WO2020032040A1 - 渦電流探傷装置および渦電流探傷方法 - Google Patents

渦電流探傷装置および渦電流探傷方法 Download PDF

Info

Publication number
WO2020032040A1
WO2020032040A1 PCT/JP2019/030938 JP2019030938W WO2020032040A1 WO 2020032040 A1 WO2020032040 A1 WO 2020032040A1 JP 2019030938 W JP2019030938 W JP 2019030938W WO 2020032040 A1 WO2020032040 A1 WO 2020032040A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
excitation
eddy current
flaw detection
current flaw
Prior art date
Application number
PCT/JP2019/030938
Other languages
English (en)
French (fr)
Inventor
小林 徳康
淳 千星
恵 秋元
鵜飼 勝
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to CN201980049694.9A priority Critical patent/CN112513628A/zh
Priority to EP19847490.0A priority patent/EP3835777B1/en
Publication of WO2020032040A1 publication Critical patent/WO2020032040A1/ja
Priority to US17/156,834 priority patent/US11598750B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Definitions

  • Embodiments of the present invention relate to an eddy current flaw detection device and an eddy current flaw detection method.
  • eddy current flaw detection targets a metal material as an object to be inspected, and supplies an alternating current from an AC power supply to an excitation coil to induce an eddy current near the surface of the object to be inspected.
  • the reaction magnetic field created by is detected by the detection coil. If a defect exists near the surface of the object to be inspected, the flow of the eddy current changes due to the defect, and the intensity and distribution of the reaction magnetic field generated by the eddy current also changes, so that the presence or absence of the defect can be detected.
  • a composite material composed of two or more different materials may have a lower conductivity than a metal material due to the use of a laminated structure, the use of fibers, and the like.
  • the eddy current density induced in the composite material is low because the conductivity of the composite material is low. For this reason, the magnetic flux density of the reaction magnetic field generated by the eddy current also decreases, and the sensitivity of defect detection decreases.
  • a technique using a SQUID (Superconducting Quantum Interference Device) (superconducting quantum interferometer) magnetometer in order to improve the defect detection sensitivity of eddy current flaw detection under a small magnetic field condition is known.
  • SQUID Superconducting Quantum Interference Device
  • quantum interferometer superconducting quantum interferometer
  • composite materials have lower conductivity than metal materials. If the composite material is targeted for eddy current inspection, the eddy current density flowing in the composite material and the magnetic flux density created by the eddy current decrease, so that defect detection by eddy current inspection The sensitivity decreases. In addition, when a high-sensitivity magnetic sensor is used as the eddy current flaw detection means, the configuration of the device may be complicated and the price of the device may be increased.
  • An embodiment of the present invention aims to perform eddy current inspection capable of detecting defects with high sensitivity with a simple and inexpensive device configuration even for an inspection target of a material having low conductivity such as a composite material. .
  • an eddy current testing apparatus comprising: a first excitation / detector capable of inducing an eddy current in an object to be inspected; And a second excitation / detector disposed opposite to the first excitation / detector and capable of detecting a change in a reaction magnetic field caused by the eddy current.
  • an eddy current flaw detector which induces an eddy current in an object to be inspected and can detect a change in a reaction magnetic field caused by the eddy current. And a ferromagnetic rear member disposed on the opposite side of the excitation / detector with the object to be inspected interposed therebetween.
  • an eddy current flaw detection method comprising: a first excitation / detector arranging step of arranging a first excitation / detector in proximity to an object to be inspected; A second excitation / detector arranging step of arranging a second excitation / detector in proximity to the object to be inspected on the opposite side of the first excitation / detector with a body therebetween; After the second exciting / detector arranging step, an exciting step of inducing an eddy current in the object to be inspected by the first exciting / detector, and a change in a reaction magnetic field caused by the eddy current are detected by the second exciting / detector. A detection step of detecting with a detector.
  • an eddy current flaw detection method wherein an excitation / detector arranging step of arranging an excitation / detector in close proximity to an object to be inspected; A rear member arranging step of arranging a ferromagnetic back member adjacent to the object to be inspected on the opposite side of the excitation / detector; and after the excitation / detector arranging step and the rear member arranging step, the excitation / detection is performed.
  • the eddy-current flaw detection which can detect a defect with high sensitivity by a simple and inexpensive apparatus structure can also be performed with respect to the test object of a low conductivity material, such as a composite material. .
  • FIG. 1 is a schematic cross-sectional view showing a state during flaw detection by the eddy current flaw detection apparatus according to the first embodiment of the present invention.
  • the test object 11 to be inspected is made of a composite material having a lower conductivity than a normal metal material.
  • the composite material can be, for example, a composite material using silicon carbide fibers, a carbon fiber reinforced plastic (CFRP), a glass fiber reinforced plastic (GFRP), or the like.
  • CFRP carbon fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • the test object 11 is, for example, a flat plate, and has a first plane 12 and a second plane 13 on the back side thereof, which is parallel to the first plane 12. It is assumed that a defect (thin portion) 14 exists on the first plane 12.
  • the eddy current flaw detector of the first embodiment has an exciter 20 as a first excitation / detector and a detector 21 as a second excitation / detector.
  • the exciter 20 and the detector 21 are, for example, spiral coils.
  • the exciter 20 is arranged in contact with the first plane 12 of the device under test 11, and the detector 21 is arranged in contact with the second plane 13 of the device under test 11.
