TWI776721B - 功率半導體裝置的散熱方法 - Google Patents

功率半導體裝置的散熱方法 Download PDF

Info

Publication number
TWI776721B
TWI776721B TW110140786A TW110140786A TWI776721B TW I776721 B TWI776721 B TW I776721B TW 110140786 A TW110140786 A TW 110140786A TW 110140786 A TW110140786 A TW 110140786A TW I776721 B TWI776721 B TW I776721B
Authority
TW
Taiwan
Prior art keywords
layer
heat dissipation
semiconductor device
power semiconductor
semiconductor layer
Prior art date
Application number
TW110140786A
Other languages
English (en)
Other versions
TW202320255A (zh
Inventor
洪瑞華
Original Assignee
國立陽明交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學 filed Critical 國立陽明交通大學
Priority to TW110140786A priority Critical patent/TWI776721B/zh
Priority to US17/859,614 priority patent/US20230137750A1/en
Application granted granted Critical
Publication of TWI776721B publication Critical patent/TWI776721B/zh
Publication of TW202320255A publication Critical patent/TW202320255A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/89Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using at least one connector not provided for in any of the groups H01L24/81 - H01L24/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本發明提供一種功率半導體裝置的散熱方法,其包括以下步驟:(a)在一藍寶石基板的一第一表面上磊製一以GaN為主並呈六方晶系結構的緩衝層;(b)在該緩衝層上磊製一呈單斜晶系結構的Ga 2O 3半導體層;(c)對該Ga 2O 3半導體層施予一功率半導體裝置的一元件製程;(d)於該Ga 2O 3半導體層的上方形成一金屬附著層;(e)於該金屬附著層上形成一散熱板;及(f)自相反於該藍寶石基板之第一表面的一第二表面實施雷射剝離技術以移除該藍寶石基板。

