WO2020045110A1 - 光検出モジュールおよび光検出装置 - Google Patents

光検出モジュールおよび光検出装置 Download PDF

Info

Publication number
WO2020045110A1
WO2020045110A1 PCT/JP2019/032066 JP2019032066W WO2020045110A1 WO 2020045110 A1 WO2020045110 A1 WO 2020045110A1 JP 2019032066 W JP2019032066 W JP 2019032066W WO 2020045110 A1 WO2020045110 A1 WO 2020045110A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
opening
detection module
housing
light source
Prior art date
Application number
PCT/JP2019/032066
Other languages
English (en)
French (fr)
Inventor
高弘 川田
菜津子 北田
貴明 武石
野崎 孝明
Original Assignee
シチズン時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン時計株式会社 filed Critical シチズン時計株式会社
Priority to CN201980055666.8A priority Critical patent/CN112639447B/zh
Priority to US17/268,730 priority patent/US20210302314A1/en
Priority to JP2020539343A priority patent/JP7308209B2/ja
Publication of WO2020045110A1 publication Critical patent/WO2020045110A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning

Definitions

  • the present invention relates to a light detection module and a light detection device.
  • an optical coupler that combines or splits an optical signal using a beam splitter is known (for example, see Patent Document 1).
  • a beam splitter half mirror, demultiplexing filter or light separation filter
  • a light source for example, a laser beam splitter
  • a light receiver for example, a laser beam splitter
  • Patent Literature 6 describes a dental inspection apparatus that receives response light obtained by irradiating a tooth with light and detects a fluorescent substance contained in plaque or the like.
  • Patent Literature 7 describes a fluorescence measurement method in which a tooth is irradiated with excitation light having a specific wavelength and fluorescence emitted by a fluorescent substance is detected to determine the amount of plaque or the degree of dental caries.
  • a photodetector that applies the configuration of the optical coupler described above and coaxially irradiates the sample with light and detects inspection light from the sample, in order to increase the detection sensitivity, it is necessary to generate the light in the beam splitter. It is important to reduce the effects of the obtained stray light. Further, in consideration of application to an inspection device such as a dental device, it is also required to realize the light detection device as a small light detection module.
  • the stray light is removed by guiding the light into a dedicated absorption hole provided in the housing of the photodetection module. In particular, in the case of a small module, in addition to the optical paths of the irradiation light and the inspection light, a sufficiently large stray light absorption hole is provided. Is difficult due to space constraints.
  • An object of the present invention is to provide a small-sized light detection module that can coaxially irradiate a sample with light and detect inspection light from the sample, and is not easily affected by stray light.
  • a light source that emits irradiation light to the sample, a beam splitter that reflects the irradiation light toward the input / output port and transmits inspection light from the sample incident through the input / output port, and a light receiving device that receives the inspection light
  • a housing including a device and a beam splitter, a first opening in which a light source is installed and irradiation light propagates, a second opening corresponding to an input / output port, and a third opening in which a light receiving element is installed
  • a housing having a fourth opening through which stray light transmitted through the beam splitter among the irradiation light is guided, the first to fourth openings communicate with each other at the position of the beam splitter, and the fourth opening is
  • a light detection module is provided, which extends in a direction orthogonal to a reflection surface of a beam splitter.
  • the first opening is provided on the upper surface of the housing
  • the second and third openings are provided on the opposing side surfaces of the housing
  • the beam splitter is provided on the support member
  • the light receiving element is provided on the light receiving substrate.
  • Each of the support members is fixed, and the support member is disposed in a groove formed obliquely from a position between the first opening and the end on the third opening side on the upper surface of the housing, and the third opening side is provided. It is preferable to be fixed to the housing together with the light receiving unit substrate by a fixture inserted from the side.
  • the fourth opening is provided on the lower surface of the housing, the lower portion of the housing does not protrude downward around the fourth opening, and the lower surface of the housing is at the end on the first opening side. It is preferable that the portion, the periphery of the fourth opening, and the end on the third opening side are flush with each other.
  • the inner diameter of the optical path at the third opening is preferably larger than the inner diameter of the optical path at the second opening.
  • the light source is mounted on the light source substrate, and the light detection module is a lens that is disposed in the first opening and condenses the irradiation light, and a fixing member for fixing the lens.
  • a heat conductive fixing member disposed between the light source substrate and the housing in contact with the housing, further comprising a coating film provided on a contact surface of the light source substrate with the fixing member, It is preferable that the wiring pattern of the light source is exposed.
  • the light detection module further includes another lens disposed in the third opening for condensing the inspection light, and an annular member for fixing the other lens, wherein the opening of the annular member is adapted to transmit the inspection light. It preferably faces in the direction and functions as an aperture for inspection light.
  • any one of the above light detection modules, an optical fiber connected to the input / output port, a circuit board for driving the light source and detecting the intensity of the inspection light received by the light receiving element, and the light detection module and the circuit There is provided a photodetector having a main body case containing a substrate.
  • the light detection device preferably further includes a light-emitting unit for displaying a state to a user, and the fourth opening and the light-emitting unit are preferably disposed on mutually facing surfaces of the main body case.
  • the light source has a first light emitting element that emits light of a first wavelength as irradiation light, and a second light emitting element that emits light of a second wavelength as irradiation light;
  • a second control circuit for detecting the intensity of the inspection light at the time is disposed, and the analog element of the first and second control circuits is provided on one side of the upper surface and the lower surface of the circuit board. It is preferable that the digital element in the second control circuit is separately mounted on the other side of the upper surface and the lower surface of the circuit board.
  • the above-mentioned light detection module is small, can irradiate light to a sample and detect inspection light from the sample coaxially, and is less susceptible to stray light.
  • FIG. 2 is a cutaway perspective view of the fluorescence detection device 1.
  • FIG. 2 is a block diagram of the fluorescence detection device 1. It is a fracture
  • FIG. 3 is a longitudinal sectional view of the fluorescence detection module 3.
  • (A) and (B) are perspective views of the housing 10.
  • (A) and (B) are perspective views of the light source substrate 20 and the fixing member 30.
  • FIG. 3 is a perspective view of a mirror frame 60.
  • FIG. 3 is a conceptual diagram of light propagating through optical paths 12b and 12c. 2A to 2C are explanatory diagrams of a circuit configuration of the fluorescence detection device 1.
  • FIG. 3 is a block diagram of the fluorescence detection device 1. It is a fracture
  • FIG. 3 is a longitudinal sectional view of the fluorescence detection module 3.
  • (A) and (B) are perspective views of the housing 10.
  • FIG. 1 is a cutaway perspective view of the fluorescence detection device 1.
  • the fluorescence detection device 1 includes a main body case 2, a fluorescence detection module 3, a probe fiber 4, a circuit board 5, FPCs (flexible printed circuit boards) 6a and 6c, a status display LED (light emitting diode) 7, an operation switch 8, and a battery 9.
  • the fluorescence detection device 1 is an example of a light detection device, and irradiates excitation light toward the sample from the tip 2A of the main body case 2 and receives fluorescence (inspection light) generated in the sample according to the light from the tip 2A. Then, the fluorescent substance of the sample is detected.
  • the fluorescence detection device 1 can be used as a dental inspection device that detects protoporphyrin IX contained in plaque as a fluorescent substance.
  • the main body case 2 is, for example, a resin case in which other components of the fluorescence detection device 1 such as the fluorescence detection module 3 and the circuit board 5 are incorporated.
  • the main body case 2 has a rod-like shape as a whole so that the user can easily hold it by hand, and in the illustrated example, the tip 2A facing the sample is tapered.
  • the fluorescence detection module 3 is an example of a light detection module, has a light source and a light receiving element described below, and is disposed on the tip 2A side in the main body case 2.
  • the fluorescence detection module 3 irradiates the sample with excitation light through the probe fiber 4 and receives the fluorescence generated in the sample and incident through the probe fiber 4, so that a very small amount of fluorescence from the sample (for example, from plaque fluorescent material) Fluorescence) is detected with high sensitivity.
  • the probe fiber 4 is an optical fiber serving as a waveguide for excitation light emitted from the fluorescence detection module 3 and fluorescence incident on the fluorescence detection module 3, and is embedded in the tip 2 ⁇ / b> A of the main body case 2.
  • the tip 4A of the probe fiber 4 is open and is directed to the sample when the fluorescence detection device 1 is used.
  • the rear end 4B of the probe fiber 4 is connected to the fluorescence detection module 3.
  • the tip 2A of the main body case 2 including the probe fiber 4 is gently curved, but the probe fiber 4 may extend linearly.
  • the circuit board 5 has a control circuit for driving the light source of the fluorescence detection module 3 and detecting the intensity of the fluorescence received by the light receiving element.
  • the circuit board 5 has an elongated rectangular shape along the longitudinal direction of the main body case 2, and is disposed between the fluorescence detection module 3 and the battery 9 in the main body case 2.
  • the FPC 6a is a board for electrically connecting the light source of the fluorescence detection module 3 and the circuit board 5
  • the FPC 6c is a board for electrically connecting the light receiving element of the fluorescence detection module 3 and the circuit board 5, respectively.
  • the status display LED 7 is an example of a light emitting unit, and is disposed above the main body case 2 (front side) so that a user can easily see the light emitting area.
  • the status display LED 7 lights or flashes to notify the user of the status of the fluorescence detection device 1.
  • the operation switch 8 is for the user to turn on / off the power supply of the fluorescence detection device 1 and the irradiation of the excitation light.
  • the operation switch 8 is disposed on the lower side (back side) of the main body case 2. It may be arranged above the case 2.
  • the battery 9 is disposed at an end of the main body case 2 opposite to the end 2 ⁇ / b> A, and supplies power to the circuit board 5.
  • the probe fiber 4, the fluorescence detection module 3, the circuit board 5, and the battery 9 are arranged in this order along the longitudinal direction in the main body case 2.
  • the fluorescence detection module 3 and the battery 9 are relatively heavy and are disposed at both ends in the longitudinal direction of the main body case 2. It is near the center of the main body case 2 in the longitudinal direction. For this reason, the fluorescence detection device 1 has a good weight balance and is easy for the user to hold by hand.
  • FIG. 2 is a block diagram of the fluorescence detection device 1.
  • FIG. 3 is a cutaway perspective view of the fluorescence detection module 3.
  • FIG. 4 is a longitudinal sectional view of the fluorescence detection module 3.
  • the fluorescence detection module 3 includes a housing 10, a light source substrate 20, a fixing member 30, ball lenses 40a to 40c, optical filters 50a and 50c, a mirror frame 60, a fixing member 70, and a light receiving section. It has a substrate 80 and a cover 90.
  • An LED package 21 is mounted on the light source substrate 20, a mirror M is mounted on the mirror frame 60, and a PD (photodiode) element 81 is mounted on the light receiving unit substrate 80, respectively.
  • FIG. 2 for simplicity, only a part of the above-described components necessary for explaining the function of the fluorescence detection device 1 is illustrated.
