述重组载体疫苗包括重组蛋白疫苗、重组DNA疫苗、重组病毒载体疫苗、重组细菌载体疫苗、重组酵母载体疫苗或重组病毒样颗粒疫苗等;所述病毒载体包括腺病毒载体、痘病毒载体、腺相关病毒载体、单纯疱疹病毒载体、巨细胞病毒载体等。
在本发明的又一方面,提供了一种免疫方法,其使用如上所述的抗流感疫苗免疫原或其免疫原性片段或其组合构建重组流感疫苗进行免疫,包括如下步骤:每次免疫采用如权利要求5所述的不同重组载体疫苗进行序贯接种,每一种重组载体疫苗至少接种一次,接种程序中至少包含一次呼吸道内免疫和一次全身系统免疫接种。
在本发明的一个具体实施方案中,在上述疫苗免疫过程中,每一针采用不同载体来源的重组疫苗进行免疫接种。
在本发明的一个具体实施方案中,在上述疫苗免疫过程中,该疫苗采用“初免-加强-再加强”的免疫策略进行免疫接种,每一种重组疫苗至少接种一次,接 种程序中至少包含一次呼吸道内疫苗免疫和一次全身系统免疫接种。
在本发明的一个具体实施方案中,在上述疫苗免疫过程中,疫苗全身接种的方式包括肌肉注射、皮下接种、皮内接种。疫苗呼吸道接种的方式包括雾化、滴鼻。
在本发明的一个具体实施方案中,在上述疫苗免疫过程中,接种流程为:重组DNA疫苗肌肉注射初免,重组腺病毒载体疫苗呼吸道免疫加强,重组痘病毒疫苗肌肉注射再次加强的策略进行疫苗构建与免疫接种。
在本发明的一个具体实施方案中,在上述疫苗免疫过程中,接种流程为:重组痘病毒疫苗作为最后一针疫苗接种。
在本发明的一个具体实施方案中,在上述疫苗免疫过程中,每两次接种之间的间隔至少为1周,优选为2周或更多周。
本发明所述疫苗与免疫技术可用于接种禽类动物以预防禽流感向人传播,还可用于接种人以降低人感染禽流感的致病性,还可用于接种人以降低人感染人流感的致病性,还可用于接种人以预防人感染流感后向其他人传播。
在本发明的又一方面,提供了一种治疗方法,其包括使用如上所述的抗流感疫苗用于肿瘤内接种,以治疗肿瘤,其中所述肿瘤包括肺癌、肝癌、肾癌、胰腺癌、胃癌、乳腺癌、食管癌、膀胱癌、骨肉瘤。
在本发明的又一方面,提供了一种免疫方法,其包括使用如上所述的抗流感疫苗用作其他疫苗佐剂,以提升针对其他免疫原的免疫应答,其中所述其他疫苗包括抗病毒疫苗、抗肿瘤疫苗。所述其他疫苗还包括抗ZIKV、抗乙肝、抗丙肝、抗结核、抗HIV、抗疟疾、抗登革热疫苗等。所述其他疫苗还包括抗肺癌、肝癌、肾癌、胰腺癌、胃癌、乳腺癌、食管癌、膀胱癌、骨肉瘤疫苗。
在本发明的又一方面,提供了本发明所述抗流感疫苗免疫原或其免疫原性片段或其组合在制备抗流感病毒的疫苗中的用途。
在本发明的又一方面,提供了抗流感疫苗免疫原或其免疫原性片段或其组合在用作其他疫苗佐剂中的用途。
本发明提供了一种广谱抗流感病毒的免疫原或其免疫原性片段或其组合及免疫方法,其特征在于:所述免疫原序列包括如SEQ ID No.:1和SEQ ID No.:2 所示的氨基酸序列或其免疫原性片段,其中两段序列可分别使用或同时使用,整段使用或截取其中免疫原性片段,所述免疫原性片段与本发明序列具有同样的生物学活性,本发明免疫原序列包含与人MHC I类分子高亲和力结合的流感病毒特异性CD8+T细胞表位。利用上述免疫原通过使用多种不同疫苗载体构建重组疫苗,每次免疫采用不同重组载体疫苗进行序贯接种,每一种重组疫苗至少接种一次,接种程序中至少包含一次呼吸道内疫苗免疫和一次全身系统免疫接种;所采用的重组载体疫苗与接种方式组合可获得高水平的呼吸道内与全身系统的T细胞免疫应答,从而使疫苗接种者获得抗不同亚型流感的免疫力。
本发明所述的免疫原是包含流感病毒内部保守基质蛋白(M1、M2)、核蛋白(NP)、碱性聚合酶(PB1、PB2)和酸性聚合酶(PA)或其免疫原性片段的重组蛋白。本发明的免疫原序列为两条序列,分别命名为:SEQ ID No.:1和SEQ ID No.:2。
本发明所述的免疫原可用于不同疫苗载体构建重组载体疫苗,包括但不限于重组蛋白疫苗、重组DNA疫苗、重组病毒载体疫苗、重组细菌载体疫苗、重组酵母载体疫苗或重组病毒样颗粒疫苗等。
本发明所述多种重组载体疫苗的免疫方法,采用“初免-加强-再加强”的方式,即全身系统免疫和呼吸道局部免疫相结合的免疫方式,在每次免疫接种时采用不同的载体疫苗序贯应用。根据不同载体疫苗的特点,本发明优选重组DNA疫苗肌肉注射进行初免,从而建立全身系统免疫应答,接着用重组68型腺病毒疫苗呼吸道免疫加强,最后用重组痘病毒疫苗肌肉注射建立全身系统免疫应答再次加强的策略进行疫苗构建与免疫接种。本发明优选重组痘病毒载体疫苗作为第三针疫苗再次加强,可在呼吸道局部和全身系统有效建立广谱的流感特异性免疫应答,有助于增强疫苗保护的广谱性。每两次疫苗接种时间间隔至少一周,可以为2周或更多周。
本发明所述的全身系统免疫接种方式包括但不限于肌肉注射、皮下注射和皮内注射等,呼吸道局部免疫接种方式包括但不限于雾化和滴鼻等。
本发明中所述免疫原可应用于禽类和哺乳动物预防或治疗流感病毒感染的疫苗及药物研究、设计和生产中。且本发明中的免疫方法可在呼吸道局部诱导高 水平抗原特异性CD8+T细胞应答的特征,使得其在预防呼吸道病原体感染、降低呼吸道病原体致病力和呼吸道肿瘤的预防治疗中均有应用前景。
本发明中的优点在于,所述的免疫原包含高度保守的、与人MHC I类分子以高亲和力结合的流感CD8 T细胞表位,能够诱导广谱的、高水平的流感特异性T细胞免疫应答,能有效应对流感病毒因抗原漂变和抗原转变而逃逸宿主已有的免疫应答,对不同亚型流感病毒具有一定的交叉保护作用。
本发明的优点在于,所述免疫方法,采用多种不同载体序贯免疫,采用不同接种方式有效活化呼吸道局部和全身系统广谱的T细胞免疫应答,以增强疫苗对不同亚型的流感病毒的保护效果。
本发明的优点在于,所述免疫原与免疫方法可用于任何呼吸道病原体疫苗的免疫接种;同时,用所述免疫原以病毒载体制备重组疫苗,可用于进行肿瘤内接种,以治疗肿瘤,所述肿瘤包括但不限于抗肺癌、肝癌、肾癌、胰腺癌、胃癌、乳腺癌、食管癌、膀胱癌、骨肉瘤等。