  • the exciter 20 and the detector 21 are arranged such that the axis A of their coils is perpendicular to the first plane 12 and the second plane 13.
  • An AC power supply 22 is connected to the exciter 20.
  • the detector 21 is connected to a detector circuit (not shown).
  • the coil wire forming the exciter 20 is thicker than the coil wire forming the detector 21. This is because it is necessary to flow a relatively large current through the exciter 20, so that the Joule loss there is suppressed.
  • An eddy current is induced in the device under test 11 by forming a fluctuating magnetic field around the exciter 20.
  • the eddy current forms a reaction magnetic field.
  • This reaction magnetic field is detected as a voltage by the detector 21 and the detector circuit. Since the reaction magnetic field changes due to the presence of the defect 14, the detector 14 can detect the defect 14 as a change in voltage.
  • test object 11 When the test object 11 is a normal metal material, most of the lines of magnetic force pass through the inside of the test object 11 due to the skin effect, and almost no magnetic field exists on the back surface (the second plane 13) of the test object 11. do not do.
  • the test object 11 when the test object 11 is stainless steel having a thickness of 2 mm and the frequency of the supplied alternating current is 500 kHz, the penetration depth of the magnetic field due to the skin effect is about 0.7 mm.
  • the penetration depth of the magnetic field due to the skin effect becomes deeper than when the test object 11 is a normal metal material.
  • a magnetic field is transmitted through the device under test 11 and also exists on the back surface (second plane 13) of the device under test 11.
  • the magnetic flux density generated in the test object 11 is lower than when the test object 11 is a normal metal material.
  • the exciter 20 and the detector 21 are arranged separately from the exciter 20 and the detector 21. Thereby, both the exciter 20 and the detector 21 can be arranged close to the DUT 11. That is, the detector 21 can be arranged at a position where the magnetic flux density is relatively high, and relatively high-precision flaw detection can be performed.
  • the structure and specifications of the exciter 20 and the detector 21 do not need to be the same, and the coil diameter, the number of turns, the shape, the size, and the like can be appropriately designed for each.
  • a relatively large current needs to flow through the coil of the exciter 20, it is desirable to increase the wire diameter of the coil.
  • the frequency of the power supply be on the order of MHz.
  • FIG. 2 is a schematic cross-sectional view illustrating a state during flaw detection by the eddy current flaw detection apparatus according to the second embodiment of the present invention.
  • the eddy current flaw detector of the second embodiment has a first excitation / detector 25 and a second excitation / detector 26.
  • the first excitation / detector 25 and the second excitation / detector 26 are, for example, spiral coils.
  • the first excitation / detector 25 is disposed in contact with the first plane 12 of the device under test 11, and the second excitation / detector 26 is disposed in contact with the second plane 13 of the device under test 11. .
  • the first excitation / detector 25 and the second excitation / detector 26 are arranged such that the axes A of their coils are perpendicular to the first plane 12 and the second plane 13.
  • An AC power supply 22 is connected to the first excitation / detector 25, and an AC power supply 22 a is connected to the second excitation / detector 26.
  • the first excitation / detector 25 and the second excitation / detector 26 are each connected to a detector circuit (not shown).
  • the first excitation / detector 25 and the second excitation / detector 26 have substantially the same structure, and each has both a function as an exciter and a function as a detector.
  • the AC power supplies 22 and 22a may have the same structure as each other, and preferably have the same frequency and phase as each other and are synchronized.
  • the AC power supplies 22 and 22a need not be separate ones, but may be one AC power supply.
  • the first excitation / detector 25 and the second excitation / detector 26 overlap, a higher magnetic flux density is obtained, and the magnetic flux is induced in the test object 11. Eddy currents are strengthened. As a result, the change in the reaction magnetic field caused by the eddy current increases.
  • the first excitation / detector 25 and the second excitation / detector 26 as detectors can detect a relatively large voltage change. Further, by adding the voltages obtained by the first excitation / detector 25 and the second excitation / detector 26 as detectors, it is possible to detect a larger change in voltage.
  • the alternating current supplied to the first excitation / detector 25 and the second excitation / detector 26 have the same frequency and the same phase and are synchronized.
  • the magnetic fields generated by the first excitation / detector 25 and the second excitation / detector 26 reinforce each other.
  • the flaw detection may be performed under mutually reinforcing conditions.
  • both the first excitation / detector 25 and the second excitation / detector 26 function as detectors, and the voltage signals detected by them are added.
  • the voltage signal detected by the first excitation / detector 25 and the second excitation / detector 26 In some cases, flaw detection may be performed by subtracting
  • first excitation / detector 25 and the second excitation / detector 26 function as a detector, and perform a flaw detection by a voltage signal detected thereby.
  • FIG. 3 is a schematic cross-sectional view showing a state during flaw detection by the eddy current flaw detection apparatus according to the third embodiment of the present invention.
  • the third embodiment is a modification of the second embodiment, and is not opposed to the device under test 11 outside the first excitation / detector 25 and the second excitation / detector 26.
  • the part is covered with a ferromagnetic cover 30.
  • Other configurations are the same as those of the second embodiment.