  • the fluorescence detection device 1 has two LED elements 21A and 21B as the LED package 21 of FIGS.
  • the LED element 21A is an example of a first light emitting element, and emits, as the excitation light L1, light including a first wavelength having a high excitation efficiency for a fluorescent substance to be detected.
  • the LED element 21B is an example of a second light-emitting element.
  • the excitation light L2 a second light having a longer wavelength than the first wavelength and an excitation efficiency lower than the first wavelength or almost zero. Emit light containing a wavelength.
  • the first wavelength is preferably in the range of 350 to 430 nm
  • the second wavelength is preferably in the range of 435 to 500 nm
  • the peak wavelength of the LED element 21A is 405 nm.
  • the purple LED element and the LED element 21B may be blue LED elements having a peak wavelength of 465 nm.
  • the mirror M is composed of a dichroic mirror or a half mirror, reflects light in the wavelength region of the excitation lights L1 and L2, and transmits light in the wavelength region of fluorescence (inspection light) L3 from the sample. Therefore, the excitation lights L1 and L2 are reflected by the mirror M, converged through the ball lens 40b, and then radiated through the probe fiber 4 to the tooth 100 having, for example, the plaque adhering portion 110.
  • the fluorescent substance contained in the plaque of the plaque adhering portion 110 is excited, and fluorescence L3 having peak wavelengths near 635 nm and 675 nm is generated.
  • Part of the fluorescence L3 enters the ball lens 40b through the probe fiber 4, passes through the mirror M, and reaches the PD element 81 via the optical filter 50c and the ball lens 40c.
  • the fluorescent light received by the PD element 81 is converted into a photocurrent and output to the circuit board 5, and the presence / absence and amount of the fluorescent substance are obtained by signal processing of a control circuit provided on the circuit board 5.
  • the result is notified to the user by, for example, the light of the status display LED 7 or the sound of a built-in buzzer (buzzer 5F in FIG. 9C described later).
  • the circuit board 5 alternately irradiates the sample with the excitation lights L1 and L2 having different wavelengths, and the intensity of the fluorescence L3 when the excitation light L1 is irradiated and the intensity of the fluorescence L3 when the excitation light L2 is irradiated.
  • a fluorescent substance of the sample is detected based on the ratio or difference thereof using, for example, a fluorescence measurement method described in WO 2016/140199.
  • FIGS. 5A and 5B are perspective views of the housing 10.
  • the housing 10 is, for example, a member made of aluminum, which is entirely anodized and has a black aluminum oxide film formed on its surface, and has a width and height of about 1.5 cm and a depth of about 2.5 cm. It has the size of
  • the housing 10 has openings 11a to 11c, stray light absorption holes 13, grooves 14, and screw holes 15. The openings 11a to 11c, the stray light absorbing hole 13 and the groove 14 communicate with each other at the position of the mirror M, and the groove 14 and the screw hole 15 also communicate with each other near the upper surface of the housing 10.
  • the opening 11a is an example of a first opening, and is provided on the upper surface 10a of the housing 10, and an LED package 21 is installed therein as shown in FIGS.
  • the opening 11b is an example of a second opening, corresponds to a light input / output port of the fluorescence detection module 3, and is provided on a side surface 10b in front of the housing 10 (on the distal end 2A side of the main body case 2).
  • the rear end 4B of the probe fiber 4 shown in FIG. 1 is connected to the opening 11b.
  • the opening 11c is an example of a third opening, and is provided on a rear side surface 10c (the side opposite to the tip 2A) of the housing 10, and a PD element 81 is installed therein.
  • the inside of the opening 11a is an optical path 12a on the light source side through which the excitation lights L1 and L2 propagate.
  • the inside of the opening 11b is a fiber-side optical path 12b through which the excitation light L1 and L2 reflected by the mirror M and the fluorescence L3 incident from the probe fiber 4 propagate.
  • the inside of the opening 11c is an optical path 12c on the light receiving side through which the fluorescence L3 transmitted through the mirror M propagates.
  • the black coating formed by alumite processing is removed by polishing so that even if the fluorescence L3 from the sample is weak, the inner walls thereof become light-reflective mirror surfaces. ing.
  • the inner wall of the optical path 12a is not mirror-finished and has a light-absorbing black surface formed by alumite processing. This is because only light in the vertical direction directly from the LED package 21 to the mirror M passes, and light in an oblique direction that can be reflected in an irregular direction by the mirror M is removed by absorption by the inner wall.
  • the stray light absorbing hole 13 is an example of a fourth opening, has a light absorbing inner wall, and is provided on the lower surface 10 d of the housing 10.
  • the light transmitted through the mirror M among the excitation lights L1 and L2 is guided to the stray light absorbing hole 13, and such light is absorbed by being repeatedly reflected on the inner wall of the stray light absorbing hole 13.
  • the bottom surface of the internal space of the housing 10 is a black wall surface without holes, stray light is not completely absorbed by the wall surface alone and causes noise, so the stray light absorption hole 13 reliably removes stray light. Provided for.
  • the light absorbing inner wall in the housing 10 including the stray light absorbing hole 13 may be formed of, for example, a non-reflective coating agent such as black nickel plating or a black resin, in addition to the alumite processing.
  • the stray light absorbing hole 13 extends in a direction perpendicular to the reflection surface of the mirror M, and is inclined by 45 degrees with respect to the light propagation direction in the optical path 12a and the optical paths 12b and 12c. I have. This is because if the stray light absorbing hole 13 is formed in the vertical direction (on the extension of the optical path 12a), a part of the optical paths 12b and 12c will be cut off by the stray light absorbing hole 13, which is not preferable.
  • the stray light absorbing hole 13 By inclining the stray light absorbing hole 13 with respect to the light propagation direction, even if the diameter of the stray light absorbing hole 13 is large, a portion of the optical paths 12b and 12c that is cut off is smaller than in the case where the stray light absorbing hole 13 is oriented vertically. Less. Further, by making the direction oblique, even if the case 10 is small, the stray light absorbing hole 13 can be made longer than in the case where the case 10 is oriented vertically.
  • the opening 13a of the stray light absorbing hole 13 becomes wider and the stray light is more likely to escape from the fluorescence detection module 3 to the outside as compared with the case where the direction is vertical, so that noise is reduced. .
  • the stray light absorption holes 13 are formed at right angles to the mirror M.
  • the housing 10 has a substantially octagonal column shape, and no protrusion is formed on the surface thereof.
  • the lower portion of the housing 10 does not protrude downward around the stray light absorbing hole 13 as well, and as shown in FIGS. 3 and 4, the lower surface 10d of the housing 10
  • the periphery of the hole 13 and the end on the side of the opening 11c are flush with each other.
  • the casing 10 is formed in a T-shape instead of a column shape, and the portion of the stray light absorbing hole 13 protrudes downward, the stray light absorbing hole 13 can be lengthened accordingly.
  • the size of the fluorescence detection module 3 is increased, and the size of the main body case 2 accommodating the fluorescence detection module 3 is increased.
  • the stray light absorbing hole 13 oblique to the vertical direction and making the lower surface 10d a flat surface, the length of the stray light absorbing hole 13 is ensured and the effect of light absorption is enhanced while the housing 10 is downsized. Becomes possible.
  • the groove 14 is for positioning the mirror frame 60 with respect to the housing 10 by inserting the mirror frame 60 from the position between the opening 11a and the end on the opening 11c side on the upper surface of the housing 10 in the vertical direction. It is formed diagonally.
  • the screw hole 15 is for the screw 91 shown in FIGS. Of the openings 11a to 11c, the stray light absorbing hole 13, the groove 14, and the screw hole 15, the stray light absorbing hole 13 and the groove 14 are open in the fluorescence detection module 3, but a lid (cover) for closing them may be provided. Good.
  • the completed fluorescence detection device 1 is covered by the inner wall of the main body case 2 and closed, there is no particular problem even when the fluorescence detection module 3 is open, and it is better to leave the device open. This is preferable because the production cost is reduced and the production cost is reduced.
  • FIG. 6A is a perspective view of the light source substrate 20.
  • the light source substrate 20 is a substrate on which an LED package 21 which is a light source of the fluorescence detection module 3 (the fluorescence detection device 1) is mounted, and has a wiring pattern 22, connection terminals 23, and two screw holes 24.
  • the light source substrate 20 is attached to the upper surface side of the housing 10 via a fixing member 30, as shown in FIGS.
  • the upper surface of the light source substrate 20 shown in FIG. 6A faces downward (the lower side in FIGS. 3 and 4) when attached to the housing 10.
  • the LED package 21 is obtained by combining the two LED elements 21A and 21B shown in FIG.
  • the LED elements 21A and 21B respectively have excitation light L1 having different wavelengths (for example, 405 nm and 465 nm). , L2.
  • the light source of the fluorescence detection module 3 is not limited to the LED element, and may be, for example, a semiconductor laser.
  • the wiring pattern 22 and the connection terminal 23 are for supplying power to the LED package 21, and are formed on the upper surface of the light source substrate 20.
  • the connection terminal 23 is connected to the FPC 6a shown in FIG.
  • the screw holes 24 are for screwing the light source substrate 20 to the housing 10, and are formed one at each of corners of the light source substrate 20 that face each other in a diagonal direction.
  • FIG. 6B is a perspective view of the fixing member 30.
  • the fixing member 30 is a member for fixing the ball lens 40a disposed in the opening 11a on the light source side, is made of a material having excellent heat dissipation (for example, metal such as aluminum), and has an annular wall portion 31 and a through hole. 33 and two screw holes 34.
  • the annular wall portion 31 is provided at the center of the upper surface shown in FIG. 6B, and a ball space 40a and an O-ring 41a that receives the ball lens 40a are arranged in a circular space 32 surrounded by the annular wall portion 31.
  • the fixing member 30 is attached to the upper surface of the housing 10 upside down so that the annular wall portion 31 fits into the opening 11a and covers the opening 11a.
  • the through hole 33 is formed at the center of the region surrounded by the annular wall portion 31, and as shown in FIGS. 3 and 4, the LED package 21 is disposed therein.
  • the screw holes 34 are formed one by one at the corners facing the diagonal direction of the fixing member 30 in the same positional relationship as the two screw holes 24 of the light source substrate 20.
  • the light source substrate 20 and the fixing member 30 are fixed to the housing 10 by adjusting the positions of the screw holes 24 and 34 and inserting screws therein. That is, the fixing member 30 has a role of fixing the ball lens 40a and the O-ring 41a and a role of fixing the light source substrate 20.
  • the mounting surface of the LED package 21 (the contact surface with the fixing member 30) on the light source substrate 20 is a bare metal surface on which the wiring pattern 22 is exposed without providing a resist (coating film). This is because heat generated by light emission of the LED package 21 is easily released to the metal housing 10 side. Since the fixing member 30 is disposed between the light source substrate 20 and the housing 10 in contact with the light source substrate 20 and the housing 10, the mounting surface of the light source substrate 20 is in contact with the fixing member 30, and the fixing member 30 is In contact with body 10. Since the casing 10 and the fixing member 30 are processed so as not to conduct, there is no problem even if the wiring pattern 22 and the fixing member 30 come into direct contact. With such an arrangement, the mounting surface of the light source substrate 20 and the fixing member Heat can be dissipated in the path between the housing 30 and the housing 10. That is, the fixing member 30 also functions as a heat radiation path of the LED package 21.
  • the fixing member 30 is formed of a metal having excellent heat dissipation such as aluminum or copper, the fixing member 30 also functions as a heat dissipation path.
