WO2020050159A1 - 窒化物半導体デバイスとその基板、および希土類元素添加窒化物層の形成方法、並びに赤色発光デバイスとその製造方法 - Google Patents
窒化物半導体デバイスとその基板、および希土類元素添加窒化物層の形成方法、並びに赤色発光デバイスとその製造方法 Download PDFInfo
- Publication number
- WO2020050159A1 WO2020050159A1 PCT/JP2019/034070 JP2019034070W WO2020050159A1 WO 2020050159 A1 WO2020050159 A1 WO 2020050159A1 JP 2019034070 W JP2019034070 W JP 2019034070W WO 2020050159 A1 WO2020050159 A1 WO 2020050159A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- earth element
- rare earth
- added
- substrate
- layer
- Prior art date
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 177
- 239000000758 substrate Substances 0.000 title claims abstract description 161
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 108
- 239000004065 semiconductor Substances 0.000 title claims abstract description 98
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 49
- 229910052594 sapphire Inorganic materials 0.000 claims description 20
- 239000010980 sapphire Substances 0.000 claims description 20
- 229910052693 Europium Inorganic materials 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 252
- 229910002601 GaN Inorganic materials 0.000 description 143
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 120
- 230000015572 biosynthetic process Effects 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 239000007789 gas Substances 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 238000000103 photoluminescence spectrum Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- SGFIVHUQSCGDAI-UHFFFAOYSA-N C(CC)[Eu]C1C(=C(C(=C1C)C)C)C Chemical compound C(CC)[Eu]C1C(=C(C(=C1C)C)C)C SGFIVHUQSCGDAI-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- -1 rare earth ions Chemical class 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
- H01L33/325—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
- H01L21/0243—Surface structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02581—Transition metal or rare earth elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/207—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7782—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
- H01L29/7783—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/812—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/025—Physical imperfections, e.g. particular concentration or distribution of impurities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/305—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table characterised by the doping materials
Definitions
- the present invention relates to a nitride semiconductor device and its substrate, a method of forming a rare earth element-added nitride layer, and a red light emitting device and a method of manufacturing the same.
- LEDs Light Emitting Diodes
- LDs Laser Diodes
- LEDs are used for various display devices, mobile phones, backlights of liquid crystal displays, white illumination, etc.
- LDs are used as a light source for Blu-ray discs for recording and playback of high-definition video, optical communication, CD, DVD, etc. Have been.
- MMIC monolithic integrated circuit
- HEMT High Electron Mobility Transistor
- inverters for automotive-related transistors have been developed.
- SBDs Schottky barrier diodes
- the semiconductor elements constituting these devices are generally manufactured by forming a nitride semiconductor layer such as gallium nitride (GaN), aluminum nitride (AlN), or indium nitride (InN) on a substrate such as sapphire. Have been.
- a nitride semiconductor layer such as gallium nitride (GaN), aluminum nitride (AlN), or indium nitride (InN) on a substrate such as sapphire. Have been.
- a method of forming a nitride semiconductor layer on a substrate a method of crystal-growing a nitride semiconductor layer on the (0001) (c-plane) of the substrate has been generally adopted.
- piezo polarization occurs due to strain generated during film formation, and a problem may occur that device characteristics cannot be obtained as originally expected. That is, an internal electric field is generated in the nitride semiconductor layer with the occurrence of piezo polarization, and the wave function of electrons and holes is separated, so that the probability of radiative recombination in the nitride semiconductor layer is reduced, which was expected. Device characteristics may not be exhibited.
- the crystal axis extends along the azimuth slightly inclined several degrees from the [0001] direction. It has been studied to improve the device characteristics by exhibiting a plurality of advantages such as a reduction in crystal defect density and an improvement in luminous efficiency in a nitride semiconductor layer (for example, Patent Document 1).
- FIG. 8 is a view for explaining crystal growth using this off-angle inclined substrate.
- Ga is located at the center of the c-plane adjacent to each other at a distance c.
- a GaN crystal grows.
- the c-plane is inclined by the angle ⁇ .
- the step height (thickness of the Ga—N monolayer) on the off-angle inclined substrate is (c / 2)
- the terrace width is (the width that can diffuse Ga atoms) is ( c / 2 tan ⁇ ).
- FIG. 9 is a diagram specifically showing the relationship between the off angle and the terrace width, where the vertical axis is the terrace width and the horizontal axis is the off angle ⁇ . From FIG. 9, the terrace width and the magnitude of the off-angle have an inverse relationship, and the terrace width can be changed from 99.0 nm to 14.9 nm simply by changing the off-angle ⁇ from 0.15 ° to 1 °. It can be seen that the width has sharply decreased. If the terrace width becomes too narrow, step bunching occurs, which causes the appearance of macro steps having a large step height.
- the macro step reappears when a nitride semiconductor layer is formed thereon, so that the device characteristics as designed cannot be obtained.
- Non-Patent Document 1 a technique of adding indium (In) to nitride has been proposed.
- the present invention provides a method of forming a nitride semiconductor layer on an off-angle inclined substrate to produce a semiconductor device, without causing a risk of causing a lattice distortion or a crystal defect due to a mixed crystal with GaN like In.
- Another object of the present invention is to provide a nitride semiconductor layer manufacturing technique capable of stably supplying a high-quality semiconductor device by preventing the occurrence of macro steps by using a material that does not require continuous addition. I do.
- the present inventors have succeeded in producing a red light-emitting diode using a GaN layer doped with Eu, which is one of the rare earth elements (Eu-doped GaN layer), as a light-emitting layer for the first time in the world.
- the metal-organic vapor phase epitaxial method (OMVPE method) of the Eu-added GaN layer has reached a region where other following is not allowed.
- the inventor found that the surface of the Eu-doped GaN layer was flattened, and found that Eu had a surfactant effect. Therefore, when a nitride semiconductor thin film is formed on an off-angle inclined substrate to manufacture a semiconductor device, when a Eu-added GaN layer is provided on the off-angle inclined substrate as a base treatment layer, the surfactant effect of Eu is reduced.
- Various experiments and examinations were conducted on the assumption that the macro steps could be prevented from being generated in the growth of the nitride semiconductor layer.
- the doping concentration is as low as 1 at% or less
- the macrostep on the surface of the off-angle inclined substrate is drastically reduced during the growth of the Eu-doped GaN layer, and 5 ⁇ m on the Eu-doped GaN layer.
- macrosteps do not occur, a flat surface is formed at the atomic level, and the surface flattening effect of Eu addition is maintained. It turned out that very interesting results were obtained.
- the addition of Eu at the low addition concentration of 1 at% or less does not require continuous addition.
- Eu at a low doping concentration is not mixed with GaN to form InGaN as in In, but is added so as to locally replace Ga in GaN, thereby causing generation of crystal defects. There is no need for strict flow control without fear.
- the provision of the Eu-doped GaN layer as a base treatment layer can prevent the occurrence of macro steps, so that nitrides suitable for not only light-emitting devices but also high-frequency devices and high-output devices can be used. Semiconductor devices can be supplied stably.
- the preferable addition concentration of Eu in the Eu-added GaN layer is 0.001 to 10 at%, and the preferable Eu is It was found that the thickness of the added GaN layer was 0.1 nm or more.