Description

功率半導體裝置的散熱方法
本發明是有關於一種功率半導體裝置,特別是指一種功率半導體裝置的散熱方法。
早期的第一代半導體矽(Si)因具備有1.17eV的能隙(energy gap)而使其適用於功率半導體裝置。然而,隨著積體電路製程技術不斷地演進,半導體裝置不斷地輕薄短小化,相關技術產業也陸續地開發出第二代半導體的砷化鎵(GaAs)及磷化銦(InP)與第三代半導體的碳化矽(SiC)及氮化鎵(GaN),直至近年業界所關注的第四代半導體氧化鎵(Ga2O3)更因其具備有高達4.9eV的能隙而備受功率半導體裝置相關業者的矚目。雖然Ga2O3有利於應用在功率半導體裝置;然而,也礙於Ga2O3的熱傳導率(thermal conductivity;κ)低,且功率半導體裝置於運作過程中更容易產生高熱,導致應用於功率半導體裝置的Ga2O3存在有嚴重的散熱問題。因此,相關業者與研究開發人員無不著力於解決Ga2O3功率半 導體裝置的散熱問題。
如Hong Zhou等人於ASC Omega 2017,2,7723-7729的Thermodynamic Studies of β-Ga2O3 Nanomembrane Field-Effect Transistors on a Sapphire Substrate一文(以下稱前案1)中則公開了β-Ga2O3場效電晶體的散熱方法。前案1主要是有鑑於自熱效應(self-heating effect)對於高功率半導體裝置而言是一嚴重的問題,其會降低電子遷移率(electron mobility)和飽和速度(saturation velocity),並影響裝置的可靠性,因而通過使用熱傳導率較高的藍寶石基板而不是SiO2/Si基板,以藉此降低加熱效果。
參閱圖1,具體來說,前案1公開其技術手段是經由透明膠帶法(scotch tape method)將β-Ga2O3奈米膜自摻雜有Sn的(
Figure 110140786-A0305-02-0004-2
01)之β-Ga2O3基板(圖未示)的邊緣劈裂處重複地機械剝離,以將剝離後的β-Ga2O3奈米膜轉移到經丙酮清洗24小時的一SiO2/p++ Si基板111和一藍寶石基板121上,從而在該SiO2/p++ Si基板111與藍寶石基板121上得到各自所對應的一β-Ga2O3二維薄片112、122;於轉移β-Ga2O3奈米膜後,透過電子束微影、光阻剝離與薄膜沉積等技術在該等β-Ga2O3二維薄片112、122上完成各自所對應的一Ti/Al/Au源極113、123、一Ti/Al/Au汲極114、124、一Al2O3閘極介電層115、125與一Ni/Au閘電極116、126,從而各 自完成一第一β-Ga2O3薄膜電晶體11與一第二β-Ga2O3薄膜電晶體12。
由前案1的熱反射(thermoreflectance)特性與模擬結果皆能證明,帶有藍寶石基板121的第二β-Ga2O3薄膜電晶體12的熱阻是小於帶有SiO2/p++ Si基板111的第一β-Ga2O3薄膜電晶體11的熱阻的1/3。雖然前案1採用該藍寶石基板121作為其第二β-Ga2O3薄膜電晶體12的基板,是能夠解決功率半導體裝置相關業者所不樂見的自熱效應。然而,藍寶石的熱傳導率(κ)仍僅約40W/m.K,對於解決散熱問題而言仍有其改善的空間。
經上述說明可知,尋求各種散熱方法以解決Ga2O3功率半導體裝置散熱不足的問題,是本案所屬技術領域中的相關技術人員有待解決的課題。
因此,本發明的目的,即在提供一種能有效解決散熱問題之功率半導體裝置的散熱方法。
於是,本發明之功率半導體裝置的散熱方法,其包括以下步驟:一步驟(a)、一步驟(b)、一步驟(c)、一步驟(d)、一步驟(e),及一步驟(f)。
該步驟(a)是在一藍寶石基板的一第一表面上磊製一以GaN為主並呈六方晶系結構(hexagonal crystal system structure)的緩衝層。
該步驟(b)是於該步驟(a)後,在該緩衝層上磊製一呈單斜晶系結構(monoclinic crystal system structure)的Ga2O3半導體層。
該步驟(c)是於該步驟(b)後,對該Ga2O3半導體層施予一功率半導體裝置的一元件製程。
該步驟(d)是於該步驟(b)後,於該Ga2O3半導體層的上方形成一金屬附著層。