  • the material of the fixing member 30 is not necessarily a metal as long as it has a high thermal conductivity.
  • a resin a high thermal conductive resin to which a thermal conductive filler such as inorganic particles is added may be used. Good.
  • the ball lens 40 a (lens) is fixed in the circular space 32 of the fixing member 30 and disposed in the opening 11 a, and collects the excitation lights L1 and L2 emitted from the LED package 21.
  • the ball lens 40b is disposed in the opening 11b and collects the excitation light L1, L2 reflected by the mirror M and incident on the probe fiber 4, and the fluorescence L3 incident from the probe fiber 4 into the optical path 12b.
  • the ball lens 40c (another lens) is disposed immediately before the PD element 81 in the opening 11c, and collects the fluorescent light L3 transmitted through the mirror M.
  • the ball lenses 40a to 40c are all spherical and have the same size, the relationship between the shape and the size is not necessarily limited to this. For example, a convex lens may be used instead of the ball lenses 40a to 40c.
  • the ball lenses 40a to 40c are fixed by rubber O-rings 41a to 41c, respectively. Since the O-rings 41a to 41c are annular members, they have openings at the center, and each of these openings faces the propagation direction of the excitation light L1, L2 or the fluorescence L3. For this reason, the O-rings 41a to 41c are lens receivers for the ball lenses 40a to 40c, respectively, and also function as apertures for the excitation light L1, L2 or the fluorescent light L3 incident on the ball lenses 40a to 40c. In particular, since the fluorescent light L3 is scattered light, it is desirable to stop the light before the PD element 81.
  • a stop is arranged as a separate member in the fluorescence detection module 3. Eliminates the need. This is advantageous in terms of reducing the size of the fluorescence detection module 3 and reducing the number of components and manufacturing costs.
  • the optical filter 50a is a filter that transmits the excitation lights L1 and L2 and cuts light in the wavelength region of the fluorescence L3.
  • the wavelength region of the fluorescence L3 derived from plaque is about 620 to 690 nm. It is preferable to use one that cuts light of a wavelength.
  • the optical filter 50a is sandwiched between the buffer rubber 51a having a hole at the center and the ball lens 40a so that light can pass therethrough, and is fixed immediately below the ball lens 40a in the opening 11a.
  • the optical filter 50c is a filter for cutting light in a wavelength region other than the fluorescence L3.
  • a filter that cuts light in a wavelength region other than 620 to 690 nm may be used as the optical filter 50c.
  • the optical filter 50c is similarly sandwiched between the buffer rubber 51c having a hole at the center and the ball lens 40c, and is fixed in the opening 11c at a position closer to the opening 11b than the ball lens 40c. Since the ball lenses 40a and 40c and the optical filters 50a and 50c are sandwiched between rubber O-rings 41a and 41c and buffer rubbers 51a and 51c, respectively, the impact resistance is improved.
  • FIG. 7 is a perspective view of the mirror frame 60.
  • the mirror frame 60 is a frame (support member) to which the mirror M is fixed, and is inserted into the groove 14 of the housing 10 with the end 60A shown in FIG. 7 facing upward and the end 60B facing downward.
  • the recess 61 formed in the end portion 60A is a screw groove for passing the screw 91 shown in FIGS. 3 and 4.
  • the mirror M is an example of a beam splitter, and is configured by a dichroic mirror or a half mirror, and is adhered to a position near the end 60 ⁇ / b> B of the lower mirror frame 60 in the housing 10.
  • the mirror M reflects most of the excitation lights L1 and L2 propagating in the optical path 12a toward the optical path 12b, and transmits the fluorescent light L3 incident through the optical path 12b.
  • a prism type may be used instead of the flat mirror M, and the shape is not particularly limited.
  • the fixing member 70 shown in FIGS. 3 and 4 is a member that presses the O-ring 41b to fix the ball lens 40b, and is attached so as to cover the opening 11b.
  • the fixing member 70 has an opening 71 at the center, and the rear end 4B of the probe fiber 4 shown in FIG.
  • the light receiving unit substrate 80 is a substrate on which the PD element 81 is mounted, and has an annular wall portion in which a ball lens 40c and an O-ring 41c are arranged in an internal circular space, similarly to the fixing member 30, and a portion thereof. Is attached to the side surface of the housing 10 so as to fit in the opening 11c and cover the opening 11c.
  • the PD element 81 is fixed to a position on the light receiving unit substrate 80 on an extension of the optical path 12c.
  • the PD element 81 is an example of a light receiving element, and receives the fluorescence L3 transmitted through the optical filter 50c and the ball lens 40c, generates a photocurrent according to the intensity, and outputs the photocurrent to the circuit board 5.
  • the cover 90 is a member attached to the side surface on the opening 11c side of the housing 10 to cover the light receiving unit substrate 80.
  • the cover 91 and the light receiving unit substrate 80 are screwed through the cover 90 and the light receiving unit substrate 80 together with the light receiving unit substrate 80.
  • Fixed to The screw 91 is an example of a fixing tool.
  • the screw 91 is inserted into the screw hole 15 shown in FIG. 5B, as shown in FIGS. It has a length extending to just before the annular wall portion 31. Therefore, the mirror frame 60 is also held in the groove 14 by the screw 91. That is, in the fluorescence detection module 3, the three members of the mirror frame 60, the light receiving unit substrate 80, and the cover 90 are simultaneously fixed by one screw 91. With such an arrangement of the mirror frame 60 and the screws 91, it is not necessary to fix three members separately with three screws, so that the size of the fluorescence detection module 3 can be reduced accordingly.
  • the fixing tool may be a screw or a pin as long as it can fix the above three members, and the type thereof is not particularly limited.
  • FIG. 8 is a conceptual diagram of light propagating through the optical paths 12b and 12c.
  • the periphery of the mirror M in the housing 10 is enlarged, and the fluorescence traveling from the optical path 12b on the fiber side to the optical path 12c on the light receiving side is schematically shown by a large number of solid lines. Since the fluorescence from the sample is diffused light (scattered light), not all of the light propagates in the direction of the optical path 12c. It is refracted and loss occurs in the space around the mirror M. Therefore, the fluorescence detection module 3, the inner diameter d c of the optical path 12c is greater than the inner diameter d b of the optical path 12b.
  • the inner diameter d b since the amount of light received by the PD element 81 as compared with the case where the d c in the same increases, the propagation efficiency of the fluorescent L3 (i.e., the detection sensitivity of the fluorescence detection device 1) is raised.
  • inside diameter d c may not be larger than the inner diameter d b, in which case the lens different kinds opening 11a ⁇ 11c (size) , which increases the manufacturing cost.
  • the inner diameter d c is made larger than the inner diameter d b, while suppressing the reduction to produce cost types of components, increase the propagation efficiency of the fluorescent be able to.
  • the stray light absorption hole 13 is provided on the lower surface of the housing 10 as shown in FIGS. 3 and 4, and the fluorescence detection module 3 is installed in the main body case 2 of the fluorescence detection device 1 with the lower surface facing down. Further, as shown in FIG. 1, the status display LED 7 is disposed above the main body case 2. That is, the stray light absorbing hole 13 and the status display LED 7 are arranged on the surfaces of the main body case 2 facing each other.
  • the stray light absorbing hole 13 and the status display LED 7 are arranged on the same side of the main body case 2, the light of the status display LED 7 enters the stray light absorption hole 13 and becomes noise, but since both are arranged at positions opposite to each other, The influence of the light emission of the status display LED 7 on the detection is suppressed.
  • FIGS. 9A to 9C are explanatory diagrams of the circuit configuration of the fluorescence detection device 1.
  • FIG. 9A schematically shows a connection relationship among the light source substrate 20, the light receiving unit substrate 80, the FPCs 6a and 6c, and the circuit board 5.
  • FIG. 9A the FPC 6a electrically connects the light source board 20 and the circuit board 5, and the FPC 6c electrically connects the light receiving unit board 80 and the circuit board 5, respectively.
  • the FPC 6c is equipped with a current-voltage conversion circuit (transimpedance amplifier) for converting the photocurrent from the PD element 81 into a voltage.
  • a current-voltage conversion circuit transimpedance amplifier
  • FIGS. 9B and 9C are a schematic top view and a bottom view of the circuit board 5, respectively.
  • the circuit elements mounted on the circuit board 5 include a bandpass filter 52, lock-in amplifiers 53 and 57, A / D converters 54 and 58, an LED driver 55, and a CPU 56 (microcomputer).
  • the band-pass filter 52 and the lock-in amplifiers 53 and 57 are analog elements
  • the A / D converters 54 and 58 are elements in which analog and digital are mixed
  • the LED driver 55 and the CPU 56 are digital elements.
  • the circuit board 5 Since the fluorescence detection device 1 detects the fluorescence intensity using the two-phase lock-in amplifier, the circuit board 5 has two systems (two sets) of lock-in amplifiers and A / D converters. Although it is desirable that the analog circuit and the digital circuit are arranged separately, the circuit board 5 has two systems. Therefore, if all the circuits are to be accommodated on one surface of the board, the arrangement becomes complicated. Further, for example, if the analog circuit is arranged on the upper surface of the substrate and the digital circuit is arranged on the lower surface of the substrate, it is difficult to arrange the power supply wiring. For this reason, in the circuit board 5, two systems of lock-in amplifiers and A / D converters are arranged on the upper surface and the lower surface, respectively.
  • the first control circuit for detecting the intensity of the fluorescence L3 when the excitation light L1 is irradiated is disposed on the upper surface of the circuit board 5, and the lower surface of the circuit substrate 5 is irradiated with the excitation light L2.
  • a second control circuit for detecting the intensity of the fluorescent light L3 at the time of the irradiation is provided.
  • the bandpass filter 52 and the lock-in amplifiers 53 and 57 which are analog elements, are provided on the left side of the figure near the fluorescence detection module 3.
  • a / D converters 54 and 58 that handle both analog and digital signals are arranged near the center of the CPU 56, respectively. That is, the analog element is mounted separately on one side of the upper and lower surfaces of the circuit board 5, and the digital element is mounted separately on the other side of the upper and lower faces of the circuit board 5.
  • 9B and 9C are analog circuits and digital circuits (first control circuits) on the upper surface, respectively, and numerals 5C and 5D are analog circuits and digital circuits on the lower surface, respectively.
  • Reference numeral 5E indicates a power supply circuit.
  • Reference numeral 8 in FIG. 9C denotes an operation switch
  • reference numeral 5F denotes a buzzer for notifying the user of the state of the fluorescence detection device 1 such as the presence or absence of detection. Since the buzzer 5F is a noise source, it is arranged on the lower surface of the circuit board 5 near the power supply circuit 5E farthest from the analog circuit 5C. Although not shown, the status display LED 7 is disposed between the band-pass filter 52 and the lock-in amplifier 53 in the analog circuit 5A on the upper surface side.
  • the fluorescence detection module 3 described above is small and lightweight, and can irradiate excitation light and detect fluorescence coaxially. If the fluorescence detection device 1 including the fluorescence detection module 3 is used as a dental inspection device, the probe fiber 4 is inserted into, for example, a gap or a deep portion of a tooth that is difficult to see, so that a weak sample generated by a sample to be detected is generated. Fluorescence and changes in its optical characteristics can be detected from remote locations. By using an LED in the visible light range as a light source, safety is ensured and power consumption is reduced. Since the ambient light can be cut by the filtering process, the fluorescence detection device 1 can be used in a living environment regardless of a detection place. Note that the emission wavelength of the LED package 21 and the characteristics of the optical filters 50a and 50c can be freely selected according to the detection target, and the inspection light can also detect light other than fluorescence such as reflected light.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)