- the upper limit of the thickness of the Eu-doped GaN layer is not particularly limited. However, considering the saturation of the surface smoothing accompanying the surfactant effect of Eu, it is considered that a sufficient effect can be obtained with a thickness of about 2 ⁇ m. .
- GaN was used as the nitride and Eu was used as the additive element.
- the present inventor further conducted experiments and studies.
- GaN other than GaN, so-called GaN such as AlN or InN was used. It has been found that even system-based nitrides (including mixed crystals of InGaN, AlGaN, and the like) can be handled in the same manner because they have almost the same chemical characteristics as GaN.
- the additive element is not limited to Eu. Sc, Y, and lanthanide elements from La to Lu, which have almost the same chemical properties, are rare earth elements that are collectively referred to under the same conditions as Eu. It was found that the same excellent surfactant effect was exhibited.
- a similar surfactant effect was obtained by providing a rare earth element-added nitride layer such as an Eu-added nitride layer even when using SiC or Si in addition to sapphire. I knew it could be done. Since SiC has high thermal conductivity and excellent heat dissipation, it is suitable for manufacturing high power devices. Since Si is inexpensive and can easily be obtained in a large size, it is preferable for manufacturing a nitride semiconductor device at low cost. It is also preferable to use a nitride semiconductor made of GaN, InN, AlN, or a mixed crystal of any two or more of these.
- the inventions described in claims 1 to 7 are inventions based on the above findings, and the invention described in claim 1 is A nitride semiconductor device configured by providing a nitride semiconductor layer on a substrate, The substrate is an off-angle inclined substrate, On the substrate, a rare earth element-added nitride layer to which a rare earth element is added is provided as a base treatment layer, A nitride semiconductor device, wherein a nitride semiconductor layer is provided on the rare earth element-added nitride layer.
- the invention according to claim 2 is: 2.
- the nitride according to claim 1, wherein the rare earth element-added nitride layer is a layer in which the rare earth element is added to GaN, InN, AlN, or a mixed crystal of any two or more of them. 3. It is a semiconductor device.
- the invention according to claim 3 is: 3.
- the invention according to claim 4 is: 4.
- the invention described in claim 5 is The nitride semiconductor device according to any one of claims 1 to 4, wherein the rare earth element is Eu.
- the invention described in claim 6 is 3.
- the substrate according to claim 1, wherein the substrate is made of sapphire, SiC, Si, GaN, InN, AlN, or a nitride semiconductor made of a mixed crystal of any two or more of them. 6.
- the invention according to claim 7 is The nitride semiconductor device according to any one of claims 1 to 6, wherein the nitride semiconductor device is any one of a light emitting device, a high frequency device, and a high output device.
- a nitride semiconductor device is manufactured by providing a rare earth element-added nitride layer as a base treatment layer on an off-angle inclined substrate and then providing a rare earth element-free nitride semiconductor layer.
- a substrate obtained by forming a rare earth element-added nitride layer on an off-angle inclined substrate in advance is provided as a substrate and provided to a third party.
- a similar effect can be obtained even if a nitride semiconductor device is manufactured by growing a nitride semiconductor layer without a rare earth element on a substrate provided with the layers.
- the invention described in claim 8 is: A substrate used for producing a nitride semiconductor device, A substrate characterized in that a rare earth element-added nitride layer to which a rare earth element is added is provided on an off-angle inclined substrate.
- the invention according to claim 9 is: The substrate according to claim 8, wherein the rare earth element-added nitride layer is a layer in which the rare earth element is added to GaN, InN, AlN, or a mixed crystal of any two or more of them. is there.
- the invention according to claim 10 is 10.
- the invention according to claim 11 is The substrate according to any one of claims 8 to 10, wherein a thickness of the rare earth element-added nitride layer is 0.1 nm or more.
- the invention according to claim 12 is The substrate according to any one of claims 8 to 11, wherein the rare earth element is Eu.
- the invention according to claim 13 is: 9.
- the nitride semiconductor according to claim 8, wherein the off-angle tilt substrate is any one of sapphire, SiC, Si, GaN, InN, AlN, or a mixed crystal of any two or more of them.
- the nitride layer to which the rare earth element is added in the nitride semiconductor device or the substrate according to the present invention described above is removed from the reaction vessel on the way while changing the temperature condition by using the metal organic vapor phase epitaxy (OMVPE). It can be manufactured by forming a rare earth element-free nitride layer and a rare earth element-added nitride layer on an off-angle inclined substrate in a series of steps without taking out.
- OMVPE metal organic vapor phase epitaxy
- the formation of the rare earth element-free nitride layer is caused by the off-angle inclined substrate and the nitride layer, such as sapphire and GaN.
- the constants are different, and considering the propagation of crystal defects in the off-angle inclined substrate, it is possible to provide a rare-earth-element-free nitride layer between the off-angle inclined substrate and the rare-earth-element-added nitride layer. This is because it is preferable.
- rare earth element-free LT Low @ Temperature
- rare earth element-free ud Undoped
- an additional nitride layer is provided.
- the lattice constant between the off-angle inclined substrate and the nitride layer can be adjusted to prevent the occurrence of cracks.
- dislocation which is a crystal defect, can be suppressed, and a high-quality nitride crystal can be obtained.
- an LT-nitride layer and a ud-nitride layer are formed on the off-angle inclined substrate as a nitride layer to which no rare earth element is added, as in the conventional case. Thereafter, the temperature is changed to 900 to 1100 ° C., and a rare earth element-added nitride layer is formed on the rare earth element-free nitride layer.
- the surface of the rare earth element-added nitride layer is flattened by the surfactant effect of the added rare earth element. For this reason, even if a nitride semiconductor device is manufactured by providing a nitride semiconductor layer on a rare earth element-added nitride layer as a base treatment layer, a macro step does not occur and the nitride exhibits excellent device characteristics. Semiconductor devices can be supplied stably.
- the formation of a rare earth element-free nitride layer (LT-nitride layer, ud-nitride layer), the formation of a rare earth element-added nitride layer, and the formation of a nitride semiconductor layer include the steps of: Since it can be performed only by changing the temperature condition and setting whether or not to add the rare earth element, it can be performed in a series of steps without taking out from the reaction vessel.
- a nitride semiconductor device can also be manufactured by forming a nitride semiconductor layer using the rare earth element-added nitride layer as a substrate in advance.
- the invention according to claims 14 to 17 is an invention based on the above findings, and the invention according to claim 14 is A method of forming a rare earth element-added nitride layer for forming a rare earth element-added nitride layer on an off-angle inclined substrate, Forming a rare earth element-free nitride layer on the off-angle tilt substrate; Forming a rare earth element-added nitride layer on the rare earth element-free nitride layer, Each of the above steps is performed by a series of forming steps without being taken out of the reaction vessel using a metal organic vapor phase epitaxial method, A method for forming a rare earth element-added nitride layer, wherein the rare earth element-added nitride layer is formed at a temperature of 900 to 1100 ° C.
- the invention according to claim 15 is: A substrate characterized by being formed on an off-angle tilt substrate in the order of a rare earth element-free nitride layer and a rare earth element-added nitride layer.
- the invention according to claim 16 is: A nitride semiconductor for forming a nitride semiconductor device by forming a nitride semiconductor layer on a rare earth element-added nitride layer formed by using the method for forming a rare earth element-added nitride layer according to claim 14. This is a method for manufacturing a device.