  • the operation and effect of the second embodiment can be obtained, and further, an alternating current is supplied to the first excitation / detector 25 and the second excitation / detector 26. Generates a distribution along the magnetic path formed by the ferromagnetic cover 30, and the magnetic flux density increases. Thereby, the magnetic flux density linked to the first excitation / detector 25 or the second excitation / detector 26 through the defect portion 14 can be increased, and high-sensitivity defect detection becomes possible.
  • the entire part outside the first excitation / detector 25 and the second excitation / detector 26 that is not opposed to the device under test 11 is covered with a ferromagnetic cover 30. Covering.
  • the cover 30 covers only a part of the outside of the first excitation / detector 25 and the second excitation / detector 26 that is not opposed to the device under test 11. Is also good. Even in that case, the effect of the cover 30 made of a partially ferromagnetic material can be obtained.
  • the third embodiment is a modification of the second embodiment, and that the first excitation / detector 25 and the second excitation / detector 26 of the eddy current flaw detector of the second embodiment are different.
  • a portion of the outside that is not opposed to the test object 11 is covered with a ferromagnetic cover 30.
  • a portion of the outside of the exciter 20 and the detector 21 of the eddy current flaw detector of the first embodiment which is not opposed to the inspection object 11 is covered with a ferromagnetic cover 30. It may be covered with. Even in that case, the effect of increasing the magnetic flux density in the device under test 11 can be obtained by the cover 30 made of the ferromagnetic material.
  • FIG. 4 is a schematic cross-sectional view illustrating a state during flaw detection by the eddy current flaw detection apparatus according to the fourth embodiment of the present invention.
  • the eddy current flaw detector according to the fourth embodiment has an excitation / detector 35 and a back member 36 made of a ferromagnetic material.
  • the excitation / detector 35 is similar to the first excitation / detector 25 of the second embodiment, and is arranged in contact with the first plane 12 of the device under test 11.
  • the AC power supply 22 is connected to the excitation / detector 35, and further, a detector circuit (not shown) is connected.
  • the ferromagnetic back member 36 is disposed so as to be in contact with the second plane 13 at a position opposite to the excitation / detector 35 with the object 11 to be inspected therebetween.
  • the back surface member 36 be disposed so as to cover the entire opposite side of the excitation / detector 35 with the inspection object 11 interposed therebetween.
  • the excitation / detector 35 has both a function as an exciter and a function as a detector.
  • an AC current is supplied from the AC power supply 22 to the excitation / detector 35, and a fluctuating magnetic field is formed inside and around the device under test 11.
  • a fluctuating magnetic field is formed inside and around the device under test 11.
  • an eddy current is induced inside the test object 11, and a reaction magnetic field is formed.
  • This reaction magnetic field can be detected as a voltage signal by the excitation / detector 35 as a detector.
  • the presence of the ferromagnetic back member 36 can increase the magnetic flux density in the test object 11, thereby increasing the detection sensitivity of the defective portion 14.
  • FIG. 5 is a schematic cross-sectional view showing a state during flaw detection by the eddy current flaw detection apparatus according to the fifth embodiment of the present invention.
  • the fifth embodiment is a modification of the fourth embodiment, in which the excitation / detector 35 of the fourth embodiment is replaced by an exciter 20 and a detector 21.
  • the structure of the exciter 20 and the detector 21 is the same as the structure of the exciter 20 and the detector 21 of the first embodiment.
  • the exciter 20 is disposed in contact with the first plane 12 of the device under test 11, and the detector 21 is disposed on the opposite side of the device under test 11 across the exciter 20. Have been.
  • Other configurations are the same as in the fourth embodiment.
  • the presence of the ferromagnetic back member 36 can increase the magnetic flux density in the device under test 11, whereby the defect 14 Can be increased in detection sensitivity.
  • the structures and specifications of the exciter 20 and the detector 21 do not need to be the same, and are suitable for each. The design of the coil diameter, number of turns, shape, size, etc. of the coil can be made.
  • FIG. 6 is a schematic cross-sectional view illustrating a state during flaw detection by the eddy current flaw detection apparatus according to the sixth embodiment of the present invention.
  • the sixth embodiment is a modification of the fifth embodiment.
  • a cover made of a ferromagnetic material covers the outside of the exciter 20 and the detector 21 which are configured and arranged in the same manner as the fifth embodiment. 40 are arranged.
  • the presence of the cover 40 made of a ferromagnetic material can further increase the magnetic flux density in the device under test 11. Thereby, the detection sensitivity of the defective portion 14 can be further increased.
  • FIG. 7 is a schematic cross-sectional view showing a state during flaw detection by the eddy current flaw detection apparatus according to the seventh embodiment of the present invention.
  • the seventh embodiment is a modification of the fifth embodiment, in which an exciter 20 and a detector 21 are arranged in parallel in contact with a first plane 12 of a device under test 11.
  • the ferromagnetic back member 36 is disposed so as to be in contact with the second plane 13 at a position opposite to the exciter 20 and the detector 21 with the inspection object 11 interposed therebetween. It is desirable that the back surface member 36 be disposed so as to cover the entire opposite side of the exciter 20 and the detector 21 with the inspection object 11 interposed therebetween.
  • Other configurations are the same as in the fifth embodiment.
  • the presence of the ferromagnetic back member 36 can increase the magnetic flux density in the inspection object 11, thereby reducing the defect portion 14. Can be increased in detection sensitivity. Further, since the exciter 20 and the detector 21 are separate bodies, it is not necessary to make the structure and specifications of the exciter 20 and the detector 21 the same, and the wire diameter, the number of windings, It can be designed in shape, size, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