該步驟(e)是於該步驟(d)後,於該金屬附著層上形成一散熱板。
該步驟(f)是於該步驟(e)後,自相反於該藍寶石基板之第一表面的一第二表面實施雷射剝離技術以移除該藍寶石基板。
本發明的功效在於:基於單斜晶系結構的Ga2O3半導體層與六方晶系結構的緩衝層(GaN)兩者間的晶格不匹配度(lattice mismatch)小,其透過磊晶製作的手段可降低該Ga2O3半導體層內的貫穿式差排(threading dislocation)密度以維持鍍膜品質,且熱傳導率(κ)僅約40W/m.K的藍寶石基板已被移除,而該Ga2O3半導體層上方更形成有該散熱件,能夠有效地解決功率半導體裝置的散熱問題。
2:藍寶石基板
21:第一表面
22:第二表面
23:緩衝層
3:Ga2O3半導體層
31:源極區
32:汲極區
4:閘極介電層
5:絕緣層
6:金屬附著層
7:散熱板
8:氧化層
9:電極墊
D:汲極
G1:第一閘極
G2:第二閘極
S:源極
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一示意圖,說明前案1所公開的兩種β-Ga2O3薄膜電晶體;圖2是一元件製作流程圖,說明本發明之功率半導體裝置的散熱方法的一實施例的一步驟(a)、一步驟(b)與一步驟(c)的一次步驟(c1);圖3是一元件製作流程圖,說明本發明該實施例的步驟(c)的一次步驟(c2)與一次步驟(c3);圖4是一元件製作流程圖,說明本發明該實施例的步驟(c)的一次步驟(c4)與一次步驟(c5);圖5是一元件製作流程圖,說明本發明該實施例的一步驟(d)與一步驟(e’);圖6是一元件製作流程圖,說明本發明該實施例的一步驟(e)與一步驟(f);及圖7是一元件製作流程圖,說明本發明該實施例的一步驟(g)、一步驟(h)與一步驟(i)。
參閱圖2至圖6,本發明之功率半導體裝置的散熱方法的一實施例,其包括以下步驟:一步驟(a)、一步驟(b)、一步驟(c)、一步驟(d)、一步驟(e),及一步驟(f)。
如圖2所示,該步驟(a)是透過有機金屬化學氣相沉積法(MOCVD)在一藍寶石基板2的一第一表面21上磊製一以GaN為主並呈六方晶系結構的緩衝層23。在本發明該實施例中,於實施MOCVD以磊製該緩衝層23時所使用的前驅物(precursor)是三甲基鎵[trimethylgllium,以下簡稱TMG,結構式微Ga(CH3)3]與氮氣(N2)。
該步驟(b)是於該步驟(a)後,透過MOCVD在該緩衝層23上磊製一呈單斜晶系結構的Ga2O3半導體層3。在本發明該實施例中,於實施MOCVD以磊製該Ga2O3半導體層3時所使用的前驅物是TMG與氧氣(O2)。
該步驟(c)是於該步驟(b)後,對該Ga2O3半導體層3施予一功率半導體裝置的一元件製程。該步驟(c)之具體實施方式是如圖2至圖4所示,其詳細的實施方式容後說明。
如圖5所示,該步驟(d)是於該步驟(c)後,於該Ga2O3半導體層3的上方形成一金屬附著層6。
如圖6所示,該步驟(e)是於該步驟(d)後,於該金屬附著層6上形成一散熱板7。較佳地,該步驟(e)之散熱板7是經實施一電 鑄程序(electroforming)所構成,或是經實施一晶圓接合(wafer bonding)技術以於該金屬附著層6上接合該散熱板7。須說明的是,當該步驟(e)是實施該電鑄程序時,該散熱板7是一選自由下列所構成之群組的金屬材料所製成:銀(Ag)、銅(Cu)、金(Au)、鋁(Al)、鈉(Na)、鉬(Mo)、鎢(W)、鋅(Zn)、鎳(Ni),及前述金屬的一組合;當該步驟(e)是實施該晶圓接合技術時,該散熱板7是一矽(Si)晶圓、一碳化矽(SiC)晶圓或氮化鋁基板(AlN)。
再參閱圖6,該步驟(f)是於該步驟(e)後,自相反於該藍寶石基板2之第一表面21的一第二表面22實施雷射剝離技術(laser liftoff technology),使該緩衝層(GaN)23經雷射的照射而裂解以藉此移除熱傳導率(κ)高達40W/m.K的該藍寶石基板2。
再參閱圖2、圖3與圖4,在本發明該實施例中,該步驟(c)的元件製程是介於該步驟(b)與步驟(d)間,並包括以下次步驟:一次步驟(c1)、一次步驟(c2)、一次步驟(c3)、一次步驟(c4),及一次步驟(c5)。