- the invention according to claim 17 is: A nitride semiconductor device characterized by being formed on an off-angle inclined substrate in the order of a rare earth element-free nitride layer, a rare earth element-added nitride layer, and a nitride semiconductor layer.
- the inventor has succeeded in producing a red light emitting diode using an Eu-doped GaN layer as an active layer (light emitting layer) for the first time in the world, but there is an increasing demand for further improvement in the light emission intensity. Has become.
- the present inventors have studied the further improvement of the light emission intensity in such a red light emitting diode, and in a light emitting device using light emission of rare earth ions, such as a red light emitting diode having an Eu-doped GaN layer as an active layer, Since high-concentration doping of rare-earth elements directly contributes to an increase in emission intensity, crystal growth techniques capable of adding rare-earth elements at high concentrations are indispensable, and specific studies have been made.
- the crystal growth of the Eu-doped GaN layer which is the active layer, is performed along the azimuth where the crystal axis is slightly inclined from the [0001] direction, that is, using the off-angle inclined substrate. It was found that when this was performed, a strong step flow growth mechanism was obtained, so that high-concentration doping of Eu was possible.
- the Eu-added GaN layer when the Eu-added GaN layer is grown on the slightly inclined surface of the off-angle inclined substrate, a strong step flow growth mechanism is induced, and the step flow growth is promoted over the entire surface. Even if the Eu / Ga ratio exceeds 2.4%, which is the optimum growth condition for the growth of the Eu-doped GaN layer on the substrate, the Eu layer remains active. It is found that the Eu-added GaN layer grows while maintaining the quality (high crystallinity) of the GaN film, and extremely excellent emission intensity is obtained.
- the off-angle inclined substrate by growing the Eu-doped GaN layer by increasing the Eu / Ga ratio, the formation of a hillock structure due to the addition of Eu is suppressed, and the Eu-doped GaN layer into which Eu is incorporated at a high concentration is formed. Extremely excellent emission intensity can be obtained.
- the added GaN layer is a Eu, O co-added GaN layer.
- Such a red light-emitting device may be manufactured using an off-angle inclined substrate that has been subjected to the above-described underlayer treatment in advance, but in consideration of the fact that the underlayer treatment layer is also an Eu-doped GaN layer, It is preferable to form the Eu-doped GaN layer directly on the angled substrate. That is, the Eu-added GaN layer formed initially functions as a base treatment layer of the off-angle tilt substrate, and the Eu-added GaN layer formed thereon functions as an active layer. The base treatment and the formation of the active layer can be advanced as a series of steps, and the formation of the active layer can be performed more efficiently. Further, since Eu is effectively used, a high material gain can be obtained.
- the Pr-added GaN layer can be directly formed on the off-angle inclined substrate.
- the Pr-added GaN layer is formed as an active layer on the off-angle inclined substrate that has been subjected to a base treatment in advance. Is preferred.
- the inventions described in claims 18 to 22 are inventions based on the above findings, and the invention described in claim 18 is A rare earth element-added nitride layer in which Eu or Pr is added as a rare earth element to GaN, InN, AlN or a mixed crystal of any two or more of these is formed as an active layer, A red light emitting device, wherein the active layer is formed on the substrate according to any one of claims 8 to 13.
- the invention according to claim 19 is: A rare-earth-element-added nitride layer in which Eu is added as a rare-earth element to GaN, InN, AlN, or a mixed crystal of any two or more of them; It is a light emitting device.
- the invention according to claim 20 is 20.
- the invention according to claim 21 is: It is a manufacturing method of the red light emitting device according to claim 19, A method for manufacturing a red light emitting device, comprising forming a rare earth element-doped nitride layer doped with Eu on an off-angle inclined substrate by using a metalorganic vapor phase epitaxial method.
- the present invention when fabricating a semiconductor device by forming a nitride semiconductor layer on an off-angle inclined substrate, there is no risk of causing a crystal distortion and generation of crystal defects by mixing with GaN like In, Further, by using a material that does not require continuous addition and preventing the occurrence of macro steps, it is possible to provide a nitride semiconductor layer manufacturing technique capable of stably supplying a high-quality semiconductor device.
- FIG. 1 is a schematic diagram showing a configuration of a nitride semiconductor device according to one embodiment of the present invention.
- FIG. 3 is a diagram showing a formation profile of a nitride semiconductor device according to one embodiment of the present invention.
- it is a figure which shows the result of in-situ observation of the reflection intensity from the surface with respect to the laser irradiated to the growing GaN layer, (a) is an off-angle inclined substrate, (b) The parentheses indicate observation results on the on-axis substrate.
- FIG. 5A and 5B are diagrams showing the results of observing the surface of the cap layer with an AFM microscope in one embodiment of the present invention, wherein FIG.
- FIG. 7A shows the results of observation on an on-axis substrate
- FIG. FIG. 5 is a diagram showing the results of observing the surface of a sample in which an Eu-added GaN layer is provided on an off-angle inclined substrate according to an embodiment of the present invention using (a) an optical microscope and (b) an AFM microscope. It is a figure explaining crystal growth using an off angle inclination substrate. It is a figure showing the relation between off angle and terrace width. It is a schematic diagram which shows the structure of the red light emitting device in which the Eu added GaN layer was formed. It is an optical microscope image of the surface of the Eu and O co-added GaN layer formed using the on-axis substrate.
- FIG. 9 is a diagram showing the results of measuring, at room temperature, PL spectra of a red light-emitting device in which an Eu-doped GaN layer was formed on an on-axis substrate and an off-angle inclined substrate, and (a) shows the PL spectrum intensity (au. ) Shows the relationship with the wavelength (nm), (He-Cd laser, at 5 mW excitation), and (b) shows the excitation power (mW) and the PL integrated intensity (au) at a wavelength of 610 to 650 nm. The relationship is shown.
- a sapphire substrate is used as an off-angle inclined substrate
- GaN is used as a nitride
- Eu is used as a rare-earth element.
- the present invention is not limited to these.
- FIG. 1 is a schematic diagram showing a configuration of a nitride semiconductor device according to the present embodiment.
- reference numeral 10 denotes a sapphire substrate
- 40 denotes an Eu-added GaN layer (GaN: Eu)
- a cap layer 50 is formed on the Eu-added GaN layer 40.
- the cap layer 50 is a Eu-free GaN layer (ud-GaN) serving as a nitride semiconductor layer.
- the Eu-added GaN layer 40 to which Eu having an excellent surfactant effect is added is provided as a base treatment layer when the cap layer 50 is formed, the occurrence of macro steps is prevented.
- the cap layer 50 can be grown on the Eu-added GaN layer 40 thus grown, with a thickness exceeding 5 ⁇ m while forming a flat surface at the atomic level.
- the effect of crystal growth by using the off-angle inclined substrate, which was originally expected, can be sufficiently exhibited, and the device characteristics can be improved.
- the effect of flattening the surface of the Eu-added nitride layer provided as the base treatment layer is also maintained in the upper cap layer (nitride semiconductor layer). Therefore, it is possible to stably supply not only a light emitting device but also a nitride semiconductor device suitable as a high frequency device or a high output device.
- an LT-GaN layer 20 grown at a low temperature of about 475 ° C. and a temperature of about 1180 ° C.
- Two types of Eu-free GaN layers that is, Eu-free GaN layers (ud-GaN) 30 grown at a high temperature, are provided.
