WO2020045455A1 - 複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置 - Google Patents

複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置 Download PDF

Info

Publication number
WO2020045455A1
WO2020045455A1 PCT/JP2019/033572 JP2019033572W WO2020045455A1 WO 2020045455 A1 WO2020045455 A1 WO 2020045455A1 JP 2019033572 W JP2019033572 W JP 2019033572W WO 2020045455 A1 WO2020045455 A1 WO 2020045455A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
double
row
mixed layer
roller bearing
Prior art date
Application number
PCT/JP2019/033572
Other languages
English (en)
French (fr)
Inventor
雅樹 中西
三上 英信
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201980055775.XA priority Critical patent/CN112639312B/zh
Priority to EP19856000.5A priority patent/EP3845769B1/en
Priority to DK19856000.5T priority patent/DK3845769T3/da
Priority to US17/270,313 priority patent/US20210172474A1/en
Publication of WO2020045455A1 publication Critical patent/WO2020045455A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/02Carbon based material
    • F16C2206/04Diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/80Cermets, i.e. composites of ceramics and metal
    • F16C2206/82Cermets, i.e. composites of ceramics and metal based on tungsten carbide [WC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention is applied to a high-load application, for example, a double-row self-aligning roller bearing applied to a bearing for supporting a main shaft of a wind power generator, and a main shaft support device for wind power generation including the same, and in particular, The present invention relates to a double-row self-aligning roller bearing having a hard film containing diamond-like carbon formed on a surface thereof, and a main shaft support device for wind power generation provided with the same.
  • the hard carbon film is a hard film generally called diamond-like carbon (hereinafter, referred to as DLC; a film / layer mainly composed of DLC is also referred to as a DLC film / layer).
  • DLC diamond-like carbon
  • Hard carbon also has various names such as hard amorphous carbon, amorphous carbon, hard amorphous carbon, i-carbon, and diamond-like carbon, but these terms are not clearly distinguished.
  • DLC The essence of DLC in which these terms are used is that it has an intermediate structure between diamond and graphite, both of which are structurally mixed. It is as hard as diamond and has excellent wear resistance, solid lubricity, thermal conductivity, chemical stability and corrosion resistance. For this reason, for example, it is being used as a protective film for dies and tools, wear-resistant mechanical parts, abrasives, sliding members, magnetic and optical parts, and the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • UBMS unbalanced magnetron sputtering
  • a large double-row self-aligning roller bearing 54 as shown in FIG. 8 is often used as a main shaft bearing in a large wind power generator.
  • the main shaft 53 is a shaft to which the blades 52 are attached, rotates by receiving wind force, and the rotation is increased by a speed increaser (not shown) to rotate the generator to generate electricity.
  • a speed increaser not shown
  • the main shaft 53 supporting the blade 52 receives an axial load (bearing thrust load) and a radial load (bearing radial load) due to the wind force applied to the blade 52.
  • the double-row self-aligning roller bearing 54 can simultaneously apply a radial load and a thrust load, and has an aligning property, so that it can absorb the accuracy error of the bearing housing 51 and the inclination of the main shaft 53 due to the mounting error, and The deflection of the main shaft 53 during operation can be absorbed. Therefore, it is a bearing suitable for a bearing for a main shaft of a wind power generator, and is used (for example, Non-Patent Document 1).
  • DLC films generate extremely large internal stress during film formation and have high hardness and Young's modulus.
  • drawbacks due to their extremely small deformability, they have drawbacks such as poor adhesion to substrates and easy peeling. ing. Therefore, when a DLC film is formed on each of the above-mentioned surfaces of the rolling bearing, it is necessary to improve the adhesion.
  • an intermediate layer is provided to improve the adhesion of the DLC film, and chromium (hereinafter, referred to as Cr) and tungsten (hereinafter, referred to as W) are formed on a raceway groove and a rolling surface of a rolling element formed of a steel material. ), Titanium (hereinafter, referred to as Ti), silicon (hereinafter, referred to as Si), nickel, and at least one element selected from the group consisting of nickel and iron.
  • a rolling device formed in this order has been proposed (see Patent Document 1).
  • the thrust load is larger than the radial load, and among the double-row rollers 57 and 58, the thrust load is reduced.
  • the receiving rows of rollers 58 will apply exclusively radial and thrust loads simultaneously. Therefore, the rolling fatigue life is shortened. Further, since a thrust load is applied, there is a problem that a sliding motion occurs at the flange and wear occurs. In addition, there is a problem that the load is light on the opposite row, and the rollers 57 slide on the raceway surfaces 55a, 56a of the inner and outer races 55, 56, causing surface damage and wear.
  • the present invention has been made in view of such circumstances, and prevents friction and abrasion on a lubricated surface even when the lubricating surface comes into contact with another member under conditions involving slippage and poor lubrication, and has a long-term durability. It is an object of the present invention to provide a self-aligning roller bearing and a main shaft support device for wind power generation having the same.
  • the double-row self-aligning roller bearing of the present invention between the inner ring and the outer ring, interposes rollers in two rows arranged in the axial direction, makes the raceway surface of the outer ring spherical, and forms the outer peripheral surface of the roller with
  • a double-row spherical roller bearing having a shape along the raceway surface of an outer ring, wherein the inner ring, the outer ring, and the rollers are made of an iron-based material, and the hard film is formed of the inner ring, the outer ring, and the rollers.
  • the underlayer is formed directly on the sliding contact surface of at least one selected bearing member, and the tungsten carbide (hereinafter referred to as WC) and DLC formed on the underlayer are the main components.
  • the double-row spherical roller bearing is a film having a structure including a mixed layer and a surface layer mainly composed of DLC formed on the mixed layer.
  • a bearing used under conditions of sliding contact with lubrication A layer in which the content of the WC in the mixed layer decreases and the content of the DLC in the mixed layer increases continuously or stepwise from the formation layer toward the surface layer side.
  • the hydrogen content in the layer is less than 10 atomic%.
  • the surface layer has a gradient layer portion having a hardness continuously or stepwise increasing from the mixed layer side on the side adjacent to the mixed layer.
  • the iron-based material is a high-carbon chromium bearing steel, carbon steel, tool steel, or martensitic stainless steel, and the underlayer is a layer mainly composed of Cr and WC.
  • the double-row spherical roller bearing of the present invention is a bearing that supports a main shaft to which a blade of a wind power generator is attached.
  • the inner ring is provided between the two rows of rollers on the outer peripheral surface of the inner ring, and a middle flange that is in sliding contact with an axially inner end face of each row of rollers, and is provided at each end of the outer peripheral surface of the inner ring, A small flange that is in sliding contact with the axially outer end face of each row of rollers, wherein the hard film is formed on the outer peripheral surface of at least one row of the rollers of each row. I do.
  • the main shaft support device for wind power generation of the present invention is a main shaft support device for wind power generation that supports a main shaft to which a blade is attached by one or more bearings installed in a housing, wherein at least one of the bearings is provided.
  • the double-row spherical roller bearing of the present invention wherein in the double-row spherical roller bearing, the load capacity of a bearing portion of a row farther from the blade is larger than a bearing capacity of a closer one. It is characterized by.
  • the double row spherical roller bearing of the present invention is formed by forming a hard film having a predetermined film structure including DLC on a sliding surface of at least one bearing member selected from an inner ring, an outer ring, and a roller.
  • the intermediate layer is a mixed layer of WC and DLC (WC / DLC) and has a gradient composition, the concentration of residual stress after film formation hardly occurs.
  • the hydrogen content in the mixed layer is less than 10 atomic%, the hard film is excellent in the peeling resistance of the hard film even when it comes into contact with other members under conditions of poor lubrication and slippage.
  • the hard film is formed on the inner / outer raceway surface and the rolling surface of the roller, for example, and has excellent peeling resistance and can exhibit the inherent characteristics of DLC.
  • the double row spherical roller bearing of the present invention is excellent in seizure resistance, wear resistance, and corrosion resistance, and has a long life with little damage to the raceway surface even in a severe lubrication state.
  • the double-row spherical roller bearing of the present invention is a bearing that supports the main shaft to which the blade of the wind power generator is attached, so even under the above conditions, the hard film has excellent peeling resistance and a long life of the bearing. It also contributes to maintenance free.
  • the inner ring includes a middle flange and each small flange on the outer peripheral surface of the inner ring, and a hard film is formed on one of the small flanges. At this time, it is suitable for a specific use condition of a bearing for a wind power generator main shaft which is subjected to a larger thrust load.
  • FIG. 1 is a schematic sectional view of a double-row spherical roller bearing of the present invention. It is a schematic cross section which shows the structure of a hard film. It is a schematic diagram which shows the film formation principle of a UBMS method. It is a schematic diagram of a UBMS device. It is a schematic diagram of a two-cylinder testing machine. It is a figure showing a bearing for main shaft support in a conventional wind power generator.
  • a hard film such as a DLC film has a residual stress in the film, and the residual stress varies greatly depending on the film structure and the film forming conditions. As a result, the peeling resistance has a large effect. Further, the peeling resistance also changes depending on the conditions under which the hard film is used.
  • the present inventors have repeatedly verified by a two-cylinder test and the like under conditions in which rolling and sliding contact are made under poor lubrication conditions (boundary lubrication conditions). With regard to the hard film formed on the surface of the bearing member of the roller bearing, it has been found that by limiting the film structure, and particularly by setting the hydrogen content within a predetermined range, the peeling resistance can be improved under such conditions. Was.
  • the present invention has been made based on such findings.
  • FIG. 1 is a schematic view of the whole wind power generator including the wind power generation spindle support device
  • FIG. 2 is a diagram showing the wind power generation spindle support device of FIG.
  • a main shaft 3 on which a blade 2 serving as a windmill is attached is mounted on a double-row self-aligning roller bearing 5 (hereinafter simply referred to as a bearing 5) installed in a nacelle 4. ) So as to be rotatable, and a speed increaser 6 and a generator 7 are installed in the nacelle 4.
  • the speed increaser 6 speeds up rotation of the main shaft 3 and transmits the rotation to the input shaft of the generator 7.