Abstract

試料への光の照射と試料からの検査光の検出を同軸で行うことができ、迷光の影響を受けにくい小型の光検出モジュールを提供する。光検出モジュールは、試料への照射光を出射する光源と、照射光を入出力口に向けて反射するとともに、入出力口を通って入射した試料からの検査光を透過させるビームスプリッタと、検査光を受光する受光素子と、ビームスプリッタを内蔵する筐体であって、光源が設置されて照射光が伝搬する第1の開口、入出力口に相当する第2の開口、受光素子が設置される第3の開口、および照射光のうちビームスプリッタを透過した迷光が導かれる第4の開口を有する筐体とを有し、第1から第4の開口はビームスプリッタの位置で互いに連通し、第4の開口はビームスプリッタの反射面に対して直交する方向に延在する。

Description

光検出モジュールおよび光検出装置
 本発明は、光検出モジュールおよび光検出装置に関する。
 光通信の分野では、ビームスプリッタを用いて光信号を合成または分岐させる光結合器が知られている(例えば特許文献1を参照)。特に、ビームスプリッタ(ハーフミラー、分波フィルタまたは光分離フィルタ)、光源、受光器および光導波路を有し、光源からビームスプリッタを介して光導波路に光を出射するとともに、同じ光導波路から入射しビームスプリッタを経由した光を受光器で受光するものが知られている(例えば特許文献2~5を参照)。
 また、試料に対して光を照射し、その照射光に応じて試料から得られる蛍光、反射光などの検査光を受光(検出)する光検出装置が知られている。例えば、特許文献6には、歯に光を照射して得られる応答光を受光して歯垢などに含まれる蛍光物質を検出する歯科用の検査装置が記載されている。特許文献7には、歯に特定の波長の励起光を照射し、蛍光物質が発する蛍光を検出することで歯垢の量あるいはう蝕の程度を定量する蛍光測定法が記載されている。
特開昭58-202423号公報 特開昭61-262711号公報 特開平6-160674号公報 特開平8-160259号公報 特開平8-234061号公報 特開2005-324032号公報 国際公開第2016/140199号
 上記の光結合器の構成を適用して試料への光の照射と試料からの検査光の検出を同軸で行う光検出装置を実現する場合、検出感度を上げるためには、ビームスプリッタにおいて発生し得る迷光の影響を抑えることが重要である。また、例えば歯科用などの検査装置への応用を考えると、光検出装置を小型の光検出モジュールとして実現することも求められる。迷光は光検出モジュールの筐体内に設けられた専用の吸収穴に導くことで除去されるが、特に小型のモジュールの場合、照射光および検査光の光路に加えて十分な大きさの迷光吸収穴を設けることは、スペースの制約により難しい。
 本発明の目的は、試料への光の照射と試料からの検査光の検出を同軸で行うことができ、迷光の影響を受けにくい小型の光検出モジュールを提供することである。
 試料への照射光を出射する光源と、照射光を入出力口に向けて反射するとともに、入出力口を通って入射した試料からの検査光を透過させるビームスプリッタと、検査光を受光する受光素子と、ビームスプリッタを内蔵する筐体であって、光源が設置されて照射光が伝搬する第1の開口、入出力口に相当する第2の開口、受光素子が設置される第3の開口、および照射光のうちビームスプリッタを透過した迷光が導かれる第4の開口を有する筐体とを有し、第1から第4の開口はビームスプリッタの位置で互いに連通し、第4の開口はビームスプリッタの反射面に対して直交する方向に延在することを特徴とする光検出モジュールが提供される。
 光検出モジュールでは、第1の開口は筐体の上面に、第2および第3の開口は筐体の互いに対向する側面にそれぞれ設けられ、ビームスプリッタは支持部材に、受光素子は受光部基板にそれぞれ固定され、支持部材は、筐体の上面における第1の開口と第3の開口側の端部との間の位置から斜め方向に形成された溝部内に配置され、第3の開口側の側面から挿入された固定具で受光部基板とともに筐体に対して固定されていることが好ましい。
 光検出モジュールでは、第4の開口は筐体の下面に設けられ、筐体の下部は第4の開口の周囲で下方に突出しておらず、筐体の下面は、第1の開口側の端部と、第4の開口の周囲と、第3の開口側の端部とで同一平面であることが好ましい。第3の開口における光路の内径は、第2の開口における光路の内径よりも大きいことが好ましい。
 光検出モジュールでは、光源は光源基板に実装され、光検出モジュールは、第1の開口内に配置され照射光を集光するレンズと、レンズを固定するための固定部材であって、光源基板と筐体に接触して光源基板と筐体の間に配置された熱伝導性の固定部材とをさらに有し、光源基板の固定部材との接触面では、被覆膜が設けられておらず、光源の配線パターンが露出していることが好ましい。
 光検出モジュールは、第3の開口内に配置され検査光を集光する他のレンズと、他のレンズを固定するための環状部材とをさらに有し、環状部材の開口は、検査光の伝搬方向に面しており、検査光の絞りとして機能することが好ましい。
 上記のいずれかの光検出モジュールと、入出力口に接続された光ファイバと、光源を駆動し、受光素子で受光された検査光の強度を検出するための回路基板と、光検出モジュールおよび回路基板を内蔵する本体ケースとを有する光検出装置が提供される。
 光検出装置は、使用者への状態表示のための発光部をさらに有し、第4の開口と発光部は、本体ケースの互いに対向する面にそれぞれ配置されていることが好ましい。
 光検出装置では、光源は、照射光として第1の波長の光を出射する第1の発光素子、および照射光として第2の波長の光を出射する第2の発光素子を有し、回路基板の上面には、第1の波長の光が照射されたときの検査光の強度を検出するための第1の制御回路が、回路基板の下面には、第2の波長の光が照射されたときの検査光の強度を検出するための第2の制御回路がそれぞれ配置され、第1および第2の制御回路のうちアナログ素子は、回路基板の上面および下面における一方の側に、第1および第2の制御回路のうちデジタル素子は、回路基板の上面および下面における他方の側に、それぞれ分かれて実装されていることが好ましい。
 上記の光検出モジュールは、小型であり、試料への光の照射と試料からの検査光の検出を同軸で行うことができ、迷光の影響を受けにくい。
蛍光検出装置1の破断斜視図である。 蛍光検出装置1のブロック図である。 蛍光検出モジュール3の破断斜視図である。 蛍光検出モジュール3の縦断面図である。 (A)および(B)は、筐体10の斜視図である。 (A)および(B)は、光源基板20および固定部材30の斜視図である。 ミラーフレーム60の斜視図である。 光路12b,12cを伝搬する光の概念図である。 (A)~(C)は、蛍光検出装置1の回路構成の説明図である。
 以下、図面を用いて、光検出モジュールおよび光検出装置について詳細に説明する。ただし、本発明は図面または以下の実施形態には限定されないことを理解されたい。
 図1は、蛍光検出装置1の破断斜視図である。蛍光検出装置1は、本体ケース2、蛍光検出モジュール3、プローブファイバ4、回路基板5、FPC(フレキシブルプリント配線基板)6a,6c、状態表示LED(発光ダイオード)7、操作スイッチ8および電池9を有する。蛍光検出装置1は、光検出装置の一例であり、本体ケース2の先端2Aから試料に向けて励起光を照射し、その光に応じて試料で生じる蛍光(検査光)を同じく先端2Aから受光して、試料の蛍光物質を検出する。例えば、蛍光検出装置1は、蛍光物質として歯垢に含まれるプロトポルフィリンIXを検出する歯科用の検査装置として使用可能である。
 本体ケース2は、蛍光検出モジュール3や回路基板5といった蛍光検出装置1の他の構成要素を内蔵する例えば樹脂製のケースである。本体ケース2は、使用者が手で持ち易いように全体として棒状の形状を有し、図示した例では、試料に向けられる先端2Aはテーパ状になっている。
 蛍光検出モジュール3は、光検出モジュールの一例であり、後述する光源と受光素子を有し、本体ケース2内の先端2A側に配置されている。蛍光検出モジュール3は、プローブファイバ4を通して試料に向けて励起光を照射し、試料で生じプローブファイバ4を通して入射した蛍光を受光することで、試料からの微量な蛍光(例えば歯垢の蛍光物質からの蛍光)を高感度に検出する。
 プローブファイバ4は、蛍光検出モジュール3から出射される励起光および蛍光検出モジュール3に入射する蛍光の導波路となる光ファイバであり、本体ケース2の先端2Aに埋め込まれている。プローブファイバ4の先端4Aは開放されており、蛍光検出装置1の使用時に試料に向けられる。プローブファイバ4の後端4Bは蛍光検出モジュール3に接続されている。図示した例ではプローブファイバ4を含む本体ケース2の先端2Aは緩やかに湾曲しているが、プローブファイバ4は直線状に延びていてもよい。