実施形態に係る渦電流探傷装置は、交流電流が供給されて被検査体11に磁場の変化を与えることにより被検査体11に渦電流を誘起可能な第1の励磁・検出器20と、被検査体11をはさんで第1の励磁・検出器20の反対側に配置されて、被検査体11に誘起された渦電流によって生じる反作用磁場の変化を検出可能な第2の励磁・検出器21と、を有する。

Description

渦電流探傷装置および渦電流探傷方法
 この発明の実施形態は、渦電流探傷装置および渦電流探傷方法に関する。
 一般的に渦電流探傷は、検査対象となる被検査体として金属材料を対象とし、交流電源から交流電流を励磁コイルに供給して被検査体の表面近傍に渦電流を誘起し、この渦電流が作る反作用磁場を検出コイルで検出している。仮に、被検査体の表面近傍に欠陥が存在すると、欠陥により渦電流の流れが変化すると共に、渦電流が作る反作用磁場の強度や分布も変化するので、欠陥の有無を検出することができる。
 一方、二つ以上の異なる材料で構成される複合材料は、積層構造の採用や繊維の利用等をしているため、金属材料と比較して導電率が低くなる場合がある。このような複合材料を渦電流探傷の検査対象とすると、複合材料の導電率が低いために、複合材料に誘起される渦電流密度が低くなる。このため、渦電流が作る反作用磁場の磁束密度も低くなり、欠陥検出の感度が低下する。
特開平9-33489号公報
 微小磁場条件における渦電流探傷の欠陥検出感度を向上するために、SQUID(Superconducting Quantum Interference Device(超伝導量子干渉計))磁束計を用いる技術が知られている。このような技術においては、磁場に対するSQUID磁束計の感度が高いため、微小磁場条件における渦電流探傷の欠陥検出感度向上が期待できる。しかし、SQUID磁束計は冷却が必要であり、装置構成が複雑になり、装置も高価になる等の課題が残る。
 複合材料は金属材料より導電率が低い場合があり、複合材料を渦電流探傷の対象とすると、複合材料に流れる渦電流密度と渦電流が作る磁束密度が低下するため、渦電流探傷による欠陥検出感度が低下する。また、渦電流探傷の検出手段に高感度磁気センサを用いると、装置構成の複雑化や、装置の高価格化を招く場合がある。
 本発明の実施形態は、たとえば複合材料などの導電率が低い材料の検査対象に対しても、簡素で安価な装置構成で高感度の欠陥検出が可能な渦電流探傷を行うことを目的とする。
 上記課題を解決するために、本発明の一実施態様によれば、渦電流探傷装置は、被検査体に渦電流を誘起可能な第1の励磁・検出器と、前記被検査体をはさんで前記第1の励磁・検出器の反対側に配置されて、前記渦電流によって生じる反作用磁場の変化を検出可能な第2の励磁・検出器と、を有することを特徴とする。
 また、本発明の他の実施態様によれば、渦電流探傷装置は、被検査体に渦電流を誘起させるとともに、前記渦電流によって生じる反作用磁場の変化を検出することが可能な励磁・検出器と、前記被検査体をはさんで前記励磁・検出器の反対側に配置された強磁性体の背面部材と、を有することを特徴とする。
 また、本発明の他の実施態様によれば、渦電流探傷方法は、被検査体に近接させて第1の励磁・検出器を配置する第1の励磁・検出器配置ステップと、前記被検査体をはさんで前記第1の励磁・検出器の反対側で前記被検査体に近接させて第2の励磁・検出器を配置する第2の励磁・検出器配置ステップと、前記第1および第2の励磁・検出器配置ステップの後に、前記第1の励磁・検出器により前記被検査体に渦電流を誘起させる励磁ステップと、前記渦電流によって生じる反作用磁場の変化を前記第2の励磁・検出器で検出する検出ステップと、を有することを特徴とする。
 また、本発明の他の実施態様によれば、渦電流探傷方法は、被検査体に近接させて励磁・検出器を配置する励磁・検出器配置ステップと、前記被検査体をはさんで前記励磁・検出器の反対側で被検査体に近接して強磁性体の背面部材を配置する背面部材配置ステップと、前記励磁・検出器配置ステップおよび前記背面部材配置ステップの後に、前記励磁・検出器により前記被検査体に渦電流を誘起させる励磁ステップと、前記渦電流によって生じる反作用磁場の変化を前記励磁・検出器で検出する検出ステップと、を有することを特徴とする。
 本発明の実施形態によれば、たとえば複合材料などの導電率が低い材料の検査対象に対しても、簡素で安価な装置構成で高感度の欠陥検出が可能な渦電流探傷を行うことができる。
本発明の第1の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。 本発明の第2の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。 本発明の第3の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。 本発明の第4の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。 本発明の第5の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。 本発明の第6の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。 本発明の第7の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。
 以下、本発明の実施形態に係る渦電流探傷装置および渦電流探傷方法について、図面を参照しながら説明する。ここで、同一または類似の部分には共通の符号を付して、重複説明は省略する。
  [第1の実施形態]
 図1は、本発明の第1の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。
 この第1の実施形態では、検査対象となる被検査体11は、通常の金属材料よりも導電率の低い複合材料からなる。複合材料は、たとえば、炭化ケイ素繊維を用いた複合材料、炭素繊維強化プラスチック(CFRP)、ガラス繊維強化プラスチック(GFRP)などを対象とできる。被検査体11は、たとえば平板状であって、第1の平面12と、その裏側で第1の平面12に平行な第2の平面13とを有する。第1の平面12に欠陥部(薄肉部)14が存在するものとする。