  • the nacelle 4 is rotatably installed on the support base 8 via a swivel bearing 17 and is swung through a speed reducer 10 (see FIG. 2) by driving of a turning motor 9 (see FIG. 2). .
  • the turning of the nacelle 4 is performed to make the direction of the blade 2 face the wind direction.
  • two bearings 5 for supporting the main shaft are provided in the example of FIG. 2, one bearing may be provided.
  • FIG. 3 shows a double-row spherical roller bearing 5 supporting the main shaft of a wind power generator.
  • the bearing 5 has an inner ring 11 and an outer ring 12 which are a pair of races, and a plurality of rollers 13 interposed between the inner and outer rings 11 #, 12.
  • the plurality of rollers are interposed in two rows in the axial direction of the bearing.
  • the row 13a is closer to the blade (left row) and the row farther from the blade (right row) is 13a. 13b.
  • the bearing 5 is a radial bearing capable of performing a thrust load.
  • the outer race 12 of the bearing 5 has a spherical raceway surface 12a, and each roller has a spherical outer surface along the outer raceway surface 12a.
  • the inner race 11 is formed with multiple rows of raceway surfaces 11a having a cross-sectional shape along the outer peripheral surfaces of the rollers 13a and 13b in the left and right rows.
  • Small flanges 11b and 11c are provided at both ends of the outer peripheral surface of the inner ring 11, respectively.
  • a middle flange 11d is provided at the center of the outer peripheral surface of the inner ring 11, that is, between the left-row rollers 13a and the right-row rollers 13b.
  • the rollers 13a and 13b are held by a holder 14 for each row.
  • the outer peripheral surfaces of the rollers 13a and 13b are in rolling contact between the inner raceway surface 11a and the outer raceway surface 12a.
  • the axially inner end face of the roller 13a is in sliding contact with one axial end face of the middle flange 11d, and the axially outer end face of the roller 13a is slidingly contacted with the inner end face of the small flange 11b.
  • the axially inner end face of the roller 13b is in sliding contact with the other axial end face of the middle flange 11d, and the axially outer end face of the roller 13b is slidingly contacted with the inner end face of the small flange 11c.
  • Grease is sealed to reduce these frictions.
  • Known grease for rolling bearings can be used as grease.
  • the outer ring 12 is fitted and installed on the inner diameter surface of the bearing housing 15, and the inner ring 11 is fitted on the outer periphery of the main shaft 3 to support the main shaft 3.
  • the bearing housing 15 has side walls 15 a covering both ends of the bearing 5, and a seal 16 such as a labyrinth seal is formed between each side wall 15 a and the main shaft 3. Since the sealing performance is obtained by the bearing housing 15, a bearing 5 without a seal is used.
  • the bearing 5 is a bearing for the main shaft of the wind power generator according to the embodiment of the present invention.
  • the double row spherical roller bearing of the present invention is characterized in that a hard film having a predetermined structure is formed on a surface that comes into rolling and sliding contact between a roller and another member (particularly under boundary lubrication conditions). Therefore, the hard film is excellent in the peeling resistance even when it comes into contact with another member under conditions of poor lubrication and slippage. As a result, it is possible to exhibit the inherent characteristics of the hard film, to have excellent seizure resistance, abrasion resistance, and corrosion resistance, and to prevent damage due to metal contact of the double row spherical roller bearing.
  • a hard film 18 is formed on the outer peripheral surface of the inner ring 11, which is a bearing member.
  • the outer peripheral surface of the inner ring 11 includes a raceway surface 11a, both axial end surfaces of the middle flange 11d, an inner end surface of the small flange 11b, and an inner end surface of the small flange 11c.
  • the hard film 18 is formed on the entire outer peripheral surface of the inner ring 11, and the hard film 18 is also formed on the surface that does not make rolling and sliding contact with the rollers 13a and 13b.
  • the location of the inner ring 11 where the hard film 18 is formed is not limited to the embodiment shown in FIG.
  • a hard film is formed on at least one of the axial end surfaces of the middle flange 11d, the inner end surface of the small flange 11b, and the inner end surface of the small flange 11c, which are in sliding contact with the rollers 13a and 13b. Is also good.
  • the roller in the row farther from the blade (roller 13b) is compared with the roller in the row closer to the blade (roller 13a). And receive a large thrust load.
  • boundary lubrication tends to occur particularly at a portion that comes into sliding contact with the roller 13b. Therefore, the hard film may be formed only on the inner end face of the small flange 11c among the small flanges 11b and 11c in consideration that loads having different sizes act on the two rows of rollers arranged in the axial direction.
  • a hard film is formed on a surface which is in a condition of sliding contact (particularly rolling sliding contact) with another bearing member by boundary lubrication (low lambda condition). Rollers are also rolling between the inner and outer wheels and sliding.
  • the hard film shown in FIG. 3 is used under such conditions. Further, the location of the hard film is not limited to the location shown in FIG. 3 and may be formed on any surface of at least one bearing member selected from the inner ring, the outer ring, and the rollers, which satisfies the above conditions. it can.
  • the hard film 18 is formed on the outer peripheral surface of the inner ring 11, but instead of or in addition to this, the hard film 18 may be formed on the surface of the outer ring 12 and the rollers 13a and 13b.
  • a hard film may be formed on the inner peripheral surface of the outer ring 12 (including the outer ring raceway surface 12a).
  • a hard film may be formed on both end surfaces of each of the rollers 13a and 13b.
  • a configuration in which a hard film is formed only on both end surfaces of the rollers 13b may be adopted. Further, a configuration in which a hard film is formed on the outer peripheral surfaces of the rollers 13a and 13b may be adopted. For example, a configuration may be adopted in which a hard film is formed on the outer peripheral surface of at least one of the rollers in each row.
  • the inner ring, outer ring, and rollers that are the bearing members on which the hard film is to be formed are made of an iron-based material.
  • the iron-based material any steel generally used as a bearing member can be used, and examples thereof include high-carbon chromium bearing steel, carbon steel, tool steel, and martensitic stainless steel.
  • the surface on which the hard film is formed preferably has a Vickers hardness of Hv650 or more.
  • Hv is 650 or more, the difference in hardness from the hard film (underlayer) can be reduced, and the adhesion can be improved.
  • a nitride layer is formed by a nitriding treatment before the hard film is formed.
  • a nitriding treatment it is preferable to perform a plasma nitriding treatment in which an oxide layer that hinders adhesion is unlikely to be formed on the substrate surface.
  • the hardness of the surface after the nitriding treatment is preferably Vickers hardness of Hv1000 or more in order to further improve the adhesion to the hard film (underlying layer).
  • the surface roughness Ra of the surface on which the hard film is formed is preferably 0.05 ⁇ m or less. If the surface roughness Ra exceeds 0.05 ⁇ m, it becomes difficult to form a hard film at the tip of the roughness protrusion, and the film thickness is locally reduced.
  • FIG. 4 is a schematic sectional view showing the structure of the hard film 18.
  • the hard film 18 includes (1) an underlayer 18a formed directly on the inner raceway surface 11a of the inner ring 11, and (2) WC and DLC formed on the underlayer 18a. And (3) a surface layer 18c mainly composed of DLC formed on the mixed layer 18b.
  • a sudden change in physical properties is avoided by forming the hard film into a three-layer structure as described above.
  • the underlayer 18a is an underlayer formed directly on the surface of each bearing member serving as a base material.
  • the material and structure are not particularly limited as long as they can ensure the adhesion to the base material.
  • Cr, W, Ti, Si, or the like can be used as the material.
  • the underlayer 18a is preferably a layer mainly composed of Cr and WC in consideration of the adhesion to the mixed layer 18b.
  • WC has an intermediate hardness or elastic modulus between Cr and DLC, and hardly causes concentration of residual stress after film formation.
  • the mixed layer 18b is an intermediate layer interposed between the underlayer and the surface layer.
  • WC used for the mixed layer 18b has an intermediate hardness and elastic modulus between Cr and DLC, and hardly causes concentration of residual stress after film formation. Since the mixed layer 18b has a gradient composition in which the WC content decreases and the DLC content increases from the underlayer 18a side toward the surface layer 18c side, both surfaces of the underlayer 18a and the surface layer 18c are Excellent adhesion. Further, the structure is such that WC and DLC are physically bonded in the mixed layer, and damage in the mixed layer can be prevented. Furthermore, since the DLC content is increased on the surface layer 18c side, the adhesion between the surface layer 18c and the mixed layer 18b is excellent.
  • the mixed layer 18b is a layer that couples the non-adhesive DLC to the base layer 18a side by WC by an anchor effect. As shown in the examples below, it is important to reduce the hydrogen content in the mixed layer to some extent in order to improve the peeling resistance in the case where the lubricating state comes into contact with other members under conditions involving slippage and poor lubrication. Become.
  • the hydrogen content in the mixed layer is less than 10 atomic%. Within this range, peeling of the hard film can be prevented even under conditions of rolling and sliding contact due to boundary lubrication.
  • the hydrogen content of the mixed layer exceeds 10 atomic%, relatively soft DLC is present in the mixed layer serving as the intermediate layer, and there is a possibility that the DLC may be easily peeled off under the above conditions.
  • the “hydrogen content (atomic%) in the mixed layer” in the present invention can be calculated by a known analysis method. For example, it can be determined by GDS analysis (glow discharge emission spectroscopy). GDS analysis is an analysis in which the relationship between the depth direction and the amount of elements can be examined, and quantification is possible by preparing a calibration curve for each element.
  • the hydrogen amount calibration curve can be created by using ERDA analysis (elastic recoil particle detection method) capable of measuring the absolute amount of hydrogen. Since the output value of the hydrogen amount in the GDS analysis differs depending on the material of the test piece, it is necessary to prepare a hydrogen amount calibration curve for each of DLC and WC constituting the mixed layer (WC / DLC).
  • test pieces having different hydrogen contents were adjusted by adjusting the amount of hydrocarbon-based gas introduced under conditions matching the film formation conditions of the mixed layer (WC / DLC). It is manufactured and subjected to ERDA analysis and GDS analysis, and the relationship (calibration curve) between the hydrogen amount output value in GDS analysis and the hydrogen amount (atomic%) measured by ERDA analysis is examined. Since the hydrogen content determined by the DLC hydrogen calibration curve is different from the hydrogen content determined by the WC hydrogen calibration curve, the hydrogen content determined by both calibration curves can be averaged to obtain an arbitrary value. The hydrogen content (atomic%) corresponding to the hydrogen amount output value can be calculated.
  • the surface layer 18c is a film mainly composed of DLC.