如圖2所示,該次步驟(c1)是定義出位於該Ga2O3半導體層3之相反兩側的一源極區31與一汲極區32。本發明該實施例之步驟(c1)的源極區31與汲極區32可經由圖案化(patterned)以裸露出該緩衝層23,也可以進一步地於圖案化後的該Ga2O3半導體層3的相反兩側實施離子佈植(ion implantation),以於前述兩側內形成 高濃度的摻雜。
如圖3所示,該次步驟(c2)是於該源極區31與汲極區32分別形成連接該Ga2O3半導體層3的一源極S與一汲極D。具體來說,該源極S與汲極D是經由濺鍍法(sputtering)所製得的一Ti/Al/Au接觸電極。
繼續參閱圖3,該次步驟(c3)是於該次步驟(c1)與次步驟(c2)後,形成一覆蓋該Ga2O3半導體層3、源極S與汲極D的閘極介電層4。在本發明該實施例中,該閘極介電層4是由Al2O3所構成。
如圖4所示,該次步驟(c4)是於該閘極介電層4上形成一第一閘極G1。具體來說,該第一閘極G1是經由濺鍍法所製得的一Ni/Au閘極。
該次步驟(c5)是於該步驟(c4)後,在該第一閘極G1上形成一絕緣層5以覆蓋該第一閘極G1與該閘極介電層4,且如圖5所示,該步驟(d)的金屬附著層6是形成在該絕緣層5上。
在本發明該實施例中,該步驟(e)之散熱板7是經實施該電鑄程序所構成,且於該步驟(d)與步驟(e)間還包含一步驟(e’)。
如圖5所示,該步驟(e’)是移除部分的該金屬附著層6、絕緣層5與閘極介電層4,以裸露出該源極S與汲極D兩者的其中一者。在本發明該實施例中,是以裸露出該汲極D為例做說明,但不限於此。
如圖6所示,該步驟(e)是實施該電鑄程序以自該金屬附著層6及裸露於外的該源極S與汲極D兩者的其中一者處成形出覆蓋該金屬附著層6、絕緣層5、閘極介電層4、該源極S與汲極D的該散熱板7。在本發明該實施例中,該散熱板7是由熱傳率(κ)高達401W/m.K的銅(Cu)所構成。
更佳地,參閱圖7,本發明該實施例於該步驟(f)後還包含一步驟(g)、一步驟(h)與一步驟(i),且如圖6所示,在實施完該步驟(f)後是裸露出該Ga2O3半導體層3、源極S與汲極D。
如圖7所示,該步驟(g)是將圖6所示之步驟(f)後的一半成品翻轉180度,並於裸露於外的該Ga2O3半導體層3上形成一氧化層8。該步驟(h)是於源極S與汲極D分別形成一電極墊9。該步驟(i)是於該氧化層8上形成一由Ti/Au所構成的第二閘極G2以做為一場板(field plate),以藉此降低熱電子與漏電流效應。
本發明該實施例僅是以該步驟(c)的元件製程於該步驟(b)與步驟(d)間為例做說明,但不限於此。此處須補充說明的是,本發明另一實施例也可以是在實施完該步驟(b)以磊製完該Ga2O3半導體層3後,直接於該Ga2O3半導體層3上依序形成該步驟(d)的金屬附著層6、該步驟(e)的散熱板7與該步驟(f)的雷射剝離技術以裸露出該Ga2O3半導體層3後,再於裸露於外的該Ga2O3半導體層3實施該步驟(c)的元件製程。
經本發明該實施例的詳細說明可知,本發明該實施例一方面利用MOCVD在該藍寶石基板2第一表面21上的緩衝層(GaN)23上磊製該Ga2O3半導體層3,呈六方晶系結構的緩衝層(GaN)23與呈單斜晶系結構的Ga2O3半導體層3兩者間晶格不匹配度低,可使該Ga2O3半導體層3得到優異的磊晶品質,另一方面更透過電鑄程序以在該Ga2O3半導體層3的上方形成熱傳率(κ)高達401W/m.K的銅(Cu)以作為該散熱板7,並透過雷射剝離技術移除熱傳率(κ)僅有40W/m.K的藍寶石基板2,能在降低熱阻的前提下達到有效的散熱效果。
綜上所述,本發明之功率半導體裝置的散熱方法不僅可取得優異磊晶品質的Ga2O3半導體層3,更移除熱傳率(κ)僅有40W/m.K的藍寶石基板2以降低熱阻,並以熱傳率(κ)高達401W/m.K的銅(Cu)來作為其散熱板7以藉此提升散熱效果,故確實能達成本發明的目的。
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。
2:藍寶石基板
21:第一表面
22:第二表面
23:緩衝層
3:Ga2O3半導體層
4:閘極介電層
5:絕緣層
6:金屬附著層
7:散熱板
D:汲極
G1:第一閘極
S:源極