 この第1の実施形態の渦電流探傷装置は、第1の励磁・検出器である励磁器20と、第2の励磁・検出器である検出器21とを有する。励磁器20および検出器21は、たとえば、らせん状のコイルである。励磁器20は被検査体11の第1の平面12に接して配置され、検出器21は被検査体11の第2の平面13に接して配置される。励磁器20および検出器21は、それらのコイルの軸Aが第1の平面12および第2の平面13に垂直を向くように配置される。励磁器20には交流電源22が接続されている。検出器21は、図示しない検出器回路に接続されている。
 励磁器20を構成するコイル素線は、検出器21を構成するコイル素線よりも太いものとする。これは、励磁器20には比較的大きな電流を流す必要があるから、そこでのジュール損失を抑制するためである。
 交流電源22により励磁器20に交流電流が供給されると、励磁器20の周りに、変動磁場が形成される。このときの磁力線Mを図1に破線で示す。励磁器20によって形成される磁場は、励磁器20の軸Aに対してほぼ対称であるが、図1では軸Aより右側の磁力線Mだけを示す。
 励磁器20の周りに変動磁場が形成されることにより、被検査体11に渦電流が誘起される。この渦電流により、反作用磁場が形成される。この反作用磁場は検出器21および検出器回路によって電圧として検出される。欠陥部14の存在によって反作用磁場が変化するため、検出器回路によって電圧の変化として、欠陥部14を検出することができる。
 被検査体11が通常の金属材料である場合は、表皮効果によって、磁力線はほとんどが被検査体11の内部を通り、被検査体11の裏面(第2の平面13)には磁場がほとんど存在しない。たとえば、被検査体11が、厚さ2mmのステンレス鋼であって、供給される交流電流の周波数が500kHzの場合、表皮効果による磁場の浸透深さは約0.7mmである。
 一方、被検査体11が導電率の低い複合材である場合は、被検査体11が通常の金属材料である場合に比べて、表皮効果による磁場の浸透深さが深くなり、磁場は、図1に示すように、被検査体11を透過して、被検査体11の裏面(第2の平面13)にも磁場が存在することになる。ただし、この場合、被検査体11が通常の金属材料である場合に比べて、被検査体11内に生じる磁束密度が低い。
 この実施形態では、励磁器20と検出器21とを別体として、被検査体11をはさんで励磁器20と検出器21とを配置する。これにより、励磁器20と検出器21の両方を被検査体11に近接して配置することができる。すなわち、比較的磁束密度が高い位置に検出器21を配置することができ、比較的高精度の探傷を行うことができる。
 また、励磁器20と検出器21の構造・仕様を互いに同じにする必要はなく、それぞれに適したコイルの線径、巻き数、形状、サイズなどの設計とすることができる。ここで、励磁器20のコイルには比較的大きな電流を流す必要があるので、コイルの線径を太くするのが望ましい。一方、検出器21のコイルには大きな電流を流す必要はないが、大きな電圧として検出するのが望ましいので、コイルの線径を比較的細くして巻き数を多くするのが望ましい。
 なお、被検査体11が複合材料などの低導電率材料である場合に、電源の周波数を高く設定することにより、磁力線の浸透深さを浅くして、高感度の探傷を行うことができる。そのため、電源の周波数をMHzオーダとすることが望ましい。
  [第2の実施形態]
 図2は、本発明の第2の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。
 この第2の実施形態の渦電流探傷装置は、第1の励磁・検出器25と、第2の励磁・検出器26とを有する。
 第1の励磁・検出器25および第2の励磁・検出器26は、たとえばらせん状のコイルである。第1の励磁・検出器25は被検査体11の第1の平面12に接して配置され、第2の励磁・検出器26は被検査体11の第2の平面13に接して配置される。第1の励磁・検出器25および第2の励磁・検出器26は、それらのコイルの軸Aが第1の平面12および第2の平面13に垂直を向くように配置される。第1の励磁・検出器25には交流電源22が接続されており、第2の励磁・検出器26には交流電源22aが接続されている。第1の励磁・検出器25および第2の励磁・検出器26は、それぞれ、図示しない検出器回路に接続されている。
 第1の励磁・検出器25および第2の励磁・検出器26は、互いにほぼ同じ構造のものであって、それぞれが、励磁器としての機能と検出器としての機能の両方を有する。交流電源22、22aは、互いに同じ構造のものであってもよく、好ましくは、周波数も位相も互いに同じであって同期しているのが好ましい。交流電源22、22aは別個のものとせず、1個の交流電源としてもよい。
 この第2の実施形態によれば、第1の励磁・検出器25および第2の励磁・検出器26による励磁作用が重なり合うので、より高い磁束密度が得られ、被検査体11に誘起される渦電流が強められる。これにより、渦電流によって生じる反作用磁場の変化が大きくなる。それにより、検出器としての第1の励磁・検出器25および第2の励磁・検出器26によって、比較的大きな電圧の変化として検出することができる。さらに、検出器としての第1の励磁・検出器25および第2の励磁・検出器26で得られる電圧を足し合わせることにより、さらに大きな電圧の変化として検出することができる。
 なお、上記説明では、第1の励磁・検出器25および第2の励磁・検出器26に供給される交流電流は、周波数も位相も互いに同じであって同期しているのが好ましいとした。しかし、かかる条件が満たされない場合であっても、第1の励磁・検出器25および第2の励磁・検出器26それぞれが発生する磁場が互いに強めあう条件が存在するので、そのように磁場が互いに強めあう条件のもとで探傷を行うことでもよい。
 さらに、上記説明では、第1の励磁・検出器25および第2の励磁・検出器26の両方を検出器として機能させてそれらによって検出された電圧信号を足し合わせるものとしたが、第1の励磁・検出器25および第2の励磁・検出器26に供給される交流電流の位相の関係によっては、第1の励磁・検出器25および第2の励磁・検出器26で検出された電圧信号の引き算を行うことによって探傷を行う場合もある。
 さらに、第1の励磁・検出器25および第2の励磁・検出器26のうちの一方のみを検出器として機能させて、それによって検出された電圧信号によって探傷を行うこともできる。
  [第3の実施形態]
 図3は、本発明の第3の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。
 この第3の実施形態は、第2の実施形態の変形であって、第1の励磁・検出器25および第2の励磁・検出器26の外側のうちで被検査体11と対向していない部分を強磁性体のカバー30で覆っている。その他の構成は第2の実施形態と同様である。