- the provision of the LT-GaN layer 20 makes it possible to adjust the lattice constant of the sapphire crystal and the GaN crystal so as to prevent the occurrence of cracks.
- the ud-GaN layer 30 the effect of dislocation, which is a crystal defect, can be suppressed, and the generation of defects in the Eu-added GaN layer can be controlled.
- FIG. 2 is a diagram showing a formation profile of the nitride semiconductor device in the present embodiment.
- the upper row shows the gas supplied as the raw material and the supply rate
- the lower row shows the relationship between the growth temperature (vertical axis) and time (horizontal axis).
- the OMVPE method was used to form the nitride semiconductor device. Then, trimethyl gallium (TMGa) was used as the Ga source, and ammonia (NH 3 ) was used as the N source. Further, as the Eu raw material, normal propyltetramethylcyclopentadienyl europium (Eu [C 5 (CH 3 ) 4 (C 3 H 7 )] 2 : EuCp pm 2 bubbled with a carrier gas (hydrogen gas: H 2 ). )It was used.
- the LT-GaN layer 20 As shown in FIG. 1, on the sapphire substrate 10, the LT-GaN layer 20, the ud-GaN layer 30, the Eu-doped GaN layer 40, and the cap layer 50 were formed in this order in accordance with the profile shown in FIG.
- the cap layer 50 was formed in this order in accordance with the profile shown in FIG.
- FIGS. 1 and 2 a specific description will be given based on FIGS. 1 and 2.
- LT-GaN Layer 20 Formation of LT-GaN Layer 20 First, a sapphire substrate 10 inclined at an off angle of 1 ° is placed in a reaction vessel adjusted to a pressure of 104 kPa, and then the temperature in the reaction vessel is set to 475 ° C. An NH 3 gas (223 mmol / min) and a TMGa gas (52.1 ⁇ mol / min) are supplied into the reaction vessel, and an LT-GaN layer 20 having a thickness of 30 nm is formed on the sapphire substrate 10 at a growth rate of 1.3 ⁇ m / h. did.
- Cap Layer 50 Formation of Cap Layer 50 Next, the temperature inside the reaction vessel is again set to 1180 ° C., and NH 3 gas (179 mmol / min) and TMGa gas (102 ⁇ mol / min) are supplied into the reaction vessel, and the growth rate is set to 3. A cap layer 50 of 2 ⁇ m / h and a thickness of 5 ⁇ m was formed on the Eu-doped GaN layer 40 to obtain a nitride semiconductor device.
- each growing GaN layer was irradiated with a laser having a wavelength of 633 nm, and the reflection intensity from the surface was observed in-situ.
- the results are shown in FIG.
- (a) is an observation result of an off-angle tilt substrate
- (b) is an observation result of an on-axis substrate.
- the left vertical axis is the reflection intensity (arb. Unit)
- the right vertical axis is the crystal growth.
- the temperature (° C.) and the horizontal axis indicate the crystal growth time (min).
- the reflection intensity is high as a whole, and the constant level is maintained even when the crystal growth time is long.
- the reflection intensity is low as a whole, and the reflection intensity further decreases as the crystal growth time becomes longer. You can see that there is. This is probably because the flatness of the surface of the nitride layer was low because the nitride layer was formed on the off-angle inclined substrate, and the flatness was further reduced as the film thickness was increased.
- FIG. 4 shows the results.
- the upper part shows the observation result by the optical microscope
- the lower part shows the observation result by the AFM microscope
- the left side shows the observation result on the (a) on-axis substrate
- the right side shows the observation result on the (b) off-angle inclined substrate.
- an LT-GaN layer having a thickness of 30 nm and an ud-layer having a thickness of 2 ⁇ m were formed on the same substrate (off-angle inclined substrate and on-axis substrate) as described above.
- a GaN layer, a 40 nm thick Eu-doped GaN layer, and a 5 ⁇ m thick cap layer (ud-GaN layer) were grown.
- a ud-GaN layer was grown on each substrate until the total thickness became the same.
- Fig. 5 shows the observation results of the reflection intensity.
- the upper row shows the observation results for the (a) off-angle inclined substrate
- the lower row shows the observation results for the (b) on-axis substrate
- the left side shows the observation results for all the steps
- the right side shows the cap layer. It is an observation result during growth.
- the solid line is the observation result of the sample having the Eu-doped GaN layer
- the broken line is the observation result of the sample having only the ud-GaN layer.
- the reflection intensity of the sample having the Eu-doped GaN layer does not significantly change from the reflection intensity of the sample having only the ud-GaN layer, and the crystal growth time is short. It has been maintained at a certain level even if it gets longer.
- the off-angle inclined substrate as shown in FIG. 5A, by providing the Eu-doped GaN layer, the reflection intensity is sharply improved as compared with the sample having only the ud-GaN layer. Have been. From this result, it can be seen that the growth of the Eu-doped GaN layer greatly affects the improvement of the flatness when forming the cap layer.
- FIG. 6 shows the result of observing the surface of the cap layer with an AFM microscope.
- the observation results of the sample provided with the Eu-added GaN layer are shown, wherein (a) shows the observation results of the on-axis substrate and (b) shows the observation results of the off-angle inclined substrate.
- FIG. 7 shows the results of observing the surface of the sample in which the Eu-added GaN layer was provided on the off-angle inclined substrate by (a) an optical microscope and (b) an AFM microscope.
- the surface of the cap layer is smoothed by providing the Eu-doped GaN layer, and the surface roughness RMS is as extremely small as 0.15 nm.
- This result indicates that the addition of Eu prevents the occurrence of macrosteps and forms a GaN layer having a flat surface at the atomic level, indicating an excellent surfactant effect of Eu.
- the surfactant effect has been described with reference to an example in which an Eu-added GaN layer is grown on an off-angle inclined substrate and a cap layer is provided on the Eu-added GaN layer. May be stacked a plurality of times as a pair, whereby the surface state can be further smoothed.
- a red light-emitting device having a Eu / Ga co-doped GaN layer formed on an on-axis substrate by changing the Eu / Ga ratio to 2.4%, 3.5%, and 7.1%. was prepared.
- an undoped GaN layer (LT-GaN layer and ud-GaN layer) having a thickness of about several ⁇ m is grown on an on-axis sapphire substrate, and thereafter, TMGa is used as a Ga material, and NHGa is used as an N material.
- TMGa is used as a Ga material
- NHGa is used as an N material.
- the EuCp pm 2 of bubbling a carrier gas (supplied together with oxygen gas) as Eu raw material is introduced at a predetermined Eu / Ga ratio and the thickness 300nm of about Eu, the O codoped GaN layer was grown.
- a ud-GaN layer having a thickness of 10 nm was grown, thereby completing the fabrication of three types of red light emitting devices (see FIG. 10).
- FIG. 11 is an optical microscope image of the surface of the Eu, O co-doped GaN layer formed in the three types of evaluation samples obtained.
- the surface flatness is lost, and particularly, 3.5%. It can be seen that the crystal growth surface is dramatically deteriorated when the value is changed from 7.1% to 7.1%.
- FIG. 12 shows the surface states of the Eu and O co-doped GaN layers obtained in the two cases of the Eu / Ga ratio of 3.5% and 7.1%. Raised.
- the active layer grows spirally, so that as the Eu / Ga ratio increases, many spiral hillocks are formed and You can see that it has caused the rough of
- FIG. 13 shows the result of measuring the PL spectrum of the Eu-doped GaN layer formed on the on-axis substrate at room temperature.