  • the surface layer 18c preferably has a relaxation layer portion 18d on the side adjacent to the mixed layer 18b. This is because when the film forming condition parameters (hydrocarbon-based gas introduction amount, degree of vacuum, bias voltage) are different between the mixed layer 18b and the surface layer 18c, at least one of the parameters is set in order to avoid a sudden change in these parameters. This is a relaxation layer portion obtained by changing one of the layers continuously or stepwise. More specifically, the film forming condition parameters at the time of forming the outermost layer of the mixed layer 18b are set as starting points, and the final film forming condition parameters of the surface layer 18c are set as end points, and each parameter is continuously or stepwise within this range. Change.
  • the composition ratio of the graphite structure (sp 2 ) and the diamond structure (sp 3 ) in the DLC structure is biased toward the latter, and the hardness is inclined (increased).
  • the thickness of the hard film 18 (the total of the three layers) is preferably 0.5 to 3.0 ⁇ m. If the film thickness is less than 0.5 ⁇ m, the abrasion resistance and the mechanical strength may be inferior. If it exceeds 3.0 ⁇ m, the film tends to peel off. Further, the ratio of the thickness of the surface layer 18c to the thickness of the hard film 18 is preferably 0.8 or less. If this ratio exceeds 0.8, the gradient structure for physically coupling WC and DLC in the mixed layer 18b tends to be a discontinuous structure, and the adhesion may be deteriorated.
  • the hard film 18 has excellent peel resistance.
  • the double-row spherical roller bearing of the present invention by forming a hard film having the above-mentioned structure and physical properties, even when a load such as rolling and sliding contact is applied during use of the bearing, wear and peeling of the film can be prevented. It can be prevented and damage to the raceway surface etc. is small even in severe lubrication, and the life is extended.
  • a rolling bearing in which grease is sealed when a new metal surface is exposed due to damage to a raceway or the like, grease deterioration is promoted by a catalytic action.However, in the double-row self-aligning roller bearing of the present invention, a hard film is formed by metal contact. Since the raceway surface and the rolling surface can be prevented from being damaged, this grease deterioration can also be prevented.
  • the hard film is obtained by forming an underlayer 18a, a mixed layer 18b, and a surface layer 18c in this order on the film forming surface of the bearing member.
  • the surface layer 18c is preferably formed using a UBMS device using Ar gas as a sputtering gas.
  • Ar gas as a sputtering gas.
  • the principle of film formation in the UBMS method using a UBMS device will be described with reference to the schematic diagram shown in FIG.
  • the substrate 22 is an inner ring, an outer ring, or a roller, which is a bearing member to be formed into a film, and is schematically shown as a flat plate. As shown in FIG.
  • an inner magnet 24 a and an outer magnet 24 b having different magnetic properties at the center and the periphery of the round target 25 are arranged, and while forming a high-density plasma 29 near the target 25, the magnets 24 a, A part 26a of the magnetic force line 26 generated by the magnetic field 24b reaches the vicinity of the substrate 22 connected to the bias power supply 21. The effect that the Ar plasma generated at the time of sputtering along the line of magnetic force 26a is diffused to the vicinity of the substrate 22 is obtained.
  • Ar ions 27 and electrons travel along a magnetic field line 26a reaching the vicinity of the substrate 22 by an ion assist effect that causes the ionized target 28 to reach the substrate 22 more than in normal sputtering. And a dense film (layer) 23 can be formed.
  • the surface layer 18c uses a graphite target and a hydrocarbon-based gas in combination as a carbon supply source, and the ratio of the introduction amount of the hydrocarbon-based gas to the introduction amount 100 of the Ar gas into the apparatus.
  • Is preferably set to 1 to 10, and carbon atoms generated from a carbon source are deposited on the mixed layer 18b to form a film.
  • the degree of vacuum in the apparatus is 0.2 to 0.8 Pa. The preferred conditions will be described below.
  • the hardness and elastic modulus of the DLC film can be adjusted by using a graphite target and a hydrocarbon-based gas together as a carbon supply source.
  • a hydrocarbon-based gas methane gas, acetylene gas, benzene, and the like can be used, and are not particularly limited.
  • methane gas is preferable from the viewpoint of cost and handleability.
  • the degree of vacuum in the UBMS apparatus is preferably 0.2 to 0.8 Pa as described above. More preferably, it is 0.25 to 0.8 Pa. If the degree of vacuum is less than 0.2 Pa, the amount of Ar gas in the chamber is small, so that Ar plasma is not generated and film formation may not be performed. On the other hand, if the degree of vacuum is higher than 0.8 Pa, the reverse sputtering phenomenon is likely to occur, and the abrasion resistance may be deteriorated.
  • the bias voltage applied to the bearing member serving as the base material is preferably 50 to 150 V.
  • the bias potential with respect to the base material is applied so as to be negative with respect to the ground potential.
  • a bias voltage of 100 V means that the bias potential of the base material is -100 V with respect to the ground potential. Show.
  • the formation of the underlayer 18a and the mixed layer 18b is also preferably performed using a UBMS device using Ar gas as the above-mentioned sputtering gas.
  • the underlayer 18a is a layer mainly composed of Cr and WC
  • a Cr target and a WC target are used together as the target 25.
  • the mixed layer 18b (1) a WC target and (2) a graphite target and, if necessary, a hydrocarbon-based gas are used.
  • the underlayer 18a has a gradient composition of Cr and WC as described above, the composition is continuously or stepwise increased while increasing the sputtering power applied to the WC target and decreasing the power applied to the Cr target. Film.
  • a layer having a structure in which the Cr content is low and the WC content is high toward the mixed layer 18b side can be obtained.
  • the mixed layer 18b is formed continuously or stepwise while increasing the sputtering power applied to the graphite target serving as the carbon supply source and lowering the power applied to the WC target.
  • a layer having a gradient composition in which the content of WC is small and the content of DLC is high toward the surface layer 18c side can be obtained.
  • the introduction of the hydrocarbon-based gas is performed by using a graphite target alone or a combined use of the graphite target and the hydrocarbon-based gas. Decrease the volume percentage.
  • the ratio of the introduction amount of the hydrocarbon-based gas is set to 100 (by volume) the introduction amount of Ar gas into the UBMS apparatus (inside of the film forming chamber). To 2.5 (volume parts). It is preferably from 0.5 to 2 (volume parts), more preferably from 1 to 1.6 (volume parts).
  • the degree of vacuum in the UBMS device (in the film forming chamber) when forming the mixed layer 18b is preferably 0.2 to 1.2 Pa.
  • the bias voltage applied to the bearing member serving as the base material is preferably 20 to 100 V. By setting such a range, the peeling resistance can be improved.
  • a hard film formed on the rolling bearing of the present invention a hard film was formed on a predetermined base material, and the physical properties of the hard film were evaluated.
  • the peeling resistance was evaluated by a rolling sliding test using a two-cylinder testing machine.
  • test piece used for the evaluation of the hard film are as follows.
  • Physical properties of test piece SUJ2 Quenched and tempered product Hardness 780 Hv
  • Specimen A DLC film was formed on the sliding surface of a mirror-polished (0.02 ⁇ m Ra) SUJ2 ring ( ⁇ 40 ⁇ L12 with no sub-curvature) under each condition. Finish (0.7 ⁇ mRa) SUJ2 ring ( ⁇ 40 ⁇ L12 sub curvature 60)
  • UBMS device manufactured by Kobe Steel; UBMS202 (5) Sputtering gas: Ar gas
  • the conditions for forming the underlayer will be described below.
  • the inside of the film forming chamber is evacuated to about 5 ⁇ 10 ⁇ 3 Pa, a test piece serving as a base material is baked with a heater, the base material surface is etched with Ar plasma, and a Cr target and a WC target are formed by a UBMS method.
  • a Cr target and a WC target are formed by a UBMS method.
  • the conditions for forming the mixed layer will be described below.
  • the film was formed by the UBMS method in the same manner as the underlayer.
  • methane gas which is a hydrocarbon-based gas
  • the sputtering power applied to the WC target and the graphite target was adjusted, the composition ratio of WC and DLC was inclined, and WC And a WC / DLC gradient layer having a large amount of DLC on the surface layer side was formed.
  • Table 1 shows specific film forming conditions for the mixed layer. Note that the hydrogen content (atomic%) in the mixed layer was determined by GDS analysis (glow discharge emission spectroscopy) in the manner described above. The results are also shown in Table 1.
  • Fig. 6 is a schematic diagram of a UBMS device.
  • a non-equilibrium magnetic field is applied to a sputter evaporation source material (target) 32 on a substrate 31 placed on a disk 30 to increase the plasma density near the substrate 31 to increase the ion assist effect.
  • This is an apparatus having a UBMS function that can control the characteristics of a film deposited on a base material by performing (see FIG. 5).
  • a composite coating in which a plurality of UBMS coatings (including composition gradients) are arbitrarily combined can be formed on a substrate.
  • a base layer, a mixed layer, and a surface layer are formed as UBMS films on a ring serving as a base material.
  • Examples 1 to 3 Comparative Examples 1 to 5
  • the substrates shown in Table 1 were ultrasonically cleaned with acetone, and then dried. After drying, this was attached to a UBMS device, and an underlayer and a mixed layer were formed under the above-mentioned forming conditions.
  • a DLC film as a surface layer was formed thereon under the film forming conditions shown in Table 1 to obtain a test piece having a hard film.
  • "vacuum degree" in Table 1 is the degree of vacuum in the film forming chamber in the above-described apparatus.
  • the obtained test piece was subjected to a rolling and sliding test using a two-cylinder testing machine shown below. The results are also shown in Table 1.
  • the two-cylinder testing machine includes a driving-side test piece 33 and a driven-side test piece 34 that comes into rolling and sliding contact.
  • Each test piece (ring) is supported by a support bearing 36, and a load is applied by a load spring 37. Loaded.
  • reference numeral 35 denotes a driving pulley
  • reference numeral 38 denotes a non-contact tachometer.
  • the substrate used and the film forming conditions of the surface layer are the same, and the hardness of the surface layer is about 29 GPa on average.
  • Table 1 when the hydrogen content at the time of forming the mixed layer was changed, when the hydrogen content was high, the peeling life in the two cylinder rolling sliding test tended to be short, and the hydrogen content was 10. At 8 atomic%, the life was dramatically shortened. It is considered that the presence of relatively soft DLC having a high hydrogen content in the mixed layer adversely affects the peel resistance of the hard film.
  • the double row spherical roller bearing of the present invention has, for example, a structure in which a DLC film is formed on the inner and outer raceway surfaces and the rolling surfaces of the rollers, and the DLC film has improved peeling resistance even when operated under severe lubrication. Since it is excellent and can exhibit the characteristics of the DLC body, it has excellent seizure resistance, abrasion resistance, and corrosion resistance.
  • the double-row spherical roller bearing of the present invention is suitably used as a bearing for supporting a main shaft of a wind power generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

