WO2020042912A1 - Noyau de segment et moteur à flux axial - Google Patents

Noyau de segment et moteur à flux axial Download PDF

Info

Publication number
WO2020042912A1
WO2020042912A1 PCT/CN2019/100587 CN2019100587W WO2020042912A1 WO 2020042912 A1 WO2020042912 A1 WO 2020042912A1 CN 2019100587 W CN2019100587 W CN 2019100587W WO 2020042912 A1 WO2020042912 A1 WO 2020042912A1
Authority
WO
WIPO (PCT)
Prior art keywords
smc
iron core
laminated
segmented
core
Prior art date
Application number
PCT/CN2019/100587
Other languages
English (en)
Chinese (zh)
Inventor
汤磊
陈坤林
李一雄
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811008350.7A external-priority patent/CN108736597B/zh
Priority claimed from CN201811008331.4A external-priority patent/CN108696005B/zh
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Priority to US17/272,038 priority Critical patent/US11929641B2/en
Priority to JP2021511601A priority patent/JP7153403B2/ja
Priority to EP19854152.6A priority patent/EP3846318A4/fr
Publication of WO2020042912A1 publication Critical patent/WO2020042912A1/fr
Priority to US18/393,691 priority patent/US20240128807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the invention relates to the technical field of motors, and more particularly, to a segmented iron core and a disc motor.
  • the disc core of a disc motor is divided into an integral core and a segmented core.
  • the disc core is a segmented core.
  • segmented iron cores are generally formed by stacking a variety of silicon steel sheets with different cross-section sizes or by integrally forming an SMC. It is made by laminating multiple silicon steel sheets with different cross-section sizes. More types of silicon steel sheets lead to the need for more specifications of the mold, which increases the difficulty of the process. There are also methods that use SMC integrated molding, although it is easy to mold. Poor electromagnetic performance, low magnetic permeability and large losses.
  • the technical problem to be solved by the present invention is how to improve the electromagnetic performance based on reducing the manufacturing difficulty of the segmented iron core.
  • the present invention provides a segmented iron core and a disc motor.
  • the present invention provides the following technical solutions:
  • a segmented iron core includes a laminated iron core and an SMC iron core, the SMC iron core is spliced and covered on the outer periphery of the laminated iron core, and the SMC iron core is spliced and installed inside a prefabricated coil, or the The SMC core is directly wound around the coil.
  • the SMC iron core includes a first SMC iron core and a second SMC iron core, and the first SMC iron core and the second SMC iron core are covered with the laminated iron by splicing.
  • the first SMC iron core and the second SMC iron core are spliced and installed inside a prefabricated coil or the coil is directly wound around the outer periphery of the SMC iron core.
  • the first SMC iron core includes an SMC wire rod and an SMC embedded groove adapted to the laminated core, and the SMC embedded groove is a non-penetrating structure or a penetrating structure.
  • an end of the SMC wire rod facing away from the embedded groove of the SMC is provided with an SMC pole shoe.
  • an end of the SMC bar near the embedded groove of the SMC is provided with a first positioning protrusion and / or a first positioning hole adapted to the second SMC core.
  • one end of the SMC wire rod provided with the SMC embedded groove is provided with a second positioning protrusion and / or a second positioning hole adapted to the second SMC iron core.
  • the first positioning protrusion and the first positioning hole are symmetrically disposed, and the The size of the first positioning protrusion is matched with the size of the first positioning hole;
  • the second positioning protrusion and the second positioning hole are provided at the same time, the second positioning protrusion and the second positioning hole are arranged symmetrically, and the size and position of the second positioning protrusion The size of the second positioning hole is adapted.
  • the structure of the second SMC iron core is the same as that of the first SMC iron core.
  • the laminated core is formed by laminating a plurality of laminated sheets, and the laminated sheet is a silicon steel sheet or an amorphous alloy sheet.
  • the laminated core is formed by laminating laminated sheets of the same size, or the laminated core is formed by laminating multiple pieces of tapered sheets.
  • the invention also discloses a disc motor, which includes a first stator plate, a segmented iron core, a stator internal support, a second stator plate, and a casing.
  • Each segmented iron core is composed of the first stator plate and the second stator.
  • the cleat and the stator are internally supported and fixed in the casing, and the segmented iron core is the segmented iron core according to any one of the above.
  • the segmented core in the present invention uses the SMC core to cover the entire exterior of the laminated core.
  • the difficult-to-machine shape is processed by the easily-formable SMC core.
  • the overall structure of the laminated core is relatively single, so The number of molds for processing laminated cores is small, and the molds are easy to process, which reduces the processing difficulty of the segmented cores.
  • the electromagnetic performance of the segmented iron core is higher than that of the SMC material alone, and the utilization rate of the iron core is higher than that of the laminated core alone.
  • the SMC core is a spliced structure
  • the SMC core is spliced and installed inside a pre-made coil, such as a rectangular copper wire pre-formed coil. Therefore, no winding is required, and production efficiency is improved.
  • the coil is wound directly around the SMC core.
  • the invention also discloses another segmented iron core, which includes a laminated iron core and an SMC iron core wound with a coil.
  • the SMC iron core is covered on the outer peripheral surface of the laminated iron core.
  • the SMC iron core includes an SMC wire rod and an SMC embedded groove provided in the SMC wire rod, wherein an outer peripheral surface of the SMC wire rod is used for setting a coil, and the SMC The built-in groove is used to install the laminated core.
  • a first SMC pole shoe is provided on one end surface of the SMC wire rod.
  • a second SMC pole shoe is provided on an end surface of the SMC wire rod opposite to the first SMC pole shoe.
  • the SMC embedded groove has a rectangular structure.
  • the SMC embedded groove is provided with a plurality of step portions.
  • the laminated core is formed by laminating multiple laminated sheets, and the laminated sheet is a silicon steel sheet, an amorphous alloy sheet, a permalloy sheet, or an iron-cobalt alloy sheet.
  • the laminated core is formed by laminating laminated sheets of the same size.
  • the laminated core is formed by laminating a plurality of laminated pieces with gradually smaller sizes.