附图说明:
图1所示为蛋白免疫印迹实验检测免疫原表达。(A)所示为,蛋白免疫印迹实验验证DNA载体pSV1.0、腺病毒载体AdC68和痘病毒载体TTV均能有效表达本发明所述免疫原SEQ ID No.:1。在流感基质蛋白1抗体孵育后,不包含本发明所述免疫原SEQ ID No.:1序列的空载体pSV1.0、AdC68、TTV均未见特异性条带,包含本发明所述免疫原SEQ ID No.:1的pSV1.0-SEQ ID No.:1、AdC68-SEQ ID No.:1、TTV-SEQ ID No.:1/2可见蛋白大小为130kD左右的显著性条带,证明DNA载体pSV1.0、腺病毒载体AdC68和痘病毒载体TTV均能有效表达本发明所述免疫原SEQ ID No.:1;并且在β肌动蛋白抗体孵育后,可见蛋白大小为42kD左右的显著性条带,进一步证明实验各步骤准确,实验结果可靠。(B)所示为,蛋白免疫印迹实验验证DNA载体pSV1.0、腺病毒载体AdC68和痘病毒载体TTV均能有效表达本发明所述免疫原SEQ ID No.:2。在流感基质蛋白2抗体孵育后,不包含本发明所述免疫原SEQ ID No.:2序列的空载体pSV1.0、AdC68、TTV均未见特异性条带,包含本发明所述免疫原SEQ ID No.:2 的pSV1.0-SEQ ID No.:2、AdC68-SEQ ID No.:2、TTV-SEQ ID No.:1/2可见蛋白大小为130kD左右的显著性条带,证明DNA载体pSV1.0、腺病毒载体AdC68和痘病毒载体TTV均能有效表达本发明所述免疫原SEQ ID No.:2;并且在β肌动蛋白抗体孵育后,可见蛋白大小为42kD左右的显著性条带,进一步证明实验各步骤准确,实验结果可靠。
图2所示为基于免疫原的流感特异性T细胞免疫应答检测。(A)所示为酶联免疫斑点实验检测小鼠脾细胞中流感特异性T细胞免疫应答水平。结果显示对照组小鼠未见斑点形成细胞,未显示流感特异性T细胞免疫应答;腺病毒组小鼠针对NP-2和PB2-1两个表位有较多的斑点形成细胞,有高水平的T细胞免疫应答;痘病毒组小鼠针对NP-2、NP-3、PB1-1、PB1-3、PA-3等表位均有斑点形成细胞,有较高的T细胞免疫应答;(B)所示为,胞内因子干扰素γ、肿瘤坏死因子α染色检测小鼠脾细胞流感特异性免疫应答水平。结果显示对照组未见表达干扰素γ、肿瘤坏死因子α的T细胞,腺病毒组和痘病毒组均可见表达干扰素γ、肿瘤坏死因子α的T细胞,因此显示具有流感特性的T细胞免疫应答。(C)表示胞内因子CD107a染色检测小鼠脾细胞流感特异性免疫应答水平。结果显示对照组未见表达CD107a的T细胞,腺病毒组可见表达CD107a的T细胞,因此具有流感特性的T细胞免疫应答。
图3所示为基于免疫原的H1N1和H7N9流感攻毒保护效果评价。(A)、(B)所示为小鼠体重曲线,在H1N1和H7N9流感病毒攻毒后,对照组小鼠体重持续下降,腺病毒组和痘病毒组小鼠体重先下降后回升;(C)、(D)所示为小鼠生存曲线,在H1N1流感病毒攻毒后,对照组小鼠全部死亡,腺病毒组和痘病毒组小鼠均存活至14天;(E)、(F)所示为攻毒后第5天小鼠肺部病毒载量检测,在H1N1和H7N9流感病毒攻毒后,腺病毒组和痘病毒组小鼠肺部病毒载量低于对照组。
图4所示为不同免疫方法诱导的的流感特异性T细胞免疫应答检测。(A)所示为酶联免疫斑点实验检测小鼠脾细胞中流感特异性T细胞免疫应答水平。结果显示对照组1小鼠未见斑点形成细胞,未显示流感特异性T细胞免疫应答;对照组2、3和实验组1、2针对各条单肽均可见斑点形成细胞,有高水平的T 细胞免疫应答;(B)所示为酶联免疫斑点试验检测小鼠肺灌洗液细胞流感特异性免疫应答水平。在NP-2和PB2-1两条肽刺激下,对照组1、2和3均未见斑点形成细胞,无法再肺部建立流感特异性免疫应答,实验组1和2可见较多斑点形成细胞,显示高水平的流感特异性T细胞免疫应答;(C)所示为胞内因子干扰素γ、肿瘤坏死因子α染色检测小鼠脾细胞流感特异性免疫应答水平。结果显示对照组1未见表达干扰素γ、肿瘤坏死因子α的T细胞,对照组2、3和实验组1、2均可见表达干扰素γ、肿瘤坏死因子α的T细胞,因此显示具有流感特性的T细胞免疫应答。(D)表示胞内因子CD107a染色检测小鼠脾细胞流感特异性免疫应答水平,结果显示对照组3和实验组2可见表达CD107a的T细胞,因此具有流感特性的T细胞免疫应答。
图5所示为采用不同方法免疫后小鼠对H1N1和H7N9流感病毒的攻毒保护效果。(A)、(B)所示为小鼠体重曲线,在H1N1和H7N9流感病毒攻毒后,实验组1和2小鼠在H1N1和H7N9流感病毒感染后体重先下降后回升,优于对照组1、2、3;(C)、(D)所示为小鼠生存曲线,在H1N1和H7N9流感病毒攻毒后,实验组1和2小鼠在H1N1和H7N9流感病毒感染后均存活至14天,对照组1、2、3在第14天前均有小鼠死亡;(E)、(F)所示为攻毒后第5天小鼠肺部病毒载量检测,在H1N1和H7N9流感病毒攻毒后,实验组1和2小鼠病毒载量略低于对照组1、2、3。
图6所示为滴鼻免疫提升实验组小鼠在流感病毒攻毒后保护效果的评价。(A)、(B)所示为小鼠体重曲线,在H1N1和H7N9流感病毒攻毒后,实验组1+FTY720、实验组2+FTY720小鼠体重先下降后回升,优于对照组1+FTY720;(C)、(D)所示为小鼠生存曲线,在H1N1和H7N9流感病毒攻毒后,实验组1+FTY720、实验组2+FTY720的部分小鼠存活至14天,优于对照组+FTY720小鼠;(E)、(F)所示为攻毒后第5天小鼠肺部病毒载量检测,在H1N1和H7N9流感病毒攻毒后,实验组1+FTY720、实验组2+FTY720小鼠病毒载量低于对照组+FTY720。
现在通过下列实施例特别描述本发明。
具体实施方案
本发明的其它方面在下面进行详细描述。阅读以下公开的实施方案的详细描述和所附权利要求后,本发明的这些和其它特征和优点将变得显而易见。