 回路基板5は、蛍光検出モジュール3の光源を駆動するとともに、受光素子で受光された蛍光の強度を検出するための制御回路を有する。回路基板5は、本体ケース2の長手方向に沿った細長い矩形の形状を有し、本体ケース2内で蛍光検出モジュール3と電池9の間に配置されている。FPC6aは蛍光検出モジュール3の光源と回路基板5とを、FPC6cは蛍光検出モジュール3の受光素子と回路基板5とをそれぞれ電気的に接続するための基板である。
 状態表示LED7は、発光部の一例であり、使用者が発光領域を見易いように、本体ケース2の上側(表側)に配置されている。状態表示LED7は、使用者に蛍光検出装置1の状態を通知するために点灯または点滅する。操作スイッチ8は、使用者が蛍光検出装置1の電源や励起光の照射のオンオフを行うためのものであり、図示した例では本体ケース2の下側(裏側)に配置されているが、本体ケース2の上側に配置されていてもよい。電池9は、本体ケース2内の先端2Aとは反対側の端部に配置されており、回路基板5に電力を供給する。
 図1に示すように、プローブファイバ4、蛍光検出モジュール3、回路基板5および電池9は、本体ケース2内でその長手方向に沿ってこの順序で配置されている。蛍光検出装置1の構成要素の中では、蛍光検出モジュール3および電池9が比較的重量があり、これらが本体ケース2の長手方向の両端に配置されているため、蛍光検出装置1の重心位置は本体ケース2の長手方向の中央付近になる。このため、蛍光検出装置1は、重量のバランスがよく、使用者が手で持ち易い。
 図2は、蛍光検出装置1のブロック図である。図3は、蛍光検出モジュール3の破断斜視図である。図4は、蛍光検出モジュール3の縦断面図である。図3および図4に示すように、蛍光検出モジュール3は、筐体10、光源基板20、固定部材30、ボールレンズ40a~40c、光学フィルタ50a,50c、ミラーフレーム60、固定部材70、受光部基板80およびカバー90を有する。光源基板20にはLEDパッケージ21が、ミラーフレーム60にはミラーMが、受光部基板80にはPD(フォトダイオード)素子81が、それぞれ取り付けられている。図2では、簡単のため、上記の構成要素のうちで、蛍光検出装置1の機能の説明に必要な一部のものだけを図示している。
 図2に示すように、蛍光検出装置1では、図3および図4のLEDパッケージ21として、2つのLED素子21A,21Bを有する。LED素子21Aは、第1の発光素子の一例であり、励起光L1として、検出対象の蛍光物質に対する励起効率が高い第1の波長を含む光を出射する。LED素子21Bは、第2の発光素子の一例であり、励起光L2として、第1の波長よりも長波長で、かつ励起効率が第1の波長よりも低いかあるいはほぼゼロとなる第2の波長を含む光を出射する。例えば、検出対象が歯垢の蛍光物質である場合には、第1の波長は350~430nm、第2の波長は435~500nmの範囲内であることが好ましく、LED素子21Aをピーク波長が405nmの紫色LED素子、LED素子21Bをピーク波長が465nmの青色LED素子とするとよい。
 LED素子21A,21Bからの励起光(照射光)L1,L2は、ボールレンズ40aおよび光学フィルタ50aを経て、ミラーMに入射する。ミラーMは、ダイクロイックミラーまたはハーフミラーなどで構成され、励起光L1,L2の波長領域の光を反射し、試料からの蛍光(検査光)L3の波長領域の光を透過する。したがって、励起光L1,L2は、ミラーMで反射し、ボールレンズ40bを通過して集光された後、プローブファイバ4を通って例えば歯垢付着部110を有する歯100に照射される。これにより、歯垢付着部110の歯垢に含まれる蛍光物質が励起されて、635nmおよび675nm付近にピーク波長をもつ蛍光L3が生成される。蛍光L3の一部は、プローブファイバ4を通ってボールレンズ40bに入射し、ミラーMを透過し、さらに光学フィルタ50cおよびボールレンズ40cを経てPD素子81に到達する。
 PD素子81で受光された蛍光は光電流に変換されて回路基板5に出力され、回路基板5に設けられた制御回路の信号処理により蛍光物質の有無や量が求められる。その結果は、例えば、状態表示LED7の光や内蔵のブザー(後述する図9(C)のブザー5F)の音により使用者に通知される。回路基板5は、互いに異なる波長を有する励起光L1,L2を交互に試料に照射させ、励起光L1が照射されたときの蛍光L3の強度と励起光L2が照射されたときの蛍光L3の強度とをそれぞれ検出し、それらの比または差に基づき、例えば国際公開第2016/140199号に記載されている蛍光測定法を用いて試料の蛍光物質を検出する。
 図5(A)および図5(B)は、筐体10の斜視図である。筐体10は、例えば、アルミニウム製で、全体にアルマイト加工が施されて表面に黒色の酸化アルミニウム皮膜が形成された部材であり、幅と高さが1.5cm程度、奥行きが2.5cm程度の大きさを有する。筐体10は、開口11a~11c、迷光吸収穴13、溝部14およびねじ穴15を有する。このうち、開口11a~11c、迷光吸収穴13および溝部14はミラーMの位置で互いに連通し、溝部14とねじ穴15も筐体10の上面付近で互いに連通している。
 開口11aは、第1の開口の一例であり、筐体10の上面10aに設けられ、その内部には、図3および図4に示すようにLEDパッケージ21が設置される。開口11bは、第2の開口の一例であり、蛍光検出モジュール3の光の入出力口に相当し、筐体10の前方(本体ケース2の先端2A側)の側面10bに設けられる。開口11bには、図1に示すプローブファイバ4の後端4Bが接続される。開口11cは、第3の開口の一例であり、筐体10の後方(先端2Aとは反対側)の側面10cに設けられ、その内部にはPD素子81が設置される。
 開口11aの内部は、励起光L1,L2が伝搬する光源側の光路12aである。開口11bの内部は、ミラーMで反射した励起光L1,L2およびプローブファイバ4から入射した蛍光L3が伝搬するファイバ側の光路12bである。開口11cの内部は、ミラーMを透過した蛍光L3が伝搬する受光側の光路12cである。このうち、光路12b,12cでは、試料からの蛍光L3が微弱な場合でも検出できるように、アルマイト加工で形成された黒色の被膜が研磨により除去され、それらの内壁は光反射性の鏡面になっている。これに対し、光路12aの内壁では、鏡面加工は施されず、アルマイト加工により形成された光吸収性の黒色表面が残っている。これは、LEDパッケージ21からミラーMに直接向かう鉛直方向の光だけを通し、ミラーMで不規則な方向に反射し得る斜め方向の光を内壁での吸収により除去するためである。
 迷光吸収穴13は、第4の開口の一例であり、光吸収性の内壁を有し、筐体10の下面10dに設けられる。迷光吸収穴13には励起光L1,L2のうちミラーMを透過した光が導かれ、そうした光は、迷光吸収穴13の内壁で繰り返し反射することで吸収される。筐体10の内部空間の底面が穴のない黒い壁面であると、迷光はその壁面だけでは完全には吸収されずノイズのもとになるため、迷光吸収穴13は、迷光を確実に除去するために設けられる。光吸収の効果を高めるためには、迷光吸収穴13の直径をなるべく大きくすることが好ましく、その大きさは、光路12a~12cの直径よりも大きい。迷光吸収穴13を含む筐体10内の光吸収性の内壁は、アルマイト加工の他に、例えば、黒ニッケルメッキなどの非反射コーティング剤や黒色樹脂などで形成してもよい。
 迷光吸収穴13は、図4に示すように、ミラーMの反射面に対して直交する方向に延在し、光路12aおよび光路12b,12cでの光の伝搬方向に対して45度傾斜している。これは、鉛直方向(光路12aの延長線上)に迷光吸収穴13を形成すると、光路12b,12cの一部が迷光吸収穴13のために削られてしまい好ましくないためである。迷光吸収穴13を光の伝搬方向に対して傾斜させることで、迷光吸収穴13の直径が大きくても、鉛直方向を向いている場合と比べて、光路12b,12cのうちで削られる部分が少なくなる。また、向きを斜めにすることで、筐体10が小型であっても、鉛直方向を向いている場合と比べて、迷光吸収穴13を長くすることができる。さらに、向きを斜めにすることで、鉛直方向を向いている場合と比べて、迷光吸収穴13の開口13aが広くなり、迷光が蛍光検出モジュール3から外部に抜け易くなるので、ノイズが少なくなる。これらの理由から、蛍光検出モジュール3では、迷光吸収穴13がミラーMに対して直角に形成されている。