  • the invention also discloses a disc motor including a segmented iron core according to any one of the above.
  • the segmented iron core in the present invention is covered with the SMC iron core on the outer peripheral surface of the laminated core, and the shape that is not easy to be processed is processed by the easily formed SMC core.
  • the overall structure of the sheet iron core is relatively single. Therefore, the mold specifications for processing the laminated core are less, and the mold is easy to process, which reduces the processing difficulty of the segmented iron core.
  • the electromagnetic performance of the segmented iron core is higher than that of the SMC material alone, and the utilization rate of the iron core is higher than that of the laminated core alone.
  • FIG. 1 is a schematic diagram of an explosion structure of a segmented iron core according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a segmented iron core according to an embodiment of the present invention after splicing;
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a first SMC core provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an explosion structure of another segmented iron core according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an explosion structure of yet another segmented iron core according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a three-dimensional structure after stitching of another segmented iron core according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an explosion structure of still another segmented iron core according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a three-dimensional structure after the splicing of another segmented iron core according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural perspective view of a disc motor provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an explosion structure of still another disc motor according to an embodiment of the present invention.
  • FIG. 11 is a schematic perspective structural diagram of still another disc motor according to an embodiment of the present invention.
  • FIG. 12 is a schematic perspective view of another SMC iron core structure according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an explosion structure of yet another segmented iron core according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an explosion structure of yet another segmented iron core according to an embodiment of the present invention.
  • 100 is an SMC core
  • 200 is a laminated core
  • 300 is a coil
  • 400 is a first stator plate
  • 500 is a second stator plate
  • 600 is a stator internal support
  • 700 is a machine.
  • 101 is the first SMC core
  • 102 is the second SMC core
  • 1011 is the SMC wire rod
  • 1012 is the SMC embedded slot
  • 1013 is the SMC pole shoe
  • 1014 is the first positioning protrusion
  • 1015 is the first positioning Hole
  • 1016 is the second positioning protrusion
  • 1017 is the second positioning hole
  • 100 ' is the SMC core
  • 200' is the laminated core
  • 300 ' is the coil
  • 101' is the SMC bar
  • 102 ' is the SMC embedded slot
  • 103' is the first SMC pole shoe.
  • 1021' denotes a stepped portion.
  • Disk motor is also called axial magnetic field motor.
  • the direction of the magnetic field inside the motor is along the axial direction. Because axial magnetic field motors are generally flat, they are also called disk motors.
  • Soft magnetic composite material is a magnetic core made of pressed iron powder coated with a special insulating material, which can be manufactured into flexible shapes according to actual needs.
  • the core of the present invention is to provide a segmented iron core and a disc motor to improve the electromagnetic performance on the basis of reducing the manufacturing difficulty of the segmented iron core.
  • the segmented iron core disclosed in the embodiment of the present invention includes a laminated iron core 200 and an SMC iron core 100.
  • the SMC iron core 100 is spliced and covered on the outer periphery of the laminated iron core 200.
  • the SMC iron core After being spliced and installed inside the pre-made coil, or the coil is directly wound around the outer periphery of the SMC core.
  • the segmented iron core in the present invention uses the SMC iron core 100 to cover the entire exterior of the laminated iron core 200.
  • the difficult-to-machine shape is processed by the easily-formable SMC iron core 100.
  • the overall structure of the laminated iron core 200 is relatively single, so The specifications of the mold for processing the laminated core 200 are small, and the mold is easy to process, which reduces the processing difficulty of the segmented core.
  • the electromagnetic performance of the segmented iron core is higher than that of the SMC material alone, and the utilization rate of the iron core is higher than that of the laminated core 200 alone.
  • the SMC iron core 100 is a spliced structure
  • the SMC iron core 100 is spliced and installed inside a prefabricated coil, such as a rectangular copper wire preformed coil. Therefore, no winding is required, and production efficiency is improved.
  • the coil is directly wound around the outer periphery of the SMC core 100.
  • the SMC core 100 can cover the entire outside of the laminated core 200, and the laminated core 200 is all located inside the SMC core 100.
  • the SMC core 100 covers the outer periphery of the laminated core 200, and the two ends of the laminated core 200 are not wrapped.
  • the SMC iron core 100 covers the entire periphery or a part of the periphery of the laminated core 200, and when a part of the periphery is wrapped, a part of the laminated core 200 is exposed to the outside, and a part of the laminated core 200 may be exposed to the outside, or both ends may be partially exposed to the outside.
  • the SMC iron core 100 includes a first SMC iron core 101 and a second SMC iron core 102.
  • the first SMC iron core 101 and the second SMC iron core 102 are covered by splicing to cover the entire exterior of the laminated iron core 200.
  • the core 101 and the second SMC iron core 102 are spliced and installed inside a prefabricated coil 300 (for example, a rectangular copper wire preformed coil) or the coil 300 is directly wound around the outer periphery of the SMC iron core 100.
  • the shape of the SMC embedded groove 1012 in the embodiment of the present invention matches the shape of the laminated core 200.
  • the SMC embedded groove 1012 has a rectangular structure; or the SMC embedded groove 1012 is provided. There are multiple steps.
  • the structures of the first SMC iron core 101 and the second SMC iron core 102 are the same or different.
  • the first SMC core 101 includes an SMC wire rod 1011 and an SMC embedded groove 1012 adapted to the laminated core 200.
  • the SMC embedded groove 1012 is a non-penetrating structure or a penetrating structure. .
  • the embedded grooves in the first SMC iron core 101 and the second SMC iron core 102 are butted, and spliced into the entire laminated core 200 Shape structure.