除非另有定义,否则本文使用的所有技术和科学术语具有本发明所属领域的技术人员通常理解的含义。
实施例1:抗流感疫苗免疫原的设计与制备
GenBank数据库是美国国家生物技术信息中心(National Center for Biotechnology Information,NCBI)建立的基因序列数据库,通过该数据库搜索得到约40000株流感病毒的基因序列。
对上述约40000株流感病毒内部M1、M2、NP、PB1、PB2、PA蛋白的氨基酸序列进行计算分析,将氨基酸序列每个位点出现频率最高的氨基酸作为该位点的共享氨基酸,由每个位点的共享氨基酸组成该蛋白的氨基酸共享序列,由此得到M1、M2、NP、PB1、PB2、PA蛋白的氨基酸共享序列。
使用在线CD8 T细胞表位预测软件对上述所得PB1、PB2和PA的氨基酸共享序列进行分析。所用在线软件为http://tools.immuneepitope.org/main/tcell/和http://www.syfpeithi.de/,保留两个软件预测出的共同的CD8 T细胞表位,将这些CD8 T细胞表位进行拼接,得到PB1、PB2和PA氨基酸表位序列。
通过上述所得氨基酸序列,设计疫苗序列。将经表位拼接所得的PA、PB1氨基酸表位序列,与M1蛋白氨基酸共享序列拼接,得到一条疫苗氨基酸序列,命名为SEQ ID No.:1;将经表位拼接所得的PB2氨基酸表位序列,与NP、M2蛋白氨基酸共享序列拼接,得到另一条疫苗氨基酸序列,命名为SEQ ID No.:2。
对上述SEQ ID No.:1和SEQ ID No.:2进行氨基酸序列向核酸序列的翻译,并通过http://www.jcat.de/在线软件进行核酸序列真核密码子优化,得到SEQ ID No.:1和SEQ ID No.:2核酸序列,由苏州金唯智生物科技有限公司进行合成。合成后的序列经苏州金唯智生物科技有限公司测序,验证为本发明所述序列SEQ ID No.:1和SEQ ID No.:2。
实施例2:基于抗流感疫苗免疫原的疫苗构建
利用本发明所述免疫原,构建重组DNA载体疫苗、重组腺病毒载体疫苗和重组痘病毒载体疫苗。
将本发明所述免疫原SEQ ID No.:1和SEQ ID No.:2插入pSV1.0载体(上海市公共卫生临床中心保存)中,构建重组DNA载体疫苗,分别命名为pSV1.0-SEQ ID No.:1和pSV1.0-SEQ ID No.:2;
将该免疫原插入AdC68腺病毒载体(购自中国科学院上海巴斯德研究所)中,转染至293a细胞(购自中国科学院上海生命科学研究院细胞资源中心),构建重组腺病毒载体疫苗,分别命名为AdC68-SEQ ID No.:1和AdC68-SEQ ID No.:2;
采用剪切肽p2a连接免疫原SEQ ID No.:1和SEQ ID No.:2,插入pSC65载体(上海市公共卫生临床中心保存),转染至TK143细胞(购自中国科学院上海生命科学研究院细胞资源中心)中,构建重组痘病毒载体疫苗,命名为TTV-SEQ ID No.:1/2。
蛋白免疫印迹实验检测抗流感疫苗免疫原的表达情况,具体步骤如下:
(1)制备实验样品
将pSV1.0-SEQ ID No.:1和pSV1.0-SEQ ID No.:2分别转染至293T细胞(购自中国科学院上海生命科学研究院细胞资源中心),48小时后收集293T细胞,用75微升细胞裂解液重悬细胞,加入25微升蛋白上样缓冲液,100摄氏度水浴10分钟制备样品。
将AdC68-SEQ ID No.:1和AdC68-SEQ ID No.:2分别感染293A细胞,24小 时后收集293A细胞,用75微升细胞裂解液重悬细胞,加入25微升蛋白上样缓冲液,100摄氏度水浴10分钟制备样品。
将TTV-SEQ ID No.:1/2感染TK143细胞,48小时后收集TK143细胞,用75微升细胞裂解液重悬细胞,加入25微升蛋白上样缓冲液,100摄氏度水浴10分钟制备样品。
(2)蛋白免疫印迹实验配置8%的聚丙烯酰胺分离胶,室温静止30分钟后,加入10%的聚丙烯酰胺浓缩胶,立即轻轻插入梳子,静置30分钟待胶凝固后装入电泳槽中,倒入电泳缓冲液,缓慢拔去梳子,按顺序加入上述制备好的样品;将电泳装置连接好,70伏电泳半小时后,将电压调至90伏,继续电泳1.5小时后结束;将聚偏二氟乙烯膜置于甲醇中激活30秒后,用转膜液浸泡海绵、滤纸和聚偏二氟乙烯膜,依次装好;将装置和冰袋置于转膜槽中,倒满预冷的转膜缓冲液,恒流200毫安,转膜2.5小时;转膜结束后,将聚偏二氟乙烯膜取出,至于5%脱脂奶粉中封闭1小时;分别按1:1000加入流感基质蛋白1抗体(购自艾博抗(上海)贸易有限公司),1:250加入流感基质蛋白2抗体(圣克鲁斯生物技术(上海)有限公司),在摇床上室温孵育2小时后,含吐温-20的磷酸盐缓冲液洗涤3次,每次5分钟;按1:5000加入辣根过氧化物酶标记的山羊抗小鼠IgG抗体,在摇床上室温孵育1小时后,含吐温-20的磷酸盐缓冲液洗涤5次,每次5分钟;配置显色液,覆盖于聚偏二氟乙烯膜上,进行发光检测。
蛋白免疫印迹实验检测免疫原表达结果如图1所示,DNA载体pSV1.0、腺病毒载体AdC68和痘病毒载体TTV均能有效表达本发明所述免疫原SEQ ID No.:1。在流感基质蛋白1抗体孵育后,不包含本发明所述免疫原SEQ ID No.:1序列的空载体pSV1.0、AdC68、TTV均未见特异性条带,包含本发明所述免疫原SEQ ID No.:1的pSV1.0-SEQ ID No.:1、AdC68-SEQ ID No.:1、TTV-SEQ ID No.:1/2可见蛋白大小为130kD左右的显著性条带,证明DNA载体pSV1.0、腺病毒载体AdC68和痘病毒载体TTV均能有效表达本发明所述免疫原SEQ ID No.:1;在流感基质蛋白2抗体孵育后,不包含本发明所述免疫原SEQ ID No.:2序列的空载体pSV1.0、AdC68、TTV均未见特异性条带,包含本发明所述免疫原SEQ ID No.:2的pSV1.0-SEQ ID No.:2、AdC68-SEQ ID No.:2、TTV-SEQ ID  No.:1/2可见蛋白大小为130kD左右的显著性条带,证明DNA载体pSV1.0、腺病毒载体AdC68和痘病毒载体TTV均能有效表达本发明所述免疫原SEQ ID No.:2;并且在β肌动蛋白抗体孵育后,可见蛋白大小为42kD左右的显著性条带,进一步证明实验各步骤准确,实验结果可靠。