- (a) shows the relationship between the PL spectrum intensity (au) and the wavelength (nm) (He-Cd laser, at 5 mW excitation), and (b) shows the excitation power (mW).
- mW the excitation power
- the optimum growth condition for growing the Eu-doped GaN layer on the on-axis substrate is 2.4% in Eu / Ga ratio, and more than that. It has been said that there is a problem with increasing the Eu / Ga ratio.
- the present inventor has found that a strong step flow growth mechanism can be obtained when crystal growth is performed along a direction in which the crystal axis is slightly inclined from the [0001] direction by several degrees in the growth of a nitride semiconductor thin film. Focusing on, an Eu-doped GaN layer was formed on the off-angle inclined substrate.
- the Eu / Ga ratio is 3.5% and 7.1 in the same manner as on the above-described on-axis substrate. % Of two types of red light-emitting devices.
- FIG. 12 shows the surface state of the obtained Eu, O co-doped GaN layer.
- the active layer is grown not by spiral growth but by step flow growth. Therefore, the formation of spiral hillocks is suppressed, and even if the Eu / Ga ratio is increased, the active layer is increased. It can be seen that the active layer is growing while maintaining the crystallinity.
- FIG. 13 also shows the PL spectrum measurement results of the Eu-doped GaN layer formed on the off-angle inclined substrate at a Eu / Ga ratio of 3.5%.
- FIG. 13A shows that in the case of the off-angle inclined substrate, even when the Eu / Ga ratio is set to 3.5%, a strong emission intensity that cannot be obtained in the on-axis substrate is obtained.
- FIG. 13B shows that the light emission saturation phenomenon is suppressed, and the light emission intensity is improved by 2.04 times as compared with the conventional on-axis substrate (Eu / Ga ratio: 2.4%). You can see that.
- This improvement in emission intensity is due to the fact that even at the same Eu / Ga ratio, Eu incorporation into the active layer was improved, and the Eu concentration in the Eu-doped GaN layer was increased.
- a Eu-doped GaN layer with a high Eu concentration can be formed, and it was confirmed that this is a promising technique for improving the emission intensity.
- a high material gain can be achieved by adding a rare earth element such as Eu at a high concentration.
- Reference Signs List 10 sapphire substrate 20 LT-GaN layer 30 ud-GaN layer 40 Eu-doped GaN layer 50 cap layer c distance between c planes ⁇ off angle
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
- Recrystallisation Techniques (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
基板上に窒化物半導体層が設けられて構成される窒化物半導体デバイスであって、
前記基板が、オフ角傾斜基板であり、
前記基板の上に、希土類元素が添加された希土類元素添加窒化物層が下地処理層として設けられており、
前記希土類元素添加窒化物層の上に、窒化物半導体層が設けられていることを特徴とする窒化物半導体デバイスである。
前記希土類元素添加窒化物層が、GaN、InN、AlN、またはこれらのいずれか2つ以上の混晶に前記希土類元素が添加された層であることを特徴とする請求項1に記載の窒化物半導体デバイスである。
前記希土類元素添加窒化物層における前記希土類元素の添加濃度が、0.001~10at%であることを特徴とする請求項1または請求項2に記載の窒化物半導体デバイスである。
前記希土類元素添加窒化物層の厚みが、0.1nm以上であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化物半導体デバイスである。
前記希土類元素が、Euであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の窒化物半導体デバイスである。
前記基板が、サファイア、SiC、Siのいずれか、または、GaN、InN、AlN、またはこれらのいずれか2つ以上の混晶からなる窒化物半導体であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化物半導体デバイスである。
発光デバイス、高周波デバイス、高出力デバイスのいずれかであることを特徴とする請求項1ないし請求項6のいずれか1項に記載の窒化物半導体デバイスである。
窒化物半導体デバイスの作製に際して使用される基板であって、
オフ角傾斜基板の上に、希土類元素が添加された希土類元素添加窒化物層が設けられて構成されていることを特徴とする基板である。
前記希土類元素添加窒化物層が、GaN、InN、AlN、またはこれらのいずれか2つ以上の混晶に前記希土類元素が添加された層であることを特徴とする請求項8に記載の基板である。
前記希土類元素添加窒化物層における前記希土類元素の添加濃度が、0.001~10at%であることを特徴とする請求項8または請求項9に記載の基板である。
前記希土類元素添加窒化物層の厚みが、0.1nm以上であることを特徴とする請求項8ないし請求項10のいずれか1項に記載の基板である。
前記希土類元素が、Euであることを特徴とする請求項8ないし請求項11のいずれか1項に記載の基板である。
前記オフ角傾斜基板が、サファイア、SiC、Siのいずれか、または、GaN、InN、AlN、またはこれらのいずれか2つ以上の混晶からなる窒化物半導体であることを特徴とする請求項8ないし請求項12のいずれか1項に記載の基板である。
オフ角傾斜基板の上に希土類元素添加窒化物層を形成する希土類元素添加窒化物層の形成方法であって、
前記オフ角傾斜基板の上に、希土類元素無添加の窒化物層を形成する工程と、
前記希土類元素無添加の窒化物層の上に、希土類元素添加窒化物層を形成する工程とを備えており、
前記各工程を、有機金属気相エピタキシャル法を用いて、反応容器から取り出すことなく一連の形成工程によって行うと共に、
前記希土類元素添加窒化物層の形成を、900~1100℃の温度下で行うことを特徴とする希土類元素添加窒化物層の形成方法である。
オフ角傾斜基板の上に、希土類元素無添加の窒化物層、希土類元素添加窒化物層の順に積層されて形成されていることを特徴とする基板である。
請求項14に記載の希土類元素添加窒化物層の形成方法を用いて形成された希土類元素添加窒化物層の上に、窒化物半導体層を形成させて、窒化物半導体デバイスを作製する窒化物半導体デバイスの作製方法である。
オフ角傾斜基板の上に、希土類元素無添加の窒化物層、希土類元素添加窒化物層、窒化物半導体層の順に積層されて形成されていることを特徴とする窒化物半導体デバイスである。