 この第3の実施形態によれば、第2の実施形態の作用・効果を得られるとともに、さらに、第1の励磁・検出器25および第2の励磁・検出器26に交流電流を供給することにより生成される磁場は、強磁性体のカバー30が作る磁路に沿う分布を形成し、磁束密度が高くなる。これにより、欠陥部14を通って第1の励磁・検出器25または第2の励磁・検出器26と鎖交する磁束密度を高くすることができ、高感度の欠陥検出が可能となる。
 なお、図3に示す例では、第1の励磁・検出器25および第2の励磁・検出器26の外側のうちで被検査体11と対向していない部分全体を強磁性体のカバー30で覆っている。この例の変形として、カバー30が、第1の励磁・検出器25および第2の励磁・検出器26の外側のうちで被検査体11と対向していない部分の一部分だけを覆うようにしてもよい。その場合でも、部分的に強磁性体のカバー30の効果を得ることができる。
 上記説明では、第3の実施形態は第2の実施形態の変形であるとして、第2の実施形態の渦電流探傷装置の第1の励磁・検出器25および第2の励磁・検出器26の外側のうちで被検査体11と対向していない部分を強磁性体のカバー30で覆うものとした。この第3の実施形態の変形として、第1の実施形態の渦電流探傷装置の励磁器20および検出器21の外側のうちで被検査体11と対向していない部分を強磁性体のカバー30で覆うようにしてもよい。その場合であっても、強磁性体のカバー30によって被検査体11内の磁束密度を高める効果を得ることができる。
  [第4の実施形態]
 図4は、本発明の第4の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。
 この第4の実施形態に係る渦電流探傷装置は、励磁・検出器35と、強磁性体の背面部材36とを有する。励磁・検出器35は、第2の実施形態の第1の励磁・検出器25と同様のものであって、被検査体11の第1の平面12に接して配置されている。励磁・検出器35には、交流電源22が接続されており、さらに、図示しない検出器回路が接続されている。強磁性体の背面部材36は、被検査体11をはさんで励磁・検出器35の反対側の位置で第2の平面13に接するように配置されている。背面部材36は、被検査体11をはさんで励磁・検出器35の反対側全体を覆うように配置するのが望ましい。励磁・検出器35は、励磁器としての機能と検出器としての機能の両方を有する。
 この第4の実施形態によれば、交流電源22から励磁・検出器35に交流電流が供給され、被検査体11の内部およびその周辺に変動磁場が形成される。これにより、被検査体11の内部に渦電流が誘起され、さらに、反作用磁場が形成される。この反作用磁場を検出器としての励磁・検出器35によって、電圧信号として検出することができる。この場合に、強磁性体の背面部材36の存在によって、被検査体11内の磁束密度を高めることができ、それにより、欠陥部14の検出感度を高めることができる。
  [第5の実施形態]
 図5は、本発明の第5の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。
 この第5の実施形態は第4の実施形態の変形であって、第4の実施形態の励磁・検出器35を励磁器20と検出器21で置き換えたものである。励磁器20および検出器21の構造は第1の実施形態の励磁器20および検出器21の構造と同様である。ただし、この第5の実施形態では、励磁器20は被検査体11の第1の平面12に接して配置され、検出器21は励磁器20をはさんで被検査体11の反対側に配置されている。その他の構成は第4の実施形態と同様である。
 この第5の実施形態によれば、第4の実施形態と同様に、強磁性体の背面部材36の存在によって、被検査体11内の磁束密度を高めることができ、それにより、欠陥部14の検出感度を高めることができる。また、第1の実施形態と同様に、励磁器20と検出器21とが別体であることから、励磁器20と検出器21の構造・仕様を互いに同じにする必要はなく、それぞれに適したコイルの線径、巻き数、形状、サイズなどの設計とすることができる。
  [第6の実施形態]
 図6は、本発明の第6の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。
 この第6の実施形態は第5の実施形態の変形であって、第5の実施形態と同様に構成され配置された励磁器20と検出器21の外側を覆うように強磁性体製のカバー40が配置されている。
 この第6の実施形態によれば、第5の実施形態の効果が得られることに加えて、強磁性体製のカバー40の存在によって、被検査体11内の磁束密度をさらに高めることができ、それにより、欠陥部14の検出感度をさらに高めることができる。
  [第7の実施形態]
 図7は、本発明の第7の実施形態に係る渦電流探傷装置による探傷中の状況を示す模式的断面図である。
 この第7の実施形態は第5の実施形態の変形であって、励磁器20と検出器21が、被検査体11の第1の平面12に接して並列配置されている。強磁性体の背面部材36は、被検査体11をはさんで励磁器20および検出器21の反対側の位置で第2の平面13に接するように配置されている。背面部材36は、被検査体11をはさんで励磁器20および検出器21の反対側全体を覆うように配置するのが望ましい。その他の構成は第5の実施形態と同様である。
 この第7の実施形態によれば、第5の実施形態と同様に、強磁性体の背面部材36の存在によって、被検査体11内の磁束密度を高めることができ、それにより、欠陥部14の検出感度を高めることができる。また、励磁器20と検出器21とが別体であることから、励磁器20と検出器21の構造・仕様を互いに同じにする必要はなく、それぞれに適したコイルの線径、巻き数、形状、サイズなどの設計とすることができる。
  [他の実施形態]
 上記実施形態の特徴を互いに組み合わせることも可能である。たとえば、第6の実施形態のカバー40を第4の実施形態または第7の実施形態に追加してもよい。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
11…被検査体、 12…第1の平面、 13…第2の平面、 14…欠陥部(薄肉部)、 20…励磁器(第1の励磁・検出器)、 21…検出器(第2の励磁・検出器)、 22,22a…交流電源、 25…第1の励磁・検出器、 26…第2の励磁・検出器、 30…カバー、 35…励磁・検出器、 36…背面部材、 40…カバー