实施例3:基于抗流感疫苗免疫原的疫苗免疫原性检测
如实施例2中所述,利用本发明所述免疫原,构建DNA疫苗、腺病毒载体疫苗和痘病毒载体疫苗。采用该重组流感疫苗免疫小鼠,在完成免疫四周后,进行该重组流感疫苗的免疫原性评价。
将6周龄的C57BL/6小鼠随机分为3组,分别命名为对照组,腺病毒组和痘病毒组。具体免疫程序如表1所示,免疫方式为肌肉注射,pSV1.0接种剂量为100微克,AdC68接种剂量为10 11病毒颗粒,pSV1.0-SEQ ID No.:1和pSV1.0-SEQ ID No.:2接种剂量为各50微克,AdC68-SEQ ID No.:1和AdC68-SEQ ID No.:2接种剂量为各5x10 10病毒颗粒,TTV-SEQ ID No.:1/2接种剂量为10 7噬菌斑形成单位,疫苗每隔两周接种一次。
表1 基于抗流感疫苗免疫原的小鼠实验
Figure PCTCN2018105020-appb-000001
重组流感疫苗免疫原性检测分别采用酶联免疫斑点检测(Enzyme-linked  Immunospot Assay,ELISpot)和细胞内因子染色(Intracellular staining of cytokines,ICS)方法,对小鼠脾脏细胞进行检测。
根据对SEQ ID No.:1和SEQ ID No.:2的表位预测,和已报道的常用流感T细胞表位,选择了16个表位单肽用于刺激小鼠T细胞免疫反应,分别命名为:M1-1、M1-2、M1-3、M2、NP-1、NP-2、NP-3、PB1-1、PB1-2、PB1-3、PB2-1、PB2-2、PB2-3、PA-1、PA-2、PA-3。
(1)酶联免疫斑点检测实验步骤如下:
提前一天,将小鼠干扰素γ蛋白稀释至终浓度为5微克/毫升,每孔100微升加入检测板中,4摄氏度包被过夜。次日,弃去包被液体,每孔加入200微升完全培养基洗涤一次,再加入200微升完全培养基,室温封闭2小时;封闭结束后,将小鼠脾细胞浓度调整为每毫升4×10 6个细胞,每孔加入50微升脾细胞,再加入10微克/毫升的单肽50微升,在敷箱中培养20小时左右;孵育结束后,每孔加入200微升蒸馏水冲洗2次,再加入200微升含吐温-20的磷酸盐缓冲液洗涤3次;将抗小鼠干扰素γ的生物素稀释至终浓度为2微克/毫升,每孔加入100微升,室温孵育2小时;孵育结束后,每孔加入200微升含吐温-20的磷酸盐缓冲液洗涤3次,将辣根过氧化物酶荧光底物按1:100稀释,每孔加入100微升,室温孵育1小时;孵育结束后,每孔加入200微升含吐温-20的磷酸盐缓冲液洗涤4次,加入200微升磷酸盐缓冲液洗涤2次;配置显色液,每孔加入100微升,室温避光反应15分钟左右,待有较清晰红点出现时,将板子用自来水轻轻冲洗5分钟终止显色反应,室温晾干后,放入酶联免疫斑点读板仪上读取阳性点数进行统计。
(2)细胞内因子染色实验步骤如下:
将小鼠脾脏细胞稀释至每毫升2×10 7个细胞,每孔加入150微升细胞和150微升肽库,随后每孔加入1微升CD107a抗体;孵育1小时后,每孔加入0.3微升蛋白转运阻断剂,置于培养箱中孵育6小时;孵育结束后,将细胞收集于流式管中,800转离心3分钟,每管加入800微升染色缓冲液洗涤,800转离心3分钟,弃上清;配置CD3、CD8、细胞活性/细胞毒性染色抗体混合液,每管加入40微升抗体混合液,室温避光染色20分钟;染色结束后,每管加入800微升染色缓冲液洗涤2次,800转离心3分钟,弃洗涤液,每管加入150微升固定液,室温避光固定20分钟;每管加入800微升染色缓冲液洗涤,1200转离心3分钟,弃上清;配置干扰素γ、肿瘤坏死因子α染色抗体混合液,每管加入40微升抗 体混合液,室温避光染色20分钟;每管加入800微升染色缓冲液洗涤,1200转离心3分钟,弃上清后,用250微升染色缓冲液重悬细胞,使用流式细胞仪检测,分析统计结果。
疫苗免疫原性检测结果如图2所示:
酶联免疫斑点实验结果显示对照组小鼠未见斑点形成细胞,未显示流感特异性T细胞免疫应答;腺病毒组小鼠针对NP-2和PB2-1两个表位有较多的斑点形成细胞,有高水平的T细胞免疫应答;痘病毒组小鼠针对NP-2、NP-3、PB1-1、PB1-3、PA-3等表位均有斑点形成细胞,有较高的T细胞免疫应答;
胞内因子干扰素γ、肿瘤坏死因子α、CD107a染色检测小鼠脾细胞流感特异性免疫应答水平。结果显示对照组未见表达干扰素γ、肿瘤坏死因子α、CD107a的T细胞,腺病毒组和痘病毒组均可见表达干扰素γ、肿瘤坏死因子α、CD107a的T细胞,因此显示具有流感特性的T细胞免疫应答。
该实验证实,通过不同疫苗载体表达抗流感疫苗免疫原SEQ ID No.:1和SEQ ID No.:2,都能诱导显著的T细胞免疫应答。
实施例4:基于抗流感免疫原的攻毒保护效果评价
如实施例2中所述,利用本发明所述免疫原,构建DNA疫苗、腺病毒载体疫苗和痘病毒载体疫苗。如实施例3所述,采用该重组流感疫苗免疫小鼠,在完成免疫四周后,进行该重组流感疫苗的攻毒保护效果评价。
采用H1N1和H7N9流感攻毒模型来评价免疫原的保护效果。H1N1流感攻毒实验在生物安全二级实验室内进行,H7N9流感攻毒实验在生物安全三级实验室内进行。