GaN、InN、AlNまたはこれらのいずれか2つ以上の混晶に、希土類元素として、EuまたはPrが添加された希土類元素添加窒化物層が、活性層として形成されており、
前記活性層が、請求項8ないし請求項13のいずれか1項に記載の基板上に形成されていることを特徴とする赤色発光デバイスである。
GaN、InN、AlNまたはこれらのいずれか2つ以上の混晶に、希土類元素としてEuが添加された希土類元素添加窒化物層が、オフ角傾斜基板上に形成されていることを特徴とする赤色発光デバイスである。
前記希土類元素添加窒化物層が、酸素が共添加された希土類元素添加窒化物層であることを特徴とする請求項18または請求項19に記載の赤色発光デバイスである。
請求項19に記載の赤色発光デバイスの製造方法であって、
オフ角傾斜基板の上に、有機金属気相エピタキシャル法を用いて、Euが添加された希土類元素添加窒化物層を形成することを特徴とする赤色発光デバイスの製造方法である。
図1は、本実施の形態に係る窒化物半導体デバイスの構成を示す模式図である。図1において、10はサファイア基板、40はEu添加GaN層(GaN:Eu)であり、Eu添加GaN層40の上にキャップ層50が形成されている。なお、このキャップ層50は、窒化物半導体層となるEu無添加GaN層(ud-GaN)である。
次に、上記した窒化物半導体デバイスの形成方法について説明する。図2は、本実施の形態における窒化物半導体デバイスの形成プロファイルを示す図である。なお、図2では、上段に原料として供給されるガスと供給速度を示し、下段に成長温度(縦軸)と時間(横軸)との関係を示している。
まず、圧力104kPaに調整された反応容器内に、オフ角1°で傾斜したサファイア基板10を載置し、その後、反応容器内の温度を475℃として、NH3ガス(223mmol/min)およびTMGaガス(52.1μmol/min)を反応容器内へ供給し、成長速度1.3μm/hで、厚み30nmのLT-GaN層20をサファイア基板10上に形成した。
次に、反応容器内の温度を1180℃として、NH3ガス(179mmol/min)およびTMGaガス(102μmol/min)を反応容器内へ供給し、成長速度3.2μm/hで、厚み2μmのud-GaN層30をLT-GaN層20上に形成した。
次に、反応容器内の温度を960℃として、NH3ガス(179mmol/min)、TMGaガス(25.6μmol/min)、およびEuCppm 2ガス(0.586μmol/min)を反応容器内へ供給し、成長速度0.78μm/hで、厚み40nmのEu添加GaN層40をud-GaN層30上に形成した。
次に、反応容器内の温度を再び1180℃として、NH3ガス(179mmol/min)およびTMGaガス(102μmol/min)を反応容器内へ供給し、成長速度3.2μm/hで、厚み5μmのキャップ層50をEu添加GaN層40上に形成し、窒化物半導体デバイスとした。
(1)オフ角傾斜基板におけるマクロステップの発生の確認
評価試料として、オフ角1°で傾斜したサファイア基板(オフ角傾斜基板)上にOMVPE法を用いて、厚み7.6μmのEu無添加GaN層を成長させた。一方、比較のために、傾斜していないサファイア基板(オンアクシス基板)上に、同様にして、厚み7.6μmのEu無添加GaN層を成長させた。
次いで、評価試料として、上記と同様の基板(オフ角傾斜基板およびオンアクシス基板)上に、厚み30nmのLT-GaN層、厚み2μmのud-GaN層、厚み40nmのEu添加GaN層および厚み5μmのキャップ層(ud-GaN層)を成長させた。一方、比較のために、各基板上に、総厚が同じ厚みとなるまでud-GaN層を成長させた。
以上のように、本実施の形態においては、オフ角傾斜基板上にEu添加GaN層を設けることにより、低欠陥密度の基板の提供が可能となる。このため、従来に比べて、飛躍的に高発光効率の青色・緑色LEDを実現することが可能となる。また、オフ角傾斜基板上で低転位密度を実現しているため、リーク電流の少ない素子の実現が可能となり、高信頼度の窒化物パワーデバイスの作製が可能となる。
次に、本実施の形態に係る赤色発光デバイスについて、詳細に説明する。
最初に、従来のオンアクシス基板上でのEu添加GaN層の成長における問題点、具体的には、Eu添加GaN層の最適な成長条件が、何故、Eu/Ga比で2.4%とされていたかについて説明する。
次に、本実施の形態として、オフ角傾斜基板上にEu添加GaN層を形成させた場合における表面状態および発光強度について説明する。
上記の通り、本実施の形態に係る赤色発光デバイスにおいては、オフ角傾斜基板上に高Eu濃度のEu添加GaN層を形成させることが可能となり、強い発光強度の発現に直接寄与することができるため、高効率な赤色発光デバイスの作製が可能となり、GaN系材料を中心に開発が進んでいる可視光領域の半導体LEDへの適用により、高輝度な発光ダイオードを実現することが可能となる。また、近年注目を集めている赤色発光層を含む希土類添加半導体層を活性層としたレーザーダイオードの開発において、Euなどの希土類元素の高濃度添加により、高い材料利得が可能となる。
20 LT-GaN層
30 ud-GaN層
40 Eu添加GaN層
50 キャップ層
c c面間の距離
θ オフ角
Claims (21)
- 基板上に窒化物半導体層が設けられて構成される窒化物半導体デバイスであって、
前記基板が、オフ角傾斜基板であり、
前記基板の上に、希土類元素が添加された希土類元素添加窒化物層が下地処理層として設けられており、
前記希土類元素添加窒化物層の上に、窒化物半導体層が設けられていることを特徴とする窒化物半導体デバイス。 - 前記希土類元素添加窒化物層が、GaN、InN、AlN、またはこれらのいずれか2つ以上の混晶に前記希土類元素が添加された層であることを特徴とする請求項1に記載の窒化物半導体デバイス。
- 前記希土類元素添加窒化物層における前記希土類元素の添加濃度が、0.001~10at%であることを特徴とする請求項1または請求項2に記載の窒化物半導体デバイス。
- 前記希土類元素添加窒化物層の厚みが、0.1nm以上であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化物半導体デバイス。
- 前記希土類元素が、Euであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の窒化物半導体デバイス。
- 前記基板が、サファイア、SiC、Siのいずれか、または、GaN、InN、AlN、またはこれらのいずれか2つ以上の混晶からなる窒化物半導体であることを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化物半導体デバイス。
- 発光デバイス、高周波デバイス、高出力デバイスのいずれかであることを特徴とする請求項1ないし請求項6のいずれか1項に記載の窒化物半導体デバイス。
- 窒化物半導体デバイスの作製に際して使用される基板であって、
オフ角傾斜基板の上に、希土類元素が添加された希土類元素添加窒化物層が設けられて構成されていることを特徴とする基板。 - 前記希土類元素添加窒化物層が、GaN、InN、AlN、またはこれらのいずれか2つ以上の混晶に前記希土類元素が添加された層であることを特徴とする請求項8に記載の基板。
- 前記希土類元素添加窒化物層における前記希土類元素の添加濃度が、0.001~10at%であることを特徴とする請求項8または請求項9に記載の基板。
- 前記希土類元素添加窒化物層の厚みが、0.1nm以上であることを特徴とする請求項8ないし請求項10のいずれか1項に記載の基板。
- 前記希土類元素が、Euであることを特徴とする請求項8ないし請求項11のいずれか1項に記載の基板。
- 前記オフ角傾斜基板が、サファイア、SiC、Siのいずれか、または、GaN、InN、AlN、またはこれらのいずれか2つ以上の混晶からなる窒化物半導体であることを特徴とする請求項8ないし請求項12のいずれか1項に記載の基板。
- オフ角傾斜基板の上に希土類元素添加窒化物層を形成する希土類元素添加窒化物層の形成方法であって、
前記オフ角傾斜基板の上に、希土類元素無添加の窒化物層を形成する工程と、
前記希土類元素無添加の窒化物層の上に、希土類元素添加窒化物層を形成する工程とを備えており、
前記各工程を、有機金属気相エピタキシャル法を用いて、反応容器から取り出すことなく一連の形成工程によって行うと共に、
前記希土類元素添加窒化物層の形成を、900~1100℃の温度下で行うことを特徴とする希土類元素添加窒化物層の形成方法。 - オフ角傾斜基板の上に、希土類元素無添加の窒化物層、希土類元素添加窒化物層の順に積層されて形成されていることを特徴とする基板。
- 請求項14に記載の希土類元素添加窒化物層の形成方法を用いて形成された希土類元素添加窒化物層の上に、窒化物半導体層を形成させて、窒化物半導体デバイスを作製する窒化物半導体デバイスの作製方法。
- オフ角傾斜基板の上に、希土類元素無添加の窒化物層、希土類元素添加窒化物層、窒化物半導体層の順に積層されて形成されていることを特徴とする窒化物半導体デバイス。
- GaN、InN、AlNまたはこれらのいずれか2つ以上の混晶に、希土類元素として、EuまたはPrが添加された希土類元素添加窒化物層が、活性層として形成されており、
前記活性層が、請求項8ないし請求項13のいずれか1項に記載の基板上に形成されていることを特徴とする赤色発光デバイス。 - GaN、InN、AlNまたはこれらのいずれか2つ以上の混晶に、希土類元素としてEuが添加された希土類元素添加窒化物層が、オフ角傾斜基板上に形成されていることを特徴とする赤色発光デバイス。
- 前記希土類元素添加窒化物層が、酸素が共添加された希土類元素添加窒化物層であることを特徴とする請求項18または請求項19に記載の赤色発光デバイス。
- 請求項19に記載の赤色発光デバイスの製造方法であって、