潤滑状態が悪く滑りを伴う条件下で他部材と接触する場合でも潤滑面での摩擦摩耗を防止し、長期耐久性に優れる複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置を提供する。複列自動調心ころ軸受5は、硬質膜18が、内輪11、外輪12、およびころ13a、13bから選ばれる少なくとも一つの軸受部材の摺接面の上に直接成膜された下地層と、該下地層の上に成膜されたWCとDLCとを主体とする混合層と、該混合層の上に成膜されたDLCを主体とする表面層とからなる構造の膜であり、該硬質膜18が他の軸受部材と境界潤滑で滑り接触する条件で使用され、混合層における水素含有量が10原子%未満である。

Description

複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置
 本発明は、高荷重が負荷される用途、例えば風力発電機の主軸を支持する軸受等に適用される複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置に関し、特に、ダイヤモンドライクカーボンを含む硬質膜を表面に形成した複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置に関する。
 硬質カーボン膜は、一般にダイヤモンドライクカーボン(以下、DLCと記す。また、DLCを主体とする膜/層をDLC膜/層ともいう。)と呼ばれている硬質膜である。硬質カーボンはその他にも、硬質非晶質炭素、無定形炭素、硬質無定形型炭素、i-カーボン、ダイヤモンド状炭素など、様々な呼称があるが、これらの用語は明確に区別されていない。
 このような用語が用いられるDLCの本質は、構造的にはダイヤモンドとグラファイトが混ざり合った両者の中間構造を有するものである。ダイヤモンドと同等に硬度が高く、耐摩耗性、固体潤滑性、熱伝導性、化学安定性、耐腐食性などに優れる。このため、例えば、金型・工具類、耐摩耗性機械部品、研磨材、摺動部材、磁気・光学部品などの保護膜として利用されつつある。こうしたDLC膜を形成する方法として、スパッタリング法やイオンプレーティング法などの物理的蒸着(以下、PVDと記す)法、化学的蒸着(以下、CVDと記す)法、アンバランスド・マグネトロン・スパッタリング(以下、UBMSと記す)法などが採用されている。
 ここで、大型の風力発電機における主軸用軸受には、図8に示すような大型の複列自動調心ころ軸受54が用いられることが多い。主軸53は、ブレード52が取付けられた軸であり、風力を受けることによって回転し、その回転を増速機(図示せず)で増速して発電機を回転させ、発電する。風を受けて発電している際に、ブレード52を支える主軸53は、ブレード52にかかる風力による軸方向荷重(軸受スラスト荷重)と、径方向荷重(軸受ラジアル荷重)が負荷される。複列自動調心ころ軸受54は、ラジアル荷重とスラスト荷重を同時に負荷することができ、かつ調心性を持つため、軸受ハウジング51の精度誤差や、取付誤差による主軸53の傾きを吸収でき、かつ運転中の主軸53の撓みを吸収できる。そのため、風力発電用機主軸用軸受に適した軸受であり、利用されている(例えば、非特許文献1)。 
 一方、転がり軸受の軌道輪の軌道面、転動体の転動面、保持器摺接面などに対し、DLC膜を形成する試みがなされている。DLC膜は、膜形成時に極めて大きな内部応力が発生し、また高い硬度およびヤング率を持つ反面、変形能が極めて小さいことから、基材との密着性が弱く、剥離しやすいなどの欠点を持っている。このため、転がり軸受における上記各面にDLC膜を成膜する場合には、密着性を改善する必要性がある。
 例えば、中間層を設けてDLC膜の密着性改善を図ったものとして、鉄鋼材料で形成された軌道溝や転動体の転動面に、クロム(以下、Crと記す)、タングステン(以下、Wと記す)、チタン(以下、Tiと記す)、珪素(以下、Siと記す)、ニッケル、および鉄の少なくともいずれかの元素を含む組成の下地層と、この下地層の構成元素と炭素とを含有し、炭素の含有率が下地層の反対側で下地層側より大きい中間層と、アルゴンと炭素とからなりアルゴンの含有率が0.02質量%以上5質量%以下であるDLC層とが、この順に形成されてなる転動装置が提案されている(特許文献1参照)。
 また、アンカー効果によりDLC膜の密着性改善を図ったものとして、軌道面にイオン衝撃処理により10~100nmの高さで平均幅300nm以下の凹凸を形成し、この軌道面上にDLC膜を形成した転がり軸受が提案されている(特許文献2参照)。
特許第4178826号公報 特許第3961739号公報
NTN社カタログ「新世代風車用軸受」A65.CAT.No.8404/04/JE、2003年5月1日発行
 ところで、図8に示すように、風力発電用の主軸を支持する複列自動調心ころ軸受においては、ラジアル荷重に比べてスラスト荷重が大きく、複列のころ57、58のうち、スラスト荷重を受ける列のころ58が、もっぱらラジアル荷重とスラスト荷重を同時に負荷することになる。そのため、転がり疲労寿命が短くなる。また、スラスト荷重が負荷されることから、鍔で滑り運動が起こり摩耗を生じると言う問題があった。加えて、反対側の列では軽負荷となり、ころ57が内外輪55、56の軌道面55a、56aで滑りを生じ、表面損傷や摩耗を生じるという問題がある。そのため、軸受サイズが大きなものを用いることで対処されるが、軽負荷側では余裕が大きくなり過ぎて、不経済である。また、無人で運転されたり、ブレード52が大型となるために高所に設置される風力発電機主軸用軸受では、メンテナンスフリー化が望まれる。
 また、転がり滑り運動において発生する高い接触面圧下ではフレーキングの防止は容易でなく、特に滑り摩擦により強いせん断力が発生し得るような潤滑・運転条件においてはより困難となる。複列自動調心ころ軸受、特に風力発電用の主軸を支持する複列自動調心ころ軸受においてDLC膜の適用が検討される摺動面は、潤滑状態が悪く、滑りを伴うといった状況であることが多く、一般的な転がり軸受における運転状況より厳しい場合が多い。
 上記した各特許文献の技術は、硬質膜の剥離防止などを図ったものであるが、風力発電用主軸支持装置について、使用条件に応じた要求特性を満足させるべく、DLC膜を適用する際の膜構造や成膜条件には更なる改善の余地がある。
 本発明はこのような事情に鑑みてなされたものであり、潤滑状態が悪く滑りを伴う条件下で他部材と接触する場合でも潤滑面での摩擦摩耗を防止し、長期耐久性に優れる複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置を提供することを目的とする。
 本発明の複列自動調心ころ軸受は、内輪と外輪との間に、軸方向に並んで2列にころを介在させ、上記外輪の軌道面を球面状とし、上記ころの外周面を上記外輪の軌道面に沿う形状とした複列自動調心ころ軸受であって、上記内輪、上記外輪、および上記ころが鉄系材料からなり、硬質膜は、上記内輪、上記外輪、および上記ころから選ばれる少なくとも一つの軸受部材の摺接面の上に直接成膜された下地層と、該下地層の上に成膜されたタングステンカーバイト(以下、WCと記す)とDLCとを主体とする混合層と、該混合層の上に成膜されたDLCを主体とする表面層とからなる構造の膜であり、上記複列自動調心ころ軸受は、上記硬質膜が他の軸受部材と境界潤滑で滑り接触する条件で使用される軸受であり、上記混合層は、上記下地層側から上記表面層側へ向けて連続的または段階的に、該混合層中の上記WCの含有率が小さくなり、該混合層中の上記DLCの含有率が高くなる層であり、上記混合層における水素含有量が10原子%未満であることを特徴とする。
 上記表面層は、上記混合層との隣接側に、上記混合層側から硬度が連続的または段階的に高くなる傾斜層部分を有することを特徴とする。
 上記鉄系材料が、高炭素クロム軸受鋼、炭素鋼、工具鋼、または、マルテンサイト系ステンレス鋼であり、上記下地層が、CrとWCとを主体とする層であることを特徴とする。
 本発明の複列自動調心ころ軸受が、風力発電機のブレードが取付けられた主軸を支持する軸受であることを特徴とする。
 上記内輪は、該内輪の外周面において上記2列のころ間に設けられ、各列のころの軸方向内側の端面と滑り接触する中鍔と、上記内輪の外周面の両端にそれぞれ設けられ、各列のころの軸方向外側の端面と滑り接触する小鍔とを備え、上記各列のころのうち、少なくとも一方の列のころの外周面に上記硬質膜が形成されていることを特徴とする。
 本発明の風力発電用主軸支持装置は、ブレードが取付けられた主軸を、ハウジングに設置された1個または複数の軸受によって支持する風力発電用主軸支持装置であって、上記軸受のうち少なくとも一個が本発明の複列自動調心ころ軸受であり、該複列自動調心ころ軸受において、上記ブレードから遠い方の列の軸受部分を、近い方の軸受部分よりも負荷容量が大きいものとしたことを特徴とする。