每只小鼠采用腹腔注射50微升10%水合氯醛麻醉,每只小鼠滴鼻50微升流感病毒进行攻毒,H1N1流感病毒攻毒剂量为每只小鼠500病毒半数组织感染剂量,H7N9流感病毒攻毒剂量为每只小鼠100病毒半数组织感染剂量。攻毒后的第5天,每组处死5只小鼠,取肺部进行病毒载量测定。
攻毒保护实验结果如图3所示:
在致死剂量的H1N1流感病毒攻毒后,对照组小鼠体重持续下降并在第12 天全部死亡;腺病毒组小鼠体重在第9天开始回升,并且全部存活至14天;痘病毒组小鼠体重下降显著减缓,体重在第9天开始回升,并且所有小鼠存活至14天。
在非致死剂量的H7N9流感病毒攻毒后,对照组小鼠体重下降接近20%,体重在第9天回升;腺病毒组和痘病毒组的小鼠体重下降不到10%,并且体重在第7天迅速回升。
该实验证实,通过不同疫苗载体表达抗流感疫苗免疫原SEQ ID No.:1和SEQ ID No.:2,都能对H1N1和H7N9流感病毒产生交叉保护效果,即本发明所述免疫原对不同亚型流感病毒具有广谱的保护作用。
实施例5:基于不同免疫方法的流感疫苗免疫原性检测
如实施例2中所述,利用本发明所述抗流感免疫原,构建DNA疫苗、腺病毒载体疫苗和痘病毒载体疫苗。利用本发明所述免疫方法进行小鼠免疫,在完成免疫四周后,如实施例3中所述方法,进行免疫原性检测。
将6周龄的C57BL/6小鼠随机分为5组,分别命名为对照组1、对照组2、对照组3、实验组1和实验组2,其中实验组1和实验组2采用本发明所述免疫接种方法。具体免疫程序如表2所示,pSV1.0接种剂量为100微克,AdC68接种剂量为10 11病毒颗粒,pSV1.0-SEQ ID No.:1和pSV1.0-SEQ ID No.:2接种剂量为各50微克,AdC68-SEQ ID No.:1和AdC68-SEQ ID No.:2接种剂量为各5x10 10病毒颗粒,TTV和TTV-SEQ ID No.:1/2接种剂量为10 7噬菌斑形成单位,疫苗每隔两周接种一次。
表2 基于不同免疫方法的小鼠免疫实验
Figure PCTCN2018105020-appb-000002
Figure PCTCN2018105020-appb-000003
疫苗免疫原性检测结果如图4所示:
酶联免疫斑点实验结果显示,在小鼠脾脏细胞中,对照组1小鼠未见斑点形成细胞,未显示流感特异性T细胞免疫应答;对照组2、3和实验组1、2针对各条单肽均可见斑点形成细胞,有高水平的T细胞免疫应答;在小鼠肺灌洗液中,对照组1、2和3均未见斑点形成细胞,无法再肺部建立流感特异性免疫应答,实验组1和2可见较多斑点形成细胞,即采用本发明所述疫苗接种方法的实验组1和实验组2显示了非常高水平的流感特异性T细胞免疫应答。
胞内因子干扰素γ、肿瘤坏死因子α、CD107a染色检测小鼠脾细胞流感特异性免疫应答水平,结果显示对照组1未见表达干扰素γ、肿瘤坏死因子α的T细胞,对照组2、3和实验组1、2均可见表达干扰素γ、肿瘤坏死因子α的T细胞,因此显示具有流感特性的T细胞免疫应答。
该实验证实,通过不同重组载体疫苗序贯免疫,呼吸道免疫与全身系统免疫相结合,采用本发明所述疫苗免疫方法的实验组1和实验组2能有效在全身系统和肺部局部均建立高水平的流感特异性免疫应答,优于对照组。
实施例6:基于不同免疫方法的流感疫苗攻毒保护效果评价
根据实施例5所述方法,采用本发明所述免疫方法免疫小鼠,在小鼠最后一针疫苗免疫后四周后,采用H1N1和H7N9流感攻毒模型来评价免疫原的保护效果。H1N1流感攻毒实验在生物安全二级实验室内进行,H7N9流感攻毒实验在生物安全三级实验室内进行。
每只小鼠采用腹腔注射50微升10%水合氯醛麻醉,每只小鼠滴鼻50微升流感病毒进行攻毒,H1N1流感病毒攻毒剂量为每只小鼠500病毒半数组织感染剂量,H7N9流感病毒攻毒剂量为每只小鼠500病毒半数组织感染剂量。攻毒后的第5天,每组处死5只小鼠,取肺部进行病毒载量测定。
攻毒保护实验结果如图5所示:
在H1N1流感病毒攻毒后,对照组1小鼠在第13天全部死亡,对照组2和3显示了部分保护效果,分别有80%和60%小鼠存活至第14天;采用本发明所述疫苗免疫方法的实验组1和实验组2小鼠体重在第10天回升,且全部存活至第14天,其中实验组2的病毒载量显著下调,显示了优异的保护效果。
在H7N9流感病毒攻毒后,采用本发明所述疫苗接种方法的实验组1和实验组2小鼠体重在第10天迅速回升,且所有小鼠存活至第14天,显示了优异的保护效果;其他组小鼠均未见明显保护作用。
该实验证实,通过不同重组载体疫苗序贯免疫,呼吸道免疫与全身系统免疫相结合,采用本发明所述疫苗免疫方法的实验组1和实验组2对H1N1和H7N9流感病毒有优异的交叉保护效果,且其保护效果优于仅采用肌肉注射一种接种途径的对照组2和对照组3,并且当重组痘病毒载体疫苗作为最后一针疫苗免疫时,疫苗的保护效果最优。
实施例7:滴鼻免疫提升实验组小鼠在流感病毒攻毒后保护效果的评价
根据实施例5所述方法,采用本发明所述免疫方法免疫小鼠,在小鼠最后一针疫苗免疫后四周后,采用H1N1和H7N9流感攻毒模型来评价免疫原的保护效果,具体流感攻毒方法如实施例6所述。在整个攻毒过程中,小鼠持续饮用含有2微克/毫升FTY720的饮用水,FTY720是一种免疫抑制剂,可有效减少外周循环淋巴细胞数,保留通过滴鼻接种建立的在肺部定居的组织原位记忆T细胞, 在致死剂量H1N1和H7N9流感病毒攻毒过程中持续使用,评价滴鼻免疫接种方式是否具有加强作用。
实验结果如图6所示:
在H1N1和H7N9流感病毒攻毒后,实验组1+FTY720和实验组2+FTY720均显示了部分保护作用,小鼠体重在第11天开始回升并且存活至第14天,病毒载量有所下调,保护效果优于对照组1+FTY720。
该实验证实,疫苗的呼吸道接种方式能有效加强疫苗免疫方法对H1N1和H7N9流感的保护作用。
本发明不局限于上述实施方案,并且本领域技术人员将理解,在不偏离所附权利要求所公开的本发明的范围和精神的情况下,可进行各种修改、添加和替换。