Claims (10)

  1.  被検査体に渦電流を誘起可能な第1の励磁・検出器と、
     前記被検査体をはさんで前記第1の励磁・検出器の反対側に配置されて、前記渦電流によって生じる反作用磁場の変化を検出可能な第2の励磁・検出器と、
     を有することを特徴とする渦電流探傷装置。
  2.  前記第1および第2の励磁・検出器はともに素線をらせん状に巻いたコイルを備え、
     前記第1の励磁・検出器のコイルの素線が前記第2の励磁・検出器のコイルの素線よりも太いこと、を特徴とする請求項1に記載の渦電流探傷装置。
  3.  前記第2の励磁・検出器は、前記被検査体に渦電流を誘起させるよう構成されること、
     を特徴とする請求項1に記載の渦電流探傷装置。
  4.  前記第1の励磁・検出器は、前記渦電流によって生じる反作用磁場の変化を検出可能に構成されること、
     を特徴とする請求項3に記載の渦電流探傷装置。
  5.  前記第1の励磁・検出器および前記第2の励磁・検出器にそれぞれ交流電流を供給する交流電源を備え、
     前記第1の励磁・検出器に供給される交流電流の周波数と、前記第2の励磁・検出器に供給される交流電流の周波数とは同じであって、互いに同期していること、を特徴とする請求項3または請求項4に記載の渦電流探傷装置。
  6.  前記第1および第2の励磁・検出器の周囲であって前記被検査体に対向しない部分の少なくとも一部を覆うように配置された強磁性体のカバーをさらに有すること、を特徴とする請求項1ないし請求項5のいずれか一項に記載の渦電流探傷装置。
  7.  被検査体に渦電流を誘起させるとともに、前記渦電流によって生じる反作用磁場の変化を検出することが可能な励磁・検出器と、
     前記被検査体をはさんで前記励磁・検出器の反対側に配置された強磁性体の背面部材と、
     を有することを特徴とする渦電流探傷装置。
  8.  前記励磁・検出器は、前記被検査体に渦電流を誘起可能な励磁器と、前記渦電流によって生じる反作用磁場の変化を検出可能な検出器とを別体として有すること、を特徴とする請求項7に記載の渦電流探傷装置。
  9.  被検査体に近接させて第1の励磁・検出器を配置する第1の励磁・検出器配置ステップと、
     前記被検査体をはさんで前記第1の励磁・検出器の反対側で前記被検査体に近接させて第2の励磁・検出器を配置する第2の励磁・検出器配置ステップと、
     前記第1および第2の励磁・検出器配置ステップの後に、前記第1の励磁・検出器により前記被検査体に渦電流を誘起させる励磁ステップと、
     前記渦電流によって生じる反作用磁場の変化を前記第2の励磁・検出器で検出する検出ステップと、
     を有することを特徴とする渦電流探傷方法。
  10.  被検査体に近接させて励磁・検出器を配置する励磁・検出器配置ステップと、
     前記被検査体をはさんで前記励磁・検出器の反対側で被検査体に近接して強磁性体の背面部材を配置する背面部材配置ステップと、
     前記励磁・検出器配置ステップおよび前記背面部材配置ステップの後に、前記励磁・検出器により前記被検査体に渦電流を誘起させる励磁ステップと、
     前記渦電流によって生じる反作用磁場の変化を前記励磁・検出器で検出する検出ステップと、
     を有することを特徴とする渦電流探傷方法。
PCT/JP2019/030938 2018-08-06 2019-08-06 渦電流探傷装置および渦電流探傷方法 WO2020032040A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980049694.9A CN112513628A (zh) 2018-08-06 2019-08-06 涡流探伤装置及涡流探伤方法
EP19847490.0A EP3835777B1 (en) 2018-08-06 2019-08-06 Eddy current flaw detection device and eddy current flaw detection method
US17/156,834 US11598750B2 (en) 2018-08-06 2021-01-25 Eddy current flaw detection device and eddy current flaw detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-147416 2018-08-06
JP2018147416A JP7301506B2 (ja) 2018-08-06 2018-08-06 渦電流探傷装置および渦電流探傷方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/156,834 Continuation US11598750B2 (en) 2018-08-06 2021-01-25 Eddy current flaw detection device and eddy current flaw detection method

Publications (1)

Publication Number Publication Date
WO2020032040A1 true WO2020032040A1 (ja) 2020-02-13

Family

ID=69414820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030938 WO2020032040A1 (ja) 2018-08-06 2019-08-06 渦電流探傷装置および渦電流探傷方法

Country Status (5)