 図5(A)および図5(B)に示すように、筐体10は概ね八角柱状の形状を有し、その表面に突出部は形成されていない。特に、筐体10の下部は迷光吸収穴13の周囲も下方に突出しておらず、図3および図4に示すように、筐体10の下面10dは、開口11a側の端部と、迷光吸収穴13の周囲と、開口11c側の端部とで同一平面である。例えば、筐体10を柱状ではなくT字形状に成型し、迷光吸収穴13の部分を下方に突出させれば、迷光吸収穴13をその分長くすることはできる。しかしながら、それでは蛍光検出モジュール3が大きくなり、それを収容する本体ケース2も大きくなって、使用者が持ちにくいなどの不都合が生じる。迷光吸収穴13を鉛直方向に対して斜めにし、かつ下面10dを平坦面とすることで、筐体10を小型化しつつ、迷光吸収穴13の長さを確保して光吸収の効果を高めることが可能になる。
 溝部14は、ミラーフレーム60を差し込んで筐体10に対して位置決めするためのものであり、筐体10の上面における開口11aと開口11c側の端部との間の位置から鉛直方向に対して斜めに形成されている。ねじ穴15は、図3および図4に示すねじ91用のものである。開口11a~11c、迷光吸収穴13、溝部14およびねじ穴15のうち、迷光吸収穴13と溝部14は、蛍光検出モジュール3では開放状態であるが、それらを塞ぐ蓋(カバー)を設けてもよい。ただし、完成品の蛍光検出装置1では本体ケース2の内壁に覆われて閉じられるため、蛍光検出モジュール3で開放状態であっても特に問題はなく、開放状態のままにした方が、部品点数が少なく済み、製造コストが削減されるので好ましい。
 図6(A)は、光源基板20の斜視図である。光源基板20は、蛍光検出モジュール3(蛍光検出装置1)の光源であるLEDパッケージ21が実装される基板であり、配線パターン22、接続端子23および2個のねじ穴24を有する。光源基板20は、図3および図4に示すように、固定部材30を介して筐体10の上面側に取り付けられる。図6(A)に示す光源基板20の上面は、筐体10に取り付けられた状態では下方(図3および図4における下側)を向いている。LEDパッケージ21は、図2に示した2つのLED素子21A,21Bを1つのパッケージにまとめたものであり、LED素子21A,21Bは、それぞれ、互いに異なる波長(例えば405nmと465nm)の励起光L1,L2を出射する。なお、蛍光検出モジュール3の光源は、LED素子に限らず、例えば半導体レーザでもよい。
 配線パターン22と接続端子23は、LEDパッケージ21に電力を供給するためのものであり、光源基板20の上面に形成されている。接続端子23は、図1に示したFPC6aに接続される。ねじ穴24は、光源基板20を筐体10に対してねじ止めするためのものであり、光源基板20の対角方向に向かい合う角部に1つずつ形成されている。
 図6(B)は、固定部材30の斜視図である。固定部材30は、光源側の開口11aに配置されるボールレンズ40aを固定するための部材であり、放熱性に優れた材料(例えばアルミニウムなどの金属)で構成され、環状壁部31、貫通穴33および2個のねじ穴34を有する。環状壁部31は、図6(B)に示す上面の中央に設けられており、環状壁部31で囲まれる円形空間32には、ボールレンズ40aとそれを受けるOリング41aが配置される。固定部材30は、環状壁部31が開口11aに収まり開口11aを覆うように、上下を逆さまにして筐体10の上面に取り付けられる。貫通穴33は、環状壁部31で囲まれた領域の中央に形成されており、図3および図4に示すように、その内部にLEDパッケージ21が配置される。
 ねじ穴34は、光源基板20の2個のねじ穴24と同じ位置関係で固定部材30の対角方向に向かい合う角部に1つずつ形成されている。ねじ穴24,34の位置を合わせてその中にねじを差し込むことで、光源基板20と固定部材30は筐体10に対して固定される。すなわち、固定部材30は、ボールレンズ40aおよびOリング41aを固定する役割と、光源基板20を固定する役割を兼ねている。
 光源基板20におけるLEDパッケージ21の実装面(固定部材30との接触面)は、レジスト(被覆膜)が設けられておらず配線パターン22が露出した剥き出しの金属面になっている。これは、LEDパッケージ21の発光により生じた熱を金属製の筐体10側に逃がし易くするためである。固定部材30は、光源基板20と筐体10に接触して光源基板20と筐体10の間に配置されているので、光源基板20の実装面は固定部材30に接し、固定部材30は筐体10に接している。筐体10と固定部材30は導通しないように加工されているので、配線パターン22と固定部材30が直接接触しても問題はなく、このような配置により、光源基板20の実装面、固定部材30および筐体10の経路での放熱が可能である。すなわち、固定部材30はLEDパッケージ21の放熱経路としての役割も兼ねている。
 LEDパッケージの放熱に関しては、熱を実装基板の裏側から逃がす形態が一般的である。しかしながら、蛍光検出モジュール3でその形態を採用すると、図3および図4における上側である光源基板20の裏面と本体ケース2との接点を設ける必要があり、放熱のために余計な構造が必要になる。筐体10と一体化した固定部材30を放熱経路として利用することで放熱し易くなるとともに、放熱のための構造が簡素化され、蛍光検出モジュール3の小型化にも寄与する。なお、筐体10を樹脂など金属以外の材料で形成する場合でも、固定部材30をアルミニウムや銅などの放熱性に優れた金属で形成すれば、固定部材30は同様に放熱経路として機能する。また、固定部材30の材料は、熱伝導率の高いものであれば必ずしも金属でなくてもよく、例えば、無機粒子などの熱伝導性フィラーが添加された樹脂(高熱伝導樹脂)であってもよい。
 ボールレンズ40a(レンズ)は、固定部材30の円形空間32内に固定された上で開口11a内に配置され、LEDパッケージ21から出射された励起光L1,L2を集光する。ボールレンズ40bは、開口11b内に配置され、ミラーMで反射してプローブファイバ4に入射する励起光L1,L2、およびプローブファイバ4から光路12b内に入射する蛍光L3を集光する。ボールレンズ40c(他のレンズ)は、開口11c内におけるPD素子81の直前に配置され、ミラーMを透過した蛍光L3を集光する。ボールレンズ40a~40cは、すべて球形で同じ大きさを有しているが、形状および大きさの関係は必ずしもこれに限定されない。例えば、ボールレンズ40a~40cに替えて凸レンズを使用してもよい。
 図3および図4に示すように、ボールレンズ40a~40cは、それぞれゴム製のOリング41a~41cで固定される。Oリング41a~41cは環状部材であるため中心に開口を有し、それらの開口は、いずれも励起光L1,L2または蛍光L3の伝搬方向に面している。このため、Oリング41a~41cは、それぞれ、ボールレンズ40a~40cのレンズ受けであるとともに、ボールレンズ40a~40cに入射する励起光L1,L2または蛍光L3の絞りとしても機能する。特に、蛍光L3は散乱光であるため、PD素子81の手前で光を絞ることが望ましいが、ボールレンズ40cが絞りの機能を兼ねることで、蛍光検出モジュール3内に別部材として絞りを配置する必要がなくなる。この点は、蛍光検出モジュール3の小型化、ならびに部品点数および製造コストの削減の点で有利である。
 光学フィルタ50aは、励起光L1,L2を透過させ、蛍光L3の波長領域の光をカットするフィルタである。例えば、励起光L1,L2のピーク波長を405nmおよび465nmとして、歯垢を検出する場合には、歯垢由来の蛍光L3の波長領域が620~690nm程度であるため、光学フィルタ50aとして500nm以上の波長の光をカットするものを使用するとよい。光学フィルタ50aは、光が透過できるように中心に穴の空いた緩衝ゴム51aとボールレンズ40aとで挟まれて、開口11a内におけるボールレンズ40aの直下に固定されている。
 光学フィルタ50cは、蛍光L3以外の波長領域の光をカットするためのフィルタである。歯垢を検出する場合には、光学フィルタ50cとして、620~690nmを除く波長領域の光をカットするものを使用するとよい。光学フィルタ50cは、同様に中心に穴の空いた緩衝ゴム51cとボールレンズ40cとで挟まれて、開口11c内におけるボールレンズ40cよりも開口11b側の位置に固定されている。ボールレンズ40a,40cおよび光学フィルタ50a,50cはそれぞれゴム製のOリング41a,41cと緩衝ゴム51a,51cとで挟まれているため、耐衝撃性が向上する。