Claims (6)

  1. 一種功率半導體裝置的散熱方法,其包含以下步驟: 一步驟(a),在一藍寶石基板的一第一表面上磊製一以GaN為主並呈六方晶系結構的緩衝層; 一步驟(b),於該步驟(a)後,在該緩衝層上磊製一呈單斜晶系結構的Ga 2O 3半導體層; 一步驟(c),於該步驟(b)後,對該Ga 2O 3半導體層施予一功率半導體裝置的一元件製程; 一步驟(d),於該步驟(b)後,於該Ga 2O 3半導體層的上方形成一金屬附著層; 一步驟(e),於該步驟(d)後,於該金屬附著層上形成一散熱板;及 一步驟(f),於該步驟(e)後,自相反於該藍寶石基板之第一表面的一第二表面實施雷射剝離技術以移除該藍寶石基板。
  2. 如請求項1所述的功率半導體裝置的散熱方法,其中,該步驟(e)之散熱板是經實施一電鑄程序所構成,或是經實施一晶圓接合技術以於該金屬附著層上接合該散熱板。
  3. 如請求項2所述的功率半導體裝置的散熱方法,其中,當該步驟(e)是實施該電鑄程序時,該散熱板是一選自由下列所構成之群組的金屬材料所製成:銀、銅、金、鋁、鈉、鉬、鎢、鋅、鎳,及前述金屬的一組合;當該步驟(e)是實施該晶圓接合技術時,該散熱板是一矽晶圓、一碳化矽晶圓或一氮化鋁基板。
  4. 如請求項2所述的功率半導體裝置的散熱方法,其中,該步驟(c)是介於該步驟(b)與步驟(d)間,並包括以下次步驟: 一次步驟(c1),定義出位於該Ga 2O 3半導體層之相反兩側的一源極區與一汲極區; 一次步驟(c2),於該源極區與汲極區分別形成連接該Ga 2O 3半導體層的一源極與一汲極; 一次步驟(c3),於該次步驟(c1)與次步驟(c2)後,形成一覆蓋該Ga 2O 3半導體層的閘極介電層; 一次步驟(c4),於該閘極介電層上形成一第一閘極;及 一次步驟(c5),於該步驟(c4)後,在該第一閘極上形成一絕緣層,且該步驟(d)的金屬附著層是形成在該絕緣層上。
  5. 如請求項4所述的功率半導體裝置的散熱方法,於該步驟(d)與步驟(e)間還包含一步驟(e’),且該步驟(e)之散熱板是經實施該電鑄程序所構成,其中: 該步驟(e’)是移除部分的該金屬附著層、絕緣層與閘極介電層以裸露出該源極與汲極兩者的其中一者;及 該步驟(e)是實施該電鑄程序以自該金屬附著層及裸露於外的該源極與汲極兩者的其中一者處成形出覆蓋該金屬附著層、絕緣層、閘極介電層、該源極與汲極的該散熱板。
  6. 如請求項5所述的功率半導體裝置的散熱方法,於該步驟(f)後還包含一步驟(g)、一步驟(h)與一步驟(i),且實施完該步驟(f)後是裸露出該Ga 2O 3半導體層、該源極與該汲極,其中: 該步驟(g)是於該Ga 2O 3半導體層上形成一氧化層; 該步驟(h)是於源極與汲極上分別形成一電極墊;及 該步驟(i)是於該氧化層上形成一第二閘極以做為一場板。
TW110140786A 2021-11-02 2021-11-02 功率半導體裝置的散熱方法 TWI776721B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110140786A TWI776721B (zh) 2021-11-02 2021-11-02 功率半導體裝置的散熱方法
US17/859,614 US20230137750A1 (en) 2021-11-02 2022-07-07 Method for producing power semiconductor device with heat dissipating capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110140786A TWI776721B (zh) 2021-11-02 2021-11-02 功率半導體裝置的散熱方法