Claims (27)

  1. 一种抗流感疫苗免疫原,其特征在于,所述免疫原包括SEQ ID No.:1和SEQ ID No.:2所示的序列或其免疫原性片段,或其组合。
  2. 根据权利要求1所述的抗流感疫苗免疫原,其中所述免疫原包含流感病毒内部保守蛋白,或保守蛋白的免疫原性片段。
  3. 根据权利要求1所述的抗流感疫苗免疫原,其中所述流感病毒内部保守蛋白包括流感病毒基质蛋白(M1、M2)、核蛋白(NP)、碱性聚合酶(PB1、PB2)和酸性聚合酶(PA)。
  4. 根据权利要求1-3所述的抗流感疫苗免疫原,其中所述免疫原源自所有流感病毒亚型的重组蛋白,或其共享序列的重组蛋白,或其组合,所述流感病毒亚型包括甲型流感病毒的H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16、H17、H18亚型、乙型流感病毒。
  5. 一种抗流感疫苗,其为通过使用权利要求1-4中任一项所述的抗流感疫苗免疫原在多种不同载体中表达并构建的重组载体疫苗。
  6. 根据权利要求5中所述的抗流感疫苗,其中所述重组载体疫苗包括重组蛋白疫苗、重组DNA疫苗、重组病毒载体疫苗、重组细菌载体疫苗、重组酵母载体疫苗或重组病毒样颗粒疫苗。
  7. 根据权利要求5所述的抗流感疫苗,其中所述病毒载体包括腺病毒载体、痘病毒载体、腺相关病毒载体、单纯疱疹病毒载体、巨细胞病毒载体。
  8. 根据权利要求1-4所述的抗流感疫苗免疫原在制备抗流感病毒的疫苗中的用途。
  9. 一种使用如权利要求1-4中任一项所述的流感疫苗免疫原构建重组流感疫苗进行免疫的方法,包括如下步骤:每次免疫采用如权利要求5所述的不同重组载体疫苗进行序贯接种,每一种重组载体疫苗至少接种一次,接种程序中至少包含一次呼吸道内免疫和一次全身系统免疫接种。
  10. 根据权利要求9所述的方法,在疫苗免疫过程中,每一针采用不同载体来源的重组疫苗进行免疫接种。
  11. 根据权利要求9所述的方法,该疫苗采用“初免-加强-再加强”的免疫策略 进行免疫接种,每一种重组疫苗至少接种一次,接种程序中至少包含一次呼吸道内疫苗免疫和一次全身系统免疫接种。
  12. 根据权利要求9所述的方法,疫苗全身接种的方式包括肌肉注射、皮下接种、皮内接种。
  13. 根据权利要求9所述的方法,疫苗呼吸道接种的方式包括雾化、滴鼻。
  14. 根据权利要求9所述的方法,接种流程为:重组DNA疫苗肌肉注射初免,重组腺病毒载体疫苗呼吸道免疫加强,重组痘病毒疫苗肌肉注射再次加强的策略进行疫苗构建与免疫接种。
  15. 根据权利要求9所述的方法,接种流程为:重组痘病毒疫苗作为最后一针疫苗接种。
  16. 根据权利要求9-13所述的方法,每两次接种之间的间隔至少为1周,优选为2周或更多周。
  17. 根据权利要求5所述的抗流感疫苗在制备治疗肿瘤的重组疫苗中的用途。
  18. 根据权利要求9-17所述的方法,其特征在于,所述的疫苗与免疫技术可用于接种禽类动物以预防禽流感向人传播。
  19. 根据权利要求9-17所述的方法,其特征在于,所述的疫苗与免疫技术可用于接种人以降低人感染禽流感的致病性。
  20. 根据权利要求9-17所述的方法,其特征在于,所述的疫苗与免疫技术可用于接种人以降低人感染人流感的致病性。
  21. 根据权利要求9-17所述的方法,其特征在于,所述的疫苗与免疫技术可用于接种人以预防人感染流感后向其他人传播。
  22. 根据权利要求5所述的抗流感疫苗,用于肿瘤内接种,以治疗肿瘤。
  23. 根据权利要求22所述的抗流感疫苗,其中所述肿瘤包括肺癌、肝癌、肾癌、胰腺癌、胃癌、乳腺癌、食管癌、膀胱癌、骨肉瘤。
  24. 根据权利要求1-4中任一项所述的抗流感疫苗免疫原,其中所述免疫原序列用作其他疫苗佐剂,以提升针对其他免疫原的免疫应答。
  25. 根据权利要求24所述的抗流感疫苗免疫原,其中所述其他疫苗包括抗病毒疫苗、抗肿瘤疫苗。
  26. 根据权利要求24或25所述的抗流感疫苗免疫原,其中所述其他疫苗包括抗ZIKV、抗乙肝、抗丙肝、抗结核、抗HIV、抗疟疾、抗登革热疫苗。
  27. 根据权利要求24或25所述的抗流感疫苗免疫原,其中所述其他疫苗包括抗肺癌、肝癌、肾癌、胰腺癌、胃癌、乳腺癌、食管癌、膀胱癌、骨肉瘤疫苗。
PCT/CN2018/105020 2018-09-11 2018-09-11 一种广谱抗流感疫苗免疫原及其应用 WO2020051766A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US17/275,253 US20220118077A1 (en) 2018-09-11 2018-09-11 Immunogen for broad-spectrum influenza vaccine and application thereof
EP18933057.4A EP3851120A4 (en) 2018-09-11 2018-09-11 IMMUNOGEN FOR BROAD-SPECTRUM INFLUENZA VACCINE, AND APPLICATION THEREOF
CN201880001963.XA CN111315407B (zh) 2018-09-11 2018-09-11 一种广谱抗流感疫苗免疫原及其应用
JP2021513962A JP7320601B2 (ja) 2018-09-11 2018-09-11 広域スペクトルな抗インフルエンザワクチン免疫原及びその使用
PCT/CN2018/105020 WO2020051766A1 (zh) 2018-09-11 2018-09-11 一种广谱抗流感疫苗免疫原及其应用
US16/737,546 US11471523B2 (en) 2018-09-11 2020-01-08 Universal vaccines against immunogens of pathogenic organisms that provide organism-specific and cross-group protection
JP2022542402A JP2023510542A (ja) 2018-09-11 2020-12-18 生物特異的及び群間防御を促進する病原性生物の免疫原に対するユニバーサルワクチン
AU2020421142A AU2020421142A1 (en) 2018-09-11 2020-12-18 Universal vaccines against immunogens of pathogenic organisms that provide organism-specific and cross-group protection
CN202080098295.4A CN116096403A (zh) 2018-09-11 2020-12-18 针对pr的致病生物免疫原的通用疫苗卵子生物特异性和跨组保护
PCT/US2020/066059 WO2021141758A1 (en) 2018-09-11 2020-12-18 Universal vaccines against immunogens of pathogenic organisms that provide organism-specific and cross-group protection
BR112022013573A BR112022013573A2 (pt) 2018-09-11 2020-12-18 Vacinas universais contra imunógenos de organismos patogênicos que conferem proteção específica para organismo e entre grupos
EP20911565.8A EP4087603A4 (en) 2018-09-11 2020-12-18 UNIVERSAL VACCINES AGAINST IMMUNOGENES OF PATHOGENIC ORGANISMS, PROVIDING ORGANISM-SPECIFIC AND ACROSS-GROUP PROTECTION
US17/837,861 US20220347287A1 (en) 2018-09-11 2022-06-10 Universal vaccines against immunogens of pathogenic organisms that provide organism-specific and cross-group protection
JP2023061353A JP2023093541A (ja) 2018-09-11 2023-04-05 広域スペクトルな抗インフルエンザワクチン免疫原及びその使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105020 WO2020051766A1 (zh) 2018-09-11 2018-09-11 一种广谱抗流感疫苗免疫原及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/737,546 Continuation-In-Part US11471523B2 (en) 2018-09-11 2020-01-08 Universal vaccines against immunogens of pathogenic organisms that provide organism-specific and cross-group protection