 本発明の複列自動調心ころ軸受は、内輪、外輪、およびころから選ばれる少なくとも一つの軸受部材の摺接面に、DLCを含む所定の膜構造を有する硬質膜が成膜されてなる。中間層がWCとDLCの混合層(WC/DLC)であり、傾斜組成とされているので、成膜後の残留応力の集中が発生し難い。これに加えて、この混合層における水素含有量が10原子%未満であるので、潤滑状態が悪く滑りを伴う条件下で他部材と接触する場合でも硬質膜の耐剥離性に優れる。
 上記構造により、該硬質膜は、例えば、内・外輪軌道面やころの転動面に形成されながら耐剥離性に優れ、DLC本来の特性を発揮できる。この結果、本発明の複列自動調心ころ軸受は、耐焼き付き性、耐摩耗性、および耐腐食性に優れ、苛酷な潤滑状態でも軌道面などの損傷が少なく長寿命となる。
 風力発電用の主軸を支持する軸受は、潤滑状態が悪く滑りを伴う条件下で使用される。本発明の複列自動調心ころ軸受は、風力発電機のブレードが取付けられた主軸を支持する軸受であるので、上記条件であっても硬質膜の耐剥離性に優れ、軸受の長寿命となり、メンテナンスフリー化にも寄与する。また、内輪は、該内輪の外周面に中鍔と各小鍔とを備え、各小鍔のうち一方の小鍔に硬質膜が形成されているので、2列のころのうち一方の列のころに、より大きなスラスト荷重がかかる風力発電機主軸用軸受の特有の使用状態に適している。
本発明の風力発電用主軸支持装置を含む風力発電機全体の模式図である。 本発明の風力発電用主軸支持装置を示す図である。 本発明の複列自動調心ころ軸受の模式断面図である。 硬質膜の構造を示す模式断面図である。 UBMS法の成膜原理を示す模式図である。 UBMS装置の模式図である。 2円筒試験機の模式図である。 従来の風力発電機における主軸支持用の軸受を示す図である。
 DLC膜などの硬質膜は膜内に残留応力があり、残留応力は膜構造や成膜条件の影響を受け大きく異なり、その結果、耐剥離性にも大きな影響を及ぼす。また、耐剥離性は硬質膜が使用される条件によっても変化する。本発明者らは、2円筒試験などにより、潤滑状態が悪い場合(境界潤滑条件)において転がり滑り接触するような条件下での検証を重ねた結果、該条件下で使用される複列自動調心ころ軸受の軸受部材の表面に形成する硬質膜について、その膜構造を限定するとともに、特に水素含有量を所定範囲内とすることで、該条件での耐剥離性の向上が図れることを見出した。本発明はこのような知見に基づきなされたものである。
 本発明の風力発電用主軸支持装置を図1および図2に基づいて説明する。図1は風力発電用主軸支持装置を含む風力発電機全体の模式図であり、図2は図1の風力発電用主軸支持装置を示す図である。図1に示すように、風力発電機1は、風車となるブレード2が取付けられた主軸3を、ナセル4内に設置された複列自動調心ころ軸受5(以下、単に軸受5とも言う。)により回転自在に支持し、さらにナセル4内に増速機6および発電機7を設置したものである。増速機6は、主軸3の回転を増速して発電機7の入力軸に伝達するものである。ナセル4は、支持台8上に旋回座軸受17を介して旋回自在に設置され、旋回用のモータ9(図2参照)の駆動により、減速機10(図2参照)を介して旋回させられる。ナセル4の旋回は、風向きにブレード2の方向を対向させるために行われる。主軸支持用の軸受5は、図2の例では2個設けられているが、1個であってもよい。
 図3は、風力発電機の主軸を支持する複列自動調心ころ軸受5を示す。この軸受5は、一対の軌道輪となる内輪11および外輪12と、これら内外輪11 、12間に介在した複数のころ13とを有する。複数のころは、軸受の軸方向に2列に並んで介在し、図3では、ブレードに近い方の列(左列)のころが13a、ブレードから遠い方の列(右列)のころが13bとなっている。軸受5は、スラスト負荷が可能なラジアル軸受である。軸受5の外輪12は軌道面12aが球面状とされ、各ころは外周面が外輪軌道面12aに沿う球面形状のころとされている。内輪11は、左右各列のころ13a、13bの外周面に沿う断面形状の複列の軌道面11aが形成されている。内輪11の外周面の両端には、小鍔11b、11cがそれぞれ設けられている。内輪11の外周面の中央部、すなわち左列のころ13aと右列のころ13b間には、中鍔11dが設けられている。ころ13a、13bは、各列毎に保持器14で保持されている。
 上記構成において、各ころ13a、13bの外周面は、内輪軌道面11aと外輪軌道面12aとの間で転がり接触する。また、ころ13aの軸方向内側の端面は、中鍔11dの軸方向一方の端面との間で滑り接触し、ころ13aの軸方向外側の端面は、小鍔11bの内側端面との間で滑り接触する。また、ころ13bの軸方向内側の端面は、中鍔11dの軸方向他方の端面との間で滑り接触し、ころ13bの軸方向外側の端面は、小鍔11cの内側端面との間で滑り接触する。これらの摩擦を低減するためにグリースが封入されている。グリースとしては、転がり軸受用の公知のグリースを使用できる。
 図3において、外輪12は軸受ハウジング15の内径面に嵌合して設置され、内輪11は主軸3の外周に嵌合して主軸3を支持している。軸受ハウジング15は、軸受5の両端を覆う側壁部15aを有し、各側壁部15aと主軸3との間にラビリンスシール等のシール16が構成されている。軸受ハウジング15で密封性が得られるため、軸受5にはシール無しのものが用いられている。軸受5は、本発明の実施形態にかかる風力発電機主軸用軸受となるものである。
 本発明の複列自動調心ころ軸受は、ころと他部材間で(特に、境界潤滑条件下で)転がり滑り接触する表面に所定構造の硬質膜が形成されていることを特徴とする。そのため、潤滑状態が悪く滑りを伴う条件下で他部材と接触する場合でも該硬質膜の耐剥離性に優れる。その結果、硬質膜本来の特性を発揮でき、耐焼き付き性、耐摩耗性、耐腐食性にも優れ、複列自動調心ころ軸受の金属接触に起因する損傷などを防止できる。
 硬質膜の形成箇所について以下に説明する。図3の形態の軸受5では、軸受部材である内輪11の外周面に硬質膜18が形成されている。内輪11の外周面は、軌道面11a、中鍔11dの軸方向両端面、小鍔11bの内側端面、小鍔11cの内側端面を含む。図3の形態では、内輪11の外周面全体に硬質膜18が形成されており、ころ13a、13bと転がり滑り接触しない面にも硬質膜18が形成されている。硬質膜18を形成する内輪11の箇所は、境界潤滑条件下でころと滑り接触する表面に形成されいれば、図3の形態に限らない。例えば、各ころ13a、13bと滑り接触する、中鍔11dの軸方向両端面や、小鍔11bの内側端面、小鍔11cの内側端面のうち、少なくともいずれかの端面に硬質膜を形成してもよい。
 また、上述したように、風力発電機主軸用軸受として自動調心ころ軸受では、ブレードから遠い方の列のころ(ころ13b)の方がブレードに近い方の列のころ(ころ13a)に比べて、大きなスラスト荷重を受ける。この場合、ころ13bと滑り接触する箇所では、特に境界潤滑となりやすい。そのため、軸方向に並ぶ2列のころに互いに大きさが異なる荷重が作用することを考慮して、小鍔11b、11cのうち小鍔11cの内側端面にのみ硬質膜を形成してもよい。
 本発明の複列自動調心ころ軸受では、他の軸受部材と境界潤滑(低ラムダ条件)で滑り接触(特に、転がり滑り接触)する条件となる表面に硬質膜を形成している。ころは 内外輪との間で転がりつつ滑りも生じている。図3に示す硬質膜は、このような条件下で使用されるものである。また、該硬質膜の形成箇所は、図3に示す箇所に限定されず、上記条件となるような、内輪、外輪、およびころから選ばれる少なくとも一つの軸受部材の任意の表面に形成することができる。
 図3の形態では、内輪11の外周面に硬質膜18を形成したが、これに代えてまたは加えて、外輪12や、各ころ13a、13bの表面に硬質膜18を形成してもよい。外輪12に硬質膜を形成する構成では、外輪12の内周面(外輪軌道面12aを含む)に硬質膜を形成するとよい。また、各ころ13a、13bの表面に硬質膜を形成する構成では、各ころ13a、13bの両端面に硬質膜を形成するとよい。また、ころにかかる荷重の違いを考慮して、ころ13bの両端面にのみ硬質膜を形成する構成としてもよい。また、各ころ13a、13bの外周面に硬質膜を形成する構成としてもよい。例えば、各列のころのうち、少なくとも一方の列のころの外周面に硬質膜を形成する構成としてもよい。
 複列自動調心ころ軸受において、硬質膜の成膜対象となる軸受部材である内輪、外輪、ころは、鉄系材料からなる。鉄系材料としては、軸受部材として一般的に用いられる任意の鋼材などを使用でき、例えば、高炭素クロム軸受鋼、炭素鋼、工具鋼、マルテンサイト系ステンレス鋼などが挙げられる。