 図7は、ミラーフレーム60の斜視図である。ミラーフレーム60は、ミラーMが固定される枠体(支持部材)であり、図7に示す端部60Aを上側、端部60Bを下側に向けて、筐体10の溝部14内に挿入される。端部60Aに形成された凹部61は、図3および図4に示すねじ91を通すためのねじ溝である。ミラーMは、ビームスプリッタの一例であり、ダイクロイックミラーまたはハーフミラーで構成され、筐体10内で下側となるミラーフレーム60の端部60B寄りの位置に接着される。ミラーMは、光路12aを伝搬する励起光L1,L2の大部分を光路12bに向けて反射するとともに、光路12bを通って入射した蛍光L3を透過させる。なお、ビームスプリッタとして、平面型のミラーMに替えて例えばプリズム型のものを使用してもよく、その形状は特に限定されない。
 図3および図4に示す固定部材70は、ボールレンズ40bを固定するためにOリング41bを押さえる部材であり、開口11bを覆うように取り付けられる。固定部材70は中央に開口71を有し、開口71には、図1に示すプローブファイバ4の後端4Bが固定される。
 受光部基板80は、PD素子81が実装される基板であり、固定部材30と同様に、内部の円形空間にボールレンズ40cとOリング41cとが配置される環状壁部を有し、その部分が開口11cに収まり開口11cを覆うように筐体10の側面に取り付けられる。PD素子81は、受光部基板80における光路12cの延長線上の位置に固定されている。PD素子81は、受光素子の一例であり、光学フィルタ50cおよびボールレンズ40cを透過した蛍光L3を受光し、その強度に応じた光電流を生成して回路基板5に出力する。
 カバー90は、筐体10の開口11c側の側面に取り付けられて受光部基板80を覆う部材であり、カバー90と受光部基板80とを貫通するねじ91により、受光部基板80とともに筐体10に固定される。ねじ91は、固定具の一例であり、図5(B)に示すねじ穴15に差し込まれた状態で、図3および図4に示すように、カバー90から溝部14を越えて固定部材30の環状壁部31の手前まで延びる長さを有する。このため、ミラーフレーム60も、ねじ91により溝部14内に挟持される。すなわち、蛍光検出モジュール3では、ミラーフレーム60、受光部基板80およびカバー90の3つの部材が、1本のねじ91により同時に固定される。このようなミラーフレーム60とねじ91の配置により、3つの部材を3本のねじで別々に固定する必要がなくなるので、蛍光検出モジュール3をその分だけ小型化することができる。
 なお、固定具は、上記の3つの部材を固定できるものであればビスやピンなどでもよく、その種類は特に限定されない。
 図8は、光路12b,12cを伝搬する光の概念図である。図8では、筐体10内のミラーMの周辺を拡大し、ファイバ側の光路12bから受光側の光路12cに向かう蛍光を多数の実線で模式的に示している。試料からの蛍光は拡散光(散乱光)であるため、そのすべてが光路12cの方向に伝搬するわけではなく、一部が光源側の光路12aまたはその反対側の迷光吸収穴13側に反射または屈折し、ミラーMの周囲の空間で損失が発生する。このため、蛍光検出モジュール3では、光路12cの内径dは光路12bの内径dよりも大きい。これにより、内径d,dを同じにした場合と比べてPD素子81での受光量が多くなるため、蛍光L3の伝搬効率(すなわち、蛍光検出装置1の検出感度)が上がる。
 ボールレンズ40bで試料からの入射光を十分に絞れるならば、必ずしも内径dを内径dよりも大きくしなくてもよいが、その場合、開口11a~11cで異なる種類(大きさ)のレンズを使用することになり、製造コストが高くなる。3つのボールレンズ40a~40cとして同じ大きさのものを使用し、かつ内径dを内径dよりも大きくすることで、部品の種類を削減し製造コストを抑えながら、蛍光の伝搬効率を上げることができる。
 迷光吸収穴13は、図3および図4に示すように筐体10の下面に設けられ、蛍光検出モジュール3は、下面を下に向けて蛍光検出装置1の本体ケース2内に設置される。また、図1に示すように、状態表示LED7は本体ケース2の上側に配置されている。すなわち、迷光吸収穴13と状態表示LED7は、本体ケース2の互いに対向する面にそれぞれ配置されている。迷光吸収穴13と状態表示LED7を本体ケース2の同じ側に配置すると、状態表示LED7の光が迷光吸収穴13に入り込んでノイズになるが、両者が互いに反対の位置に配置されているので、状態表示LED7の発光による検出への影響が抑えられる。
 図9(A)~図9(C)は、蛍光検出装置1の回路構成の説明図である。このうち、図9(A)は、光源基板20、受光部基板80、FPC6a,6cおよび回路基板5の接続関係を模式的に示している。図9(A)に示すように、FPC6aは光源基板20と回路基板5とを、FPC6cは受光部基板80と回路基板5とをそれぞれ電気的に接続する。FPC6cには、PD素子81からの光電流を電圧に変換する電流電圧変換回路(トランスインピーダンスアンプ)が搭載されている。
 図9(B)および図9(C)は、それぞれ、回路基板5の模式的な上面図および下面図である。回路基板5に実装されている回路素子には、バンドパスフィルタ52、ロックインアンプ53,57、A/Dコンバータ54,58、LEDドライバ55およびCPU56(マイクロコンピュータ)が含まれる。このうち、バンドパスフィルタ52およびロックインアンプ53,57はアナログ素子、A/Dコンバータ54,58はアナログとデジタルが混在した素子、LEDドライバ55およびCPU56はデジタル素子である。
 蛍光検出装置1は2相のロックインアンプを使用して蛍光強度を検出するため、回路基板5は、2系統(2組)のロックインアンプとA/Dコンバータを有する。アナログ回路とデジタル回路は分離して配置することが望ましいが、回路基板5ではそれらが2系統あるため、すべてを基板の1面に収めようとすると配置が複雑になる。また、例えばアナログ回路を基板の上面に、デジタル回路を基板の下面に分けて配置すると、電源配線の取り回しが難しくなる。このため、回路基板5では、2系統のロックインアンプとA/Dコンバータが上面と下面に1系統ずつ配置されている。すなわち、回路基板5の上面には、励起光L1が照射されたときの蛍光L3の強度を検出するための第1の制御回路が配置され、回路基板5の下面には、励起光L2が照射されたときの蛍光L3の強度を検出するための第2の制御回路が配置されている。
 その上で、回路基板5では、蛍光検出モジュール3に近い図中左側にアナログ素子のバンドパスフィルタ52およびロックインアンプ53,57が、電池9に近い図中右側にデジタル素子のLEDドライバ55およびCPU56が、両者の中央付近にアナログとデジタルの両方を扱うA/Dコンバータ54,58が、それぞれ配置されている。すなわち、アナログ素子は回路基板5の上面および下面における一方の側に、デジタル素子は回路基板5の上面および下面における他方の側に、それぞれ分かれて実装されている。図9(B)および図9(C)における符号5A,5Bは、それぞれ上面のアナログ回路およびデジタル回路(第1の制御回路)を、符号5C,5Dは、それぞれ下面のアナログ回路およびデジタル回路(第2の制御回路)を、符号5Eは電源回路を示している。
 このような配置により、アナログ回路とデジタル回路を容易に分離することができ、すべての素子を基板の片面に配置した場合と比べて基板の面積が小さくなるので、小型化の効果も得られる。
 なお、図9(C)における符号8は操作スイッチであり、符号5Fは、検出の有無などの蛍光検出装置1の状態を使用者に通知するためのブザーである。ブザー5Fはノイズ源であるため、回路基板5の下面において、アナログ回路5C側から最も離れた電源回路5Eの近くに配置されている。図示しないが、状態表示LED7は、上面側のアナログ回路5Aにおけるバンドパスフィルタ52とロックインアンプ53の間に配置されている。
 以上説明した蛍光検出モジュール3は、小型かつ軽量であり、励起光の照射と蛍光の検出を同軸で行うことができる。蛍光検出モジュール3を含む蛍光検出装置1を歯科用の検査装置として用いれば、プローブファイバ4を例えば目視が困難な歯の隙間や深部などに挿入することで、検出対象の試料が生成する微弱な蛍光やその光学特性の変化を離れた位置から検出することができる。光源に可視光領域のLEDを使用することにより、安全性が確保され、消費電力も少なくなる。環境光をフィルタリング処理にてカットすることもできるため、蛍光検出装置1は、検出場所を選ばず、生活環境下においても使用可能である。なお、LEDパッケージ21の発光波長や光学フィルタ50a,50cの特性は、検出対象に応じて自由に選択することができ、検査光としては、反射光などの蛍光以外の光も検出可能である。