  • an end of the SMC wire rod 1011 facing away from the SMC embedded groove 1012 is provided with an SMC pole shoe 1013.
  • an end of the SMC wire rod 1011 near the SMC embedded groove 1012 is provided with a first positioning protrusion adapted to the second SMC iron core 102. From 1014 and / or the first positioning hole 1015.
  • the first positioning protrusion 1014 of the first SMC core 101 and the first positioning hole 1015 of the second SMC core 102 are matched, and the first positioning hole 1015 of the first SMC core 101 and the second SMC core 102 The first positioning protrusion 1014 cooperates.
  • the first SMC iron core 101 may be provided with only one of the first positioning protrusion 1014 and the first positioning hole 1015, or both of them may be provided, and the second SMC iron core 102 is provided with a corresponding structure corresponding thereto. Just cooperate.
  • an end of the SMC wire rod 1011 near the SMC embedded groove 1012 is provided with a second positioning protrusion 1016 and / or a second positioning hole 1017 adapted to the second SMC core 102.
  • the first positioning protrusion 1014 of the first SMC core 101 and the second positioning hole 1017 of the second SMC core 102 are matched, and the first positioning hole 1017 of the first SMC core 101 and the second SMC core 102
  • the second positioning protrusion 1016 cooperates.
  • the first SMC iron core 101 may be provided with only one of the second positioning protrusion 1016 and the second positioning hole 1017, or both of them may be provided, and the second SMC iron core 102 is provided with a corresponding structure corresponding thereto. Just cooperate.
  • the first positioning protrusion 1014 and the first positioning hole 1015 are arranged symmetrically, and the size of the first positioning protrusion 1014 is similar to that of the first positioning hole 1015.
  • the second positioning protrusion 1016 and the second positioning hole 1017 are symmetrically arranged, and the size of the second positioning protrusion 1016 and the size of the second positioning hole 1017 are matched.
  • the first SMC iron core 101 and the second SMC iron core 102 have the same structure, and the first SMC iron core 101 and the second SMC iron core 102 can be processed using the same mold.
  • the laminated core 200 is formed by laminating multiple laminated sheets, and the laminated sheet is a silicon steel sheet or an amorphous alloy sheet.
  • the structure of the laminated sheet for laminated laminated core 200 is relatively simple. For example, to facilitate the processing of a rectangular structure, laminated sheets of the same size can form a laminated sheet of rectangular structure during the laminated process. Iron core 200.
  • the laminated core 200 may be formed by laminating multiple laminated pieces of different sizes.
  • the lamination core 200 is formed by laminating three laminations with gradually smaller sizes, each of which The middle laminations have the same size and the adjacent segments have different sizes.
  • the invention also discloses a disc motor, which includes a first stator plate 400, a segmented iron core, a stator internal support 600, a second stator plate 500, and a casing 700.
  • Each of the segmented iron cores is composed of the first stator plate 400, the second The stator clamp plate 500 and the stator inner support 600 are fixed in the housing 700, and the segmented iron core is a segmented iron core as in any one of the above. Since the above-mentioned segmented iron core has the above advantages, the disc motor including the above-mentioned segmented iron core also has corresponding effects, which will not be repeated here.
  • the segmented iron core disclosed in the embodiment of the present invention includes an SMC iron core 100 ′ and a laminated iron core 200 ′ wound around a coil 300 ′.
  • the SMC iron core 100 ′ is covered on the laminated iron core 200. 'The peripheral surface.
  • the segmented iron core in the present invention is covered with the SMC iron core 100 'on the outer peripheral surface of the laminated iron core 200'.
  • the shape that is not easy to be processed is processed by the easily formed SMC iron core 100 ', and the overall structure of the laminated iron core 200' Relatively single, therefore, there are fewer mold specifications for processing the laminated core 200 ', and the mold is easy to process, which reduces the processing difficulty of the segmented core.
  • the electromagnetic performance of the segmented iron core is higher than that of using only SMC material, and the utilization ratio of the iron core is higher than that of simply using laminated core 200 '.
  • the SMC core 100 covers the outer peripheral surface of the laminated core 200', and both ends of the laminated core 200 'are not wrapped.
  • the SMC core 100 ' covers the entire outer peripheral surface of the laminated core 200', or a part of the outer peripheral surface.
  • a part of the laminated core 200 ' is exposed to the outside, and a part of the laminated core 200' may be exposed to the outside, or two The end has a portion exposed.
  • the SMC core 100 ' includes an SMC wire rod 101' and an SMC embedded groove 102 'provided in the SMC wire rod 101', wherein an outer peripheral surface of the SMC wire rod 101 'is used to set a coil 300' and an SMC embedded groove 102 ' Install the laminated core 200 '.
  • the shape of the SMC embedded groove 102 ′ matches the shape of the outer peripheral surface of the laminated core 200 ′.
  • the SMC embedded groove 102 ′ has a rectangular structure; or The SMC embedded groove 102 'is provided with a plurality of step portions 1021'.
  • one end face of the SMC wire rod 101 ' is provided with a first SMC pole shoe 103'.
  • a second SMC pole shoe 104 ' is provided on an end surface of the SMC wire rod 101' opposite to the first SMC pole shoe 103 '.
  • the laminated core 200 ' is formed by laminating multiple laminated sheets, and the laminated sheets are silicon steel sheets, amorphous alloy sheets, permalloy sheets, or iron-cobalt alloy sheets.
  • the structure of the laminated sheet used for laminated laminated core 200 ′ is relatively simple. For example, to facilitate processing of a rectangular structure, laminated sheets of the same size can form a rectangular laminated sheet during the laminating process. Sheet iron core 200 '.
  • the laminated core 200 ′ may be laminated by laminating multiple pieces with different sizes.
  • the lamination core 200 ' is formed by laminating multiple pieces of gradually smaller laminations, as shown in the figure.
  • the structure with three sections of laminations is introduced in detail, in which the size of the laminations in each section is the same and the sizes of adjacent sections are different.
  • the invention also discloses a disc motor including a segmented iron core according to any one of the above. Since the above-mentioned segmented iron core has the above advantages, the disc motor including the above-mentioned segmented iron core also has corresponding effects, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

La présente invention concerne un noyau de segment et un moteur à flux axial. Le noyau de segment est formé en recouvrant un noyau SMC (100, 100') sur une surface périphérique externe d'un noyau stratifié (200, 200'). Une surface externe du noyau de segment, qui est difficile à traiter, est formée en traitant le noyau SMC facile à façonner (100, 100'). L'ensemble de la structure du noyau stratifié (200, 200') est relativement simple. Par conséquent, un moule de traitement du noyau stratifié (200, 200') nécessite des spécifications simples. De plus, le moule peut être utilisé pour effectuer facilement un traitement, ce qui réduit les difficultés du traitement du noyau de segment. Le noyau de segment présente des performances électromagnétiques supérieures à celles d'un noyau de segment n'utilisant qu'un matériau SMC. De plus, il présente un taux d'utilisation du noyau supérieur à celui d'un noyau de segment n'utilisant qu'un noyau stratifié (200, 200').
PCT/CN2019/100587 2018-08-31 2019-08-14 Noyau de segment et moteur à flux axial WO2020042912A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/272,038 US11929641B2 (en) 2018-08-31 2019-08-14 Segmented core with laminated core installed in SMC embedded groove
JP2021511601A JP7153403B2 (ja) 2018-08-31 2019-08-14 セグメントコア及びディスクモータ
EP19854152.6A EP3846318A4 (fr) 2018-08-31 2019-08-14 Noyau de segment et moteur à flux axial
US18/393,691 US20240128807A1 (en) 2018-08-31 2023-12-22 Segment core and axial flux motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811008350.7A CN108736597B (zh) 2018-08-31 2018-08-31 一种分段铁芯以及盘式电机
CN201811008331.4 2018-08-31
CN201811008331.4A CN108696005B (zh) 2018-08-31 2018-08-31 一种分段铁芯以及盘式电机
CN201811008350.7 2018-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/272,038 A-371-Of-International US11929641B2 (en) 2018-08-31 2019-08-14 Segmented core with laminated core installed in SMC embedded groove
US18/393,691 Continuation US20240128807A1 (en) 2018-08-31 2023-12-22 Segment core and axial flux motor

Publications (1)

Publication Number Publication Date
WO2020042912A1 true WO2020042912A1 (fr) 2020-03-05

Family

ID=69645038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100587 WO2020042912A1 (fr) 2018-08-31 2019-08-14 Noyau de segment et moteur à flux axial

Country Status (4)

Country Link
US (2) US11929641B2 (fr)
EP (1) EP3846318A4 (fr)
JP (1) JP7153403B2 (fr)
WO (1) WO2020042912A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230018438A1 (en) * 2021-07-16 2023-01-19 GM Global Technology Operations LLC Hybrid stator core segments for axial flux motors
US20230047862A1 (en) * 2021-08-13 2023-02-16 GM Global Technology Operations LLC Segmented stator core design
US11646611B2 (en) 2021-07-28 2023-05-09 GM Global Technology Operations LLC Locking mechanism for segmented stator core
US11689073B2 (en) 2021-08-13 2023-06-27 GM Global Technology Operations LLC Rotor core design

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937915B (zh) * 2021-09-09 2023-09-26 北京交通大学 一种采用复合材料的轴向磁通定子铁心
CN116707174A (zh) * 2022-02-28 2023-09-05 通用汽车环球科技运作有限责任公司 包括带有smc部件和具有锁定机构的层压部件的混合定子芯的轴向磁通电机
CN116780795A (zh) * 2022-03-10 2023-09-19 通用汽车环球科技运作有限责任公司 包括具有软磁复合材料部分和层压层的绝缘混合定子芯的轴向磁通电机
CN115498790A (zh) * 2022-09-09 2022-12-20 华为数字能源技术有限公司 轴向电机、动力总成及电动设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184628A (ja) * 1998-12-10 2000-06-30 Sanyo Electric Co Ltd モータのステータ
CN101783537A (zh) * 2009-01-19 2010-07-21 德昌电机(深圳)有限公司 一种用于电机的铁心组合
CN105262247A (zh) * 2015-10-22 2016-01-20 珠海格力电器股份有限公司 定子铁芯结构组件、电机、压缩机及空调器
CN206461445U (zh) * 2017-02-14 2017-09-01 东莞市德玛电子有限公司 一种定子单体
CN108696005A (zh) * 2018-08-31 2018-10-23 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机
CN108736597A (zh) * 2018-08-31 2018-11-02 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机
CN208674978U (zh) * 2018-08-31 2019-03-29 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机
CN209001686U (zh) * 2018-08-31 2019-06-18 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2A (en) * 1826-12-15 1836-07-29 mode of manufacturing wool or other fibrous materials
JP3623269B2 (ja) * 1994-04-15 2005-02-23 コールモージェン・コーポレーション アキシャル・エアギャップ・モータ
US5536985A (en) * 1994-05-09 1996-07-16 General Motors Corporation Composite armature assembly
GB2293281A (en) * 1994-08-08 1996-03-20 British Nuclear Fuels Plc An energy storage and conversion apparatus
US6069431A (en) * 1998-02-06 2000-05-30 Isuzu Ceramics Research Institute Co., Ltd. Synchronous generator
US6232681B1 (en) * 2000-03-23 2001-05-15 Delco Remy International, Inc. Electromagnetic device with embedded windings and method for its manufacture
TW553555U (en) * 2001-09-26 2003-09-11 Jia-Hau Fan Modular stator structure
CN1285154C (zh) * 2001-11-29 2006-11-15 雅马哈发动机株式会社 轴隙式旋转电机
DE60233517D1 (de) * 2001-11-29 2009-10-08 Yamaha Motor Co Ltd Dynamoelektrische maschine mit axialem luftspalt
JP2003309944A (ja) * 2002-04-11 2003-10-31 Toyoda Mach Works Ltd モータおよびインシュレータの製造方法
EP1542337A4 (fr) * 2002-08-07 2009-01-07 Hitachi Metals Ltd Bobine laminee et moteur sans balai l'utilisant
JP2004201429A (ja) 2002-12-19 2004-07-15 Yaskawa Electric Corp モータの固定子
US7221067B2 (en) * 2003-04-25 2007-05-22 Asmo, Co. Ltd. Armature and method for manufacturing armature
JP2005045944A (ja) * 2003-07-23 2005-02-17 Minebea Co Ltd ボビン及びモータ
SE0401217D0 (sv) * 2004-05-11 2004-05-11 Hoeganaes Ab Electrical machine and method for producing an electrical machine
JP2006067650A (ja) * 2004-08-25 2006-03-09 Fujitsu General Ltd アキシャルギャップ型電動機
JP4993883B2 (ja) * 2005-07-20 2012-08-08 ヤマハ発動機株式会社 回転電機及び電動車椅子
JP2007074841A (ja) * 2005-09-08 2007-03-22 Toyota Motor Corp ステータコア、それを用いたモータ及びその製造方法
JP2007128951A (ja) 2005-11-01 2007-05-24 Hitachi Ferrite Electronics Ltd リアクトル
JP5130947B2 (ja) * 2007-09-11 2013-01-30 ダイキン工業株式会社 アキシャルギャップ型回転電機及び回転駆動装置
JP5267907B2 (ja) * 2007-12-28 2013-08-21 国立大学法人九州工業大学 磁気力によるアクチュエータ及びそれを用いた駆動装置、並びにセンサ
DE112009000919T5 (de) * 2008-04-15 2011-03-03 Toho Zinc Co., Ltd Verfahren zum Herstellen eines magnetischen Verbundmaterials und magnetisches Verbundmaterial
MX2011003295A (es) * 2008-09-29 2011-07-29 In Motion Technologies Pty Ltd Arreglo de aislamiento del devanado para maquinas de flujo axial.
GB0902393D0 (en) * 2009-02-13 2009-04-01 Isis Innovation Elaectric machine - modular
EP2476189A1 (fr) * 2009-09-08 2012-07-18 Green Ray Technologies LLC Module de barres omnibus destiné à une machine électrique
US9490685B2 (en) * 2009-10-16 2016-11-08 National University Corporation Hokkaido University Axial gap motor using non-rare-earth magnets
JP5567311B2 (ja) * 2009-10-22 2014-08-06 株式会社日立産機システム アキシャルギャップモータ、圧縮機、モータシステム、および発電機
JP5398512B2 (ja) * 2009-12-18 2014-01-29 株式会社日立製作所 アキシャルギャップ型永久磁石モータ、それに用いるロータ、及びそのロータの製造方法
JP5576246B2 (ja) * 2010-01-06 2014-08-20 株式会社神戸製鋼所 アキシャルギャップ型ブラシレスモータ
CA2821273A1 (fr) * 2010-12-13 2012-06-21 Radam Motors, Llc Stator utilise dans un moteur ou un generateur electrique comportant un materiau magnetique a faible perte et procede de fabrication d'un stator
FR2969409B1 (fr) * 2010-12-21 2018-05-25 Sintertech Machine electrique tournante a structure homopolaire dite double.
JP2012230972A (ja) * 2011-04-25 2012-11-22 Sumida Corporation コイル部品、圧粉インダクタおよびコイル部品の巻回方法
CN102315741A (zh) 2011-08-31 2012-01-11 东南大学 一种采用模块化非晶合金定子的轴向永磁电机
WO2013116506A1 (fr) * 2012-02-03 2013-08-08 Green Ray Technologies Llc Machines électriques et procédés de fabrication desdites machines
JP6113516B2 (ja) * 2012-02-06 2017-04-12 Ntn株式会社 磁心用粉末および圧粉磁心
JP6060508B2 (ja) * 2012-03-26 2017-01-18 Tdk株式会社 平面コイル素子およびその製造方法
WO2014011804A1 (fr) * 2012-07-11 2014-01-16 Remy Technologies, Llc Isolateur de connexion de phase intégré avec isolateur de phase individuel
US20140070659A1 (en) * 2012-09-07 2014-03-13 Samsung Electro-Mechanics Co., Ltd. Stator assembly for motor
US9312730B2 (en) * 2012-10-11 2016-04-12 Whirlpool Corporation Stator with a polymeric casing for an electric motor of a washing machine and method of manufacturing the same
KR101348636B1 (ko) * 2012-11-09 2014-01-08 한국전기연구원 원주방향 다상 분포를 가지는 횡자속 전기기기의 고정자
JP5916591B2 (ja) * 2012-12-07 2016-05-11 株式会社日立製作所 アキシャルギャップモータ
KR101406360B1 (ko) * 2012-12-11 2014-06-13 현대자동차주식회사 모터코어
JP5851432B2 (ja) * 2013-02-08 2016-02-03 株式会社日立製作所 回転電機
US9331528B2 (en) * 2013-03-15 2016-05-03 Regal Beloit America, Inc. Stator tooth assembly for axial flux stator and methods of assembling the same
DE102013208058B4 (de) * 2013-05-02 2015-09-10 Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg Magnetisch vorgespannte Drossel
JP6055725B2 (ja) * 2013-06-28 2016-12-27 株式会社日立産機システム 回転子および回転子を用いたアキシャル型回転電機
WO2015026208A1 (fr) * 2013-08-23 2015-02-26 주식회사 아모텍 Stator double et moteur le comprenant
AU2015239088B2 (en) * 2014-04-02 2018-11-22 J.H. Beheer B.V. Stator portion for an electric machine comprising an permanent magnet rotor
CN106416024B (zh) * 2014-04-14 2019-06-07 株式会社日立产机系统 轴向间隙型旋转电机
WO2015159329A1 (fr) * 2014-04-14 2015-10-22 株式会社日立産機システム Machine dynamoélectrique à entrefer axial
WO2016060311A1 (fr) * 2014-10-17 2016-04-21 전자부품연구원 Stator de moteur de type plan et moteur de type plan l'utilisant
WO2016121950A1 (fr) * 2015-01-30 2016-08-04 株式会社村田製作所 Poudre magnétique et son procédé de production, noyau magnétique et son procédé de production, élément de bobine et moteur
JP6451990B2 (ja) 2015-04-02 2019-01-16 株式会社デンソー 回転電機
JP6748647B2 (ja) * 2015-07-27 2020-09-02 住友電気工業株式会社 圧粉磁心、電磁部品、及び圧粉磁心の製造方法
JP2017046462A (ja) * 2015-08-26 2017-03-02 セイコーエプソン株式会社 電機子、界磁子、電機子の製造方法、界磁子の製造方法および電動機械
JP2017147904A (ja) * 2016-02-19 2017-08-24 株式会社ジェイテクト アキシャルギャップ型回転電機のロータ
CN105762950A (zh) 2016-03-10 2016-07-13 东南大学 一种轴向磁场永磁电机及其制造方法
CN109478808B (zh) * 2016-07-18 2020-12-25 根特大学 用于轴向磁通机器的定子及其生产方法
EP3288161B1 (fr) * 2016-08-23 2023-04-26 maxon international ag Moteur a commutation electronique comprenant deux culasses de rotor differants
CN106385121B (zh) 2016-10-21 2018-10-12 沈阳工业大学 低损耗组合式径向磁通非晶合金电机
JP6490313B2 (ja) * 2016-12-07 2019-03-27 パナソニック株式会社 鉄心及びモータ
US10594180B2 (en) * 2017-01-31 2020-03-17 Regal Beloit America, Inc. Magnetic flux guides for electric machines
WO2018168058A1 (fr) * 2017-03-14 2018-09-20 株式会社日立製作所 Machine dynamoélectrique à entrefer axial
CN106921228B (zh) 2017-04-19 2023-05-23 山东大学 一种定子、定子的制造方法及永磁无刷电机
CN206602414U (zh) * 2017-04-19 2017-10-31 山东大学 一种定子及永磁无刷电机
US10177631B1 (en) * 2017-10-10 2019-01-08 Zero E Technologies, Llc Electric machine stator cooling systems and methods
CN207743770U (zh) 2017-12-01 2018-08-17 江西清能高科技术有限公司 一种飞机电动马达控制用smc铁芯
US11038386B2 (en) * 2018-08-24 2021-06-15 Regal Beloit America, Inc. Axial flux electric machine and methods of assembling the same
JP7195920B2 (ja) * 2018-12-27 2022-12-26 住友電気工業株式会社 コア、ステータ、及び回転電機
KR102317047B1 (ko) * 2019-07-25 2021-10-25 엘지전자 주식회사 스테이터 및 이를 포함하는 모터
US20210135525A1 (en) * 2019-10-30 2021-05-06 Maxxwell Motors, Inc. Open stator for an axial flux rotating electrical machine
CN112821702A (zh) * 2019-11-15 2021-05-18 通用汽车环球科技运作有限责任公司 用于轴向磁通马达的混合定子芯部件设计
CN113394936A (zh) * 2020-03-13 2021-09-14 通用汽车环球科技运作有限责任公司 轴向磁通电机的磁体、极靴和槽开口
CA3170195A1 (fr) * 2020-09-21 2022-03-24 Evr Motors Ltd. Machine electrique a flux radial
JP2022127931A (ja) * 2021-02-22 2022-09-01 山洋電気株式会社 モータの電機子構造及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184628A (ja) * 1998-12-10 2000-06-30 Sanyo Electric Co Ltd モータのステータ
CN101783537A (zh) * 2009-01-19 2010-07-21 德昌电机(深圳)有限公司 一种用于电机的铁心组合
CN105262247A (zh) * 2015-10-22 2016-01-20 珠海格力电器股份有限公司 定子铁芯结构组件、电机、压缩机及空调器
CN206461445U (zh) * 2017-02-14 2017-09-01 东莞市德玛电子有限公司 一种定子单体
CN108696005A (zh) * 2018-08-31 2018-10-23 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机
CN108736597A (zh) * 2018-08-31 2018-11-02 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机
CN208674978U (zh) * 2018-08-31 2019-03-29 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机
CN209001686U (zh) * 2018-08-31 2019-06-18 核心驱动科技(金华)有限公司 一种分段铁芯以及盘式电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3846318A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230018438A1 (en) * 2021-07-16 2023-01-19 GM Global Technology Operations LLC Hybrid stator core segments for axial flux motors
US11646611B2 (en) 2021-07-28 2023-05-09 GM Global Technology Operations LLC Locking mechanism for segmented stator core
US20230047862A1 (en) * 2021-08-13 2023-02-16 GM Global Technology Operations LLC Segmented stator core design
US11689073B2 (en) 2021-08-13 2023-06-27 GM Global Technology Operations LLC Rotor core design

Also Published As

Publication number Publication date
US11929641B2 (en) 2024-03-12
JP2021536211A (ja) 2021-12-23
US20240128807A1 (en) 2024-04-18
JP7153403B2 (ja) 2022-10-14
EP3846318A4 (fr) 2022-06-08
US20210351638A1 (en) 2021-11-11
EP3846318A1 (fr) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2020042912A1 (fr) Noyau de segment et moteur à flux axial
CN108736597B (zh) 一种分段铁芯以及盘式电机
US20060055274A1 (en) Stator of motor and method of manufacturing the same
US9793774B2 (en) Armature for rotary electric machine
US20100156204A1 (en) Stator core, motor using the stator core, and method of manufacturing the stator core
JP2012023861A (ja) 電機子鉄心とモータ
JP2009112141A (ja) 回転機の固定子
US20130106237A1 (en) Stator assembly for motor
RU2287888C2 (ru) Способ изготовления статора бесщеточного электродвигателя постоянного тока и статор бесщеточного электродвигателя постоянного тока, изготовленный указанным способом
WO2018076410A1 (fr) Languette d'électrode et batterie d'enroulement
JP4410730B2 (ja) 回転電機のステータ、回転電機、及び回転電機のステータの製造方法
JP5082524B2 (ja) 絶縁インシュレータ並びにステータの構造及び製造方法
CN108696005B (zh) 一种分段铁芯以及盘式电机
JP2008167518A (ja) 固定子
JP2016036223A (ja) 回転電機の固定子
CN208674978U (zh) 一种分段铁芯以及盘式电机
JP2016116421A (ja) 回転電機
JP2008029157A (ja) ステーターコア
JP2013074728A (ja) 電動機、電動機の製造方法及びコイルユニットの製造方法
JP5860767B2 (ja) コイルの製造方法
JP2018074698A (ja) 回転電機の固定子および固定子巻線の製造方法
JP5271991B2 (ja) 回転電機の固定子
JP2002354718A (ja) 電動機の固定子
JP6223896B2 (ja) スイッチトリラクタンスモータ
JP3241105U (ja) モーターステータ用共通インシュレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019854152

Country of ref document: EP

Effective date: 20210331