 これらの軸受部材において、硬質膜が形成される面の硬さが、ビッカーズ硬さでHv650以上であることが好ましい。Hv650以上とすることで、硬質膜(下地層)との硬度差を少なくし、密着性を向上させることができる。
 硬質膜が形成される面において、硬質膜形成前に、窒化処理により窒化層が形成されていることが好ましい。窒化処理としては、基材表面に密着性を妨げる酸化層が生じ難いプラズマ窒化処理を施すことが好ましい。また、窒化処理後の表面の硬さがビッカーズ硬さでHv1000以上であることが、硬質膜(下地層)との密着性をさらに向上させるために好ましい。
 硬質膜が形成される面の表面粗さRaは、0.05μm以下であることが好ましい。表面粗さRaが0.05μmをこえると、粗さの突起先端に硬質膜が形成され難くなり、局所的に膜厚が小さくなる。
 硬質膜の構造を図4に基づいて説明する。図4は、硬質膜18の構造を示す模式断面図である。図4に示すように、硬質膜18は、(1)内輪11の内輪軌道面11a上に直接成膜される下地層18aと、(2)下地層18aの上に成膜されるWCとDLCとを主体とする混合層18bと、(3)混合層18bの上に成膜されるDLCを主体とする表面層18cとからなる3層構造を有する。本発明では、硬質膜の膜構造を上記のような3層構造とすることで、急激な物性(硬度・弾性率等)変化を避けるようにしている。
 下地層18aは、基材となる各軸受部材の表面に直接成膜される下地層である。材質や構造は、基材との密着性を確保できるものであれば特に限定されず、例えば材質としてCr、W、Ti、Siなどが使用できる。これらの中でも、基材となる軸受部材(例えば高炭素クロム軸受鋼)との密着性に優れることから、Crを含むことが好ましい。 
 また、下地層18aは、混合層18bとの密着性も考慮して、CrとWCとを主体とする層であることが好ましい。WCは、CrとDLCとの中間的な硬さや弾性率を有し、成膜後の残留応力の集中が発生し難い。特に、内輪11側から混合層18b側に向けてCrの含有率が小さく、かつ、WCの含有率が高くなる傾斜組成とすることが好ましい。これにより、内輪11と混合層18bとの両面での密着性に優れる。
 混合層18bは、下地層と表面層との間に介在する中間層となる。混合層18bに用いるWCは、上述のように、CrとDLCとの中間的な硬さや弾性率を有し、成膜後の残留応力の集中も発生し難い。混合層18bが、下地層18a側から表面層18c側に向けてWCの含有率が小さく、かつ、DLCの含有率が高くなる傾斜組成であるので、下地層18aと表面層18cとの両面での密着性に優れる。また、該混合層内において、WCとDLCとが物理的に結合する構造となっており、該混合層内での破損などを防止できる。さらに、表面層18c側ではDLC含有率が高められているので、表面層18cと混合層18bとの密着性に優れる。
 混合層18bは、非粘着性の高いDLCをWCによって下地層18a側にアンカー効果で結合させる層である。後述の実施例に示すように、潤滑状態が悪く滑りを伴う条件下で他部材と接触する場合において耐剥離性を向上させるには、混合層中の水素含有量をある程度少なくすることが重要となる。
 混合層における水素含有量は、10原子%未満とする。この範囲とすることで、境界潤滑で転がり滑り接触する条件下でも硬質膜の剥離を防止できる。混合層の水素含有量が10原子%をこえる場合、中間層となる混合層中に比較的軟質なDLCが存在することとなり、上記のような条件下では剥離しやすくなるおそれがある。また、転がり接触時の疲労特性を向上させるため、DLC用の炭素供給源として炭化水素系ガスは併用して水素を僅かに含有させつつ上記範囲内とすることが好ましい。
 ここで、本発明における「混合層における水素含有量(原子%)」は、公知の分析法により算出できる。例えば、GDS分析(グロー放電発光分光分析)で求めることができる。GDS分析は深さ方向と元素量の関係を調べることができる分析であり、各元素の検量線を用意すれば定量が可能である。水素量検量線は、水素の絶対量測定が可能なERDA分析(弾性反跳粒子検出法)を用いて作成できる。GDS分析における水素量出力値は、試験片材質の違いによって異なるため、混合層(WC/DLC)を構成しているDLCとWCそれぞれについて水素量検量線を作成する必要がある。DLC単層膜試験片およびWC単層膜試験片について、混合層(WC/DLC)の成膜条件に合わせた条件で炭化水素系ガス導入量を調整することで水素含有量の異なる試験片を作製し、ERDA分析とGDS分析を行ない、GDS分析における水素量出力値とERDA分析で測定した水素量(原子%)の関係(検量線)を調べる。上記DLC水素量検量線で求めた水素含有量と、上記WC水素量検量線で求めた水素含有量とは異なるため、これら両方の検量線で求めた水素含有量の平均をとることで、任意の水素量出力値に対応する水素含有量(原子%)が算出できる。
 表面層18cは、DLCを主体とする膜である。表面層18cにおいて、混合層18bとの隣接側に、緩和層部分18dを有することが好ましい。これは、混合層18bと表面層18cとで成膜条件パラメータ(炭化水素系ガス導入量、真空度、バイアス電圧)が異なる場合、これらパラメータの急激な変化を避けるために、該パラメータの少なくとも1つを連続的または段階的に変化させることで得られる緩和層部分である。より詳細には、混合層18bの最表層形成時の成膜条件パラメータを始点とし、表面層18cの最終的な成膜条件パラメータを終点として、各パラメータをこの範囲内で連続的または段階的に変化させる。これにより、混合層18bと表面層18cとの急激な物性(硬度・弾性率等)の差がなくなり、混合層18bと表面層18cとの密着性がさらに優れる。なお、バイアス電圧を連続的または段階的に上昇させることで、DLC構造におけるグラファイト構造(sp)とダイヤモンド構造(sp)との構成比率が後者に偏っていき、硬度が傾斜(上昇)する。
 硬質膜18の膜厚(3層の合計)は0.5~3.0μmとすることが好ましい。膜厚が0.5μm未満であれば、耐摩耗性および機械的強度に劣る場合があり、3.0μmをこえると剥離し易くなる。さらに、該硬質膜18の膜厚に占める表面層18cの厚さの割合が0.8以下であることが好ましい。この割合が0.8をこえると、混合層18bにおけるWCとDLCの物理結合するための傾斜組織が不連続な組織となりやすく、密着性が劣化するおそれがある。
 硬質膜18を以上のような組成の下地層18a、混合層18b、表面層18cからなる3層構造とすることで、耐剥離性に優れる。
 本発明の複列自動調心ころ軸受において、以上のような構造・物性の硬質膜を形成することで、軸受使用時に転がり滑り接触などの負荷を受けた場合でも、該膜の摩耗や剥離を防止でき、苛酷な潤滑状態でも軌道面などの損傷が少なく長寿命となる。また、グリースを封入した転がり軸受において、軌道輪などの損傷により金属新生面が露出すると、触媒作用によりグリース劣化を促進させるが、本発明の複列自動調心ころ軸受では、硬質膜により金属接触による軌道面や転動面の損傷を防止できるので、このグリース劣化も防止できる。
 以下、本発明の硬質膜を形成する方法について説明する。上記硬質膜は、軸受部材の成膜面に対して、下地層18a、混合層18b、表面層18cをこの順に成膜して得られる。
 表面層18cの形成は、スパッタリングガスとしてArガスを用いたUBMS装置を使用してなされることが好ましい。UBMS装置を用いたUBMS法の成膜原理を図5に示す模式図を用いて説明する。図中において、基材22は、成膜対象の軸受部材である内輪、外輪、またはころであるが、模式的に平板で示してある。図5に示すように、丸形ターゲット25の中心部と周辺部で異なる磁気特性を有する内側磁石24a、外側磁石24bが配置され、ターゲット25付近で高密度プラズマ29を形成しつつ、磁石24a、24bにより発生する磁力線26の一部26aがバイアス電源21に接続された基材22近傍まで達するようにしたものである。この磁力線26aに沿ってスパッタリング時に発生したArプラズマが基材22付近まで拡散する効果が得られる。このようなUBMS法では、基材22付近まで達する磁力線26aに沿って、Arイオン27および電子が、通常のスパッタリングに比べてイオン化されたターゲット28をより多く基材22に到達させるイオンアシスト効果によって、緻密な膜(層)23を成膜できる。
 表面層18cは、この装置を利用して、炭素供給源として黒鉛ターゲットと炭化水素系ガスとを併用し、Arガスの上記装置内への導入量100に対する上記炭化水素系ガスの導入量の割合を1~10とし、炭素供給源から生じる炭素原子を混合層18b上に堆積させて成膜されたものとすることが好ましい。また、併せて、装置内の真空度を0.2~0.8Paとすることが好ましい。この好適条件について以下に説明する。