Publications (1)

Publication Number Publication Date
WO2020051766A1 true WO2020051766A1 (zh) 2020-03-19

Family

ID=69776980

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/105020 WO2020051766A1 (zh) 2018-09-11 2018-09-11 一种广谱抗流感疫苗免疫原及其应用
PCT/US2020/066059 WO2021141758A1 (en) 2018-09-11 2020-12-18 Universal vaccines against immunogens of pathogenic organisms that provide organism-specific and cross-group protection

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2020/066059 WO2021141758A1 (en) 2018-09-11 2020-12-18 Universal vaccines against immunogens of pathogenic organisms that provide organism-specific and cross-group protection

Country Status (7)

Country Link
US (3) US20220118077A1 (zh)
EP (2) EP3851120A4 (zh)
JP (3) JP7320601B2 (zh)
CN (2) CN111315407B (zh)
AU (1) AU2020421142A1 (zh)
BR (1) BR112022013573A2 (zh)
WO (2) WO2020051766A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024640A (zh) * 2020-12-28 2021-06-25 广州中医药大学顺德医院(佛山市顺德区中医院) 一种基于新冠病毒rbd与ace2受体结合结构域筛选的表位肽抗原检测中和抗体试剂盒
CN113117069A (zh) * 2020-05-29 2021-07-16 北京启辰生生物科技有限公司 抗新型冠状病毒疫苗及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11730802B2 (en) 2017-11-03 2023-08-22 Takeda Vaccines, Inc. Zika vaccines and immunogenic compositions, and methods of using the same
MX2022003068A (es) * 2019-09-16 2022-06-14 Dalu Chen Metodos para bloquear la infeccion por asfv mediante la interrupcion de receptores celulares.
CN113171449B (zh) * 2021-04-27 2022-06-07 青岛农业大学 一种甲型流感病毒通用dna疫苗及其构建方法
WO2022246219A2 (en) * 2021-05-21 2022-11-24 The Regents Of The University Of California Coronavirus constructs and vaccines
WO2023028327A1 (en) * 2021-08-27 2023-03-02 Cornell University Multivalent viral particles
CN113633764A (zh) * 2021-09-02 2021-11-12 中国食品药品检定研究院 一种含佐剂的新冠dna疫苗
CN116068192A (zh) * 2022-01-24 2023-05-05 中国农业大学 一种检测非洲猪瘟病毒抗体的ELISA检测试剂盒以及protein L的应用
WO2023164475A1 (en) * 2022-02-23 2023-08-31 Akeso Therapeutics, Inc. Modified invariant natural killer t cells expressing a chimeric antigen receptor and uses thereof
CN116947982A (zh) * 2023-07-12 2023-10-27 吉林大学 三条优势表位肽序列及其在流感病毒疫苗的应用
CN117430664B (zh) * 2023-10-24 2024-04-09 暨南大学附属第六医院(东莞市东部中心医院) 一种甲型流感病毒t细胞抗原表位肽及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193655A (zh) * 2005-04-11 2008-06-04 美国政府健康及人类服务部,疾病控制和预防中心 抗大流行性流感病毒株的疫苗
CN101716340A (zh) * 2009-10-28 2010-06-02 武汉华美生物工程有限公司 一种甲型h1n1流感病毒重组蛋白疫苗制备方法的建立
CN104203272A (zh) * 2012-01-26 2014-12-10 长角牛疫苗和诊断有限责任公司 复合抗原序列及疫苗

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2444713A1 (fr) 1978-12-18 1980-07-18 Pasteur Institut Procede de production d'un adn comprenant le genome du virus de l'hepatite b et vecteur le comportant
US4722848A (en) 1982-12-08 1988-02-02 Health Research, Incorporated Method for immunizing animals with synthetically modified vaccinia virus
US4436727A (en) 1982-05-26 1984-03-13 Ribi Immunochem Research, Inc. Refined detoxified endotoxin product
US4866034A (en) 1982-05-26 1989-09-12 Ribi Immunochem Research Inc. Refined detoxified endotoxin
US4876197A (en) 1983-02-22 1989-10-24 Chiron Corporation Eukaryotic regulatable transcription
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5036006A (en) 1984-11-13 1991-07-30 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4690915A (en) 1985-08-08 1987-09-01 The United States Of America As Represented By The Department Of Health And Human Services Adoptive immunotherapy as a treatment modality in humans
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US4877611A (en) 1986-04-15 1989-10-31 Ribi Immunochem Research Inc. Vaccine containing tumor antigens and adjuvants
US5135855A (en) 1986-09-03 1992-08-04 The United States Of America As Represented By The Department Of Health And Human Services Rapid, versatile and simple system for expressing genes in eukaryotic cells
US4844893A (en) 1986-10-07 1989-07-04 Scripps Clinic And Research Foundation EX vivo effector cell activation for target cell killing
US5075109A (en) 1986-10-24 1991-12-24 Southern Research Institute Method of potentiating an immune response
US5811128A (en) 1986-10-24 1998-09-22 Southern Research Institute Method for oral or rectal delivery of microencapsulated vaccines and compositions therefor
US4897268A (en) 1987-08-03 1990-01-30 Southern Research Institute Drug delivery system and method of making the same
CA1341245C (en) 1988-01-12 2001-06-05 F. Hoffmann-La Roche Ag Recombinant vaccinia virus mva
US4912094B1 (en) 1988-06-29 1994-02-15 Ribi Immunochem Research Inc. Modified lipopolysaccharides and process of preparation
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
KR920007887B1 (ko) 1989-08-29 1992-09-18 스즈키 지도오샤 고오교오 가부시키가이샤 내연기관의 배기가스 정화장치
WO1992001800A1 (en) 1990-07-20 1992-02-06 Chiron Corporation Method for integrative transformation of yeast using dispersed repetitive elements
HU219808B (hu) 1992-06-25 2001-08-28 Smithkline Beecham Biologicals S.A. Adjuvánst tartalmazó vakcinakompozíció és eljárás annak előállítására
JPH08505625A (ja) 1993-01-11 1996-06-18 ダナ−ファーバー キャンサー インスティチュート 細胞毒性tリンパ球応答の誘導
US5593972A (en) 1993-01-26 1997-01-14 The Wistar Institute Genetic immunization
US5981505A (en) 1993-01-26 1999-11-09 The Trustees Of The University Of Pennsylvania Compositions and methods for delivery of genetic material
AU688428B2 (en) 1993-11-09 1998-03-12 Johns Hopkins University, The Generation of high titers of recombinant AAV vectors
PT728214E (pt) 1993-11-09 2004-11-30 Ohio Med College Linhas celulares estaveis capazes de expressar o gene de replicacao do virus adeno-associado
GB9326253D0 (en) 1993-12-23 1994-02-23 Smithkline Beecham Biolog Vaccines
US5739118A (en) 1994-04-01 1998-04-14 Apollon, Inc. Compositions and methods for delivery of genetic material
CA2194761C (en) 1994-07-15 2006-12-19 Arthur M. Krieg Immunomodulatory oligonucleotides
NL9401820A (nl) 1994-11-02 1996-06-03 Meyn Maschf Inrichting voor het bewerken van aan zijn poten opgehangen gevogelte.
US5962428A (en) 1995-03-30 1999-10-05 Apollon, Inc. Compositions and methods for delivery of genetic material
UA56132C2 (uk) 1995-04-25 2003-05-15 Смітклайн Бічем Байолоджікалс С.А. Композиція вакцини (варіанти), спосіб стабілізації qs21 відносно гідролізу (варіанти), спосіб приготування композиції вакцини
UA68327C2 (en) 1995-07-04 2004-08-16 Gsf Forschungszentrum Fur Unwe A recombinant mva virus, an isolated eukaryotic cell, infected with recombinant mva virus, a method for production in vitro of polypeptides with use of said cell, a method for production in vitro of virus parts (variants), vaccine containing the recombinant mva virus, a method for immunization of animals
US5622856A (en) 1995-08-03 1997-04-22 Avigen High efficiency helper system for AAV vector production
US6027931A (en) 1995-08-03 2000-02-22 Avigen, Inc. High-efficiency AA V helper functions
US6541258B2 (en) 1996-12-18 2003-04-01 Targeted Genetics Corporation AAV split-packaging genes and cell lines comprising such genes for use in the production of recombinant AAV vectors
US6355257B1 (en) 1997-05-08 2002-03-12 Corixa Corporation Aminoalkyl glucosamine phosphate compounds and their use as adjuvants and immunoeffectors
US6113918A (en) 1997-05-08 2000-09-05 Ribi Immunochem Research, Inc. Aminoalkyl glucosamine phosphate compounds and their use as adjuvants and immunoeffectors
CA2304168A1 (en) 1997-09-19 1999-04-01 The Trustees Of The University Of Pennsylvania Methods and cell line useful for production of recombinant adeno-associated viruses
GB9727262D0 (en) 1997-12-24 1998-02-25 Smithkline Beecham Biolog Vaccine
EP1054689B1 (en) 1998-02-12 2003-09-10 Immune Complex, Corporation Strategically modified hepatitis b core proteins and their derivatives
WO1999052549A1 (en) 1998-04-09 1999-10-21 Smithkline Beecham Biologicals S.A. Adjuvant compositions
PL205922B1 (pl) 2000-03-14 2010-06-30 Bavarian Nordic As Zmodyfikowany wirus Ankara (MVA), zakażona nim komórka gospodarza, jego zastosowania, kompozycja farmaceutyczna i sposoby otrzymywania wirusa oraz sekwencji kwasu nukleinowego, peptydu i/lub polipeptydu
CN1196788C (zh) 2000-06-23 2005-04-13 惠氏控股有限公司 野生型和嵌合流感病毒样颗粒(vlp)的装配
US8592197B2 (en) 2003-07-11 2013-11-26 Novavax, Inc. Functional influenza virus-like particles (VLPs)
EP1766094A4 (en) * 2004-05-18 2009-11-25 Vical Inc INFLUENZA VIRUS VACCINE COMPOSITION AND METHODS OF USE
WO2006078294A2 (en) 2004-05-21 2006-07-27 Novartis Vaccines And Diagnostics Inc. Alphavirus vectors for respiratory pathogen vaccines
CN101969996A (zh) 2005-08-23 2011-02-09 加利福尼亚大学董事会 多价疫苗
WO2007073513A2 (en) 2005-11-10 2007-06-28 Genvec, Inc. Method for propagating adenoviral vectors encoding inhibitory gene products
JP5198290B2 (ja) 2006-02-02 2013-05-15 グローブイミューン,インコーポレイテッド 免疫反応を誘発する酵母ベースワクチン
US9101578B2 (en) 2006-05-01 2015-08-11 Technovax, Inc. Polyvalent influenza virus-like particle (VLP) compositions
US8778353B2 (en) 2006-05-01 2014-07-15 Technovax, Inc. Influenza virus-like particle (VLP) compositions
AU2007300663A1 (en) * 2006-07-21 2008-04-03 Pharmexa Inc. Inducing cellular immune responses to influenza virus using peptide and nucleic acid compositions
ES2539818T3 (es) * 2007-08-02 2015-07-06 Biondvax Pharmaceuticals Ltd. Vacunas contra la gripe multiepitópicas multiméricas
KR20200008014A (ko) * 2011-03-21 2020-01-22 알티뮨 인크. 급속 및 지속적 면역학적제제-치료제
KR101382244B1 (ko) * 2012-03-30 2014-04-08 재단법인 목암생명공학연구소 광범위한 인플루엔자 바이러스의 감염을 방어할 수 있는 t―세포 기반 유니버설 플루 백신
WO2014086732A2 (en) * 2012-12-03 2014-06-12 Novartis Ag Influenza virus reassortment
RU2628690C2 (ru) 2015-11-06 2017-08-21 Общество С Ограниченной Ответственностью 'Фарминтерпрайсез' Аттенуированные гриппозные векторы для профилактики и/или лечения инфекционных заболеваний, а также для лечения онкологических заболеваний