Claims (9)

  1.  試料への照射光を出射する光源と、
     前記照射光を入出力口に向けて反射するとともに、前記入出力口を通って入射した試料からの検査光を透過させるビームスプリッタと、
     前記検査光を受光する受光素子と、
     前記ビームスプリッタを内蔵する筐体であって、
      前記光源が設置されて前記照射光が伝搬する第1の開口、
      前記入出力口に相当する第2の開口、
      前記受光素子が設置される第3の開口、および
      前記照射光のうち前記ビームスプリッタを透過した迷光が導かれる第4の開口を有する筐体と、を有し、
     前記第1から第4の開口は前記ビームスプリッタの位置で互いに連通し、
     前記第4の開口は前記ビームスプリッタの反射面に対して直交する方向に延在する、
     ことを特徴とする光検出モジュール。
  2.  前記第1の開口は前記筐体の上面に、前記第2および第3の開口は前記筐体の互いに対向する側面にそれぞれ設けられ、
     前記ビームスプリッタは支持部材に、前記受光素子は受光部基板にそれぞれ固定され、
     前記支持部材は、前記筐体の上面における前記第1の開口と前記第3の開口側の端部との間の位置から斜め方向に形成された溝部内に配置され、前記第3の開口側の側面から挿入された固定具で前記受光部基板とともに前記筐体に対して固定されている、請求項1に記載の光検出モジュール。
  3.  前記第4の開口は前記筐体の下面に設けられ、
     前記筐体の下部は前記第4の開口の周囲で下方に突出しておらず、
     前記筐体の下面は、前記第1の開口側の端部と、前記第4の開口の周囲と、前記第3の開口側の端部とで同一平面である、請求項2に記載の光検出モジュール。
  4.  前記第3の開口における光路の内径は、前記第2の開口における光路の内径よりも大きい、請求項1~3のいずれか一項に記載の光検出モジュール。
  5.  前記光源は光源基板に実装され、
     前記光検出モジュールは、
      前記第1の開口内に配置され前記照射光を集光するレンズと、
      前記レンズを固定するための固定部材であって、前記光源基板と前記筐体に接触して前記光源基板と前記筐体の間に配置された熱伝導性の固定部材と、をさらに有し、
     前記光源基板の前記固定部材との接触面では、被覆膜が設けられておらず、前記光源の配線パターンが露出している、請求項1~4のいずれか一項に記載の光検出モジュール。
  6.  前記第3の開口内に配置され前記検査光を集光する他のレンズと、
     前記他のレンズを固定するための環状部材と、をさらに有し、
     前記環状部材の開口は、前記検査光の伝搬方向に面しており、前記検査光の絞りとして機能する、請求項5に記載の光検出モジュール。
  7.  請求項1~6のいずれか一項に記載の光検出モジュールと、
     前記入出力口に接続された光ファイバと、
     前記光源を駆動し、前記受光素子で受光された前記検査光の強度を検出するための回路基板と、
     前記光検出モジュールおよび前記回路基板を内蔵する本体ケースと、
     を有することを特徴とする光検出装置。
  8.  使用者への状態表示のための発光部をさらに有し、
     前記第4の開口と前記発光部は、前記本体ケースの互いに対向する面にそれぞれ配置されている、請求項7に記載の光検出装置。
  9.  前記光源は、前記照射光として第1の波長の光を出射する第1の発光素子、および前記照射光として第2の波長の光を出射する第2の発光素子を有し、
     前記回路基板の上面には、前記第1の波長の光が照射されたときの前記検査光の強度を検出するための第1の制御回路が、前記回路基板の下面には、前記第2の波長の光が照射されたときの前記検査光の強度を検出するための第2の制御回路がそれぞれ配置され、
     前記第1および第2の制御回路のうちアナログ素子は、前記回路基板の上面および下面における一方の側に、前記第1および第2の制御回路のうちデジタル素子は、前記回路基板の上面および下面における他方の側に、それぞれ分かれて実装されている、請求項7または8に記載の光検出装置。
PCT/JP2019/032066 2018-08-27 2019-08-15 光検出モジュールおよび光検出装置 WO2020045110A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980055666.8A CN112639447B (zh) 2018-08-27 2019-08-15 光检测模块以及光检测装置
US17/268,730 US20210302314A1 (en) 2018-08-27 2019-08-15 Light detection module and light detection device
JP2020539343A JP7308209B2 (ja) 2018-08-27 2019-08-15 光検出モジュールおよび光検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-158207 2018-08-27
JP2018158207 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020045110A1 true WO2020045110A1 (ja) 2020-03-05

Family

ID=69644523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032066 WO2020045110A1 (ja) 2018-08-27 2019-08-15 光検出モジュールおよび光検出装置

Country Status (4)

Country Link
US (1) US20210302314A1 (ja)
JP (1) JP7308209B2 (ja)
CN (1) CN112639447B (ja)
WO (1) WO2020045110A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11872355B2 (en) * 2020-09-04 2024-01-16 Covidien Lp Medical device for detecting fluid parameters using fluorescent probes
CN113984663A (zh) * 2021-10-28 2022-01-28 中国人民解放军海军特色医学中心 一种光学检测装置及其工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069822A (ja) * 2003-08-22 2005-03-17 Horiba Ltd 二酸化硫黄分析計における励起光選択ユニット
US20080144028A1 (en) * 2005-03-03 2008-06-19 Roman Gruler Fluorescence Meter
JP2008537993A (ja) * 2005-01-13 2008-10-02 ザ・キュレイターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ 超高感度分光光度計
US20170099429A1 (en) * 2011-06-08 2017-04-06 Carl Zeiss Microscopy Gmbh Autofocus method for microscope and microscope comprising autofocus device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334381B2 (ja) * 1994-12-02 2002-10-15 三菱電機株式会社 光半導体素子モジュール
JPH08234061A (ja) * 1995-02-24 1996-09-13 Kyocera Corp 光通信用モジュール
JP3557966B2 (ja) * 1999-11-09 2004-08-25 日本電気株式会社 遮光フィルタ付き光通信モジュール
JP2004125554A (ja) * 2002-10-01 2004-04-22 Olympus Corp ミラー角度検出装置
JP4412142B2 (ja) * 2003-12-19 2010-02-10 Tdk株式会社 光ヘッド
JP2005202156A (ja) * 2004-01-15 2005-07-28 Tdk Corp 光モジュール
JP4859089B2 (ja) * 2005-03-14 2012-01-18 株式会社リコー 抽出光学系、光ピックアップ装置及び光ディスク装置
JP4822548B2 (ja) * 2007-04-23 2011-11-24 レーザーテック株式会社 欠陥検査装置
JP5493599B2 (ja) * 2009-08-28 2014-05-14 株式会社ニコン 多チャンネルスペクトラム光源装置
JP2012127897A (ja) * 2010-12-17 2012-07-05 Hitachi Ltd 内部欠陥検査方法及びその装置
JP2012202911A (ja) * 2011-03-28 2012-10-22 Fujifilm Corp 分析チップ
CN102507523A (zh) * 2011-11-09 2012-06-20 大连理工大学 基于oled和opd的层叠垂直式集成毛细管电泳芯片
JP6058977B2 (ja) * 2012-11-15 2017-01-11 シャープ株式会社 蛍光検出装置
JP6323057B2 (ja) * 2014-02-23 2018-05-16 オムロン株式会社 光電センサ
JP2016038302A (ja) * 2014-08-08 2016-03-22 株式会社日立ハイテクノロジーズ 欠陥検査装置及び欠陥検査方法
WO2016140199A1 (ja) * 2015-03-02 2016-09-09 シチズンホールディングス株式会社 光測定装置及びこれを備えた歯ブラシ
CN205120568U (zh) * 2015-10-22 2016-03-30 上海良相智能化工程有限公司 一种多光谱足迹搜索仪
JP6659363B2 (ja) * 2016-01-13 2020-03-04 テルモ株式会社 蛍光検出装置
JP6676974B2 (ja) * 2016-01-14 2020-04-08 コニカミノルタ株式会社 対象物検出装置
JP6833545B2 (ja) * 2017-02-10 2021-02-24 株式会社東芝 レンズミラーアレイ及び画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069822A (ja) * 2003-08-22 2005-03-17 Horiba Ltd 二酸化硫黄分析計における励起光選択ユニット
JP2008537993A (ja) * 2005-01-13 2008-10-02 ザ・キュレイターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ 超高感度分光光度計
US20080144028A1 (en) * 2005-03-03 2008-06-19 Roman Gruler Fluorescence Meter
US20170099429A1 (en) * 2011-06-08 2017-04-06 Carl Zeiss Microscopy Gmbh Autofocus method for microscope and microscope comprising autofocus device

Also Published As

Publication number Publication date
CN112639447A (zh) 2021-04-09
JP7308209B2 (ja) 2023-07-13
JPWO2020045110A1 (ja) 2021-09-24
US20210302314A1 (en) 2021-09-30
CN112639447B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
KR102491854B1 (ko) 분광기
TWI578049B (zh) 光電耦合模組
WO2020045110A1 (ja) 光検出モジュールおよび光検出装置
JP2006510015A (ja) 濁度センサ
US6061374A (en) Laser diode integrating enclosure and detector
JP2012220352A (ja) 気体成分検出装置
JP2018181191A (ja) 煙感知器用光センサ
WO2023116847A1 (zh) 荧光检测装置和用于荧光物质检测的手持设备
JP6994574B2 (ja) 内視鏡用光源装置、内視鏡、および、内視鏡システム
JP2018128905A (ja) 煙感知器用光センサ
JP2007271512A (ja) 光電センサ
JP2019158588A (ja) 限定反射型センサ
JP5332713B2 (ja) 光センサーおよび計測システム
JP4315280B2 (ja) 炎感知器
CN113008787A (zh) 光源装置及光学检测系统
JP4636900B2 (ja) 透過型光電スイッチ用センサヘッド
WO2014045669A1 (ja) 線状光源装置
US11953733B2 (en) Light source unit and optical head
CN217359610U (zh) 高性能光纤荧光探测器
JP2019013410A (ja) 検出装置および生体情報測定装置
KR100707264B1 (ko) 광 모듈
CN215492063U (zh) 光源装置
JPH11174269A (ja) 導光ユニット及び小型電子機器
JP2005321344A (ja) 比色分析装置
JP6210697B2 (ja) 試料分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856155

Country of ref document: EP

Kind code of ref document: A1