Publications (2)

Publication Number Publication Date
TWI776721B true TWI776721B (zh) 2022-09-01
TW202320255A TW202320255A (zh) 2023-05-16

Family

ID=84958024

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110140786A TWI776721B (zh) 2021-11-02 2021-11-02 功率半導體裝置的散熱方法

Country Status (2)

Country Link
US (1) US20230137750A1 (zh)
TW (1) TWI776721B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202025487A (zh) * 2018-09-03 2020-07-01 國立大學法人大阪大學 氮化物半導體裝置與其基板及添加稀土類元素之氮化物層的形成方法,以及紅色發光裝置與其製造方法
US20200287084A1 (en) * 2010-04-30 2020-09-10 Trustees Of Boston University High efficiency ultraviolet light emitting diode with electron tunnelling
TW202101717A (zh) * 2019-03-21 2021-01-01 美商創世舫科技有限公司 用於三族氮化物元件的整合設計
US20210036187A1 (en) * 2017-11-02 2021-02-04 Lg Innotek Co., Ltd. Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200287084A1 (en) * 2010-04-30 2020-09-10 Trustees Of Boston University High efficiency ultraviolet light emitting diode with electron tunnelling
US20210036187A1 (en) * 2017-11-02 2021-02-04 Lg Innotek Co., Ltd. Semiconductor device
TW202025487A (zh) * 2018-09-03 2020-07-01 國立大學法人大阪大學 氮化物半導體裝置與其基板及添加稀土類元素之氮化物層的形成方法,以及紅色發光裝置與其製造方法
TW202101717A (zh) * 2019-03-21 2021-01-01 美商創世舫科技有限公司 用於三族氮化物元件的整合設計

Also Published As

Publication number Publication date
TW202320255A (zh) 2023-05-16
US20230137750A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US20090078943A1 (en) Nitride semiconductor device and manufacturing method thereof
CN111540684A (zh) 一种金刚石基异质集成氮化镓薄膜与晶体管的微电子器件及其制备方法
CN105762078A (zh) GaN基纳米沟道高电子迁移率晶体管及制作方法
JP7052503B2 (ja) トランジスタの製造方法
CN114975096B (zh) 键合材料和制备方法以及半导体器件
CN113555429B (zh) 高击穿电压和低导通电阻的常开hfet器件及其制备方法
CN108847392B (zh) 金刚石基氮化镓器件制造方法
CN111863957B (zh) 一种常闭型高电子迁移率晶体管及其制造方法
TWI776721B (zh) 功率半導體裝置的散熱方法
CN109461656A (zh) 半导体器件制造方法
CN116247017B (zh) 一种金刚石衬底sp3-sp2杂化成键网络层制备方法及应用
CN111211161A (zh) 一种双向散热的纵向氮化镓功率晶体管及其制备方法
CN106783997A (zh) 一种高迁移率晶体管及其制备方法
TWI785864B (zh) 半導體基板以及電晶體
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法
WO2021234813A1 (ja) 電界効果トランジスタの作製方法
CN208368511U (zh) 半导体器件
WO2019153431A1 (zh) 一种高频氮化镓/石墨烯异质结热电子晶体管的制备方法
CN112736135B (zh) 基于质子辐照处理的金刚石基InAlN/GaN高电子迁移率晶体管及制备方法
CN111863958B (zh) 一种常开型高电子迁移率晶体管结构及其制造方法
TWI840060B (zh) 半導體元件
TWI838037B (zh) 半導體元件
CN111446289B (zh) 基于石墨烯覆盖层的氮化镓器件结构及其制备方法
CN111223927B (zh) GaN-金刚石-Si半导体结构、器件及制备方法
CN107230718A (zh) 半导体器件及制造方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent