WO2020032237A1 - チャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置 - Google Patents

チャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置 Download PDF

Info

Publication number
WO2020032237A1
WO2020032237A1 PCT/JP2019/031573 JP2019031573W WO2020032237A1 WO 2020032237 A1 WO2020032237 A1 WO 2020032237A1 JP 2019031573 W JP2019031573 W JP 2019031573W WO 2020032237 A1 WO2020032237 A1 WO 2020032237A1
Authority
WO
WIPO (PCT)
Prior art keywords
chuck
moving body
measuring device
measurement
grasping
Prior art date
Application number
PCT/JP2019/031573
Other languages
English (en)
French (fr)
Inventor
永翁 博
Original Assignee
豊和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊和工業株式会社 filed Critical 豊和工業株式会社
Priority to KR1020217002707A priority Critical patent/KR102507946B1/ko
Priority to US17/266,332 priority patent/US11794301B2/en
Priority to JP2020535904A priority patent/JP7020557B2/ja
Priority to CN201980053313.4A priority patent/CN112566743B/zh
Priority to EP19848447.9A priority patent/EP3834971A4/en
Publication of WO2020032237A1 publication Critical patent/WO2020032237A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/16Chucks with simultaneously-acting jaws, whether or not also individually adjustable moving radially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/39Jaw changers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2291Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the workpiece relative to the holder thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/128Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q2017/001Measurement or correction of run-out or eccentricity

Definitions

  • the present invention relates to a method for confirming the accuracy of grasping a chuck, a method for replacing a claw of a chuck, and a device for confirming accuracy of grasping a chuck.
  • the claw mounted on the chuck body of the chuck is replaced when the size of the work to be processed changes or when wear occurs due to long-term use. Then, when the claws are replaced, the grasping accuracy of the chuck is checked.
  • an automatic jaw exchanging device as disclosed in Patent Document 1
  • a chuck grasps a master piece, and an operator rotates a chuck to measure a measured value of a measuring instrument. By reading, the deflection of the master piece was measured, and the accuracy of grasping the chuck was confirmed.
  • a worker confirms the gripping accuracy of the chuck by measuring the run-out of the processed workpiece using the replaced claw.
  • the present invention A gripping accuracy confirmation method of a chuck for grasping an object to be measured on a chuck jaw and confirming a grasping accuracy, A grasping step of grasping the measurement object on the nail, A moving step in which a moving body provided with a measuring device capable of measuring the shake of the measurement target is moved to a position where the measurement device can measure the shake of the measurement target by driving a moving body driving unit.
  • a measuring step of measuring the run-out of the object to be measured by the measuring device while rotating the chuck by driving a rotation drive unit, comprising: I will provide a.
  • the moving body drive unit includes an elevating drive unit that moves the moving body up and down, an axial movement drive unit that moves the moving body in the axial direction of the chuck, and a lateral movement of the moving body when viewed in the axial direction.
  • a lateral movement drive unit for moving in the direction You may do so.
  • the measurement step includes a first measurement step of measuring a deflection of a cylindrical outer peripheral surface of the measurement target, and a second measurement step of measuring a deflection of a tip end surface of the measurement target, You may do so.
  • the measuring device has a first measuring device that can measure a vertical displacement, and a second measuring device that can measure a horizontal displacement, You may do so.
  • the moving step by driving the moving body driving unit, the moving body is moved to a position where the first measuring device can measure the shake of the measurement object, In the first measuring step, the first measuring device measures the deflection of the outer peripheral surface of the cylinder of the measurement object, After the first measurement step, by driving the moving body driving unit, the moving body is moved to a position where the second measuring device can measure the shake of the measurement object, In the second measuring step, the second measuring device measures the deflection of the distal end surface of the measurement object, You may do so.
  • the measurement target is transported to the chuck by the moving body, You may do so.
  • the present invention An exchange process for exchanging the jaws of the chuck; A gripping accuracy checking method for checking the gripping accuracy of the chuck after the replacement step, by the chucking accuracy checking method described above, I will provide a.
  • a grasping accuracy confirmation device for grasping a measuring object on a chuck jaw and confirming grasping accuracy
  • a rotation drive unit for rotating the chuck, A moving body movably provided with respect to the chuck, A moving body driving unit that moves the moving body with respect to the measurement target;
  • a measuring device provided on the moving body, for measuring a shake of the measurement object,
  • a control unit The control unit, after moving the movable body to a position where the measuring device can measure the shake of the measurement object, causes the measurement device to measure the shake of the measurement object while rotating the chuck.
  • controlling the rotation drive unit, the moving body drive unit and the measuring device, chuck grasping accuracy confirmation device, I will provide a.
  • the moving body drive unit includes a lifting drive unit that moves the moving body up and down, an axial movement drive unit that moves the moving body in the axial direction of the chuck, and a horizontal movement unit that looks at the axial direction.
  • a lateral movement drive unit for moving in the direction You may do so.
  • the measuring device has a first measuring device that can measure a vertical displacement, and a second measuring device that can measure a horizontal displacement, You may do so.
  • the control unit moves the movable body to a position where the first measuring device can measure the deflection of the cylindrical outer peripheral surface of the measurement target, and the first measuring device causes the cylindrical outer peripheral surface of the measurement target to be measured.
  • the second measuring device moves the moving body to a position where the deflection of the tip surface of the measurement object can be measured, and the second measurement device shakes the tip surface of the measurement object. Controlling the moving body drive unit and the measuring device so as to measure You may do so.
  • the moving body is capable of transporting the measurement target to the chuck, You may do so.
  • FIG. 2 is a view as viewed in the direction of the arrow Z in FIG. 1.
  • FIG. 3 is a diagram illustrating a state in which the loader of FIG. 2 conveys a master piece.
  • FIG. 3 is a schematic view illustrating the automatic nail exchanging device of FIG. 2.
  • FIG. 3 is a diagram showing a state in which the chuck grasping accuracy checking apparatus of FIG. 2 is measuring the deflection of the tip surface of the master piece grasped by the chuck.
  • FIG. 3 is a diagram illustrating a state in which the operation of the claw is measured in the chuck grasping accuracy checking device of FIG. 2.
  • the chuck 1 includes a chuck body 3 fixed to a main shaft 10 of a machine tool, and claws 4 for clamping (grabbing) a workpiece W to be processed and a master piece MP. I have.
  • the chuck 1 according to the present embodiment has three claws 4. As shown in FIG. 3, the work W to be processed and the master piece MP are transported to the chuck 1 by a loader 2 exemplified as a transport device.
  • the workpiece W clamped by the chuck 1 is processed by a tool rest (not shown) provided with a plurality of cutting tools.
  • the chuck 1 is rotatable by a rotation drive unit 11 via a main shaft 10, and the rotation drive unit 11 is driven during processing to rotate the chuck 1 together with the main shaft 10, so that the workpiece 1 is rotated.
  • W is processed while rotating.
  • the workpiece W may be processed in a stopped state without rotating.
  • the tool rest is movable in the axial direction X of the chuck 1 and is also movable in the horizontal direction Y (or horizontal direction) when viewed in the axial direction X and in the vertical direction.
  • an automatic nail changing device 12 as described in, for example, Japanese Patent No. 3185816 is installed.
  • the claw 4 mounted on the chuck body 3 can be automatically replaced by the claw automatic exchanging device 12.
  • the claw 4 is replaced when the size of the work W to be processed changes or when wear occurs due to long-term use.
  • the claw 4 is formed so that the work W can be grasped in accordance with the size of the work W to be machined (more specifically, the outer diameter of the base end portion of the work W). For this reason, a plurality of types of claws 4 are stored in a stocker (not shown) of the automatic claw changing device 12.
  • the automatic claw exchanging device 12 includes a finger 13 that can be moved up and down, and a claw lifting drive unit 14 that moves the finger 13 up and down.
  • the finger 13 includes a key piece 13 a that can be locked in a hook groove 15 a of a mounting block 15 provided on the upper part of the claw 4.
  • the hook 13 a of the finger 13 is locked in the hook groove 15 a of the mounting block 15, and the claw 4 is moved up and down by driving the claw lifting drive unit 14.
  • the finger 13 is also movable in the axial direction X of the chuck 1.
  • the pawl 4 is attached to the base jaw 16 and the base jaw 16 fitted in the mounting groove 3 a provided in the chuck body 3, and the end face of the chuck body 3 (the right side in FIG. 2). And a top jaw 17 protruding from the end face of the upper jaw.
  • the mounting groove 3 a extends in the radial direction and opens on the outer peripheral surface of the chuck body 3.
  • the mounting groove 3a is also open at the end face of the chuck body 3, as shown in FIGS.
  • the base jaw 16 to which the top jaw 17 is attached is inserted into the attachment groove 3a from the outside in the radial direction (from above), and is moved inward in the radial direction, whereby the claw 4 can be attached to the chuck 1.
  • the pawl 4 moves radially inward to a position where the driving of the pawl elevating drive unit 14 stops.
  • the claw 4 is moved radially outward and pulled out of the mounting groove 3a.
  • Three master jaws 18 are provided inside the chuck body 3 so as to correspond to the three claws 4.
  • the three master jaws 18 can be moved synchronously in the radial direction by a claw driving unit (not shown).
  • a claw engagement / disengagement device 19 is provided in the master jaw 18, and the base jaw 16 can be engaged / disengaged from the master jaw 18. That is, the claw engaging / disengaging device 19 has the meshing member 20, and rack teeth 20 a are provided on the distal end surface (the surface on the side of the base jaw 16) of the meshing member 20.
  • the rack teeth 20a can mesh with the rack teeth 16a provided on the rear end surface of the base jaw 16 (the surface on the side of the master jaw 18).
  • the meshing member 20 is movable in the axial direction X.
  • the rack teeth 20 a of the meshing member 20 mesh with the rack teeth 16 a of the base jaw 16.
  • the base jaw 16, the top jaw 17, and the master jaw 18 can move integrally in the radial direction.
  • the engaging member 20 retreats from the base jaw 16
  • the engagement between the rack teeth 20a of the engaging member 20 and the rack teeth 16a of the base jaw 16 is released.
  • the base jaw 16 and the top jaw 17 can be moved separately from the master jaw 18 in the radial direction, and the claws 4 can be replaced.
  • each top jaw 17 moves inward in the radial direction together with the base jaw 16 and the master jaw 18, and as shown in FIGS.
  • the provided inner peripheral contact surface 17a contacts a proximal outer peripheral contact surface MPc (described later) of the master piece MP (the chuck 1 is closed).
  • the claw 4 grasps the master piece MP.
  • each top jaw 17 moves radially outward together with the base jaw 16 and the master jaw 18, and the inner peripheral contact surface 17a of each top jaw 17 is separated from the master piece MP. (Chuck 1 opens). As a result, the master piece MP is removed from the claw 4.
  • the grasping accuracy confirmation device for the chuck 1 is a device for coping with such a problem. This is an apparatus for grasping a measuring object (hereinafter, referred to as a master piece MP as an example) and confirming grasping accuracy.
  • the grasping accuracy checking device 21 includes a rotation driving unit 11 that rotates the chuck 1 and a hand unit 22 (moving body) that is movably provided with respect to the chuck 1. ), A loader driving section 23 (moving body driving section), a measuring instrument 6 and a control section 24.
  • the master piece MP has a cylindrical outer peripheral surface MPa, a distal end surface MPb, a proximal outer peripheral contact surface MPc, and a proximal end surface MPd.
  • the cylindrical outer peripheral surface MPa extends along the axial direction X, and the distal end surface MPb and the proximal end surface MPd become perpendicular to the axial direction X.
  • the distal end surface MPb is located on the side opposite to the chuck 1 side, and the proximal end surface MPd is located on the chuck 1 side.
  • the base outer peripheral contact surface MPc is a portion located on the side of the base end surface MPd and grasped by the claw 4.
  • a plurality of types of master pieces MP are stored in a stocker (not shown) corresponding to the work W. That is, a plurality of types of master pieces MP having different outer diameters of the base outer peripheral contact surface MPc are stored in the stocker.
  • the loader 2 has a hand unit 22 (moving body), and the hand unit 22 is provided movably with respect to the master piece MP and the chuck 1.
  • the loader 2 is a device for transporting the master piece MP to the chuck 1 as described above, and the hand unit 22 is capable of transporting the master piece MP to the chuck 1. More specifically, as shown in FIG. 3, a pair of hand claws 25 for clamping the master piece MP is attached to the hand portion 22 of the loader 2, and the master piece MP is held between the pair of hand claws 25. Clamped.
  • the hand claw 25 is attached to one side surface of the rectangular parallelepiped hand portion 22.
  • the loader 2 transports the master piece MP to a position where it can be clamped by the claw 4 of the chuck 1 and transports the master piece MP from the chuck 1 to the above-mentioned stocker.
  • the loader 2 can also transport the work W in the same manner as the master piece MP.
  • the hand unit 22 of the loader 2 is moved with respect to the chuck 1 by the loader driving unit 23 (moving body driving unit).
  • the loader drive unit 23 includes a loader elevating drive unit 26 that raises and lowers the hand unit 22, an axial movement drive unit 27 that moves the hand unit 22 in the axial direction X of the chuck 1, and a hand unit when viewed in the axial direction X.
  • a lateral movement drive unit 28 for moving the actuator 22 in the lateral direction Y. More specifically, a horizontal rail 29 extending in the horizontal direction Y (or horizontal direction) when viewed in the axial direction X is attached to the main body of the machine tool, and the first rail 29 extends along the horizontal rail 29.
  • the traveling platform 30 can travel.
  • the first traveling platform 30 may have a built-in lateral movement drive unit 28. Further, an axial rail 31 extending in the axial direction X can travel along the first traveling platform 30 in the axial direction X. A second traveling platform 32 is attached to the axial rail 31, and the second traveling platform 32 can travel in the axial direction X together with the axial rail 31.
  • the above-described axial movement drive unit 27 may be built in the first traveling platform 30. Further, an elevating rod 33 extending vertically can be moved up and down with respect to the second traveling platform 32. The hand part 22 is attached to the lower end of the lifting rod 33.
  • the second traveling platform 32 may have a built-in loader elevating drive unit 26.
  • the hand portion 22 of the loader 2 is movable with respect to the chuck 1 in the axial direction X, the lateral direction Y, and the vertical direction.
  • the second traveling platform 32 may have a built-in loader rotation drive unit 34 for rotating the lifting rod 33.
  • the loader rotation drive unit 34 may rotate the lifting rod 33 and the hand unit 22 about a central axis extending in the vertical direction of the lifting rod 33.
  • the hand unit 22 of the loader 2 is provided with a measuring device 6 for measuring the deflection of the master piece MP.
  • the measuring device 6 has a first sensor 6a (first measuring device) capable of measuring a vertical displacement and a second sensor 6b (second measuring device) capable of measuring a horizontal displacement. .
  • the first sensor 6a and the second sensor 6b are attached to the hand unit 22 via the attachment member 5.
  • the mounting member 5 is mounted on the side surface of the four side surfaces of the rectangular parallelepiped hand portion 22 opposite to the hand claw 25 described above.
  • the first sensor 6a is mounted on the lower surface of the rectangular parallelepiped mounting member 5, and can measure the deflection of the master piece MP by contacting or approaching the master piece MP from above.
  • the second sensor 6b is attached to the side surface (the side surface opposite to the hand pawl 25) of the mounting member 5, and can contact or approach the master piece MP in the horizontal direction to measure the deflection of the master piece MP.
  • Examples of the first sensor 6a and the second sensor 6b include a displacement sensor and a touch probe.
  • the present invention is not limited thereto as long as the deflection of the master piece MP can be measured.
  • the first sensor 6a and the second sensor 6b may be contact-type sensors that measure the vibration by contacting the master piece MP, and may be non-contact type sensors that measure the vibration away from the master piece MP. It may be a sensor.
  • the shake means a displacement of the measurement target surface (the cylindrical outer peripheral surface MPa or the distal end surface MPb) of the master piece MP while rotating the master piece MP.
  • the control unit 24 controls the above-described rotation drive unit 11, loader drive unit 23, measuring instrument 6, and the like. More specifically, the control unit 24 first moves the hand unit 22 to a position where the measuring device 6 can measure the deflection of the master piece MP, then rotates the chuck 1, and then moves the measuring device 6 The rotation driving unit 11, the loader driving unit 23, and the measuring device 6 are controlled so that the deflection of the master piece MP is measured.
  • the control unit 24 measures a deflection of the cylindrical outer peripheral surface MPa of the master piece MP by the first sensor 6a (see FIG. 2), and a second sensor 6b. And a second measurement step (see FIG. 5) of measuring the deflection of the front end face MPb of the master piece MP.
  • the first sensor 6a moves the hand unit 22 to a position where the deflection of the cylindrical outer peripheral surface MPa of the master piece MP can be measured, and The measurement process may be performed, and the second measurement process may be performed by moving the hand unit 22 to a position where the second sensor 6b can measure the deflection of the tip surface MPb of the master piece MP.
  • the deflection of the cylindrical outer peripheral surface MPa of the master piece MP may be measured at the first measurement position and the second measurement position.
  • the first measurement position is a position at which the deflection of the cylindrical outer peripheral surface MPa can be measured at the portion of the cylindrical outer peripheral surface MPa of the master piece MP on the side of the chuck body 3 (the portion on the base end side of the master piece MP). is there.
  • the second measurement position is a position where the deflection of the cylindrical outer peripheral surface MPa can be measured at a portion of the cylindrical outer peripheral surface MPa of the master piece MP opposite to the chuck body 3 (a portion on the distal end side of the master piece MP).
  • the first measurement position is indicated by a two-dot chain line
  • the second measurement position is indicated by a solid line. In the second measurement step, as shown in FIG.
  • the deflection of the master piece MP may be measured at the third measurement position.
  • the third measurement position is a position where the deflection of the front end surface MPb (the end surface opposite to the chuck body 3) of the master piece MP can be measured.
  • the third measurement position is preferably a position where the deflection of the front end surface MPb can be measured on the outer peripheral side of the master piece MP in the front end surface MPb.
  • the control unit 24 records the measured value of the shake of the master piece MP measured by the first sensor 6a and the second sensor 6b.
  • the measured value may be recorded in association with the rotation phase of the chuck 1.
  • the measurement by the sensors 6a and 6b may be performed at a predetermined phase interval, for example.
  • the control unit 24 determines whether the swing of the master piece MP is normal or abnormal based on the measured value of the swing of the master piece MP by the measuring device 6. The determination as to whether this is normal or abnormal may be made, for example, based on whether or not the width of the shake is larger than a predetermined reference value.
  • the reference value may be set for each of the three measurement positions described above, and whether the measurement position is normal or abnormal may be determined for each measurement position.
  • the determination as to whether it is normal or abnormal is made when an abnormality is found in the measurement value obtained at any one of the measurement values of the deflection of the master piece MP at the above-described three measurement positions. May be determined.
  • control unit 24 may notify an alarm.
  • the display of the abnormality may be displayed on the display of the machine tool.
  • the abnormality may be notified by lighting or blinking of a lamp, or the abnormality may be notified by an alarm sound such as a buzzer.
  • the notification of the abnormality may be performed during the measurement of the shake of the master piece MP, or may be performed after the measurement is completed.
  • the nail 4 is replaced. More specifically, first, by rotating the chuck 1, of the three claws 4 attached to the chuck 1, the claw 4 to be replaced is positioned at a position where the claw 4 can be pulled upward from the mounting groove 3 a. Subsequently, the finger 13 of the automatic claw exchanging device 12 is lowered, and advanced along the axial direction X of the chuck 1 toward the hooking groove 15a of the mounting block 15 of the claw 4 to attach the key piece 13a of the finger 13. The block 15 is engaged with the catch groove 15a. Next, the engagement member 20 of the claw engagement / disengagement device 19 is retracted to release the engagement with the master jaw 18.
  • the finger 13 is raised, and the claw 4 is pulled out from the mounting groove 3a of the chuck body 3.
  • the extracted nail 4 is conveyed and stored in a stocker (not shown), and the other nail 4 is locked to the finger 13.
  • the finger 13 is transported above the mounting groove 3a and lowered, and is inserted into the mounting groove 3a of the chuck body 3.
  • the engaging member 20 of the claw engaging / disengaging device 19 is advanced to engage the base jaw 16 of the claw 4 inserted into the mounting groove 3a with the master jaw 18.
  • the key piece 13a of the finger 13 is moved along the axial direction X of the chuck 1 and is retracted from the hook groove 15a of the mounting block 15.
  • the finger 13 is raised and retracted.
  • the gripping accuracy of the chuck 1 is checked as a gripping accuracy confirmation step.
  • the master piece MP is clamped to the claws 4. More specifically, first, the hand unit 22 of the loader 2 clamps a desired master piece MP stored in a stocker (not shown) to the hand claws 25. Subsequently, the master piece MP is transported to a position where it can be clamped on the claw 4 of the chuck 1. At this time, the top jaw 17 of each claw 4 is located radially outward from the position where the master piece MP is clamped. When the master piece MP is transported, the base surface MPd of the master piece MP is positioned on the chuck 1 side, so that the hand claw 25 is oriented toward the chuck 1 rather than the mounting member 5.
  • each master jaw 18 moves synchronously inward in the radial direction, and accordingly, each top jaw 17 also moves synchronously inward in the radial direction.
  • the inner peripheral contact surface 17a of the top jaw 17 contacts the proximal outer peripheral contact surface MPc of the master piece MP, and the master piece MP is clamped by the claw 4.
  • the hand unit 22 releases the clamp of the master piece MP. In this way, the master piece MP is clamped on the three claws 4.
  • the measuring unit 6 moves the hand unit 22 to a position where the deflection of the master piece MP can be measured. More specifically, the first sensor 6a or the second sensor 6b of the measuring instrument 6 is driven by driving the loader lifting drive unit 26, the axial movement drive unit 27, and the lateral movement drive unit 28 of the loader drive unit 23. Move to the desired position. Further, the posture of the hand unit 22 may be changed by driving the loader rotation driving unit 34.
  • the hand when viewed from the distal end to the proximal end of the master piece MP in the axial direction X, the hand is positioned so that the mounting member 5 is located on the left side and the hand claw 25 is located on the right side.
  • the direction of the part 22 is changed. Further, the hand unit 22 may be moved to a position where the first sensor 6a can measure the shake of the master piece MP. Here, the hand unit 22 is moved to the first measurement position (FIG. 2) where the first sensor 6a can measure the deflection of the master piece MP at the base end side of the master piece MP in the cylindrical outer peripheral surface MPa of the master piece MP. To the position indicated by the two-dot chain line).
  • the measurement step includes a first measurement step of measuring the deflection of the cylindrical outer peripheral surface MPa of the master piece MP with the first sensor 6a, and a second measurement step of measuring the deflection of the tip surface MPb of the master piece MP with the second sensor 6b. May be provided.
  • the first measurement step is performed.
  • the deflection of the cylindrical outer peripheral surface MPa of the master piece MP is measured at the base end side of the master piece MP by the first sensor 6a positioned at the first measurement position.
  • the rotation drive unit 11 is driven to rotate the master piece MP together with the spindle 10 and the chuck 1.
  • the measurement of the deflection of the cylindrical outer peripheral surface MPa is performed while the chuck 1 is rotated from one of the three claws 4 to the other one after passing through the other one 4. May go.
  • the rotation angle of the chuck 1 is 240 ° when three claws 4 are provided as in the present embodiment (180 ° when two claws 4 are provided).
  • the deflection of the cylindrical outer peripheral surface MPa may be measured while the chuck 1 is rotated once (360 ° rotation). If the deflection of the master piece MP can be measured effectively, The rotation angle is arbitrary. The obtained measurement value is recorded in the control unit 24 in association with the rotation phase of the chuck 1.
  • the hand unit 22 is moved to a second measurement position (see FIG. 2) where the first sensor 6a can measure the deflection of the master piece MP at a portion on the distal end side of the master piece MP in the cylindrical outer peripheral surface MPa of the master piece MP. (The position indicated by the solid line). Then, the deflection of the cylindrical outer peripheral surface MPa of the master piece MP is measured by the first sensor 6a positioned at the second measurement position at the tip side of the master piece MP. During this time, the rotation driving unit 11 is driven to rotate the master piece MP together with the spindle 10 and the chuck 1 in the same manner as the measurement at the first measurement position described above. The obtained measurement value is recorded in the control unit 24 in association with the rotation phase of the chuck 1.
  • the hand unit 22 is moved to a position where the second sensor 6b can measure the deflection of the master piece MP.
  • the hand unit 22 is moved to the third measurement position (the position shown in FIG. 5) at which the second sensor 6b can measure the deflection of the master piece MP on the distal end surface MPb of the master piece MP.
  • a second measurement step is performed.
  • the deflection of the tip surface MPb of the master piece MP is measured by the second sensor 6b positioned at the third measurement position.
  • the rotation driving unit 11 is driven to rotate the master piece MP together with the spindle 10 and the chuck 1 in the same manner as the measurement at the first measurement position described above.
  • the obtained measurement value is recorded in the control unit 24 in association with the rotation phase of the chuck 1.
  • the chuck 1 can be automatically rotated and the deflection of the master piece MP can be automatically measured.
  • the hand unit 22 may retreat to a position away from the master piece MP.
  • the master piece MP is normal or abnormal based on the measured value of the master piece MP. If it is determined to be abnormal, it is notified that it is abnormal. In this case, the operator may correct the mounting of the claw 4 having the mounting abnormality with respect to the chuck body 3 (for example, re-mount), and confirm the grasping accuracy again.
  • the master piece MP is removed from the nail 4.
  • the hand unit 22 of the loader 2 clamps the master piece MP.
  • each master jaw 18 moves synchronously to the outside in the radial direction, and accordingly, each top jaw 17 also moves synchronously to the outside in the radial direction.
  • the inner peripheral contact surface 17a of the top jaw 17 is separated from the base outer peripheral contact surface MPc of the master piece MP, and the clamp by the claw 4 of the master piece MP is released.
  • the master piece MP is transported and stored in the stocker.
  • the hand unit 22 clamps the desired work W stored in the stocker, and the work W is transported to a position where the work W can be clamped by the claw 4 of the chuck 1.
  • the top jaw 17 of each claw 4 is located radially outward from the position where the work W is clamped.
  • the base end face of the work W comes into contact with the contact end face 17 b of the top jaw 17.
  • each master jaw 18 moves synchronously inward in the radial direction, and accordingly, each top jaw 17 also moves synchronously inward in the radial direction.
  • the inner peripheral contact surface 17 a of the top jaw 17 contacts the work W, and the work W is clamped by the claw 4.
  • the hand unit 22 releases the clamp of the work W.
  • the work W is clamped by the three claws 4.
  • the workpiece W clamped by the claw 4 is processed by a tool (not shown) of a tool rest.
  • a tool not shown
  • the grasping accuracy of the claws 4 is confirmed, and it is determined that the deflection of the master piece MP is normal. For this reason, the workpiece W can be grasped by the nail 4 determined to be normal after confirming the grasping accuracy, and the processing accuracy of the workpiece W can be ensured.
  • the gripping accuracy checking device 21 for the chuck 1 according to the present embodiment can be used to check the operation state of the claw 4. That is, the mechanism for moving the three claws 4 in the radial direction is constituted by the master jaw 18 and the like as described above, and the mechanism according to the present embodiment is used to confirm whether the mechanism is normal or abnormal.
  • the accuracy checking device 21 can also be used. In this case, as shown in FIG. 6, when the chuck 4 is moved outward in the radial direction to open the chuck 1, the position of the outer peripheral surface of each claw 4 is determined by the first sensor 6a or the second sensor 6b of the measuring instrument 6. May be measured. If the positions of the outer peripheral surfaces of the claws 4 are different, it can be determined that an abnormality has occurred in this mechanism.
  • the measuring device 6 by driving the hand unit 22 of the loader 2 to which the measuring device 6 is attached and the loader driving unit 23, the measuring device 6 can measure the deflection of the master piece MP. And the measuring instrument 6 measures the deflection of the master piece MP at the position. As a result, the deflection of the master piece MP can be automatically measured, and the operation by the operator can be eliminated. Therefore, it is possible to improve the reliability of checking the gripping accuracy of the chuck 1 after the replacement of the claws 4.
  • the loader driving unit 23 includes a loader lifting / lowering driving unit 26 that raises / lowers the hand unit 22, an axial movement driving unit 27 that moves the hand unit 22 in the axial direction X of the chuck 1, And a lateral movement drive unit 28 that moves the hand unit 22 in the lateral direction Y when viewed in the axial direction X.
  • the hand unit 22 to which the measuring device 6 is attached can be easily moved to a position where the measuring device 6 can measure the deflection of the master piece MP. For this reason, the measurement accuracy of the measurement value of the run-out of the measuring device 6 can be secured, and the reliability of checking the grasping accuracy of the chuck 1 can be improved.
  • the deflection of the cylindrical outer peripheral surface MPa of the master piece MP is measured as the first measurement step, and the deflection of the distal end surface MPb of the master piece MP is measured as the second measurement step.
  • the deflection of the master piece MP can be measured at different positions. For this reason, the reliability of checking the gripping accuracy of the chuck 1 can be improved.
  • the measuring device 6 has the first sensor 6a capable of measuring the vertical displacement and the second sensor 6b capable of measuring the horizontal displacement. Accordingly, the first sensor 6a can measure the deflection of the cylindrical outer peripheral surface MPa of the master piece MP, and the second sensor 6b can measure the deflection of the tip surface MPb of the master piece MP. For this reason, when shifting from the first measurement step to the second measurement step, the amount of movement of the hand unit 22 can be reduced. For this reason, the measurement time of the deflection of the master piece MP can be reduced.
  • the hand unit 22 by driving the loader drive unit 23, the hand unit 22 is moved to a position where the first sensor 6a can measure the deflection of the master piece MP, and the first measurement process is performed. Will be Then, by driving the loader driving unit 23, the hand unit 22 is moved to a position where the second sensor 6b can measure the deflection of the distal end surface MPb of the master piece MP, and the second measurement process is performed.
  • the deflection of the master piece MP can be automatically measured at different positions, and the operation by the operator can be eliminated. Therefore, it is possible to improve the reliability of checking the gripping accuracy of the chuck 1 after the replacement of the claws 4.
  • the master piece MP is clamped by the hand unit 22 and transported to the chuck 1.
  • the step of grasping the master piece MP by the nail 4 can be automatically performed.
  • the grasping accuracy of the chuck 1 after the replacement of the claws 4 can be easily confirmed, and the operation by the operator can be eliminated.
  • the present invention is not limited to this, and the accuracy of grasping the chuck 1 may be confirmed by measuring the run-out of the work W clamped by the claws 4. In this case, the gripping accuracy of the chuck 1 may be checked before processing the work W, or the gripping accuracy of the chuck 1 may be checked after processing the work W.
  • the measuring device 6 that measures the deflection of the master piece MP includes the first sensor 6a that can measure the displacement in the vertical direction and the second sensor 6b that can measure the displacement in the horizontal direction. Have been described.
  • the configuration of the measuring device 6 is not limited to this.
  • the number of sensors may be one, or three or more.
  • the second sensor 6b is positioned at a position corresponding to the first measurement position and / or a position corresponding to the second measurement position on the side of the master piece MP, and the deflection of the cylindrical outer peripheral surface MPa of the master piece MP is measured. You may make it.
  • the example has been described in which the deflection of the master piece MP is measured at the third measurement position while measuring the deflection of the master piece MP.
  • the present invention is not limited to this. If the reliability of checking the gripping accuracy of the chuck 1 can be ensured, the deflection of the master piece MP can be reduced at any one of these three measurement positions. The accuracy of grasping the chuck 1 may be determined by measuring.
  • the gripping accuracy of the chuck 1 is checked when performing the nail replacement method of the chuck 1 for replacing the nail 4.
  • the present invention is not limited to this, and even when the claw 4 is not replaced, the grasping accuracy of the chuck 1 is checked when it is assumed that the claw 4 has been worn due to long-term use. It may be.
  • the measuring device 6 is provided via the attachment member 5 to the hand portion 22 of the loader 2 that transports the workpiece W to be processed or the master piece MP.
  • the machine tool includes a robot movable with respect to the chuck 1
  • the measuring device 6 may be attached to the robot.
  • the automatic nail exchanging device 12 is attached to the tip of the robot, the measuring device 6 may be attached to the automatic nail exchanging device 12.
  • the measuring instrument 6 may be attached to a tool rest (also referred to as a turret) used for processing the work W or a mill shaft for rotating the cutting tool.
  • the present invention is not limited to this, and the number of claws 4 may be two or four or more.
  • the chuck 1 is a chuck of a machine tool.
  • the present invention is not limited to this, and the present embodiment can be applied to a chuck used in an inspection device. Even in this case, the accuracy of the inspection of the workpiece W by the inspection device can be ensured by confirming the gripping accuracy of the chuck 1 according to the present embodiment.
  • the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing a part of the configuration without departing from the spirit of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manipulator (AREA)
  • Gripping On Spindles (AREA)
  • Jigs For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

チャックの把握精度確認方法は、測定対象物を爪に把握する把握工程と、移動工程と、測定工程と、を含んでいる。移動工程においては、測定対象物の振れを測定可能な測定器が設けられた移動体を、移動体駆動部を駆動させることによって、測定器が測定対象物の振れを測定可能な位置に移動させる。測定工程においては、回転駆動部を駆動させることによりチャックを回転させながら、測定器により測定対象物の振れを測定する。

Description

チャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置
 本発明は、チャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置に関する。
 従来、チャックのチャック本体に装着される爪は、加工するワークの大きさが変わる場合や、長期間の使用による摩耗が生じた場合に交換している。そして、爪を交換した際にチャックの把握精度の確認が行われる。特許文献1のような爪自動交換装置によって爪を交換する場合には、爪を交換した際に、チャックにマスタピースを把握させて、作業者が、チャックを回転させながら測定器の測定値を読み取ることで、マスタピースの振れを測定し、チャックの把握精度の確認を行っていた。また、作業者が、交換された爪を用いて加工されたワークの振れを測定することで、チャックの把握精度の確認を行う場合もある。
特許第3185816号公報
 しかしながら、マスタピースやワークの振れ測定を作業者によって行う場合には、測定値の読み間違いや測定のバラツキ等の信頼性に問題があった。
 そこで本発明の課題は、上記問題点に鑑み、信頼性を向上させることができるチャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置を提供することを目的とする。
 本発明は、
 チャックの爪に測定対象物を把握して把握精度を確認するチャックの把握精度確認方法であって、
 前記測定対象物を前記爪に把握する把握工程と、
 前記測定対象物の振れを測定可能な測定器が設けられた移動体を、移動体駆動部を駆動させることによって、前記測定器が前記測定対象物の振れを測定可能な位置に移動させる移動工程と、
 回転駆動部を駆動させることにより前記チャックを回転させながら、前記測定器により前記測定対象物の振れを測定する測定工程と、を備えた、チャックの把握精度確認方法、
を提供する。
 上述したチャックの把握精度確認方法において、
 前記移動体駆動部は、前記移動体を昇降させる昇降駆動部と、前記移動体を前記チャックの軸方向に移動させる軸方向移動駆動部と、前記軸方向で見たときに前記移動体を横方向に移動させる横方向移動駆動部と、を有している、
ようにしてもよい。
 上述したチャックの把握精度確認方法において、
 前記測定工程は、前記測定対象物の円筒外周面の振れを測定する第1測定工程と、前記測定対象物の先端面の振れを測定する第2測定工程と、を有している、
ようにしてもよい。
 上述したチャックの把握精度確認方法において、
 前記測定器は、上下方向の変位を測定可能な第1測定器と、水平方向の変位を測定可能な第2測定器と、を有している、
ようにしてもよい。
 上述したチャックの把握精度確認方法において、
 前記移動工程において、前記移動体駆動部を駆動させることによって、前記移動体を、前記第1測定器が前記測定対象物の振れを測定可能な位置に移動させ、
 前記第1測定工程において、前記第1測定器により、前記測定対象物の前記円筒外周面の振れを測定し、
 前記第1測定工程の後に、前記移動体駆動部を駆動させることによって、前記移動体を、前記第2測定器が前記測定対象物の振れを測定可能な位置に移動させ、
 前記第2測定工程において、前記第2測定器により、前記測定対象物の前記先端面の振れを測定する、
ようにしてもよい。
 上述したチャックの把握精度確認方法において、
 前記把握工程において、前記測定対象物は、前記移動体により前記チャックに搬送される、
ようにしてもよい。
 また、本発明は、
 チャックの爪を交換する交換工程と、
 上述のチャックの把握精度確認方法により、前記交換工程後の前記チャックの把握精度を確認する把握精度確認工程と、を備えた、チャックの爪交換方法、
を提供する。
 また、本発明は、
 チャックの爪に測定対象物を把握して把握精度を確認するチャックの把握精度確認装置であって、
 前記チャックを回転させる回転駆動部と、
 前記チャックに対して移動可能に設けられた移動体と、
 前記移動体を前記測定対象物に対して移動させる移動体駆動部と、
 前記移動体に設けられ、前記測定対象物の振れを測定する測定器と、
 制御部と、を備え、
 前記制御部は、前記測定器が前記測定対象物の振れを測定可能な位置に前記移動体を移動させた後、前記チャックを回転させながら、前記測定器により前記測定対象物の振れを測定させるように、前記回転駆動部、前記移動体駆動部および前記測定器を制御する、チャックの把握精度確認装置、
を提供する。
 上述したチャックの把握精度確認装置において、
 前記移動体駆動部は、前記移動体を昇降させる昇降駆動部と、前記移動体を前記チャックの軸方向に移動させる軸方向移動駆動部と、前記軸方向で見たときに前記移動体を横方向に移動させる横方向移動駆動部と、を有している、
ようにしてもよい。
 上述したチャックの把握精度確認装置において、
 前記測定器は、上下方向の変位を測定可能な第1測定器と、水平方向の変位を測定可能な第2測定器と、を有している、
ようにしてもよい。
 上述したチャックの把握精度確認装置において、
 前記制御部は、前記第1測定器が前記測定対象物の円筒外周面の振れを測定可能な位置に前記移動体を移動させて、前記第1測定器により前記測定対象物の前記円筒外周面の振れを測定し、前記第2測定器が前記測定対象物の先端面の振れを測定可能な位置に前記移動体を移動させて、前記第2測定器により前記測定対象物の先端面の振れを測定するように、前記移動体駆動部および前記測定器を制御する、
ようにしてもよい。
 上述したチャックの把握精度確認装置において、
 前記移動体は、前記チャックに前記測定対象物を搬送可能である、
ようにしてもよい。
 本発明によれば、信頼性を向上させることができる。
本実施の形態によるチャックの把握精度確認装置およびチャックを軸方向で見た図であって、チャックに把握させたマスタピースの円筒外周面の振れを測定している状態を示す図である。 図1のZ矢視図である。 図2のローダーがマスタピースを搬送する状態を示す図である。 図2の爪自動交換装置を示す概略図である。 図2のチャックの把握精度確認装置において、チャックに把握させたマスタピースの先端面の振れを測定している状態を示す図である。 図2のチャックの把握精度確認装置において、爪の動作を測定している状態を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。本実施の形態では、チャックが、NC旋盤等の工作機械のチャックである例について説明する。なお、本明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺及び縦横の寸法比等を、実物のそれらから変更し誇張してある。
 まず、工作機械のチャックについて概略説明する。
 図1および図2に示すように、チャック1は、工作機械の主軸10に固着されたチャック本体3と、加工するワークWやマスタピースMPをクランプする(把握する)爪4と、を備えている。本実施の形態によるチャック1は、3つの爪4を備えている。加工するワークWやマスタピースMPは、図3に示すように、搬送装置として例示するローダー2によってチャック1に搬送されるようになっている。
 チャック1にクランプされた加工するワークWは、複数の刃具を備えた刃物台(図示しない)によって加工される。図2に示すように、チャック1は、主軸10を介して回転駆動部11によって回転可能になっており、加工時には回転駆動部11が駆動されて主軸10と共にチャック1が回転することにより、ワークWは回転しながら加工される。加工内容によっては、ワークWは、回転せずに停止状態で加工される場合もある。刃物台は、チャック1の軸方向Xに移動可能であると共に、軸方向Xで見たときの横方向Y(または水平方向)、および上下方向にも移動可能になっている。
 図4に示すように、チャック1の上方には、例えば特許第3185816号公報に記載のような爪自動交換装置12が設置されている。この爪自動交換装置12によって、チャック本体3に装着される爪4は、自動的に交換可能になっている。例えば、加工するワークWの大きさが変わる場合や、長期間の使用による摩耗が生じた場合に、爪4は交換される。爪4は加工するワークWの大きさ(より具体的にはワークWの基端部分の外径)に対応して、ワークWを把握可能となるように形成されている。このため、複数種類の爪4が爪自動交換装置12のストッカー(図示せず)に収納されている。
 図4に示すように、爪自動交換装置12は、昇降可能なフィンガ13と、フィンガ13を昇降させる爪昇降駆動部14と、を有している。フィンガ13は、爪4の上部に設けられた取付ブロック15の引掛溝15aに係止可能なカギ片13aを含んでいる。フィンガ13のカギ片13aが取付ブロック15の引掛溝15aに係止すると共に、爪昇降駆動部14を駆動させることにより、爪4が昇降するようになっている。また、フィンガ13は、チャック1の軸方向Xにも移動可能になっている。
 図2および図4に示すように、爪4は、チャック本体3に設けられた取付溝3aに嵌合するベースジョー16と、ベースジョー16に取り付けられ、チャック本体3の端面(図2における右側の端面)から突出したトップジョー17と、を有している。取付溝3aは、半径方向に延びていると共に、チャック本体3の外周面に開口している。また、取付溝3aは、図1および図4に示すように、チャック本体3の端面でも開口している。トップジョー17が取り付けられたベースジョー16は、半径方向外側から(上方から)取付溝3aに挿入されて、半径方向内側に移動させることにより、爪4をチャック1に取り付けることができる。この際、爪4は、爪昇降駆動部14の駆動が停止する位置まで半径方向内側に移動する。爪4を取り外す際には、半径方向外側に爪4を移動させて、取付溝3aから引き抜く。
 チャック本体3の内部には、3つの爪4に対応させて3つのマスタジョー18が設けられている。3つのマスタジョー18は、図示しない爪駆動部により、半径方向に同期して移動可能になっている。図4に示すように、マスタジョー18内に、爪係脱装置19が設けられており、ベースジョー16は、マスタジョー18と係脱可能になっている。すなわち、爪係脱装置19は噛合部材20を有しており、噛合部材20の先端面(ベースジョー16の側の面)には、ラック歯20aが設けられている。このラック歯20aが、ベースジョー16の後端面(マスタジョー18の側の面)に設けられたラック歯16aに噛み合い可能になっている。噛合部材20は、軸方向Xに移動可能になっており、ベースジョー16の側に前進すると、噛合部材20のラック歯20aが、ベースジョー16のラック歯16aに噛み合う。このことにより、ベースジョー16、トップジョー17およびマスタジョー18は、半径方向に一体的に移動可能になる。一方、噛合部材20がベースジョー16から後退すると、噛合部材20のラック歯20aとベースジョー16のラック歯16aの噛み合いが解除される。このことにより、ベースジョー16およびトップジョー17は、マスタジョー18とは別体に半径方向に移動可能となり、爪4を交換することが可能になる。
 マスタピースMPを把握する場合には、各トップジョー17が、ベースジョー16およびマスタジョー18と共に半径方向内側に移動し、図1および図2に示すように、各トップジョー17の内側端部に設けられた内周当接面17aが、マスタピースMPの基端外周当接面MPc(後述)に当接する(チャック1が閉じる)。各トップジョー17の内周当接面17aがマスタピースMPの基端外周当接面MPcに当接して押圧することにより、マスタピースMPが爪4に把握される。
 一方、マスタピースMPを取り外す場合には、各トップジョー17が、ベースジョー16およびマスタジョー18と共に半径方向外側に移動し、各トップジョー17の内周当接面17aがマスタピースMPから離間する(チャック1が開く)。このことにより、マスタピースMPが爪4から取り外される。
 このような爪4を交換する場合には、ワークWの加工精度を維持するために、交換した爪4によるチャック1の把握精度の確認が行われる。すなわち、上述したように、爪4のベースジョー16が、爪係脱装置19によってマスタジョー18に係合すると、マスタジョー18と一体的に半径方向に移動可能となるとともに、他の爪4のベースジョー16と同期して移動可能となる。しかしながら、各爪4においてベースジョー16の半径方向位置が異なった状態で爪4がチャック本体3に装着されると、各トップジョー17が、マスタピースMPの基端外周当接面MPcに均等に当接することが困難になり、チャック1による把握が偏る。このような状態のチャック1にワークWを把握して回転させた場合にはワークWの振れが大きくなり、ワークWの加工精度が低下し得る。本実施の形態によるチャック1の把握精度確認装置は(以下、単に把握精度確認装置21と記す)は、このような問題に対処するための装置であり、上述のようなチャック1の爪4に測定対象物(以下、一例としてのマスタピースMPと記す)を把握して把握精度を確認するための装置である。
 図1および図2に示すように、本実施の形態による把握精度確認装置21は、チャック1を回転させる回転駆動部11と、チャック1に対して移動可能に設けられたハンド部22(移動体)と、ローダー駆動部23(移動体駆動部)と、測定器6と、制御部24と、を備えている。
 図2および図3に示すように、マスタピースMPは、円筒外周面MPaと、先端面MPbと、基端外周当接面MPcと、基端面MPdと、を有している。マスタピースMPがチャック1に把握された状態では、円筒外周面MPaは、軸方向Xに沿うようになり、先端面MPbおよび基端面MPdは、軸方向Xに垂直になる。先端面MPbは、チャック1の側とは反対側に位置し、基端面MPdは、チャック1の側に位置する。基端外周当接面MPcは、基端面MPdの側に位置し、爪4に把握される部分である。ワークWに対応させて複数種類のマスタピースMPが、ストッカー(図示せず)に収納されている。すなわち、ストッカーには、基端外周当接面MPcの外径が異なるマスタピースMPが複数種類収納されている。
 図1および図2に示すように、ローダー2は、ハンド部22(移動体)を有しており、このハンド部22が、マスタピースMPおよびチャック1に対して移動可能に設けられている。ローダー2は、上述したように、マスタピースMPをチャック1に搬送するための装置であり、ハンド部22は、マスタピースMPをチャック1に搬送可能になっている。より具体的には図3に示すように、ローダー2のハンド部22には、マスタピースMPをクランプする一対のハンド爪25が取り付けられており、一対のハンド爪25の間にマスタピースMPがクランプされる。ハンド爪25は、直方体状のハンド部22の一の側面に取り付けられている。ローダー2は、マスタピースMPを、チャック1の爪4にクランプ可能な位置に搬送すると共に、チャック1から上述したストッカーに搬送する。ローダー2は、マスタピースMPと同様にしてワークWも搬送可能になっている。
 ローダー2のハンド部22は、ローダー駆動部23(移動体駆動部)によってチャック1に対して移動する。ローダー駆動部23は、ハンド部22を昇降させるローダー昇降駆動部26と、ハンド部22をチャック1の軸方向Xに移動させる軸方向移動駆動部27と、軸方向Xで見たときにハンド部22を横方向Yに移動させる横方向移動駆動部28と、を有している。より具体的には、工作機械の本体に、軸方向Xで見たときに横方向Y(または水平方向)に延びる横方向レール29が取り付けられており、この横方向レール29に沿って第1走行台30が走行可能になっている。この第1走行台30に、横方向移動駆動部28が内蔵されていてもよい。また、第1走行台30に対して、軸方向Xに延びる軸方向レール31が軸方向Xに沿って走行可能になっている。軸方向レール31には第2走行台32が取り付けられており、第2走行台32は軸方向レール31と共に、軸方向Xに走行可能になっている。上述した軸方向移動駆動部27は、第1走行台30に内蔵されていてもよい。さらに、第2走行台32に対して、上下方向に延びる昇降ロッド33が昇降可能になっている。昇降ロッド33の下端に、ハンド部22が取り付けられている。第2走行台32に、ローダー昇降駆動部26が内蔵されていてもよい。このようにして、ローダー2のハンド部22は、チャック1に対して、軸方向X、横方向Yおよび上下方向に移動可能になっている。更に、第2走行台32に、昇降ロッド33を回転させるローダー回転駆動部34が内蔵されていてもよい。ローダー回転駆動部34は、昇降ロッド33の上下方向に延びる中心軸線を中心にして、昇降ロッド33およびハンド部22を回転させるようにしてもよい。
 図1および図2に示すように、ローダー2のハンド部22には、マスタピースMPの振れを測定する測定器6が取り付けられている。測定器6は、上下方向の変位を測定可能な第1センサ6a(第1測定器)と、水平方向の変位を測定可能な第2センサ6b(第2測定器)と、を有している。第1センサ6aおよび第2センサ6bは、取付部材5を介してハンド部22に取り付けられている。取付部材5は、直方体状のハンド部22の4つの側面のうち上述したハンド爪25とは反対側の側面に取り付けられている。第1センサ6aは、直方体状の取付部材5の下面に取り付けられており、上方からマスタピースMPに接触または近接して、マスタピースMPの振れを測定可能になっている。第2センサ6bは、取付部材5の側面(ハンド爪25とは反対側の側面)に取り付けられており、水平方向でマスタピースMPに接触または近接して、マスタピースMPの振れを測定可能になっている。第1センサ6aおよび第2センサ6bの例としては、変位センサやタッチプローブ等が挙げられるが、マスタピースMPの振れを測定することができれば、これに限られることはない。また、第1センサ6aおよび第2センサ6bは、マスタピースMPに接触して振れを測定する接触式のセンサであってもよく、マスタピースMPとは離間して振れを測定する非接触式のセンサであってもよい。ここで、振れとは、マスタピースMPを回転させている間の、マスタピースMPの測定対象面(円筒外周面MPaまたは先端面MPb)の変位を意味する。
 制御部24は、上述した回転駆動部11、ローダー駆動部23および測定器6等を制御する。より具体的には、制御部24は、まず、測定器6がマスタピースMPの振れを測定可能となる位置にハンド部22を移動させ、続いて、チャック1を回転させ、その後、測定器6にマスタピースMPの振れを測定させるように、回転駆動部11、ローダー駆動部23および測定器6を制御する。制御部24は、マスタピースMPの振れを測定させる際には、第1センサ6aによりマスタピースMPの円筒外周面MPaの振れを測定する第1測定工程(図2参照)と、第2センサ6bによりマスタピースMPの先端面MPbの振れを測定する第2測定工程(図5参照)と、を行うようにしてもよい。
 例えば、制御部24がローダー駆動部23および測定器6を制御することにより、第1センサ6aがマスタピースMPの円筒外周面MPaの振れを測定可能な位置にハンド部22を移動させて第1測定工程を行い、第2センサ6bがマスタピースMPの先端面MPbの振れを測定可能な位置にハンド部22を移動させて第2測定工程を行うようにしてもよい。このうち第1測定工程では、第1測定位置と、第2測定位置とで、マスタピースMPの円筒外周面MPaの振れを測定するようにしてもよい。このうち第1測定位置は、マスタピースMPの円筒外周面MPaのうちチャック本体3の側の部分(マスタピースMPの基端側の部分)で円筒外周面MPaの振れが測定可能となる位置である。第2測定位置は、マスタピースMPの円筒外周面MPaのうちチャック本体3とは反対側の部分(マスタピースMPの先端側の部分)で円筒外周面MPaの振れが測定可能となる位置である。図2において、第1測定位置を二点鎖線で示し、第2測定位置を実線で示している。第2測定工程では、図5に示すように、第3測定位置でマスタピースMPの振れを測定するようにしてもよい。第3測定位置は、マスタピースMPの先端面MPb(チャック本体3とは反対側の端面)の振れが測定可能となる位置である。第3測定位置は、先端面MPbのうちマスタピースMPの外周縁の側で先端面MPbの振れが測定可能となる位置とすることが好ましい。
 また、制御部24は、第1センサ6aおよび第2センサ6bにより測定されたマスタピースMPの振れの測定値を記録する。測定値は、チャック1の回転位相と関連づけて記録されるようにしてもよい。なお、センサ6a、6bによる測定は、例えば、所定の位相間隔で行うようにしてもよい。
 また、制御部24は、測定器6によるマスタピースMPの振れの測定値に基づいて、マスタピースMPの振れが正常であるか異常であるかを判断する。この正常か異常かの判断は、例えば、振れの幅が、所定の基準値よりも大きいか否かで判断するようにしてもよい。基準値は、上述した3つの測定位置それぞれに設定して、測定位置毎に、正常か異常かを判断してもよい。また、正常か異常かの判断は、上述した3つの測定位置におけるマスタピースMPの振れの測定値のうちのいずれか任意の1つの測定位置で得られた測定値で異常がある場合に、異常と判断してもよい。
 異常であると判断した場合には、制御部24は、警報を報知するようにしてもよい。例えば、工作機械のディスプレイに、異常である旨の表示をしてもよい。あるいは、ランプの点灯や点滅などで異常を報知してもよく、ブザーなどの警報音で異常を報知してもよい。異常の報知は、マスタピースMPの振れの測定中に行ってもよく、測定完了後に行うようにしてもよい。
 次に、本実施の形態によるチャック1の把握精度確認方法について説明する。ここでは、爪4を交換するチャック1の爪交換方法を行う際に、チャック1の把握精度確認方法を行う例について説明する。
 まず、爪交換工程として、爪4を交換する。より具体的には、まず、チャック1を回転させることにより、チャック1に取り付けられている3つの爪4のうち、交換する爪4を取付溝3aから上方に引き抜き可能な位置に位置づける。続いて、爪自動交換装置12のフィンガ13を下降させて、チャック1の軸方向Xに沿って爪4の取付ブロック15の引掛溝15aの側に前進させて、フィンガ13のカギ片13aを取付ブロック15の引掛溝15aに係止させる。次に、爪係脱装置19の噛合部材20を後退させて、マスタジョー18との係合を解除する。その後、フィンガ13を上昇させて、チャック本体3の取付溝3aから爪4を引き抜く。次に、引き抜いた爪4をストッカー(図示せず)に搬送して収納し、他の爪4をフィンガ13に係止させる。続いて、フィンガ13を取付溝3aの上方に搬送させて下降させ、チャック本体3の取付溝3aに挿入する。次に、爪係脱装置19の噛合部材20を前進させて、取付溝3aに挿入された爪4のベースジョー16をマスタジョー18に係合させる。次に、フィンガ13のカギ片13aをチャック1の軸方向Xに沿って移動させて取付ブロック15の引掛溝15aから後退させる。そして、フィンガ13を上昇させて退避させる。このような動作を、他の爪4に対して行うことにより、チャック1に取り付けられていた3つの爪4を交換することができる。
 爪交換工程の後、把握精度確認工程として、チャック1の把握精度の確認を行う。
 まず、把握工程として、マスタピースMPが爪4にクランプされる。より具体的には、まず、ローダー2のハンド部22が、ストッカー(図示せず)に収納されている所望のマスタピースMPをハンド爪25にクランプする。続いて、このマスタピースMPがチャック1の爪4にクランプ可能な位置に搬送される。この際、各爪4のトップジョー17は、マスタピースMPをクランプする位置よりも半径方向外側に位置している。マスタピースMPの搬送時には、マスタピースMPの基端面MPdをチャック1の側に位置づけるため、ハンド爪25が取付部材5よりもチャック1の側に向くような姿勢になる。マスタピースMPがチャック1の爪4にクランプ可能な位置に達すると、マスタピースMPの基端面MPdは、トップジョー17の内周当接面17aよりも内側に設けられた軸方向Xに垂直な当接端面17bに当接する。次に、各マスタジョー18が半径方向内側に同期して移動し、これに伴い、各トップジョー17も半径方向内側に同期して移動する。これにより、トップジョー17の内周当接面17aが、マスタピースMPの基端外周当接面MPcに当接し、マスタピースMPが爪4にクランプされる。その後、ハンド部22は、マスタピースMPのクランプを解除する。このようにして、マスタピースMPが3つの爪4にクランプされる。
 把握工程の後、移動工程として、測定器6がマスタピースMPの振れを測定可能な位置にハンド部22を移動する。より具体的には、ローダー駆動部23のローダー昇降駆動部26、軸方向移動駆動部27および横方向移動駆動部28を駆動させることにより、測定器6の第1センサ6aまたは第2センサ6bを、所望の位置に移動する。また、ローダー回転駆動部34を駆動させることにより、ハンド部22の姿勢を変えてもよい。ここでは、図1に示すように、軸方向XでマスタピースMPの先端から基端に向かって見たときに、取付部材5が左側に位置し、ハンド爪25が右側に位置するようにハンド部22の向きを変える。また、ハンド部22を、第1センサ6aがマスタピースMPの振れを測定可能な位置に移動させてもよい。ここでは、ハンド部22を、マスタピースMPの円筒外周面MPaのうちマスタピースMPの基端側の部分において第1センサ6aがマスタピースMPの振れを測定可能となる第1測定位置(図2の二点鎖線で示す位置)に移動させる。
 移動工程の後、測定工程として、測定器6の第1センサ6aによりマスタピースMPの振れを測定する。測定工程は、第1センサ6aによりマスタピースMPの円筒外周面MPaの振れを測定する第1測定工程と、第2センサ6bによりマスタピースMPの先端面MPbの振れを測定する第2測定工程と、を有していてもよい。
 例えば、まず、第1測定工程を行う。この際、第1測定位置に位置づけられた第1センサ6aにより、マスタピースMPの基端側においてマスタピースMPの円筒外周面MPaの振れを測定する。この間、回転駆動部11を駆動して主軸10およびチャック1と共にマスタピースMPを回転させる。例えば、円筒外周面MPaの振れの測定は、3つの爪4のうちの一の爪4から他の一の爪4を通過して残りの爪4に達するまでチャック1を回転させている間に行ってもよい。このときのチャック1の回転角は、本実施の形態のように爪4が3つ設けられている場合には240°となる(爪4が2つ設けられる場合には180°となる)。あるいは、チャック1を1回転(360°回転)させている間、円筒外周面MPaの振れを測定するようにしてもよく、マスタピースMPの振れを効果的に測定することができれば、測定時の回転角は任意である。得られた測定値は、チャック1の回転位相と関連づけて制御部24に記録される。
 次に、ハンド部22を、マスタピースMPの円筒外周面MPaのうちマスタピースMPの先端側の部分で第1センサ6aがマスタピースMPの振れを測定可能となる第2測定位置(図2の実線で示す位置)に移動させる。そして、第2測定位置に位置づけられた第1センサ6aにより、マスタピースMPの先端側の部分においてマスタピースMPの円筒外周面MPaの振れを測定する。この間、上述した第1測定位置における測定と同様にして、回転駆動部11を駆動して主軸10およびチャック1と共にマスタピースMPを回転させる。得られた測定値は、チャック1の回転位相と関連づけて制御部24に記録される。
 次に、ハンド部22を、第2センサ6bがマスタピースMPの振れを測定可能な位置に移動させる。ここでは、ハンド部22を、マスタピースMPの先端面MPbで第2センサ6bがマスタピースMPの振れを測定可能となる第3測定位置(図5に示す位置)に移動させる。そして、第2測定工程を行う。この際、第3測定位置に位置づけられた第2センサ6bにより、マスタピースMPの先端面MPbの振れを測定する。この間、上述した第1測定位置における測定と同様にして、回転駆動部11を駆動して主軸10およびチャック1と共にマスタピースMPを回転させる。得られた測定値は、チャック1の回転位相と関連づけて制御部24に記録される。
 このようにして、チャック1にクランプされたマスタピースMPの測定位置に測定器6を移動させた後、チャック1を自動的に回転させると共にマスタピースMPの振れを自動的に測定することができる。測定が完了した後、ハンド部22は、マスタピースMPから離れた位置に退避してもよい。
 測定工程の後、判断工程として、マスタピースMPの振れの測定値に基づいて、マスタピースMPの振れが正常であるか異常であるが判断される。異常であると判断された場合には、異常であることが報知される。この場合には、作業者が、取付異常が発生している爪4のチャック本体3に対する装着を修正し(例えば、装着し直し)、再度、把握精度の確認を行ってもよい。
 マスタピースMPの振れが正常であると判断された場合には、マスタピースMPが爪4から取り外される。この場合、まず、ローダー2のハンド部22が、マスタピースMPをクランプする。続いて、各マスタジョー18が半径方向外側に同期して移動し、これに伴い、各トップジョー17も半径方向外側に同期して移動する。これにより、トップジョー17の内周当接面17aが、マスタピースMPの基端外周当接面MPcから離間し、マスタピースMPの爪4によるクランプを解除する。そして、マスタピースMPをストッカーに搬送して収納する。
 次に、ハンド部22が、ストッカーに収納されている所望のワークWをクランプし、このワークWがチャック1の爪4にクランプ可能な位置に搬送される。この際、各爪4のトップジョー17は、ワークWをクランプする位置よりも半径方向外側に位置している。ワークWがチャック1の爪4にクランプ可能な位置に達すると、ワークWの基端面は、トップジョー17の当接端面17bに当接する。次に、各マスタジョー18が半径方向内側に同期して移動し、これに伴い、各トップジョー17も半径方向内側に同期して移動する。これにより、トップジョー17の内周当接面17aが、ワークWに当接し、ワークWが爪4にクランプされる。その後、ハンド部22は、ワークWのクランプを解除する。このようにして、ワークWが3つの爪4にクランプされる。
 その後、爪4にクランプされたワークWが、図示しない刃物台の刃具によって加工される。上述したように、爪4の交換後であってワークWの加工前に、爪4の把握精度を確認してマスタピースMPの振れが正常であると判断している。このため、把握精度を確認して正常であると判断された爪4でワークWを把握することができ、ワークWの加工精度を確保することができる。
 このようにして、作業者自身が振れを測定することを不要にでき、作業者による測定値の読み間違いや測定のバラツキ等の問題を回避することができる。そして、測定器6による振れの測定値とチャック1の回転位相とが関連づけられることで、振れの測定値が異常であった回転位相を容易に認識することができる。すなわち、マスタピースMPが長尺である場合には、チャック1と振れの測定箇所が離れることで、振れの測定値とチャック1の回転位相を同時に観測することが困難になっていた。しかしながら、本実施の形態によれば、マスタピースMPが長尺であっても、振れの測定値が異常であったチャック1の回転位相を容易に認識することができる。このため、取付異常の爪4を容易に判別することができ、爪4の取付修正作業を効率良く行うことができる。また、チャック本体3に装着される爪4を交換した後、ワークWを加工する前にチャック1の把握精度の確認が実施できるため、加工不良のワークWを発見した場合には、交換した爪4以外の原因(刃具や機械トラブル等)で加工不良が発生していることが容易に判別できる。
 なお、本実施の形態によるチャック1の把握精度確認装置21は、爪4の動作状態を確認するために用いることもできる。すなわち、3つの爪4を半径方向に移動させるための機構は、上述したようにマスタジョー18等によって構成されているが、この機構が正常か異常かを確認するために本実施の形態による把握精度確認装置21を用いることもできる。この場合、図6に示すように、爪4を半径方向外側に移動させてチャック1を開いた場合に、各爪4の外周面の位置を測定器6の第1センサ6aまたは第2センサ6bで測定してもよい。各爪4で外周面の位置が異なる場合には、この機構に異常が発生していると判断することができる。また、一の爪4に対して、外周面の位置の測定値をデータとして集積して分析することによっても、機構が正常か異常かの判断をすることができる。異常が発生していると判断した場合には、作業者によって機構を修正することができる。このため、チャック1の予防保全に寄与することができる。
 このように本実施の形態によれば、測定器6が取り付けられたローダー2のハンド部22を、ローダー駆動部23を駆動させることによって、測定器6がマスタピースMPの振れを測定可能な位置に移動させ、当該位置において測定器6がマスタピースMPの振れを測定する。このことにより、マスタピースMPの振れを自動的に測定することができ、作業者による作業を不要にすることができる。このため、爪4を交換した後のチャック1の把握精度確認の信頼性を向上させることができる。
 また、本実施の形態によれば、ローダー駆動部23は、ハンド部22を昇降させるローダー昇降駆動部26と、ハンド部22をチャック1の軸方向Xに移動させる軸方向移動駆動部27と、軸方向Xで見たときにハンド部22を横方向Yに移動させる横方向移動駆動部28と、を有している。このことにより、測定器6が取り付けられたハンド部22を、測定器6がマスタピースMPの振れを測定可能な位置に容易に移動させることができる。このため、測定器6の振れの測定値の測定精度を確保することができ、チャック1の把握精度確認の信頼性を向上させることができる。
 また、本実施の形態によれば、第1測定工程として、マスタピースMPの円筒外周面MPaの振れを測定し、第2測定工程として、マスタピースMPの先端面MPbの振れを測定する。このことにより、マスタピースMPの振れを異なる位置で測定することができる。このため、チャック1の把握精度確認の信頼性を向上させることができる。
 また、本実施の形態によれば、測定器6は、上下方向の変位を測定可能な第1センサ6aと、水平方向の変位を測定可能な第2センサ6bと、を有している。このことにより、第1センサ6aによりマスタピースMPの円筒外周面MPaの振れを測定することができ、第2センサ6bによりマスタピースMPの先端面MPbの振れを測定することができる。このため、第1測定工程から第2測定工程に移行する際に、ハンド部22の移動量を低減することができる。このため、マスタピースMPの振れの測定時間を短縮させることができる。
 また、本実施の形態によれば、ローダー駆動部23を駆動させることによって、ハンド部22を第1センサ6aがマスタピースMPの振れを測定可能な位置に移動させて、第1測定工程が行われる。そして、ローダー駆動部23を駆動させることによって、ハンド部22を第2センサ6bがマスタピースMPの先端面MPbの振れを測定可能な位置に移動させて、第2測定工程が行われる。このことにより、マスタピースMPの振れを異なる位置で自動的に測定することができ、作業者による作業を不要にすることができる。このため、爪4を交換した後のチャック1の把握精度確認の信頼性を向上させることができる。
 また、本実施の形態によれば、マスタピースMPは、ハンド部22にクランプされてチャック1に搬送される。このことにより、マスタピースMPを爪4に把握する工程を、自動的に行うことができる。このため、爪4を交換した後のチャック1の把握精度を容易に確認することができ、作業者による作業を不要にすることができる。
 なお、上述した本実施の形態においては、測定対象物の一例として、チャック1の把握精度を確認するために爪4にクランプされたマスタピースMPの振れを測定する例について説明した。しかしながら、このことに限られることはなく、爪4にクランプされたワークWの振れを測定して、チャック1の把握精度を確認するようにしてもよい。この場合には、ワークWを加工する前にチャック1の把握精度を確認してもよく、ワークWを加工した後にチャック1の把握精度を確認するようにしてもよい。
 また、上述した本実施の形態においては、マスタピースMPの振れを測定する測定器6が、上下方向の変位を測定可能な第1センサ6aと、水平方向の変位を測定可能な第2センサ6bと、を有している例について説明した。しかしながら、測定器6の構成はこれに限られることはない。センサの個数は1つであってもよく、3つ以上であってもよい。例えば、第2センサ6bを、マスタピースMPの側方で第1測定位置に相当する位置および/または第2測定位置に相当する位置に位置づけて、マスタピースMPの円筒外周面MPaの振れを測定するようにしてもよい。
 また、上述した本実施の形態においては、第1測定位置(マスタピースMPの基端側の部分)および第2測定位置(マスタピースMPの先端側の部分)においてマスタピースMPの円筒外周面MPaの振れをそれぞれ測定すると共に、第3測定位置においてマスタピースMPの先端面MPbの振れを測定する例について説明した。しかしながら、このことに限られることはなく、チャック1の把握精度の確認の信頼性を確保することができれば、これら3つの測定位置のうちの任意の1つの測定位置で、マスタピースMPの振れを測定して、チャック1の把握精度を判断するようにしてもよい。
 また、上述した本実施の形態においては、爪4を交換するチャック1の爪交換方法を行う際に、チャック1の把握精度の確認を行う例について説明した。しかしながら、このことに限られることはなく、爪4を交換しない場合であっても、爪4が長期間の使用による摩耗が生じたと想定される場合に、チャック1の把握精度の確認を行うようにしてもよい。
 また、上述した本実施の形態においては、加工するワークWやマスタピースMPを搬送するローダー2のハンド部22に取付部材5を介して測定器6を設ける例について説明した。しかしながら、このことに限られることはない。例えば、工作機械が、チャック1に対して移動可能なロボットを備えている場合には、このロボットに、測定器6が取り付けられていてもよい。例えば、このロボットの先端部に、爪自動交換装置12が取り付けられている場合には、この爪自動交換装置12に測定器6が取り付けられていてもよい。また、ローダー2のハンド部22の代わりに、ワークWの加工に使用される刃物台(タレットともいう)や、刃具を自転させるミル軸に測定器6を取り付けてもよい。
 また、上述した本実施の形態においては、チャック1が3つの爪4を備えている例について説明した。しかしながら、このことに限られることはなく、爪4の個数は2つであってもよく、4つ以上であってもよい。
 また、上述した本実施の形態においては、チャック1が工作機械のチャックである例について説明した。しかしながら、このことに限られることはなく、本実施の形態は、検査装置に用いられるチャックにも適用することができる。この場合であっても、本実施の形態によるチャック1の把握精度の確認を行うことにより、検査装置によるワークWの検査の精度を確保することができる。
 本発明は、上述した実施の形態に限定されるものではなく発明の趣旨を逸脱しない範囲内において構成の一部を適宜変更して実施できる。

Claims (12)

  1.  チャックの爪に測定対象物を把握して把握精度を確認するチャックの把握精度確認方法であって、
     前記測定対象物を前記爪に把握する把握工程と、
     前記測定対象物の振れを測定可能な測定器が設けられた移動体を、移動体駆動部を駆動させることによって、前記測定器が前記測定対象物の振れを測定可能な位置に移動させる移動工程と、
     回転駆動部を駆動させることにより前記チャックを回転させながら、前記測定器により前記測定対象物の振れを測定する測定工程と、を備えた、チャックの把握精度確認方法。
  2.  前記移動体駆動部は、前記移動体を昇降させる昇降駆動部と、前記移動体を前記チャックの軸方向に移動させる軸方向移動駆動部と、前記軸方向で見たときに前記移動体を横方向に移動させる横方向移動駆動部と、を有している、請求項1に記載のチャックの把握精度確認方法。
  3.  前記測定工程は、前記測定対象物の円筒外周面の振れを測定する第1測定工程と、前記測定対象物の先端面の振れを測定する第2測定工程と、を有している、請求項1または2に記載のチャックの把握精度確認方法。
  4.  前記測定器は、上下方向の変位を測定可能な第1測定器と、水平方向の変位を測定可能な第2測定器と、を有している、請求項3に記載のチャックの把握精度確認方法。
  5.  前記移動工程において、前記移動体駆動部を駆動させることによって、前記移動体を、前記第1測定器が前記測定対象物の振れを測定可能な位置に移動させ、
     前記第1測定工程において、前記第1測定器により、前記測定対象物の前記円筒外周面の振れを測定し、
     前記第1測定工程の後に、前記移動体駆動部を駆動させることによって、前記移動体を、前記第2測定器が前記測定対象物の振れを測定可能な位置に移動させ、
     前記第2測定工程において、前記第2測定器により、前記測定対象物の前記先端面の振れを測定する、請求項4に記載のチャックの把握精度確認方法。
  6.  前記把握工程において、前記測定対象物は、前記移動体により前記チャックに搬送される、請求項1~5のいずれか一項に記載のチャックの把握精度確認方法。
  7.  チャックの爪を交換する交換工程と、
     請求項1~6のいずれか一項に記載のチャックの把握精度確認方法により、前記交換工程後の前記チャックの把握精度を確認する把握精度確認工程と、を備えた、チャックの爪交換方法。
  8.  チャックの爪に測定対象物を把握して把握精度を確認するチャックの把握精度確認装置であって、
     前記チャックを回転させる回転駆動部と、
     前記チャックに対して移動可能に設けられた移動体と、
     前記移動体を前記測定対象物に対して移動させる移動体駆動部と、
     前記移動体に設けられ、前記測定対象物の振れを測定する測定器と、
     制御部と、を備え、
     前記制御部は、前記測定器が前記測定対象物の振れを測定可能な位置に前記移動体を移動させた後、前記チャックを回転させながら、前記測定器により前記測定対象物の振れを測定させるように、前記回転駆動部、前記移動体駆動部および前記測定器を制御する、チャックの把握精度確認装置。
  9.  前記移動体駆動部は、前記移動体を昇降させる昇降駆動部と、前記移動体を前記チャックの軸方向に移動させる軸方向移動駆動部と、前記軸方向で見たときに前記移動体を横方向に移動させる横方向移動駆動部と、を有している、請求項8に記載のチャックの把握精度確認装置。
  10.  前記測定器は、上下方向の変位を測定可能な第1測定器と、水平方向の変位を測定可能な第2測定器と、を有している、請求項8または9に記載のチャックの把握精度確認装置。
  11.  前記制御部は、前記第1測定器が前記測定対象物の円筒外周面の振れを測定可能な位置に前記移動体を移動させて、前記第1測定器により前記測定対象物の前記円筒外周面の振れを測定し、前記第2測定器が前記測定対象物の先端面の振れを測定可能な位置に前記移動体を移動させて、前記第2測定器により前記測定対象物の先端面の振れを測定するように、前記移動体駆動部および前記測定器を制御する、請求項10に記載のチャックの把握精度確認装置。
  12.  前記移動体は、前記チャックに前記測定対象物を搬送可能である、請求項8~11のいずれか一項に記載のチャックの把握精度確認装置。
     
PCT/JP2019/031573 2018-08-10 2019-08-09 チャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置 WO2020032237A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217002707A KR102507946B1 (ko) 2018-08-10 2019-08-09 척의 움켜잡기 정밀도 확인 방법, 척의 발톱 교환 방법 및 척의 움켜잡기 정밀도 확인 장치
US17/266,332 US11794301B2 (en) 2018-08-10 2019-08-09 Chuck grip accuracy checking method, chuck claw exchanging method, and chuck grip accuracy checking device
JP2020535904A JP7020557B2 (ja) 2018-08-10 2019-08-09 チャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置
CN201980053313.4A CN112566743B (zh) 2018-08-10 2019-08-09 卡盘的抓握精度确认方法、卡盘的爪更换方法和卡盘的抓握精度确认装置
EP19848447.9A EP3834971A4 (en) 2018-08-10 2019-08-09 METHOD FOR CONFIRMING THE GRIP ACCURACY OF A CHUCK, METHOD FOR REPLACING THE CLAW CLAW AND DEVICE FOR CONFIRMING THE GRIP ACCURACY OF A CHUCK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018150931 2018-08-10
JP2018-150931 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020032237A1 true WO2020032237A1 (ja) 2020-02-13

Family

ID=69413860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031573 WO2020032237A1 (ja) 2018-08-10 2019-08-09 チャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置

Country Status (7)

Country Link
US (1) US11794301B2 (ja)
EP (1) EP3834971A4 (ja)
JP (1) JP7020557B2 (ja)
KR (1) KR102507946B1 (ja)
CN (1) CN112566743B (ja)
TW (1) TWI719582B (ja)
WO (1) WO2020032237A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4070915A1 (en) * 2021-04-06 2022-10-12 Agathon AG, Maschinenfabrik Workpiece holder and method for manufacturing a rotational-symmetrical tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11015990B2 (en) * 2019-09-04 2021-05-25 Bradley Davis Grip sensor
CN114838683B (zh) * 2022-04-26 2024-04-09 山东威达机械股份有限公司 一种检测设备及检验钻夹头精度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894901A (ja) * 1981-11-26 1983-06-06 先生精機株式会社 工作機械に於ける被削材の芯出し装置
JPS59102591A (ja) * 1982-11-30 1984-06-13 豊田工機株式会社 交換式ハンドを備えた作業装置
JPS63272408A (ja) * 1987-04-27 1988-11-09 Tsubakimoto Emason:Kk 異常状態検知機能を有するチヤツキング機構
JPH02109616A (ja) * 1988-10-18 1990-04-23 Hitachi Seiki Co Ltd 工作機械のチャック爪自動交換装置
JPH08155773A (ja) * 1994-12-12 1996-06-18 Seibu Electric & Mach Co Ltd Nc工作機械
JP3185816B2 (ja) 1992-05-15 2001-07-11 豊和工業株式会社 チャック爪自動交換装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334051A (ja) * 1986-07-24 1988-02-13 Hitachi Seiki Co Ltd 素材不良,チヤツキング不良の自動計測判別装置
JPH05200649A (ja) 1992-01-27 1993-08-10 Toyoda Mach Works Ltd 工具心出し装置
JP2681765B2 (ja) * 1995-08-10 1997-11-26 中山精工株式会社 ワークのセンタ支持チャック装置
US5652659A (en) * 1995-10-09 1997-07-29 Ohio Electronic Engravers, Inc. System and method for measuring run-out and other characteristics of a workpiece mounted on an engraver
JP2000357322A (ja) * 1999-06-14 2000-12-26 Fuji Electric Co Ltd 磁気ディスク用基板のテクスチャ加工装置
JP4955522B2 (ja) * 2007-11-29 2012-06-20 ヤマザキマザック株式会社 複合加工旋盤におけるチャック爪自動交換システム
JP2011056596A (ja) * 2009-09-07 2011-03-24 Denso Corp 研削加工用芯出し治具
JP5894901B2 (ja) 2012-10-13 2016-03-30 株式会社コロナ 燃焼装置
CN105234712B (zh) * 2015-11-17 2017-04-05 安徽江淮汽车集团股份有限公司 一种汽车转向节手动夹具
CN205834279U (zh) * 2016-07-15 2016-12-28 北京轩宇智能科技有限公司 卡盘
CN206732378U (zh) * 2017-04-24 2017-12-12 大族激光科技产业集团股份有限公司 切管机、卡盘及其卡爪
JP7087505B2 (ja) * 2018-03-19 2022-06-21 豊和工業株式会社 チャックの爪交換用ハンド、チャックの爪自動交換方法及び爪自動交換システム
US11478861B2 (en) * 2018-10-31 2022-10-25 Howa Machinery, Ltd. Chuck-claw coupling mechanism
US20220184712A1 (en) * 2019-03-27 2022-06-16 Howa Machinery, Ltd. Dust-proof mechanism of chuck, and chuck

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894901A (ja) * 1981-11-26 1983-06-06 先生精機株式会社 工作機械に於ける被削材の芯出し装置
JPS59102591A (ja) * 1982-11-30 1984-06-13 豊田工機株式会社 交換式ハンドを備えた作業装置
JPS63272408A (ja) * 1987-04-27 1988-11-09 Tsubakimoto Emason:Kk 異常状態検知機能を有するチヤツキング機構
JPH02109616A (ja) * 1988-10-18 1990-04-23 Hitachi Seiki Co Ltd 工作機械のチャック爪自動交換装置
JP3185816B2 (ja) 1992-05-15 2001-07-11 豊和工業株式会社 チャック爪自動交換装置
JPH08155773A (ja) * 1994-12-12 1996-06-18 Seibu Electric & Mach Co Ltd Nc工作機械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4070915A1 (en) * 2021-04-06 2022-10-12 Agathon AG, Maschinenfabrik Workpiece holder and method for manufacturing a rotational-symmetrical tool

Also Published As

Publication number Publication date
CN112566743B (zh) 2024-04-26
US20210308817A1 (en) 2021-10-07
JPWO2020032237A1 (ja) 2020-12-17
JP7020557B2 (ja) 2022-02-16
CN112566743A (zh) 2021-03-26
KR102507946B1 (ko) 2023-03-09
TW202019590A (zh) 2020-06-01
KR20210024136A (ko) 2021-03-04
EP3834971A4 (en) 2022-05-04
EP3834971A1 (en) 2021-06-16
TWI719582B (zh) 2021-02-21
US11794301B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2020032237A1 (ja) チャックの把握精度確認方法、チャックの爪交換方法およびチャックの把握精度確認装置
JPWO2007102435A1 (ja) 工作機械、工作機械の制御方法
JP6008487B2 (ja) 工作機械
US20240058880A1 (en) Tool changer
JP6356014B2 (ja) 歯車加工機械
JP6713587B2 (ja) ワーク搬送ロボット
US11126155B2 (en) Automatic screw inspection system
JP5732849B2 (ja) ワーク搬送装置
JP3357364B2 (ja) 工作機械に使用される自動化された加工用品取扱システム
JP5082679B2 (ja) 工作機械システム
JP2009160672A (ja) マニピュレータ
JP5732855B2 (ja) ワーク搬送装置
JP4580048B2 (ja) ボールエンドミル工具の自動測定方法および自動測定装置
JP6779107B2 (ja) 工具欠損検出装置及びこれを備えた工作機械
US20140106950A1 (en) Method for Changing a Gear Cutting Tool with Double-Sided Bearing in a Gear Cutting Machine and Device Therefor
CN111451819A (zh) 搬运机构及刀具搬运方法
JP2019503878A (ja) 工作機械
WO2022254566A1 (ja) 加工システム
JP6920261B2 (ja) ローダ自動ティーチング方法
JP6960659B2 (ja) 工作機械のローディングシステム
JP2022122164A (ja) ワーク自動搬送装置
JP2016055410A (ja) ワーク自動交換装置
JPH11188513A (ja) 工作機械のチャックの自動交換方法及び自動チャック交換装置
CN117754324A (zh) 油缸锻件加工装置及方法
JP2006212762A (ja) 生産加工ラインにおける工具交換方法および工具交換装置を備えた生産加工ライン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535904

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217002707

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848447

Country of ref document: EP

Effective date: 20210310