 炭素供給源として黒鉛ターゲットと炭化水素系ガスとを併用することで、DLC膜の硬度および弾性率を調整できる。炭化水素系ガスとしては、メタンガス、アセチレンガス、ベンゼンなどが使用でき、特に限定されないが、コストおよび取り扱い性の点からメタンガスが好ましい。炭化水素系ガスの導入量の割合を、ArガスのUBMS装置内(成膜チャンバー内)への導入量100(体積部)に対して1~10(体積部)とすることで、表面層18cの耐摩耗性などを悪化させずに、混合層18bとの密着性の向上が図れる。
 UBMS装置内(成膜チャンバー内)の真空度は上記のとおり0.2~0.8Paであることが好ましい。より好ましくは、0.25~0.8Paである。真空度が0.2Pa未満であると、チャンバー内のArガス量が少ないため、Arプラズマが発生せず、成膜できない場合がある。また、真空度が0.8Paより高いと、逆スパッタ現象が起こり易くなり、耐摩耗性が悪化するおそれがある。
 基材となる軸受部材に印加するバイアス電圧は50~150Vであることが好ましい。なお、基材に対するバイアスの電位は、アース電位に対してマイナスとなるように印加しており、例えば、バイアス電圧100Vとは、アース電位に対して基材のバイアス電位が-100Vであることを示す。
 下地層18aおよび混合層18bの形成も、上記のスパッタリングガスとしてArガスを用いたUBMS装置を使用してなされることが好ましい。下地層18aがCrとWCとを主体とする層である場合は、ターゲット25としてCrターゲットおよびWCターゲットを併用する。また、混合層18bを形成する際には、(1)WCターゲット、および、(2)黒鉛ターゲットと必要に応じて炭化水素系ガスを用いる。
 下地層18aにおいて、上述のようなCrとWCの傾斜組成とする場合は、連続的または段階的に、WCターゲットに印加するスパッタ電力を上げながら、かつ、Crターゲットに印加する電力を下げながら成膜する。これにより混合層18b側に向けてCrの含有率が小さく、かつ、WCの含有率が高くなる構造の層とできる。
 混合層18bは、連続的または段階的に、炭素供給源となる黒鉛ターゲットに印加するスパッタ電力を上げながら、かつ、WCターゲットに印加する電力を下げながら成膜する。これにより表面層18c側に向けてWCの含有率が小さく、かつ、DLCの含有率が高くなる傾斜組成の層とできる。
 混合層18b中の水素含有量を上記範囲(10原子%未満)とするため、炭素供給源として黒鉛ターゲットを単独か、黒鉛ターゲットと炭化水素系ガスとを併用して該炭化水素系ガスの導入量の割合を少なくする。具体的には、黒鉛ターゲットと炭化水素系ガスとを併用する場合、炭化水素系ガスの導入量の割合を、ArガスのUBMS装置内(成膜チャンバー内)への導入量100(体積部)に対し2.5(体積部)未満とする。好ましくは0.5~2(体積部)であり、より好ましくは1~1.6(体積部)である。
 混合層18bの成膜時におけるUBMS装置内(成膜チャンバー内)の真空度は0.2~1.2Paであることが好ましい。また、基材となる軸受部材に印加するバイアス電圧は20~100Vであることが好ましい。このような範囲とすることで、耐剥離性の向上が図れる。
 本発明の転がり軸受に形成する硬質膜として、所定の基材に対して硬質膜を形成し、該硬質膜の物性に関する評価した。また、2円筒試験機を用いた転がり滑り試験にて耐剥離性の評価を行なった。
 硬質膜の評価用に用いた試験片、UBMS装置、およびスパッタリングガスなどは以下のとおりである。
 (1)試験片物性:SUJ2 焼き入れ焼き戻し品 硬さ780Hv
 (2)試験片:鏡面研磨された(0.02μmRa)SUJ2リング(φ40×L12副曲率なし)の摺動表面に対して各条件にてDLC膜を成膜したもの
 (3)相手材:研削仕上げ(0.7μmRa)SUJ2リング(φ40×L12副曲率60)
 (4)UBMS装置:神戸製鋼所製;UBMS202
 (5)スパッタリングガス:Arガス
 下地層の形成条件を以下に説明する。成膜チャンバー内を5×10-3Pa程度まで真空引きし、ヒータで基材となる試験片をベーキングして、Arプラズマにて基材表面をエッチング後、UBMS法にてCrターゲットとWCターゲットに印加するスパッタ電力を調整し、CrとWCの組成比を傾斜させ、基材側でCrが多く表面側でWCが多いCr/WC傾斜層を形成した。
 混合層の形成条件を以下に説明する。下地層と同様にUBMS法にて成膜した。ここで、該混合層については、炭化水素系ガスであるメタンガスを供給しながら、WCターゲットと黒鉛ターゲットに印加するスパッタ電力を調整し、WCとDLCの組成比を傾斜させ、下地層側でWCが多く表面層側でDLCが多いWC/DLC傾斜層を形成した。混合層の具体的な成膜条件を表1に示す。なお、混合層における水素含有量(原子%)は、GDS分析(グロー放電発光分光分析)により上述の方法で求めた。結果を表1に併記する。
 表面層の形成条件は、各表に示すとおりである。
 図6はUBMS装置の模式図である。図6に示すように、円盤30上に配置された基材31に対し、スパッタ蒸発源材料(ターゲット)32を非平衡な磁場により、基材31近傍のプラズマ密度を上げてイオンアシスト効果を増大すること(図5参照)によって、基材上に堆積する被膜の特性を制御できるUBMS機能を備える装置である。この装置により、基材上に、複数のUBMS被膜(組成傾斜を含む)を任意に組合せた複合被膜を成膜することができる。この実施例では、基材とするリングに、下地層、混合層、表面層をUBMS被膜として成膜している。
実施例1~3、比較例1~5
 表1に示す基材をアセトンで超音波洗浄した後、乾燥した。乾燥後、これをUBMS装置に取り付け、上述の形成条件にて下地層および混合層を形成した。その上に、表1に示す成膜条件にて表面層であるDLC膜を成膜し、硬質膜を有する試験片を得た。なお、表1における「真空度」は上記装置における成膜チャンバー内の真空度である。得られた試験片を下記に示す2円筒試験機を用いた転がり滑り試験に供した。結果を表1に併記する。
<2円筒試験機による転がり滑り試験>
 得られた試験片について図7に示す2円筒試験機を用いて転がり滑りによる耐剥離性の試験を行なった。この2円筒試験機は、駆動側試験片33と転がり滑り接触する従動側試験片34とを備え、それぞれの試験片(リング)は支持軸受36で支持されており、負荷用バネ37により荷重が負荷されている。また、図中の35は駆動用プーリ、38は非接触回転計である。硬質膜の剥離を助長するために相手材粗さを大きくし、潤滑油粘度を下げ境界潤滑とし、回転差をつけて滑りを発生させ、硬質膜の剥離が発生するまでの時間(h)を剥離寿命として評価を行った。具体的な試験条件は以下のとおりである。
(試験条件)
  潤滑油:VG1.5相当油(添加剤含有)  滴下給油
  油温:40~50℃
  最大接触面圧:2.7GPa
  回転数:(試験片側)270 min-1
      (相手材側)300 min-1
  相対滑り速度:0.06 m/s
  油膜パラメータ:0.006
  打ち切り時間:48h
Figure JPOXMLDOC01-appb-T000001
 各実施例と各比較例は、使用する基材および表面層の成膜条件が同一であり、表面層の硬度は平均値で約29GPaである。表1に示すように、混合層を形成する際の水素含有量を変化させた場合、水素含有量が高い場合において2円筒転がり滑り試験における剥離寿命が短い傾向があり、水素含有量が10.8原子%の時点で劇的に短寿命となった。混合層内の水素含有量の高い比較的軟質なDLCの存在が硬質膜の耐剥離性に悪影響を及ぼしていると考えられる。
 複列自動調心ころ軸受が使用される条件では、高荷重下、該軸受の摺動面・転動面は潤滑が希薄または滑り速度が速いなど苛酷な潤滑状態であることが多い。本発明の複列自動調心ころ軸受は、例えば、内・外輪軌道面やころの転動面にDLC膜が形成され、苛酷な潤滑状態で運転した場合においてもこのDLC膜の耐剥離性に優れ、DLC本体の特性を発揮できるので、耐焼き付き性、耐摩耗性、および耐腐食性に優れる。特に、本発明の複列自動調心ころ軸受は、風力発電機の主軸を支持する軸受として好適に使用される。
 1  風力発電機
 2  ブレード
 3  主軸
 4  ナセル
 5  複列自動調心ころ軸受(軸受)
 6  増速機
 7  発電機
 8  支持台
 9  モータ
 10 減速機
 11 内輪
 12 外輪
 13 ころ
 14 保持器
 15 軸受ハウジング
 16 シール
 17 旋回座軸受
 18 硬質膜
 21 バイアス電源
 22 基材
 23 膜(層)
 25 ターゲット
 26 磁力線
 27 Arイオン
 28 イオン化されたターゲット
 29 高密度プラズマ
 30 円盤
 31 基材
 32 スパッタ蒸発源材料(ターゲット)
 33 駆動側試験片
 34 従動側試験片
 35 駆動用プーリ
 36 支持軸受
 37 負荷用バネ
 38 非接触回転計