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193655A (zh) * 2005-04-11 2008-06-04 美国政府健康及人类服务部,疾病控制和预防中心 抗大流行性流感病毒株的疫苗
CN101716340A (zh) * 2009-10-28 2010-06-02 武汉华美生物工程有限公司 一种甲型h1n1流感病毒重组蛋白疫苗制备方法的建立
CN104203272A (zh) * 2012-01-26 2014-12-10 长角牛疫苗和诊断有限责任公司 复合抗原序列及疫苗

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851120A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117069A (zh) * 2020-05-29 2021-07-16 北京启辰生生物科技有限公司 抗新型冠状病毒疫苗及其制备方法
CN113117069B (zh) * 2020-05-29 2022-09-30 北京启辰生生物科技有限公司 抗新型冠状病毒疫苗及其制备方法
CN113024640A (zh) * 2020-12-28 2021-06-25 广州中医药大学顺德医院(佛山市顺德区中医院) 一种基于新冠病毒rbd与ace2受体结合结构域筛选的表位肽抗原检测中和抗体试剂盒

Also Published As

Publication number Publication date
US20210100892A1 (en) 2021-04-08
CN111315407B (zh) 2023-05-02
CN111315407A (zh) 2020-06-19
WO2021141758A1 (en) 2021-07-15
AU2020421142A1 (en) 2022-08-18
JP2022513558A (ja) 2022-02-09
EP4087603A1 (en) 2022-11-16
EP4087603A4 (en) 2024-01-10
US20220118077A1 (en) 2022-04-21
JP2023510542A (ja) 2023-03-14
US20220347287A1 (en) 2022-11-03
JP7320601B2 (ja) 2023-08-03
CN116096403A (zh) 2023-05-09
EP3851120A4 (en) 2022-04-27
JP2023093541A (ja) 2023-07-04
EP3851120A1 (en) 2021-07-21
BR112022013573A2 (pt) 2022-09-13
US11471523B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2020051766A1 (zh) 一种广谱抗流感疫苗免疫原及其应用
US8128938B1 (en) Influenza virus vaccine composition and methods of use
US9505806B2 (en) DNA vaccine, method of inducing the immune response, method of immunisation, antibodies specifically recognising the H5 haemagglutinin of an influenza virus and use of the DNA vaccine
CN104066446A (zh) 流感病毒疫苗及其用途
KR20090117697A (ko) 조류 독감용 재조합 변형된 백시니아 바이러스 안카라 (mva)-기반 백신
Chen et al. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope
Koday et al. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates
WO2022071513A1 (ja) SARS-CoV-2に対する改良型DNAワクチン
Patel et al. Evaluation of conserved and variable influenza antigens for immunization against different isolates of H5N1 viruses
Xu et al. Chimeric Newcastle disease virus-like particles containing DC-binding peptide-fused haemagglutinin protect chickens from virulent Newcastle disease virus and H9N2 avian influenza virus challenge
EP2650362A2 (en) Novel vaccines against the a/h1n1 pandemic flu virus
Bolhassani et al. VLP production in Leishmania tarentolae: a novel expression system for purification and assembly of HPV16 L1
US11123422B2 (en) Immunogenic composition
Xie et al. Influenza vaccine with consensus internal antigens as immunogens provides cross-group protection against influenza A viruses
JP2021529538A (ja) 重症熱性血小板減少症候群(sfts)ウイルス感染疾患の予防または治療用ワクチン組成物
Yin et al. Synergistic effects of adjuvants interferon-γ and levamisole on DNA vaccination against infection with Newcastle disease virus
Ljungberg et al. Effective construction of DNA vaccines against variable influenza genes by homologous recombination
RU2457245C1 (ru) РЕАССОРТАНТ ReM8 - ВАКЦИННЫЙ ШТАММ ВИРУСА ГРИППА А ПОДТИПА Н1N1
CN111514287A (zh) 甲型流感通用型dna疫苗及其制备方法和应用
Wei et al. DNA-epitope vaccine provided efficient protection to mice against lethal dose of influenza A virus H1N1
CN107841513B (zh) 基于M2e表位的广谱型流感疫苗
KR102401682B1 (ko) SARS-CoV-2 항원을 발현하는 재조합 마이코박테리움 균주 및 이를 포함하는 백신 조성물
CN107151659B (zh) 一种流感病毒株及其应用
WO2019069561A1 (ja) インフルエンザに対する医薬
CN117693359A (zh) 作为免疫原的广泛反应性病毒抗原、其组合物和使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018933057

Country of ref document: EP

Effective date: 20210412