Country Link
US (1) US11598750B2 (ja)
EP (1) EP3835777B1 (ja)
JP (1) JP7301506B2 (ja)
CN (1) CN112513628A (ja)
WO (1) WO2020032040A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105223B4 (de) * 2020-02-27 2021-11-04 Gebrüder Linck, Maschinenfabrik "Gatterlinck" GmbH & Co. KG Vorrichtung zur Vorhersage eines Blattabrisses eines Bandsägeblattes einer Bandsäge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883252A (ja) * 1981-11-13 1983-05-19 Toshiba Corp うず電流探傷試験装置
JPS59231445A (ja) * 1983-06-15 1984-12-26 Nippon Steel Corp 交番電流による変態量率の測定方法
JPH0933489A (ja) 1995-07-24 1997-02-07 Mitsubishi Heavy Ind Ltd Squid磁束計を用いた励磁コイル移動型渦電流探傷装置
JP2003248851A (ja) * 2002-02-22 2003-09-05 Sankyo Seiki Mfg Co Ltd 金属識別装置
JP2006500590A (ja) * 2002-09-25 2006-01-05 ラム リサーチ コーポレイション 渦電流ベースの測定性能
JP2009204342A (ja) * 2008-02-26 2009-09-10 Chiba Univ 渦電流式試料測定方法と渦電流センサ
DE102015203560A1 (de) * 2015-02-27 2016-09-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur zerstörungsfreien Bestimmung von Faserorientierungen und/oder Faserbündelorientierungen in Probenabschnitten aus Faserverbundwerkstoff sowie Messvorrichtung zur Durchführung des Verfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3477423D1 (en) * 1983-06-15 1989-04-27 Nippon Steel Corp Method for measuring transformation rate
EP1022563B1 (en) * 1998-08-06 2010-03-24 Mitsubishi Heavy Industries, Ltd. Eddy-current flaw detector probe
US8368395B2 (en) * 2008-12-17 2013-02-05 Ndt Technologies, Inc. Magnetic inspection device and method for detecting loss in metallic cross section
JP5213692B2 (ja) * 2008-12-24 2013-06-19 マークテック株式会社 渦電流探傷方法と渦電流探傷装置
CN102575998B (zh) 2009-09-22 2016-03-30 Adem有限公司 用于测量固体和液体对象构成的阻抗传感系统及方法
JP5883252B2 (ja) 2011-08-19 2016-03-09 大和ハウス工業株式会社 支持金具及び屋根上設備取付構造
JP6200638B2 (ja) * 2012-09-06 2017-09-20 住友化学株式会社 渦流探傷用プローブおよび渦流探傷検査装置
JP2016133459A (ja) * 2015-01-21 2016-07-25 学校法人法政大学 渦流探傷プローブ、渦流探傷装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883252A (ja) * 1981-11-13 1983-05-19 Toshiba Corp うず電流探傷試験装置
JPS59231445A (ja) * 1983-06-15 1984-12-26 Nippon Steel Corp 交番電流による変態量率の測定方法
JPH0933489A (ja) 1995-07-24 1997-02-07 Mitsubishi Heavy Ind Ltd Squid磁束計を用いた励磁コイル移動型渦電流探傷装置
JP2003248851A (ja) * 2002-02-22 2003-09-05 Sankyo Seiki Mfg Co Ltd 金属識別装置
JP2006500590A (ja) * 2002-09-25 2006-01-05 ラム リサーチ コーポレイション 渦電流ベースの測定性能
JP2009204342A (ja) * 2008-02-26 2009-09-10 Chiba Univ 渦電流式試料測定方法と渦電流センサ
DE102015203560A1 (de) * 2015-02-27 2016-09-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur zerstörungsfreien Bestimmung von Faserorientierungen und/oder Faserbündelorientierungen in Probenabschnitten aus Faserverbundwerkstoff sowie Messvorrichtung zur Durchführung des Verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3835777A4

Also Published As

Publication number Publication date
EP3835777B1 (en) 2024-10-16
US11598750B2 (en) 2023-03-07
JP7301506B2 (ja) 2023-07-03
EP3835777A4 (en) 2022-05-11
CN112513628A (zh) 2021-03-16
US20210172908A1 (en) 2021-06-10
JP2020024097A (ja) 2020-02-13
EP3835777A1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US7705589B2 (en) Sensor for detecting surface defects of metal tube using eddy current method
JP5201495B2 (ja) 磁気探傷方法及び磁気探傷装置
WO2016080229A1 (ja) 磁気探傷装置および磁気探傷方法
WO2017082770A1 (ru) Способ вихретокового контроля электропроводящих объектов и устройство для его реализации
US8841904B1 (en) Nondestructive inspection probe and method
WO2020032040A1 (ja) 渦電流探傷装置および渦電流探傷方法
JP5203342B2 (ja) 渦電流探傷プローブおよびそれを用いた渦電流探傷試験装置
JP5428006B2 (ja) 磁性異物検出装置
JP5607192B2 (ja) 渦電流探傷プローブおよびそれを用いた渦電流探傷試験装置
Faraj et al. Construct coil probe using GMR sensor for eddy current testing
JP5259511B2 (ja) リモートフィールド渦電流探傷プローブ
Dolabdjian et al. Improvement in the detection of subsurface fatigue cracks under airframe fasteners using improved rotating giant magneto-resistance magnetometer head
RU2781536C2 (ru) Устройство вихретоковой дефектоскопии и способ вихретоковой дефектоскопии
JP2014066688A (ja) 渦流探傷プローブ、渦流探傷装置
JP2013160579A (ja) 渦電流探傷プローブ
Park et al. Application of the Pulsed Eddy Current technique to inspect pipelines of nuclear plants
JP2019032294A (ja) 欠陥検査方法及び欠陥検査装置
JP2019032210A (ja) 欠陥検査方法及び欠陥検査装置
CN112740025B (zh) 利用涡电流的材质异常部检知方法以及材质异常部检知装置
JP2006184123A (ja) 渦流探傷用プローブ
Hayashi et al. Magnetic image detection of the stainless-steel welding part inside a multi-layered tube structure
JP2017090185A (ja) 渦電流探傷プローブ及び渦電流探傷装置
JP2016090393A (ja) 磁気探傷装置および磁気探傷装置用励磁コイル
Komorowski et al. A New Eddy‐Current Self‐Compensating Probe for Testing Conducting Plates
Hyuga et al. Design strategy of the practical flat∞ coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021101435

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019847490

Country of ref document: EP

Effective date: 20210309