Claims (6)

  1.  内輪と外輪との間に、軸方向に並んで2列にころを介在させ、前記外輪の軌道面を球面状とし、前記ころの外周面を前記外輪の軌道面に沿う形状とした複列自動調心ころ軸受であって、
     前記内輪、前記外輪、および前記ころが鉄系材料からなり、
     硬質膜が、前記内輪、前記外輪、および前記ころから選ばれる少なくとも一つの軸受部材の摺接面の上に直接成膜された下地層と、該下地層の上に成膜されたタングステンカーバイトとダイヤモンドライクカーボンとを主体とする混合層と、該混合層の上に成膜されたダイヤモンドライクカーボンを主体とする表面層とからなる構造の膜であり、
     前記複列自動調心ころ軸受は、前記硬質膜が他の軸受部材と境界潤滑で滑り接触する条件で使用される軸受であり、
     前記混合層は、前記下地層側から前記表面層側へ向けて連続的または段階的に、該混合層中の前記タングステンカーバイトの含有率が小さくなり、該混合層中の前記ダイヤモンドライクカーボンの含有率が高くなる層であり、前記混合層における水素含有量が10原子%未満であることを特徴とする複列自動調心ころ軸受。
  2.  前記表面層は、前記混合層との隣接側に、前記混合層側から硬度が連続的または段階的に高くなる傾斜層部分を有することを特徴とする請求項1記載の複列自動調心ころ軸受。
  3.  前記鉄系材料が、高炭素クロム軸受鋼、炭素鋼、工具鋼、または、マルテンサイト系ステンレス鋼であり、前記下地層が、クロムとタングステンカーバイトとを主体とする層であることを特徴とする請求項1記載の複列自動調心ころ軸受。
  4.  請求項1記載の複列自動調心ころ軸受が、風力発電機のブレードが取付けられた主軸を支持する軸受であることを特徴とする複列自動調心ころ軸受。
  5.  前記内輪は、該内輪の外周面において前記2列のころ間に設けられ、各列のころの軸方向内側の端面と滑り接触する中鍔と、前記内輪の外周面の両端にそれぞれ設けられ、各列のころの軸方向外側の端面と滑り接触する小鍔とを備え、
     前記各列のころのうち、少なくとも一方の列のころの外周面に前記硬質膜が形成されていることを特徴とする請求項1記載の複列自動調心ころ軸受。
  6.  ブレードが取付けられた主軸を、ハウジングに設置された1個または複数の軸受によって支持する風力発電用主軸支持装置であって、
     前記軸受のうち少なくとも一個が請求項1記載の複列自動調心ころ軸受であり、該複列自動調心ころ軸受において、前記ブレードから遠い方の列の軸受部分を、近い方の軸受部分よりも負荷容量が大きいものとしたことを特徴とする風力発電用主軸支持装置。
PCT/JP2019/033572 2018-08-29 2019-08-27 複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置 WO2020045455A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980055775.XA CN112639312B (zh) 2018-08-29 2019-08-27 多列自动调心滚子轴承及风力发电用主轴支承装置
EP19856000.5A EP3845769B1 (en) 2018-08-29 2019-08-27 Double-row self-aligning roller bearing and main shaft support device for wind generation equipped with same
DK19856000.5T DK3845769T3 (da) 2018-08-29 2019-08-27 Dobbeltrækket, selvjusterende rulleleje og hovedakselstøtteanordning til vindkraftproduktion udstyret med samme
US17/270,313 US20210172474A1 (en) 2018-08-29 2019-08-27 Double-row self-aligning roller bearing and wind power generation rotor shaft support device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-160216 2018-08-29
JP2018160216A JP7079175B2 (ja) 2018-08-29 2018-08-29 複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置

Publications (1)

Publication Number Publication Date
WO2020045455A1 true WO2020045455A1 (ja) 2020-03-05

Family

ID=69644495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033572 WO2020045455A1 (ja) 2018-08-29 2019-08-27 複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置

Country Status (6)

Country Link
US (1) US20210172474A1 (ja)
EP (1) EP3845769B1 (ja)
JP (1) JP7079175B2 (ja)
CN (1) CN112639312B (ja)
DK (1) DK3845769T3 (ja)
WO (1) WO2020045455A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686579B (zh) * 2021-08-24 2024-01-30 重庆大学 扭振自监测的双列圆锥滚子轴承及扭振监测方法
CN115076225B (zh) * 2022-06-07 2023-08-04 山东华工轴承有限公司 基于风力发电主轴用双列异形自动调心滚子轴承

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081739B2 (ja) 1988-04-22 1996-01-10 キヤノン株式会社 ディスクカートリッジ
JP2000178738A (ja) * 1998-12-15 2000-06-27 Tdk Corp ダイヤモンド状炭素膜を被覆した部材
JP4178826B2 (ja) 2002-04-17 2008-11-12 日本精工株式会社 転動装置
JP2013079721A (ja) * 2011-09-22 2013-05-02 Ntn Corp 転がり軸受
JP2014122415A (ja) * 2012-06-29 2014-07-03 Kobe Steel Ltd Dlc膜成形体
JP2018115762A (ja) * 2017-01-13 2018-07-26 Ntn株式会社 複列自動調心ころ軸受および飛出し止め治具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031260A4 (en) * 2006-05-31 2012-11-21 Nsk Ltd rolling device
US9347491B2 (en) * 2011-09-22 2016-05-24 Ntn Corporation Hard film, hard film formed body, and rolling bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081739B2 (ja) 1988-04-22 1996-01-10 キヤノン株式会社 ディスクカートリッジ
JP2000178738A (ja) * 1998-12-15 2000-06-27 Tdk Corp ダイヤモンド状炭素膜を被覆した部材
JP4178826B2 (ja) 2002-04-17 2008-11-12 日本精工株式会社 転動装置
JP2013079721A (ja) * 2011-09-22 2013-05-02 Ntn Corp 転がり軸受
JP2014122415A (ja) * 2012-06-29 2014-07-03 Kobe Steel Ltd Dlc膜成形体
JP2018115762A (ja) * 2017-01-13 2018-07-26 Ntn株式会社 複列自動調心ころ軸受および飛出し止め治具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The New Generation of NTN Bearings for Wind Turbine", CATALOGUE OF NTN CORPORATION, vol. A65, no. 8404/04/JE, 1 May 2003 (2003-05-01)

Also Published As

Publication number Publication date
JP2020034064A (ja) 2020-03-05
JP7079175B2 (ja) 2022-06-01
EP3845769B1 (en) 2023-10-04
CN112639312A (zh) 2021-04-09
EP3845769A4 (en) 2022-06-08
EP3845769A1 (en) 2021-07-07
DK3845769T3 (da) 2023-11-27
US20210172474A1 (en) 2021-06-10
CN112639312B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2013042765A1 (ja) 硬質膜、硬質膜形成体、および転がり軸受
WO2011122662A1 (ja) 転がり軸受
JP2018146108A (ja) 転がり軸受およびその製造方法
JP5993680B2 (ja) 転がり軸受およびその製造方法
WO2020045455A1 (ja) 複列自動調心ころ軸受、およびそれを備えた風力発電用主軸支持装置
JP2008025728A (ja) 転がり軸受
JP2022107481A (ja) 転がり軸受および車輪支持装置
JP2020046068A (ja) 転がり軸受、車輪支持装置、および風力発電用主軸支持装置
WO2020031995A1 (ja) 転がり軸受、車輪支持装置、および風力発電用主軸支持装置
JP7373341B2 (ja) 転がり軸受、および風力発電用主軸支持装置
JP5176378B2 (ja) 転がり摺動部材およびこれを用いた転動装置
WO2020067334A1 (ja) 転がり軸受、および風力発電用主軸支持装置
WO2018164139A1 (ja) 転がり軸受およびその製造方法
JP2019027476A (ja) 転がり軸受用保持器および転がり軸受
JP5620860B2 (ja) 転がり軸受
JP6875880B2 (ja) 転がり軸受および硬質膜成膜方法
JP2024014629A (ja) 転がり軸受
JP5379734B2 (ja) 転がり軸受
JP2021001639A (ja) 複列スラスト針状ころ軸受
WO2019073861A1 (ja) 車輪支持装置
JP2008151264A (ja) 転がり軸受用保持器
JP2019035481A (ja) 等速自在継手
JP2007177836A (ja) 転がり軸受
JP2009052694A (ja) 転がり摺動部材及び転動装置
JP2007186733A (ja) 遊星歯車装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019856000

Country of ref document: EP

Effective date: 20210329