オフ角傾斜基板の上に、有機金属気相エピタキシャル法を用いて、Euが添加された希土類元素添加窒化物層を形成することを特徴とする赤色発光デバイスの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19858257.9A EP3848975A4 (en) | 2018-09-03 | 2019-08-30 | NITRIDE SEMICONDUCTOR COMPONENT AND SUBSTRATE FOR IT, METHOD FOR PRODUCING A NITRIDE LAYER WITH A RARE EARTH ELEMENT AND RED LIGHT EMITTING DEVICE AND METHOD FOR PRODUCING THEREOF |
US17/271,173 US12074254B2 (en) | 2018-09-03 | 2019-08-30 | Nitride semiconductor device and substrate thereof, method for forming rare earth element-added nitride layer, and red-light emitting device and method for manufacturing the same |
JP2020541182A JP7158758B2 (ja) | 2018-09-03 | 2019-08-30 | 窒化物半導体デバイスとその基板、および希土類元素添加窒化物層の形成方法、並びに赤色発光デバイスとその製造方法 |
KR1020217007289A KR102542684B1 (ko) | 2018-09-03 | 2019-08-30 | 질화물 반도체 디바이스와 그 기판, 및 희토류 원소 첨가 질화물층의 형성 방법, 그리고 적색 발광 디바이스와 그 제조방법 |
CN201980055915.3A CN112640123B (zh) | 2018-09-03 | 2019-08-30 | 氮化物半导体器件及其基板、和稀土元素添加氮化物层的形成方法、以及红色发光器件及其制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-164868 | 2018-09-03 | ||
JP2018164868 | 2018-09-03 | ||
JP2019-029938 | 2019-02-22 | ||
JP2019029938 | 2019-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020050159A1 true WO2020050159A1 (ja) | 2020-03-12 |
Family
ID=69722319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/034070 WO2020050159A1 (ja) | 2018-09-03 | 2019-08-30 | 窒化物半導体デバイスとその基板、および希土類元素添加窒化物層の形成方法、並びに赤色発光デバイスとその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12074254B2 (ja) |
EP (1) | EP3848975A4 (ja) |
JP (1) | JP7158758B2 (ja) |
KR (1) | KR102542684B1 (ja) |
CN (1) | CN112640123B (ja) |
TW (1) | TWI716986B (ja) |
WO (1) | WO2020050159A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022181432A1 (ja) * | 2021-02-25 | 2022-09-01 | 国立大学法人大阪大学 | 希土類添加窒化物半導体素子とその製造方法、半導体led、半導体レーザー |
WO2023181259A1 (ja) * | 2022-03-24 | 2023-09-28 | 日本碍子株式会社 | AlN単結晶基板及びデバイス |
WO2024181554A1 (ja) * | 2023-03-01 | 2024-09-06 | レーハン フー | サファイア基板を処理する方法、サファイア基板の上にエピタキシャル薄膜を形成する方法、サファイア基板、エピタキシャル薄膜、及びそれらを備えるデバイス及び装置。 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI776721B (zh) * | 2021-11-02 | 2022-09-01 | 國立陽明交通大學 | 功率半導體裝置的散熱方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004335635A (ja) | 2003-05-06 | 2004-11-25 | National Institute Of Advanced Industrial & Technology | 微傾斜基板を用いた窒化物半導体薄膜素子及びその素子の製造方法 |
JP2008308349A (ja) * | 2007-06-12 | 2008-12-25 | Tohoku Techno Arch:Kk | Iii族窒化物単結晶の製造方法、金属窒化物層を有する下地結晶基板、および多層構造ウエハ |
US20100320443A1 (en) * | 2006-08-24 | 2010-12-23 | Hongxing Jiang | ER Doped III-Nitride Materials And Devices Synthesized by MOCVD |
JP2014175482A (ja) * | 2013-03-08 | 2014-09-22 | Osaka Univ | 赤色発光半導体素子とその製造方法 |
JP2016088803A (ja) * | 2014-11-04 | 2016-05-23 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体エピタキシャル基板およびその製造方法、ならびにiii族窒化物半導体発光素子 |
WO2018097102A1 (ja) * | 2016-11-25 | 2018-05-31 | 国立大学法人大阪大学 | 窒化物半導体基板とその製造方法および半導体デバイス |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002057158A (ja) * | 2000-08-09 | 2002-02-22 | Sony Corp | 絶縁性窒化物層及びその形成方法、半導体装置及びその製造方法 |
US7053413B2 (en) * | 2000-10-23 | 2006-05-30 | General Electric Company | Homoepitaxial gallium-nitride-based light emitting device and method for producing |
JP4269645B2 (ja) * | 2001-11-05 | 2009-05-27 | 日亜化学工業株式会社 | 付活剤を含有した基板を用いた窒化物半導体led素子、及び成長方法 |
KR101030068B1 (ko) * | 2002-07-08 | 2011-04-19 | 니치아 카가쿠 고교 가부시키가이샤 | 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자 |
US7098487B2 (en) * | 2002-12-27 | 2006-08-29 | General Electric Company | Gallium nitride crystal and method of making same |
CN101061571B (zh) * | 2004-11-24 | 2010-05-05 | 住友化学株式会社 | 半导体层叠基板、其制造方法以及发光元件 |
JP2007110090A (ja) * | 2005-09-13 | 2007-04-26 | Sony Corp | GaN系半導体発光素子、発光装置、画像表示装置、面状光源装置、及び、液晶表示装置組立体 |
US20070059564A1 (en) * | 2005-09-14 | 2007-03-15 | Seagate Technology Llc | Thin film structure with decreased C-axis distribution |
JP4939844B2 (ja) * | 2006-06-08 | 2012-05-30 | ローム株式会社 | ZnO系半導体素子 |
JP5131675B2 (ja) * | 2006-08-25 | 2013-01-30 | 国立大学法人京都大学 | 炭化ケイ素基板の製造方法 |
JP4924563B2 (ja) * | 2008-07-29 | 2012-04-25 | 住友電気工業株式会社 | マクロステップを有する基板生産物を作製する方法、エピタキシャルウエハを作製する方法、及び窒化物系半導体発光素子を作製する方法 |
JP5388041B2 (ja) * | 2009-05-07 | 2014-01-15 | 国立大学法人大阪大学 | 赤色発光半導体素子および赤色発光半導体素子の製造方法 |
JP2011140428A (ja) * | 2010-01-08 | 2011-07-21 | Jx Nippon Mining & Metals Corp | 窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板 |
JP5896454B2 (ja) * | 2011-12-07 | 2016-03-30 | 国立大学法人大阪大学 | 赤色発光半導体素子とその製造方法 |
JP6048896B2 (ja) * | 2012-08-23 | 2016-12-27 | 国立大学法人大阪大学 | 窒化物半導体素子用基板とその製造方法、および赤色発光半導体素子とその製造方法 |
JP5234219B1 (ja) * | 2012-09-07 | 2013-07-10 | 三菱化学株式会社 | 発光ダイオード素子および発光装置 |
JP2016111052A (ja) * | 2014-12-02 | 2016-06-20 | 住友電気工業株式会社 | 磁性半導体素子 |
JP6355279B2 (ja) * | 2016-12-12 | 2018-07-11 | 株式会社日能研 | 答案の採点を支援するコンピュータシステムおよびプログラム |
-
2019
- 2019-08-29 TW TW108131064A patent/TWI716986B/zh active
- 2019-08-30 WO PCT/JP2019/034070 patent/WO2020050159A1/ja unknown
- 2019-08-30 KR KR1020217007289A patent/KR102542684B1/ko active IP Right Grant
- 2019-08-30 CN CN201980055915.3A patent/CN112640123B/zh active Active
- 2019-08-30 EP EP19858257.9A patent/EP3848975A4/en active Pending
- 2019-08-30 US US17/271,173 patent/US12074254B2/en active Active
- 2019-08-30 JP JP2020541182A patent/JP7158758B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004335635A (ja) | 2003-05-06 | 2004-11-25 | National Institute Of Advanced Industrial & Technology | 微傾斜基板を用いた窒化物半導体薄膜素子及びその素子の製造方法 |
US20100320443A1 (en) * | 2006-08-24 | 2010-12-23 | Hongxing Jiang | ER Doped III-Nitride Materials And Devices Synthesized by MOCVD |
JP2008308349A (ja) * | 2007-06-12 | 2008-12-25 | Tohoku Techno Arch:Kk | Iii族窒化物単結晶の製造方法、金属窒化物層を有する下地結晶基板、および多層構造ウエハ |
JP2014175482A (ja) * | 2013-03-08 | 2014-09-22 | Osaka Univ | 赤色発光半導体素子とその製造方法 |
JP2016088803A (ja) * | 2014-11-04 | 2016-05-23 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体エピタキシャル基板およびその製造方法、ならびにiii族窒化物半導体発光素子 |
WO2018097102A1 (ja) * | 2016-11-25 | 2018-05-31 | 国立大学法人大阪大学 | 窒化物半導体基板とその製造方法および半導体デバイス |
Non-Patent Citations (2)
Title |
---|
C. K. SHU ET AL.: "Isoelectronic In-doping effect in GaN films grown by metalorganic chemical vapor deposition", APPL. PHYS. LETT., vol. 73, 1998, pages 641, XP000778942, DOI: 10.1063/1.121933 |
See also references of EP3848975A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022181432A1 (ja) * | 2021-02-25 | 2022-09-01 | 国立大学法人大阪大学 | 希土類添加窒化物半導体素子とその製造方法、半導体led、半導体レーザー |
WO2023181259A1 (ja) * | 2022-03-24 | 2023-09-28 | 日本碍子株式会社 | AlN単結晶基板及びデバイス |
WO2024181554A1 (ja) * | 2023-03-01 | 2024-09-06 | レーハン フー | サファイア基板を処理する方法、サファイア基板の上にエピタキシャル薄膜を形成する方法、サファイア基板、エピタキシャル薄膜、及びそれらを備えるデバイス及び装置。 |
Also Published As
Publication number | Publication date |
---|---|
US20210399175A1 (en) | 2021-12-23 |
KR102542684B1 (ko) | 2023-06-15 |
EP3848975A1 (en) | 2021-07-14 |
TWI716986B (zh) | 2021-01-21 |
JPWO2020050159A1 (ja) | 2021-09-24 |
CN112640123A (zh) | 2021-04-09 |
CN112640123B (zh) | 2024-10-01 |
EP3848975A4 (en) | 2021-09-29 |
TW202025487A (zh) | 2020-07-01 |
US12074254B2 (en) | 2024-08-27 |
JP7158758B2 (ja) | 2022-10-24 |
KR20210044255A (ko) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7158758B2 (ja) | 窒化物半導体デバイスとその基板、および希土類元素添加窒化物層の形成方法、並びに赤色発光デバイスとその製造方法 | |
JP4371202B2 (ja) | 窒化物半導体の製造方法及び半導体ウエハ並びに半導体デバイス | |
US7125801B2 (en) | Method of manufacturing Group III nitride crystal substrate, etchant used in the method, Group III nitride crystal substrate, and semiconductor device including the same | |
US10665753B2 (en) | Vertical-type ultraviolet light-emitting diode | |
JP5262545B2 (ja) | 窒化物半導体自立基板及びそれを用いたデバイス | |
JP2006156958A (ja) | 半導体素子及び半導素子の製造方法 | |
CN102738321A (zh) | 用于斜切块状衬底上的外延处理的方法和系统 | |
JP2007142437A (ja) | 半導体素子およびその製造方法 | |
JP6966063B2 (ja) | 結晶基板、紫外発光素子およびそれらの製造方法 | |
KR102112249B1 (ko) | 반도체 웨이퍼 | |
WO2013153729A1 (ja) | 紫外発光素子およびその製造方法 | |
JP6876337B2 (ja) | 窒化物半導体基板とその製造方法および半導体デバイス | |
JP4486435B2 (ja) | Iii族窒化物結晶基板の製造方法、それに用いるエッチング液 | |
TWI672734B (zh) | AlInN膜及二維光子結晶共振器和此等的製造方法以及光半導體發光元件 | |
JP2009238772A (ja) | エピタキシャル基板及びエピタキシャル基板の製造方法 | |
JP2002299686A (ja) | 半導体発光素子およびその製造方法 | |
JP3064891B2 (ja) | 3−5族化合物半導体とその製造方法および発光素子 | |
JPWO2011099469A1 (ja) | 構造体、及び半導体基板の製造方法 | |
JP2008214132A (ja) | Iii族窒化物半導体薄膜、iii族窒化物半導体発光素子およびiii族窒化物半導体薄膜の製造方法 | |
JP3870259B2 (ja) | 窒化物半導体積層体及びその成長方法 | |
WO2022181432A1 (ja) | 希土類添加窒化物半導体素子とその製造方法、半導体led、半導体レーザー | |
JP4873705B2 (ja) | 窒化インジウム(InN)あるいは高インジウム組成を有する窒化インジウムガリウム(InGaN)エピタキシャル薄膜の形成方法 | |
JP2005045153A (ja) | 窒化物半導体の製造方法及び半導体ウエハ並びに半導体デバイス | |
JP2004200723A (ja) | 3−5族化合物半導体の結晶性向上方法 | |
KR100492483B1 (ko) | 질화갈륨 박막의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19858257 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020541182 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217007289 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019858257 Country of ref document: EP Effective date: 20210406 |