WO2016080229A1 - 磁気探傷装置および磁気探傷方法 - Google Patents

磁気探傷装置および磁気探傷方法 Download PDF

Info

Publication number
WO2016080229A1
WO2016080229A1 PCT/JP2015/081486 JP2015081486W WO2016080229A1 WO 2016080229 A1 WO2016080229 A1 WO 2016080229A1 JP 2015081486 W JP2015081486 W JP 2015081486W WO 2016080229 A1 WO2016080229 A1 WO 2016080229A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
detection
defect
magnetic field
inspection object
Prior art date
Application number
PCT/JP2015/081486
Other languages
English (en)
French (fr)
Inventor
哲哉 加川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016560151A priority Critical patent/JPWO2016080229A1/ja
Priority to US15/519,680 priority patent/US20170241953A1/en
Priority to EP15861676.3A priority patent/EP3223010A4/en
Publication of WO2016080229A1 publication Critical patent/WO2016080229A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/87Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Definitions

  • the present invention relates to a magnetic flaw detection apparatus and a magnetic flaw detection method for flaw detection of a predetermined defect (abnormality) in an inspection object by using a magnetic detection unit that detects magnetism.
  • the method of inspecting the presence or absence of defects (abnormalities) such as scratches and thinning (thinning) of metal pipes such as steel pipes, iron pipes and aluminum pipes is mainly ultrasonic using ultrasonic waves in addition to visual observation.
  • a leakage magnetic flux flaw detection method for detecting a magnetic flux (defect leakage magnetic flux) generated by a defect by applying a DC magnetic field (DC magnetic field) or an AC magnetic field (AC magnetic field) to an inspection object see, for example, Patent Document 1).
  • Patent Document 2 An eddy current flaw detection method (see, for example, Patent Document 2) for detecting a change caused by a defect in an eddy current induced in an AC magnetic field in an object to be inspected is known.
  • a magnetic flaw detector Helmholtz type magnetic flaw detector using a Helmholtz coil that generates a magnetic field (magnetic field) has also been proposed (see, for example, Patent Document 3).
  • a multi-structure tube such as a heat insulating tube, in which a plurality of cylindrical bodies having different diameters formed from materials such as a magnetic body and a conductor are radially multiplexed.
  • the outermost tube has a significantly larger magnetic field change than the innermost tube and it is difficult to detect the inner tube.
  • the Helmholtz coil-type magnetic flaw detector disclosed in Patent Document 3 uses a double-insulated heat insulating tube as an inspection object, but even if a defect is detected by a change in magnetic field, With one magnetic sensor arranged on the outer peripheral surface, it is difficult to distinguish whether this defect occurs in the inner tube or the outer tube.
  • the present invention has been made in view of the above-described circumstances, and its object is to provide a magnetism that can determine the position of a predetermined defect in the inspection object along the first direction that is in contact with the inspection object.
  • a flaw detection apparatus and a magnetic flaw detection method are provided.
  • the magnetic flaw detection apparatus and the magnetic flaw detection method according to the present invention can determine the position of a predetermined defect in the inspection object along the first direction that is separated from and in contact with the inspection object.
  • a magnetic flaw detection apparatus and a magnetic flaw detection method apply a magnetic field to an inspection object, detect magnetism at a plurality of first detection positions different from each other from the outer surface of the inspection object, and based on these detection results Then, a position of a predetermined defect in the inspection object along a first direction that is separated from and in contact with the inspection object is obtained.
  • FIG. 1 is a diagram showing a configuration of a magnetic flaw detector in the embodiment. 1A shows the overall configuration, and FIG. 1B is a cross-sectional view around the magnetic field application unit.
  • FIG. 2 is a perspective view showing an appearance of an object to be inspected by the magnetic flaw detector according to the embodiment.
  • FIG. 3 is a diagram for explaining a method for calculating a defect position in the magnetic flaw detector according to the embodiment.
  • the magnetic flaw detection apparatus applies a magnetic field to an inspection object to be inspected, and first contacts and disconnects the change in the magnetic field caused by a predetermined defect (abnormality) of the inspection object. Detected at a plurality of first detection positions at different distances from the outer surface of the inspection object along the direction, and based on each detection result, the position of a predetermined defect in the inspection object along the first direction Is a device for obtaining
  • the magnetic flaw detector M in such an embodiment includes, for example, as shown in FIG. 1, a magnetic field application unit 1a, a first group detection unit 3a, and a control processing unit 4 including a defect position processing unit 42.
  • an input unit 5, an output unit 6, and an interface unit (IF unit) 7 are further provided.
  • the magnetic field application unit 1a is a device that applies a magnetic field to the inspection object SP.
  • the inspected object SP is preferably a metal pipe SPa such as a steel pipe, an iron pipe, and an aluminum pipe, and more preferably a plurality of cylindrical bodies having different diameters formed of a material such as a magnetic body or a conductor. It is a multi-structure tube that is multiplexed in multiple directions.
  • the inspected object SP is a heat insulating pipe SPa of a double structure pipe shown in FIG. As shown in FIG.
  • the heat insulating pipe SPa includes, for example, a steel pipe SPa1 positioned inside, a heat insulating material SPa2 that covers the outer periphery of the steel pipe SPa1 with a predetermined thickness, and an outer surface that covers the outer periphery of the heat insulating material SPa2.
  • a hot-dip galvanized iron plate SPa3 which is an exterior sheet metal.
  • the magnetic field application unit 1 a includes an excitation coil 11 a and a power supply unit 12.
  • the exciting coil 11a is a device that generates a magnetic field by receiving power supply from the power supply unit 12, and applies the generated magnetic field to the inspection object SP.
  • various known devices can be used according to a flaw detection method such as a leakage magnetic flux flaw detection method or an eddy current flaw detection method.
  • the exciting coil 11a is configured to generate a magnetic flux in the inspection object SP by applying a DC magnetic field or an AC magnetic field.
  • the exciting coil 11a is configured to generate an eddy current in the inspection object SP by applying an alternating magnetic field.
  • the exciting coil 11a as the first mode includes a pair of first and second exciting coils 11a-1 and 11a-2 shown in FIG.
  • the pair of first and second exciting coils 11a-1 and 11a-2 are arranged with the heat insulating pipe SPa inserted through the cores thereof and spaced apart at a predetermined interval along the axial direction of the heat insulating pipe SPa.
  • the predetermined interval is appropriately set, and is, for example, a length substantially equal to the radius of the first and second exciting coils 11a-1 and 11a-2 in order to constitute a Helmholtz coil.
  • the first exciting coil 11a-1 is a wire rod having a long electrical conductivity such as a round cross section or a square cross section, for example, on the first coil bobbin 111a-1 which is a tubular body having a relatively short height (short height).
  • the first conductor member 112a-1 is formed by winding it through an insulating material such as resin or oil paper.
  • the second exciting coil 11a-2 is a second wire bobbin 111a-2, which is a short and high cylindrical body, which is a second wire having a long electrical conductivity such as a round cross section or a square cross section.
  • the conductor member 112a-2 is formed by winding it through an insulating material such as resin or oil paper.
  • the first and second coil bobbins 111a-1 and 111a-2 are made of, for example, a nonmagnetic insulator such as a resin material.
  • the number of turns of the first and second exciting coils 11a-1 and 11a-2 is appropriately determined according to the strength of the desired magnetic field to be generated by the first and second exciting coils 11a-1 and 11a-2. Is set.
  • Each of the first and second conductor members 112a-1 and 112a-2 is a conductor wire having a relatively high conductivity, such as copper or aluminum, and insulated and coated with a resin.
  • the first and second exciting coils 11a-1 and 11a-2 are connected in series with each other. More specifically, one end of the first excitation coil 11a-1 is connected to the power supply unit 12, the other end is connected to one end of the second excitation coil 11a-2, and the other end is connected to the power source. Connected to the unit 12.
  • the power supply unit 12 is a device that is connected to the control processing unit 4 and generates magnetism (magnetic field) by supplying electric power to the exciting coil 11a according to the control of the control processing unit 4.
  • the power supply unit 12 supplies a predetermined current corresponding to the flaw detection method such as a direct current, an alternating current and a pulse current to the pair of first and second exciting coils 11a-1 and 11a-2, thereby supplying a direct current magnetic field,
  • a predetermined magnetic field corresponding to the flaw detection method such as an alternating magnetic field and a pulsed magnetic field (pulse magnetic field) is generated.
  • the power supply unit 2 supplies the first and second excitation coils 11a-1 and 11a-2 to the pair of first and second excitation coils 11a-11a-2 in order to supply a current of opposite phase or only to one of them.
  • a switching circuit for appropriately switching each energizing path to 11a-2 may be provided.
  • the first group detection unit 3a includes a plurality of first magnetic detection units 31a that detect magnetism.
  • the plurality of first magnetic detectors 31a are between the pair of exciting coils 11a-1 and 11a-2 and include on the outer surface (directly above and above) of the object SP to be inspected. Is arranged at a plurality of first detection positions at different distances from the outer surface along a first direction that is separated from or in contact with the object SP.
  • Each of the plurality of first magnetic detection units 31 a is connected to the control processing unit 4, detects magnetism corresponding to the flaw detection method, and outputs the detection result to the control processing unit 4. For example, in the leakage magnetic flux flaw detection method, magnetism due to leakage magnetic flux generated by a defect is detected.
  • the first group detection unit 3a includes three first magnetic detection units 31a-1 to 31a-3. These three first magnetic detectors 31a-1 to 31a-3 are located between the pair of exciting coils 11a-1 and 11a-2 and on the outer peripheral surface of the heat insulation pipe SPa in the radial direction of the heat insulation pipe SPa. Are arranged at three first detection positions at first to third distances different from each other from the outer peripheral surface.
  • the first magnetic detection unit 31a includes a magnetic sensor using a magnetoresistive element (MR element) that utilizes a magnetoresistive effect in which the electrical resistance changes according to a magnetic field, and a skin effect of a high permeability alloy magnetic material.
  • MR element magnetoresistive element
  • Magnetic sensor using magneto-impedance element using magneto-impedance effect that changes impedance by magnetic field, magnetic sensor using hall element using hall effect, flux gate using magnetic saturation of high permeability material The magnetic sensor used, and a magnetic sensor element using a superconducting quantum interference device (SQUID, Superducting Quantum Interference Device) using a superconductor ring having a Josephson junction at two locations are used.
  • SQUID superconducting quantum interference device
  • the input unit 5 is connected to the control processing unit 4.
  • various commands such as a command for instructing the measurement of the inspection object SP, and an identifier (for example, an identification number of the inspection object) in the inspection object SP, for example.
  • a device that inputs various data necessary for measuring input or the like to the magnetic flaw detector M such as a plurality of input switches assigned with predetermined functions, a keyboard, a mouse, and the like.
  • the output unit 6 is connected to the control processing unit 4, and under the control of the control processing unit 4, commands and data input from the input unit 5, and measurement results of the inspection object SP measured by the magnetic flaw detector M (for example, a device that outputs the measurement data of the magnetic detection unit 3, the presence / absence of a defect, and the position of the defect), for example, a display device such as a CRT display, LCD (liquid crystal display) and organic EL display, a printing device such as a printer It is.
  • a display device such as a CRT display, LCD (liquid crystal display) and organic EL display
  • a printing device such as a printer It is.
  • a touch panel may be configured from the input unit 5 and the output unit 6.
  • the input unit 5 is a position input device that detects and inputs an operation position such as a resistive film method or a capacitance method
  • the output unit 6 is a display device.
  • a position input device is provided on the display surface of the display device, one or more input content candidates that can be input to the display device are displayed, and the user touches the display position where the input content to be input is displayed. Then, the position is detected by the position input device, and the display content displayed at the detected position is input to the magnetic flaw detector M as the operation input content of the user.
  • the magnetic flaw detector M that is easy for the user to handle is provided.
  • the IF unit 7 is a circuit that is connected to the control processing unit 4 and inputs / outputs data to / from an external device according to the control of the control processing unit 4.
  • an interface circuit of an RS-232C that is a serial communication system
  • the control processing unit 4 is a circuit for controlling each part of the magnetic flaw detector M according to the function of each part.
  • the control processing unit 4 includes, for example, a microcomputer having a CPU (Central Processing Unit), a memory, and peripheral circuits thereof.
  • a control unit 41 and a defect position processing unit 42 are functionally configured by executing a program.
  • the control unit 41 is for controlling each part of the magnetic flaw detector M according to the function of each part.
  • the defect position processing unit 42 obtains the position of a predetermined defect in the inspection object SP along the first direction based on each detection result of the plurality of first magnetic detection units 31a in the first group detection unit 3a. Is. In the above-described example, the defect position processing unit 42 follows the radial direction of the heat insulating pipe SPa based on the detection results of the three first magnetic detection units 31a-1 to 31a-3 in the first group detection unit 3a. In addition, the position of a predetermined defect in the heat insulating pipe SPa is obtained.
  • the defect position processing unit 42 uses the following condition 1 and condition 2 to thereby inspect the inspection object SP based on the detection results of the plurality of first magnetic detection units 31a in the first group detection unit 3a.
  • the magnetic field strengths at a plurality of observed positions within the outer surface and at different distances from the outer surface along the first direction are obtained, and based on the obtained magnetic field strengths at the plurality of observed positions, The position of a predetermined defect in the object SP is obtained.
  • Condition 1 The detection result of the first magnetic detection unit 31a is that each magnetic field at a plurality of observed positions propagates from the plurality of observed positions to the first detection position of the first magnetic detection unit 31a.
  • Condition 2 is the sum of magnetic field strengths; the magnetic field strength has a specific relationship with the distance between the observed position and the first detection position
  • the defect position processing unit 42 obtains the position of the defect as follows.
  • the magnetic field strength at the observed position is MI0
  • the horizontal axis X is a distance along the radial direction from the outer peripheral surface of the steel pipe SPa1 with the outer peripheral surface of the steel pipe SPa1 as the coordinate origin
  • the vertical axis Y is
  • the magnetic field intensity MI at the steel pipe SPa1 is MI01
  • the magnetic field intensity MI at the molten zinc iron plate SPa3 of the outer sheet metal is MI02
  • the distance from the outer peripheral surface of the steel pipe SPa1 to the outer peripheral surface of the molten zinc iron plate SPa3 is X0.
  • each detection result ⁇ (X) is obtained as a measurement value by measurement of the first magnetic detection units 31a-1 to 31a-3. Therefore, the magnetic field strength MI01 in the steel pipe SPa1 and the magnetic field strength MI02 in the molten zinc iron plate SPa3 are obtained by using two of the above three formulas.
  • a curve ⁇ (X) that best matches (fits) each detection result of the first magnetic detectors 31a-1 to 31a-3 is obtained by, for example, the least square method, and the obtained curve ⁇ (X) is obtained.
  • the magnetic field intensity MIref1 in the steel pipe SPa1 obtained in advance is compared with the magnetic field intensity MI01 in the obtained steel pipe SPa1, and the presence or absence of the defect is determined.
  • the difference between the magnetic field intensity MIref1 and the magnetic field intensity MI01 in the steel pipe SPa1 is within the predetermined first range th1 in consideration of noise, it is determined that there is no defect, and the magnetic field in the steel pipe SPa1 is determined.
  • the difference between the intensity MIref1 and the magnetic field intensity MI01 exceeds the predetermined first range th1, it is determined that there is a defect, and the inner steel pipe SPa1 located relatively radially inside has a defect. It is determined that there is.
  • the magnetic field strength MIref2 obtained in the molten zinc iron plate SPa3 and the magnetic field strength MI02 obtained in the molten zinc iron plate SPa3 are compared, and the presence or absence of the defect is determined.
  • the difference between the magnetic field strength MIref2 and the magnetic field strength MI02 in the molten zinc iron plate SPa3 is within the predetermined second range th2 in consideration of noise, it is determined that there is no defect, and the molten zinc iron plate If the difference between the magnetic field strength MIref2 and the magnetic field strength MI02 at SPa3 exceeds the predetermined second range th2, it is determined that there is a defect, and the outer tube located relatively radially outside is melted. It is determined that the zinc iron plate SPa3 has a defect. That is, the position of the defect along the radial direction can be determined. Alternatively, as will be described later, in the case where a plurality of second group detection units 3b (see FIG.
  • the presence / absence of a defect is determined by each magnetic field in the steel pipe SPa1 obtained at each position in the circumferential direction. It may be carried out by comparing the strength MI01 with each other. If they are different, it is determined that the steel pipe SPa1 is defective at that position, and the molten zinc iron plate SPa3 obtained at each position in the circumferential direction. It may be carried out by comparing the magnetic field strengths MI02 of each other. If they are different, it is determined that there is a defect in the molten zinc iron plate SPa3 at that position. As will be described later, when a plurality of third group detectors 3c (see FIG.
  • the presence / absence of a defect is determined by each magnetic field in the steel pipe SPa1 obtained at each position in the axial direction. It may be carried out by comparing the strength MI01 with each other, and if they are different, it is determined that the steel pipe SPa1 is defective at that position, and the molten zinc iron plate SPa3 obtained at each position in the axial direction It may be carried out by comparing the magnetic field strengths MI02 of each other. If they are different, it is determined that there is a defect in the molten zinc iron plate SPa3 at that position.
  • the measured data ⁇ described above may use a difference from the state without the defect instead of the measurement value itself.
  • the magnetic field strength MI01 and the magnetic field strength MIre1 and the magnetic field strength MI02 and the magnetic field strength MIref2 can be compared as they are.
  • the magnetic flaw detector M can determine the presence or absence of a defect by comparing the magnetic field strengths at the obtained plurality of observed positions with the magnetic field strengths in a normal state without defects. As a result, the position of the defect Can be requested.
  • the inspection object SP is a multiple structure tube in which a plurality of cylindrical bodies having different diameters are multiplexed in the radial direction
  • the defect position processing unit 42 includes a plurality of first tubes in the first group detection unit 3a.
  • Two first magnetic detectors 31a among the magnetic detectors 31a are selected, and the first of the two selected first magnetic detectors 31a is far from the outer surface along the first direction. From the detection result of the magnetic detection unit 31a, the detection result of the first magnetic detection unit 31a having a short distance from the outer surface along the first direction of the two selected first magnetic detection units 31a is set to the far first.
  • the defect position processing unit 42 obtains the position of the defect as follows.
  • the first magnetic detection unit 31a-1 is located at a first detection position at a distance of 1 mm from the outer peripheral surface of the molten zinc iron plate SPa3, and the first magnetic detection unit 31a-2 is at a distance of 5 mm from the outer peripheral surface of the molten zinc iron plate SPa3.
  • the defect position processing unit 42 has a long distance X from the outer peripheral surface along the radial direction of the two first magnetic detection units 31a-1 and 31a-2.
  • the detection result ⁇ (1 mm) of the first magnetic detector 31a-1 is If the difference from the detection result ⁇ (5 mm) of the first magnetic detector 31a-2 is relatively large, the inner pipe steel pipe SPa1 is defective, and the outer pipe steel pipe SPa3 is not defective, the first magnetic detector 31a
  • the determination threshold th3 is applied by the magnetic field application unit 1a because the difference between the detection result ⁇ (1 mm) of ⁇ 1 and the detection result ⁇ (5 mm) of the first magnetic detection unit 31a-2 is relatively small.
  • the defect position processing unit 42 determines that the steel pipe SPa1 of the inner pipe is defective when the subtraction result ⁇ sub is greater than or equal to the determination threshold th3, and when the subtraction result ⁇ sub is less than the determination threshold th3, It determines with the steel pipe SPa1 of an inner pipe having no defect, and calculates
  • a curve ⁇ (X) that best fits (fits) each detection result of the first magnetic detectors 31a-1 to 31a-3 is obtained by, for example, the least square method, and the obtained curve ⁇ ( X), the detection result ⁇ (1 mm) of the first magnetic detection unit 31a-1 and the detection result ⁇ (5 mm) of the first magnetic detection unit 31a-2 are obtained.
  • each first magnetic detection unit The distance X from the outer peripheral surface of the molten zinc iron plate SPa in 31a-1 to 31a-3 may be measured by a distance meter or the like.
  • Such a magnetic flaw detector CM uses the fact that the magnetic field strength attenuates in inverse proportion to the square of the distance, thereby checking the presence or absence of defects in the inner cylindrical body from the outermost cylindrical body.
  • the position of the predetermined defect in the object SP can be easily obtained.
  • the magnetic flaw detector CM is suitable when the inspection object SP is a double structure pipe.
  • a test object SP such as a heat insulating tube SPa
  • a pair of first and second exciting coils 11a-1 and 11a of the test object SP is performed by a user (operator). -2 are arranged at a predetermined interval.
  • the control processing unit 4 executes initialization of each necessary unit, and the control processing unit 4 includes the control unit 41 and the defect position processing by executing the program.
  • the unit 42 is functionally configured.
  • the control unit 41 When receiving an instruction to start flaw detection by the user via the input unit 5, the control unit 41 causes the power supply unit 2 to apply a current corresponding to the flaw detection method to the pair of first and second exciting coils 11a-1 and 11a-2. Supply power.
  • the pair of first and second exciting coils 11a-1 and 11a-2 generates a magnetic field (magnetic field) according to the flaw detection method, and applies the magnetic field to the inspection object SP.
  • This magnetic field is transmitted through the inspection object SP, and the magnetic field caused by this magnetic field is detected by the plurality of first magnetic detection units 31a of the first group detection unit 3a, and the plurality of first magnetic detection units 31a Is output to the control processing unit 4.
  • the defect position process part 42 determines the presence or absence of the predetermined defect in the to-be-inspected object SP based on each detection result of the some 1st magnetic detection part 31a, and determines the position of the defect along a 1st direction. .
  • the control unit 41 outputs each detection result of the plurality of first magnetic detection units 31a, the presence / absence of a defect, and the position of the defect along the first direction to the output unit 6. Note that the control unit 41 detects the detection results of the plurality of first magnetic detection units 31a, the presence / absence of a defect, and the position of the defect along the first direction as necessary via an IF unit 7 as an external device (not shown). May be output.
  • the magnetic flaw detection apparatus M and the magnetic flaw detection method mounted thereon have a plurality of first detection positions at a plurality of first detection positions different from each other from the outer surface of the inspection object SP. Since the magnetism can be detected by the first magnetic detection unit 31a, the defect position processing unit 42 follows the first direction (in the above example, the radial direction) that is separated from or in contact with the inspection object SP based on each detection result. The position of a predetermined defect in the inspection object SP can be obtained. In the above-described example, it is required whether the steel pipe SPa1 located on the inner side in the radial direction has a defect or whether the molten zinc iron plate SPa3 located on the outer side in the radial direction has a defect.
  • FIG. 4 is a diagram illustrating a configuration of a first modification of the magnetic flaw detector according to the embodiment.
  • FIG. 5 is a diagram illustrating a configuration of a second modification of the magnetic flaw detector according to the embodiment.
  • the magnetic flaw detector M includes a plurality of second flaws at different distances from the outer surface along the first direction on the outer surface of the inspection object SP.
  • the second group detection unit 3b is arranged at a predetermined angular interval with respect to the first group detection unit 3a along a circumferential direction around an axis with a second direction orthogonal to the first direction as an axis. Yes.
  • the defect position processing unit 42 is based on the detection results of the plurality of first magnetic detection units 31a in the first group detection unit 3a and the plurality of second magnetic detection units 31b in the second group detection unit 3b.
  • the position of the predetermined defect in the inspection object SP along the first direction and the position of the predetermined defect in the inspection object SP along the circumferential direction is obtained.
  • the number of the second group detection unit 3b may be one.
  • in order to detect a predetermined defect over the entire circumference of the heat insulation pipe SPa in the example shown in FIG. 3b includes 11 second group detection units 3b-1 to 3b-11.
  • Each of these eleventh second group detectors 3b-1 to 3b-11 has three second detection positions at different distances from the outer surface of the heat insulation pipe SPa along the radial direction on the outer surface of the heat insulation pipe SPa.
  • the second group detection unit 3b-1 is arranged at an angular interval of about 30 degrees along the circumferential direction around the central axis AX of the heat insulation pipe SP orthogonal to the radial direction with respect to the first group detection unit 3a.
  • the eleventh second group detectors 3b-1 to 3b-11 are sequentially arranged around the central axis AX of the heat insulation pipe SPa at an angular interval of about 30 degrees along the circumferential direction. . That is, the first group detection unit 3a and the eleventh second group detection units 3b-1 to 3b-11 sequentially form an angular interval of about 30 degrees around the central axis AX of the heat insulation pipe SPa along the circumferential direction. They are spaced apart (ie, equally spaced).
  • the magnetic flaw detector CM according to the first modified embodiment includes the second group detection unit 3b arranged along the circumferential direction with respect to the first group detection unit 3a. Can be sought. In particular, the magnetic flaw detector CM in the example shown in FIG. 4 can determine the position of the defect over the entire circumference of the heat insulating tube SPa.
  • the magnetic flaw detector M has a plurality of first flaws at different distances from the outer surface along the first direction on the outer surface of the inspection object SP.
  • the third group detection unit 3c is arranged with a predetermined interval with respect to the first group detection unit 3a along a second direction orthogonal to the first direction.
  • the defect position processing unit 42 is based on the detection results of the plurality of first magnetic detection units 31a in the first group detection unit 3a and the plurality of third magnetic detection units 31c in the third group detection unit 3c.
  • the position of the predetermined defect in the inspection object SP along the first direction and the position of the predetermined defect in the inspection object SP along the second direction is obtained.
  • the number of the third group detection unit 3c may be one, in order to detect a predetermined defect over a predetermined range along the axial direction in the heat insulating pipe SP, in the example shown in FIG. 3c includes four third group detectors 3c-1 to 3b-4.
  • Each of the four third group detection units 3c-1 to 3b-4 has three third detection positions on the outer surface of the heat insulation pipe SPa at three different distances from the outer surface of the heat insulation pipe SPa along the radial direction.
  • the third group detector 3c-1 is arranged at a predetermined interval along the axial direction of the central axis AX of the heat insulating pipe SPa perpendicular to the radial direction with respect to the first group detector 3a.
  • the third group detectors 3c-1 to 3b-4 are sequentially arranged at a predetermined interval along the axial direction of the central axis AX of the heat insulating pipe SPa. That is, the first group detection unit 3a and the four third group detection units 3c-1 to 3c-4 are sequentially spaced at a predetermined interval along the axial direction of the central axis AX of the heat insulation pipe SPa (that is, (Equally spaced).
  • the magnetic flaw detector CM according to the second modified example includes the third group detection unit 3c arranged along the second direction (in the example shown in FIG. 5, the axial direction) with respect to the first group detection unit 3a. Therefore, the position of the defect can be obtained over the second direction.
  • the magnetic flaw detector CM of the example shown in FIG. 5 can determine the position of the defect over a predetermined range along the axial direction of the heat insulating tube SPa.
  • the magnetic flaw detector CM may be configured to include a group detection unit in which the group detection unit 3B of the second mode and the group detection unit 3C of the third mode are combined instead of the group detection unit 3a of the first mode.
  • Such a magnetic flaw detector M can determine the position of the defect both in the radial direction and in the axial direction.
  • the magnetic field application unit 1 of the first mode including the pair of exciting coils 11a-1 and 11a-2 is used.
  • the magnetic field application unit 1b or the magnetic field application unit 1c of the third aspect may be used.
  • FIG. 6 is a diagram illustrating a configuration of a third modification of the magnetic flaw detector according to the embodiment. 6A shows the overall configuration, and FIG. 6B is a cross-sectional view around the exciting coil.
  • FIG. 7 is a diagram illustrating a configuration of a fourth modification of the magnetic flaw detector according to the embodiment. FIG. 7A shows a front view around the exciting coil, and FIG. 7B is a sectional view around the exciting coil.
  • the magnetic field application unit 1b of the second aspect is a device that applies a magnetic field to the object to be inspected SP. As shown in FIG. With. Since the power supply unit 12 in the magnetic field application unit 1b of the second aspect is the same as the power supply unit 12 in the magnetic field application unit 1a of the first aspect, description thereof is omitted.
  • the excitation coil 11b is a device that generates a magnetic field by receiving power supply from the power supply unit 12 and applies the generated magnetic field to the inspection object SP, similarly to the excitation coil 11a of the first mode.
  • the exciting coil 11b includes a pair of first and second exciting coils 11b-1 and 11b-2 shown in FIG.
  • the first and second exciting coils 11b-1 and 11b-2 include magnetic shielding portions 111b-1 and 111b-2 and conductor members 112b-1 and 112b-2, respectively. Since the first and second exciting coils 11b-1 and 11b-2 have the same shape, they will be collectively described below as the magnetic shield 111b, the conductor member 112b, and the exciting coil 11b.
  • the magnetic shielding part 111b is a member for shielding magnetism, and is formed in a curved plate shape.
  • the magnetic shielding part 111b is preferably curved according to the shape of the heat insulating pipe SPa. More specifically, the magnetic shielding part 111b is, for example, a part of a cylinder (hollow column) cut along the axial direction, and its cross section orthogonal to the axial direction is arcuate (partial shape of the ring). It has become.
  • the arc-shaped cross section of the magnetic shielding part 111b is similar to a part of the cross section of the heat insulating pipe SPa so as to follow the outer peripheral surface of the heat insulating pipe SPa.
  • the central angle of the magnetic shielding part 111b is 180 degrees or less in order to be able to be disposed on the outer peripheral surface of the heat insulating pipe SPa (including directly above (abuttingly disposed on the outer peripheral surface) and above (including spaced from the outer peripheral surface)). Preferably there is.
  • the center angle of the magnetic shielding part 111b can also slightly exceed 180 degree
  • the central angle of the magnetic shield 111b may be any one of 120 degrees, 90 degrees, and 60 degrees.
  • the magnetic shielding part 111b having such a central angle can be executed by a plurality of exciting coils 11b having the same shape when surrounding the entire circumference of the heat insulating pipe SP as will be described later, including the case of 180 degrees. Therefore, the excitation coil 11b having the same shape may be mass-produced, so that the cost of the excitation coil 11b can be reduced due to the mass production effect.
  • Such a magnetic shielding part 111b is formed of, for example, an electromagnetic steel plate, preferably a plurality of laminated electromagnetic steel plates.
  • the magnetic shielding part 111b is formed by compressing soft magnetic powder having an insulating film.
  • the conductor member 112b is a wire having a long electrical conductivity such as a round cross section and a square cross section, and is wound along the outer peripheral surface of the magnetic shielding portion 111b via an insulating material such as resin or oil paper, A coil is formed.
  • the conductor member 112b is a conductor wire having a relatively high conductivity such as copper or aluminum and insulated and coated with a resin.
  • Such a first excitation coil 11b-1 is formed by winding a long first conductor member 112b-1 around a curved plate-like first magnetic shield 111b-1, so that the first conductor member 112b- A part of 1 has an overlapping portion that overlaps with the first magnetic shield 111b-1 in the radial direction.
  • the second exciting coil 11b-2 is formed by winding the long second conductor member 112b-2 around the second magnetic shielding part 111b-2 having a curved plate shape, so that the second conductor member 112b- 1 has a superposed portion that overlaps in the radial direction via the second magnetic shielding portion 111b-2.
  • first conductor member 112b-1 in the first excitation coil 11b-1 is connected to the power supply unit 12, and the other end of the first conductor member 112b-1 is the second end in the second excitation coil 11b-2.
  • the conductor member 112b-2 is connected to one end, and the other end of the second conductor member 112b-2 is connected to the power supply unit 12.
  • the first and second exciting coils 11b-1 and 11b-2 are connected in series.
  • the first and second excitation coils 11b-1 and 11b-2 can be supplied with currents in opposite directions (currents of opposite phases), and the first and second excitation coils 11b-1 and 11b can be supplied.
  • the one end and the other end of the second conductor member 112b-2 in the second excitation coil 11b-2 may be connected to the power supply unit 12, respectively.
  • the magnetic flaw detector CM provided with the magnetic field application unit 1b of the second aspect as described above has long conductor members 112b-1 and 112b that are bent plate-like magnetic shielding units 111b-1 and 111b-2 with an insulating material interposed therebetween.
  • -2 is provided with a pair of exciting coils 11b-1 and 11b-2. Therefore, each cross-sectional shape in each of the pair of exciting coils 11b-1 and 11b-2 is an arc shape. Therefore, for inspection, for example, a pair of exciting coils 11b-1, 11b- are provided along the concave curved surfaces of the exciting coils 11b-1, 11b-2 on the outer surface of the inspection object SP such as a tube. 2 can be arranged.
  • the magnetic field application unit 1a of the first aspect has the pair of exciting coils 11a-1 from the end of the piping to the inspection location. 11a-2 must be moved, which is cumbersome and time consuming. Further, when inspecting a pipe that is actually disposed, the pair of exciting coils 11a-1 and 11a-2 may not be able to move to the inspection location due to a fixture or support of the pipe. For this reason, in the magnetic field application unit 1a of the first aspect, even if an electrical connector is provided on the conductor members 112a-1 and 112a-2 in order to open the respective excitation coils 11a-1 and 11a-2. Although it is good, it is also conceivable that a problem occurs in the electrical connector. However, since the magnetic field application unit 1b of the second aspect can be arranged in a pipe such as the heat insulation pipe SPa as described above, the above situation can be avoided.
  • the magnetic field application unit 1b is configured to include one pair of excitation coils 1, but is not limited thereto, and may be configured to include a plurality of pairs of excitation coils 11b. . Since such a magnetic flaw detector M includes a plurality of pairs of excitation coils 11b, a plurality of pairs of excitation coils 11b can be arranged along the length direction of the object SP to be inspected. A wider range of the inspection object SP can be detected in the direction. Further, the magnetic flaw detector M can arrange a plurality of pairs of exciting coils 11b along the circumferential direction of the inspection object SP, and thereby detect a wider range of the inspection object SP in the circumferential direction.
  • the magnetic flaw detector M When the magnetic flaw detector M includes a plurality of pairs of excitation coils 11b, the plurality of pairs of excitation coils 11b are preferably arranged in a cylindrical shape. Since the magnetic flaw detector M includes a plurality of pairs of excitation coils 11b that are sequentially arranged adjacent to each other in the circumferential direction so as to have a cylindrical shape, the magnetic flaw detector M includes the plurality of pairs of excitation coils 11b.
  • a substantially Helmholtz coil can be constituted by a pair of excitation coils 11b, and a more uniform magnetic field can be formed across the entire circumferential direction between the pair of excitation coils 11b like a Helmholtz coil.
  • the magnetic field application unit 11c of the third aspect includes two pairs of excitation coils 11b arranged in a cylindrical shape and a power supply unit 12 (not shown). Since the power supply unit 12 (not shown) in the magnetic field application unit 1c of the third aspect is the same as the power supply unit 12 in the magnetic field application unit 1a of the first aspect, the description thereof is omitted. More specifically, as shown in FIG. 7, the magnetic field application unit 11c of the third mode includes a pair of first and second excitation coils 11b-1, 11b-2 and a pair of third and fourth excitations. Two pairs of exciting coils 11b including coils 11b-3 and 11b-4 are provided. In the example shown in FIG.
  • the pair of first and second exciting coils 11b-1 and 11b-2 are connected in series and connected to a power supply unit 12 (not shown).
  • the pair of third and fourth exciting coils 11b-3 and 11b-4 are connected in series and connected to a power supply unit 12 (not shown).
  • the adjacent part of each conductor member 112b in the exciting coils 11b adjacent to each other in the circumferential direction is preferably arranged so as to be parallel to each other along the radial direction.
  • adjacent portions P1 and P2 of the conductor members 112b-1 and 112b-3 in the first exciting coil 11b-1 and the third exciting coil 11b-3 that are adjacent to each other in the circumferential direction are in the radial direction.
  • unillustrated adjacent portions P3 and P4 of the respective conductor members 112b-2 and 112b-4 in the second exciting coil 11b-2 and the fourth exciting coil 11b-4 that are adjacent to each other in the circumferential direction are along the radial direction.
  • the end surfaces parallel to the axial direction in the first and third magnetic shielding portions 111b-1 and 111b-3 having a semi-cylindrical shape with a central angle of 180 degrees are formed flat along the radial direction. Is done.
  • the adjacent portions P1 and P2 The first and third conductor members 112b-1 and 112b-3 are substantially parallel to each other.
  • the end surfaces parallel to the axial direction of the second and fourth magnetic shielding members 111b-2 and 111b-4 having a semi-cylindrical shape with a central angle of 180 degrees are formed flat so as to be along the radial direction.
  • the adjacent portions P3 and P4 The second and fourth conductor members 112b-2 and 112b-4 are substantially parallel to each other.
  • the respective conductor members 112b-1, 112b-3; 112b-2, 112b in the exciting coils 11b-1, 11b-3; 11b-2, 11b-4 adjacent to each other in the circumferential direction are provided.
  • the magnetic flaw detector M can form a more uniform magnetic field by using the two pairs of exciting coils 11b-1, 11b-2; 11b-3, 11b-4.
  • a magnetic flaw detection apparatus includes a magnetic field applying unit that applies a magnetic field to an inspection object, and a first direction that is separated from and in contact with the inspection object on the outer surface of the inspection object.
  • Each of the first group detection unit provided with a plurality of first magnetic detection units arranged at a plurality of first detection positions at different distances to detect magnetism, and each of the plurality of first magnetic detection units in the first group detection unit
  • a defect position processing unit for obtaining a position of a predetermined defect in the inspection object along the first direction based on the detection result.
  • Such a magnetic flaw detector can detect magnetism by a plurality of first magnetic detection units in the first group detection unit at a plurality of first detection positions different from each other from the outer surface of the inspection object. Based on each detection result, the position of the predetermined defect in the inspection object along the first direction that is separated from or in contact with the inspection object can be obtained.
  • the defect position processing unit uses the following condition 1 and condition 2 to detect each detection result of the plurality of first magnetic detection units in the first group detection unit.
  • the magnetic field strengths at a plurality of observed positions within the outer surface of the object to be inspected and at different distances from the outer surface along the first direction are determined, and the determined plurality of observed positions
  • the position of a predetermined defect in the inspected object is obtained based on the magnetic field intensity at.
  • Condition 1 The detection result of the first magnetic detection unit is that each magnetic field at the plurality of observed positions has propagated from the plurality of observed positions to the first detection position of the first magnetic detection unit.
  • Condition 2 that is the sum of the magnetic field strengths of the above: the magnetic field strength has a specific relationship with the distance between the observed position and the first detection position
  • Such a magnetic flaw detector uses a plurality of relational expressions relating to magnetic field strengths (magnetic field strengths) at a plurality of observed positions by using the condition 1 and the condition 2 for the detection results of the plurality of first magnetic detection units. Can be generated, and by analyzing this, the magnetic field strengths at the plurality of observed positions can be obtained. Therefore, the magnetic flaw detector can determine the presence / absence of a defect by comparing the magnetic field intensity at the obtained plurality of observed positions with the magnetic field intensity in a normal state without a defect. Can be sought.
  • the inspection object is a multiple structure tube in which a plurality of cylindrical bodies having different diameters are multiplexed in the radial direction
  • the defect position processing unit is Two first magnetic detection units of the plurality of first magnetic detection units in the first group detection unit are selected, and the first direction of the selected two first magnetic detection units along the first direction is selected. From the detection result of the first magnetic detection unit that is far from the outer surface, the first magnetic detection unit that has a short distance from the outer surface along the first direction out of the two selected first magnetic detection units.
  • the plurality of cylindrical bodies Defects in other cylindrical bodies except the one located outside Whether there is obtained as a position of a predetermined defect in the inspection object.
  • Such a magnetic flaw detector utilizes the fact that the magnetic field strength attenuates in inverse proportion to the square of the distance, thereby determining whether or not there is a defect in the inner cylindrical body from the outermost cylindrical body.
  • the position of the predetermined defect in the object can be easily obtained.
  • it is sufficient to determine whether the defect is in the outer tube located relatively outside or the defect in the inner tube located relatively inside. It is suitable when the inspection object is a double structure tube.
  • the magnetic flaw detectors are arranged on the outer surface of the inspection object along the first direction at a plurality of second detection positions at different distances from the outer surface.
  • a second group detection unit including a plurality of second magnetic detection units to be detected, wherein the second group detection unit has a second direction orthogonal to the first direction as an axis relative to the first group detection unit;
  • the defect position processing unit is arranged with a predetermined angular interval along a circumferential direction around the axis to be rotated, and the defect position processing unit includes the plurality of first magnetic detection units and the second group detection unit in the first group detection unit. Based on the detection results of the plurality of second magnetic detection units, the position of the predetermined defect in the inspection object along the first direction and the predetermined defect in the inspection object along the circumferential direction Find the position.
  • Such a magnetic flaw detector includes a second group detection unit arranged along the circumferential direction with respect to the first group detection unit, the position of the defect can be obtained over the circumferential direction.
  • the magnetic flaw detectors are arranged at a plurality of third detection positions at different distances from the outer surface along the first direction on the outer surface of the inspection object.
  • a third group detection unit including a plurality of third magnetic detection units to be detected is further provided, and the third group detection unit is located along a second direction orthogonal to the first direction with respect to the first group detection unit.
  • the defect position processing unit is arranged at a predetermined interval, and the defect position processing unit detects each of the plurality of first magnetic detection units in the first group detection unit and the plurality of third magnetic detection units in the third group detection unit. Based on the result, the position of the predetermined defect in the inspection object along the first direction and the position of the predetermined defect in the inspection object along the second direction is obtained.
  • Such a magnetic flaw detector includes a third group detection unit arranged along the second direction with respect to the first group detection unit, so that the position of the defect can be obtained in the second direction.
  • a magnetic flaw detection method includes a magnetic field applying step of applying a magnetic field to an inspection object, and a first direction that is separated from and in contact with the inspection object on an outer surface of the inspection object.
  • a magnetic detection step for detecting magnetism at each of a plurality of detection positions, and a position of a predetermined defect in the inspection object along the first direction based on each detection result detected in the magnetic detection step.
  • a defect position calculation step to be obtained.
  • magnetism can be detected by a magnetic detection process at a plurality of detection positions different from each other from the outer surface of the inspection object. Therefore, the inspection object is detected based on each detection result by the defect position processing process. It is possible to determine the position of a predetermined defect in the inspection object along the first direction that is separated from and in contact with the object.
  • a magnetic flaw detection apparatus and a magnetic flaw detection method can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

 本発明にかかる磁気探傷装置および磁気探傷方法は、被検査物に磁界を印加し、前記被検査物の外面から互いに異なる複数の第1検出位置で磁気を検出し、これら各検出結果に基づいて、前記被検査物に対し離接する第1方向に沿った、前記被検査物における所定の欠陥の位置を求める。

Description

磁気探傷装置および磁気探傷方法
 本発明は、磁気を検出する磁気検出部を用いることによって被検査物における所定の欠陥(異常)を探傷する磁気探傷装置および磁気探傷方法に関する。
 鋼管、鉄管およびアルミ管等の金属管の傷や薄肉化(減肉)等の欠陥(異常)の有無を検査する方法は、目視による外観観察の他、主に、超音波を利用した超音波探傷法や、磁気を利用した磁気探傷法等がある。この磁気探傷法として、一般に、被検査物に直流磁場(直流磁界)または交流磁場(交流磁界)を与え欠陥によって生じた磁束(欠陥漏洩磁束)を検出する漏洩磁束探傷法(例えば特許文献1参照)、および、被検査物に交流磁場で誘起される渦電流における欠陥による変化を検出する渦電流探傷法(例えば特許文献2参照)が知られており、さらに、近年では、空間的に均質な磁場(磁界)を発生させるヘルムホルツコイルを用いた磁気探傷装置(ヘルムホルツ型磁気探傷装置)も提案されている(例えば特許文献3参照)。
 ところで、磁性体や導体等の材料によって形成された互いに径の異なる複数の筒状体を径方向で複数多重した、例えば断熱管等の多重構造管を被検査物として探傷する場合、前記特許文献1や前記特許文献2に開示された方法では、最も外側に位置する管の方がそれよりも内側に位置する管に較べて著しく磁場変化が大きく、内側の管を探傷することが難しい。一方、前記特許文献3に開示されたヘルムホルツコイル型磁気探傷装置は、二重構造管の断熱管を被検査物として探傷しているが、磁場の変化で欠陥を検出したとしても、断熱管の外周面上に配設された1個の磁気センサではこの欠陥が内側の管に生じているのか外側の管に生じているのかを区別することが難しい。
特開平11-83808号公報 特開平5-164745号公報 特開2014-44087号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、被検査物に対し離接する第1方向に沿った、被検査物における所定の欠陥の位置を求めることができる磁気探傷装置および磁気探傷方法を提供することである。
 本発明にかかる磁気探傷装置および磁気探傷方法は、被検査物に対し離接する第1方向に沿った、被検査物における所定の欠陥の位置を求めることができる。
 本発明にかかる磁気探傷装置および磁気探傷方法は、被検査物に磁界を印加し、前記被検査物の外面から互いに異なる複数の第1検出位置で磁気を検出し、これら各検出結果に基づいて、前記被検査物に対し離接する第1方向に沿った、前記被検査物における所定の欠陥の位置を求める。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
実施形態における磁気探傷装置の構成を示す図である。 実施形態の磁気探傷装置で検査される被検査物の外観を示す斜視図である。 実施形態の磁気探傷装置における欠陥の位置の算出方法を説明するための図である。 実施形態の磁気探傷装置における第1変形形態の構成を示す図である。 実施形態の磁気探傷装置における第2変形形態の構成を示す図である。 実施形態の磁気探傷装置における第3変形形態の構成を示す図である。 実施形態の磁気探傷装置における第4変形形態の構成を示す図である。
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
 図1は、実施形態における磁気探傷装置の構成を示す図である。図1Aは、全体構成を示し、図1Bは、磁界印加部周辺の断面図である。図2は、実施形態の磁気探傷装置で検査される被検査物の外観を示す斜視図である。図3は、実施形態の磁気探傷装置における欠陥の位置の算出方法を説明するための図である。
 実施形態における磁気探傷装置は、検査対象の被検査物に、磁界を印加し、被検査物の所定の欠陥(異常)に起因して生じる磁場の変化を、被検査物に対し離接する第1方向に沿って、被検査物の外面から互いに異なる距離の複数の第1検出位置それぞれで検出し、これら各検出結果に基づいて、第1方向に沿った、被検査物における所定の欠陥の位置を求める装置である。このような実施形態における磁気探傷装置Mは、例えば、図1に示すように、磁界印加部1aと、第1群検出部3aと、欠陥位置処理部42を備える制御処理部4と備え、図1に示す例では、さらに、入力部5と、出力部6と、インターフェース部(IF部)7とを備える。
 磁界印加部1aは、被検査物SPに磁界を印加する装置である。被検査物SPは、好ましくは、鋼管、鉄管およびアルミ管等の金属管SPaであり、より好ましくは、例えば磁性体や導体等の材料によって形成された互いに径の異なる複数の筒状体を径方向で複数多重した多重構造管である。図1に示す例では、被検査物SPは、図2に示す二重構造管の断熱管SPaである。この断熱管SPaは、図2に示すように、例えば、内側に位置する鋼管SPa1と、前記鋼管SPa1の外周を所定の厚さで覆う断熱材SPa2と、前記断熱材SPa2の外周を覆う、外側に位置する外装板金である溶融亜鉛鉄板SPa3とを備えて構成される。磁界印加部1aは、励磁コイル11aと、電源部12とを備える。
 励磁コイル11aは、電源部12から電力の供給を受けることによって、磁場を生成し、この生成した磁場を被検査物SPに与える装置である。励磁コイル11aは、漏洩磁束探傷法や渦電流探傷法等の探傷方法に応じて種々の公知の装置を用いることができる。例えば、漏洩磁束探傷法では、励磁コイル11aは、直流磁場または交流磁場を与えることによって被検査物SP内に磁束を生じさせるように構成される。また例えば、渦電流探傷法では、励磁コイル11aは、交流磁場を与えることによって被検査物SPに渦電流を生じさせるように構成される。本実施形態では、第1態様としての励磁コイル11aは、図1に示す1対の第1および第2励磁コイル11a-1、11a-2を備える。
 これら1対の第1および第2励磁コイル11a-1、11a-2は、断熱管SPaをその各芯部に挿通させ、断熱管SPaにおける軸方向に沿って所定の間隔で離間して配置される。前記所定の間隔は、適宜に設定され、例えば、ヘルムホルツコイルを構成するために、第1および第2励磁コイル11a-1、11a-2の半径に略等しい長さである。第1励磁コイル11a-1は、比較的短い高さ(短高)の筒状体である第1コイルボビン111a-1に、例えば断面丸形や断面角形等の長尺な電気伝導性を持つ線材である第1導体部材112a-1を、例えば樹脂や油紙等の絶縁材料を介して巻回すことによって形成される。同様に、第2励磁コイル11a-2は、短高の筒状体である第2コイルボビン111a-2に、例えば断面丸形や断面角形等の長尺な電気伝導性を持つ線材である第2導体部材112a-2を、例えば樹脂や油紙等の絶縁材料を介して巻回すことによって形成される。第1および第2コイルボビン111a-1、111a-2は、例えば樹脂材料等の非磁性絶縁体で形成される。このような第1および第2励磁コイル11a-1、11a-2のターン数は、第1および第2励磁コイル11a-1、11a-2によって生成したい所望の磁場の強度等に応じて適宜に設定される。第1および第2導体部材112a-1、112a-2それぞれは、例えば、銅やアルミニウム等の比較的高い導電性を持ち、樹脂で絶縁被覆された導体線である。第1および第2励磁コイル11a-1、11a-2は、互いに直列に接続されている。より具体的には、第1励磁コイル11a-1の一方端は、電源部12に接続され、その他方端は、第2励磁コイル11a-2の一方端に接続され、その他方端は、電源部12に接続される。
 電源部12は、制御処理部4に接続され、制御処理部4の制御に従って、励磁コイル11aに電力を給電することによって磁気(磁界)を発生させるための装置である。電源部12は、直流電流、交流電流およびパルス電流等の、探傷方法に応じた所定の電流を1対の第1および第2励磁コイル11a-1、11a-2に給電することによって直流磁場、交流磁場およびパルス状の磁場(パルス磁場)等の、前記探傷方法に応じた所定の磁場を発生させる。なお、電源部2は、1対の第1および第2励磁コイル11a-11a-2に、逆相の電流や一方のみに電流を給電するために、第1および第2励磁コイル11a-1、11a-2への各通電路を適宜に切り換える切替回路を備えて良い。
 第1群検出部3aは、磁気を検出する複数の第1磁気検出部31aを備える。これら複数の第1磁気検出部31aは、1対の励磁コイル11a-1、11a-2間であって、被検査物SPの外面上(直上および上方を含む。ここで、上方とは、外面から外側へ離れる方向を意味する。)に、被検査物SPに対し離接する第1方向に沿って、前記外面から互いに異なる距離の複数の第1検出位置に配置される。これら複数の第1磁気検出部31aそれぞれは、制御処理部4に接続され、探傷方法に応じた磁気を検出し、その検出結果を制御処理部4へ出力する。例えば、漏洩磁束探傷法では、欠陥によって生じた漏洩磁束に起因する磁気が検出される。また例えば、渦電流探傷法では、欠陥によって生じた渦電流の変化に起因する磁気が検出される。図1に示す例では、第1群検出部3aは、3個の第1磁気検出部31a-1~31a-3を備えて構成される。これら3個の第1磁気検出部31a-1~31a-3は、1対の励磁コイル11a-1、11a-2間であって、断熱管SPaの外周面上に、断熱管SPaの径方向に沿って、前記外周面から互いに異なる第1ないし第3距離の3個の第1検出位置に配置されている。
 第1磁気検出部31aとして、各種の磁気センサが利用可能である。より具体的には、第1磁気検出部31aには、磁場により電気抵抗が変化する磁気抵抗効果を利用した磁気抵抗素子(MR素子)を用いた磁気センサ、高透磁率合金磁性体の表皮効果で磁場によりインピーダンスが変化する磁気インピーダンス効果を利用した磁気インピーダンス素子を用いた磁気センサ、ホール効果を利用したホール素子を用いた磁気センサ、高透磁率材料の磁化飽和性を利用したフラックス・ゲートを用いた磁気センサ、および、2箇所にジョセフソン接合を持つ超伝導体のリングを利用した超伝導量子干渉素子(SQUID、Superconducting Quantum Interference Device)を用いた磁気センサ素子等が用いられる。
 入力部5は、制御処理部4に接続され、例えば、被検査物SPの測定を指示するコマンド等の各種コマンド、および、例えば被検査物SPにおける識別子(例えば被検査物の整理番号等)の入力等の測定する上で必要な各種データを磁気探傷装置Mに入力する機器であり、例えば、所定の機能を割り付けられた複数の入力スイッチや、キーボードや、マウス等である。出力部6は、制御処理部4に接続され、制御処理部4の制御に従って、入力部5から入力されたコマンドやデータ、および、磁気探傷装置Mによって測定された被検査物SPの測定結果(例えば、磁気検出部3の測定データ、欠陥の有無および欠陥の位置)等を出力する機器であり、例えばCRTディスプレイ、LCD(液晶ディスプレイ)および有機ELディスプレイ等の表示装置やプリンタ等の印刷装置等である。
 なお、入力部5および出力部6からタッチパネルが構成されてもよい。このタッチパネルを構成する場合において、入力部5は、例えば抵抗膜方式や静電容量方式等の操作位置を検出して入力する位置入力装置であり、出力部6は、表示装置である。このタッチパネルでは、表示装置の表示面上に位置入力装置が設けられ、表示装置に入力可能な1または複数の入力内容の候補が表示され、ユーザが、入力したい入力内容を表示した表示位置を触れると、位置入力装置によってその位置が検出され、検出された位置に表示された表示内容がユーザの操作入力内容として磁気探傷装置Mに入力される。このようなタッチパネルでは、ユーザは、入力操作を直感的に理解し易いので、ユーザにとって取り扱い易い磁気探傷装置Mが提供される。
 IF部7は、制御処理部4に接続され、制御処理部4の制御に従って、外部機器との間でデータの入出力を行う回路であり、例えば、シリアル通信方式であるRS-232Cのインターフェース回路、Bluetooth(登録商標)規格を用いたインターフェース回路、IrDA(Infrared Data Asscoiation)規格等の赤外線通信を行うインターフェース回路、および、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。
 制御処理部4は、磁気探傷装置Mの各部を当該各部の機能に応じてそれぞれ制御するための回路である。制御処理部4は、例えば、CPU(Central Processing Unit)、メモリおよびそれら周辺回路を備えたマイクロコンピュータを備えて構成される。制御処理部4には、プログラムを実行することによって、制御部41および欠陥位置処理部42が機能的に構成される。
 制御部41は、磁気探傷装置Mの各部を当該各部の機能に応じてそれぞれ制御するためのものである。
 欠陥位置処理部42は、第1群検出部3aにおける複数の第1磁気検出部31aの各検出結果に基づいて、前記第1方向に沿った、被検査物SPにおける所定の欠陥の位置を求めるものである。上述の例では、欠陥位置処理部42は、第1群検出部3aにおける3個の第1磁気検出部31a-1~31a-3の各検出結果に基づいて、断熱管SPaの径方向に沿った、断熱管SPaにおける所定の欠陥の位置を求めるものである。
 そして、好ましくは、欠陥位置処理部42は、下記条件1および条件2を用いることによって、第1群検出部3aにおける複数の第1磁気検出部31aの各検出結果に基づいて、被検査物SPの外面以内であって前記第1方向に沿った前記外面から互いに異なる距離の複数の被観測位置における各磁界強度を求め、この求めた複数の被観測位置における各磁界強度に基づいて、被検査物SPにおける所定の欠陥の位置を求めるものである。
条件1;第1磁気検出部31aの検出結果は、複数の被観測位置での各磁界が複数の被観測位置から当該第1磁気検出部31aの第1検出位置まで伝播してきた各磁界の各磁界強度の和であること
条件2;前記磁界強度は、被観測位置および第1検出位置間の距離と特定の関係があること
 より詳しくは、欠陥位置処理部42は、次のように、欠陥の位置を求めている。一般に、被観測位置の磁界強度をMI0とすると、第1検出位置における磁界強度MIは、上記条件2として、被観測位置および第1検出位置間の距離Lの二乗に反比例して減衰する(MI=k×(MI0/L)、kは比例定数)。このため、断熱管SPaにおいて、図3に示すように、横軸Xを、鋼管SPa1の外周面を座標原点とした、鋼管SPa1の外周面からの径方向に沿った距離とし、縦軸Yを磁界強度MIとし、鋼管SPa1での磁界強度MIをMI01とし、外装板金の溶融亜鉛鉄板SPa3での磁界強度MIをMI02とし、鋼管SPa1の外周面から溶融亜鉛鉄板SPa3の外周面までの距離をX0とした場合、鋼管SPa1の外周面からの径方向に沿った距離X1の第1検出位置に配置された第1磁気検出部31a-1は、上記条件1を満たし、α(X1)=k×(MI01/X1)+k×(MI02/(X1-X0))を検出する。同様に、鋼管SPa1の外周面からの径方向に沿った距離X2の第1検出位置に配置された第1磁気検出部31a-2は、上記条件1を満たし、α(X2)=k×(MI01/X2)+k×(MI02/(X2-X0))を検出する。鋼管SPa1の外周面からの径方向に沿った距離X3の第1検出位置に配置された第1磁気検出部31a-3は、上記条件1を満たし、α(X3)=k×(MI01/X3)+k×(MI02/(X3-X0))を検出する。ここで、比例定数kおよび距離X0、X1、X2、X3は、既知であり、各検出結果α(X)は、第1磁気検出部31a-1~31a-3の測定で測定値として得られるので、上記3個の式のうちの2個の式を用いることで、鋼管SPa1での磁界強度MI01および溶融亜鉛鉄板SPa3での磁界強度MI02が求められる。あるいは、第1磁気検出部31a-1~31a-3の各検出結果に、最も合う(フィットする)曲線α(X)が例えば最小二乗法等によって求められ、この求めた曲線α(X)から、予め設定された互いに異なる所定の2箇所の位置XA、XB(XA、XB>0)で、2個の式、α(XA)=k×(MI01/XA)+k×(MI02/(XA-X0))、α(XB)=k×(MI01/XB)+k×(MI02/(XB-X0))が生成され、これら2個の式を用いることで、鋼管SPa1での磁界強度MI01および溶融亜鉛鉄板SPa3での磁界強度MI02が求められてもよい。なお、図3に示す曲線β1(X)は、被観測位置を鋼管SPa1の外周面とした場合、その磁場における磁界強度β1(X)と外周面からの距離Xとの関係を示し、曲線β2(X)は、被観測位置を溶融亜鉛鉄板SPa3の外周面とした場合、その磁場における磁界強度β2(X)と外周面からの距離Xとの関係を示し、曲線α(X)は、外周面からの距離Xの位置に位置する第1磁気検出部3aで検出される磁界強度α(X)、すなわち、α(X)=β1(X)+β2(X)を示す。
 そして、断熱管SPaに欠陥の無い状態で、予め求められた鋼管SPa1での磁界強度MIref1とこの求めた鋼管SPa1での磁界強度MI01とが比較され、欠陥の有無が判定される。この判定の結果、鋼管SPa1での磁界強度MIref1と磁界強度MI01との差異が、ノイズを考慮した所定の第1範囲th1内である場合には、欠陥が無いと判定され、鋼管SPa1での磁界強度MIref1と磁界強度MI01との差異が、前記所定の第1範囲th1を越えている場合には、欠陥が有ると判定され、相対的に径方向内側に位置する内管の鋼管SPa1に欠陥があると判定される。断熱管SPaに欠陥の無い状態で、予め求められた溶融亜鉛鉄板SPa3での磁界強度MIref2とこの求めた溶融亜鉛鉄板SPa3での磁界強度MI02とが比較され、欠陥の有無が判定される。この判定の結果、溶融亜鉛鉄板SPa3での磁界強度MIref2と磁界強度MI02との差異が、ノイズを考慮した所定の第2範囲th2内である場合には、欠陥が無いと判定され、溶融亜鉛鉄板SPa3での磁界強度MIref2と磁界強度MI02との差異が、前記所定の第2範囲th2を越えている場合には、欠陥が有ると判定され、相対的に径方向外側に位置する外管の溶融亜鉛鉄板SPa3に欠陥があると判定される。すなわち、径方向に沿った欠陥の位置が判定できる。あるいは、後述するように、周方向に複数の第2群検出部3b(図4参照)を備える場合では、欠陥の有無の判定は、周方向の各位置で求められた鋼管SPa1での各磁界強度MI01を相互に比較することによって、実施されても良く、相違する場合に、その位置で鋼管SPa1に欠陥があると判定され、そして、周方向の各位置で求められた溶融亜鉛鉄板SPa3での各磁界強度MI02を相互に比較することによって、実施されても良く、相違する場合に、その位置で溶融亜鉛鉄板SPa3に欠陥があると判定される。また、後述するように、軸方向に複数の第3群検出部3c(図5参照)を備える場合では、欠陥の有無の判定は、軸方向の各位置で求められた鋼管SPa1での各磁界強度MI01を相互に比較することによって、実施されても良く、相違する場合に、その位置で鋼管SPa1に欠陥があると判定され、そして、軸方向の各位置で求められた溶融亜鉛鉄板SPa3での各磁界強度MI02を相互に比較することによって、実施されても良く、相違する場合に、その位置で溶融亜鉛鉄板SPa3に欠陥があると判定される。予め求められた欠陥のない状態の断熱管SPaのデータが存在する場合は、前述の実測データαに測定値そのものではなく上記欠陥のない状態との差分を用いても良い。この場合は、そのまま磁界強度MI01と磁界強度MIre1、磁界強度MI02と磁界強度MIref2を比較することができる。
 このように磁気探傷装置Mは、これら求めた複数の被観測位置における各磁界強度と、欠陥の無い正常状態の磁界強度と比較することで、欠陥の有無を判定でき、その結果、欠陥の位置を求めることができる。
 また好ましくは、被検査物SPは、互いに径の異なる複数の筒状体を径方向で複数多重した多重構造管であり、欠陥位置処理部42は、第1群検出部3aにおける複数の第1磁気検出部31aのうちの2個の第1磁気検出部31aを選択し、この選択した2個の第1磁気検出部31aのうちの第1方向に沿った前記外面からの距離が遠い第1磁気検出部31aの検出結果から、前記選択した2個の第1磁気検出部31aのうちの第1方向に沿った前記外面からの距離が近い第1磁気検出部31aの検出結果を前記遠い第1磁気検出部31aの前記外面からの距離の二乗で除した除算結果を減算し、この減算した減算結果と所定の判定閾値とを比較することによって、被検出物SPにおける複数の筒状体のうちの最外側に位置する筒状体を除く他の筒状体に欠陥があるか否かを、被検査物SPにおける所定の欠陥の位置として求めるものである。
 より詳しくは、欠陥位置処理部42は、次のように、欠陥の位置を求めている。例えば、第1磁気検出部31a-1が溶融亜鉛鉄板SPa3の外周面から距離1mmの第1検出位置に位置し、第1磁気検出部31a-2が溶融亜鉛鉄板SPa3の外周面から距離5mmの第1検出位置に位置する場合、欠陥位置処理部42は、これら2個の第1磁気検出部31a-1、31a-2のうちの径方向に沿った前記外周面からの距離Xが遠い第1磁気検出部31a-2の検出結果α(5mm)から、これら2個の第1磁気検出部31a-1、31a-2のうちの径方向に沿った前記外周面からの距離Xが近い第1磁気検出部31a-1の検出結果α(1mm)を前記遠い第1磁気検出部31a-2の前記外周面からの距離5mmの二乗で除した除算結果α(1mm)/25を減算し(α(5mm)-α(1mm)/25=αsub)、この減算した減算結果αsubと所定の判定閾値th3とを比較することによって、断熱管SPaにおける相対的に外側に位置する外管の溶融亜鉛鉄板SPa3を除く他の管、すなわち、相対的に内側に位置する内管の鋼管SPa1に欠陥があるか否かを、被検査物SPにおける所定の欠陥の位置として求める。磁界強度が距離の二乗に反比例して減衰するので、内管の鋼管SPa1に欠陥がなく外管の鋼管SPa3に欠陥があれば、第1磁気検出部31a-1の検出結果α(1mm)と第1磁気検出部31a-2の検出結果α(5mm)との差が相対的に大きく、内管の鋼管SPa1に欠陥があり外管の鋼管SPa3に欠陥がなければ、第1磁気検出部31a-1の検出結果α(1mm)と第1磁気検出部31a-2の検出結果α(5mm)との差が相対的に小さいとの考えから、前記判定閾値th3は、磁界印加部1aで印加される磁界の磁界強度に応じて適宜な値(例えば0に近い値等)に設定される。したがって、欠陥位置処理部42は、減算結果αsubが判定閾値th3以上である場合には、内管の鋼管SPa1に欠陥があると判定し、減算結果αsubが判定閾値th3未満である場合には、内管の鋼管SPa1に欠陥が無いと判定し、欠陥の位置を求める。なお、好ましくは、第1磁気検出部31a-1~31a-3の各検出結果に、最も合う(フィットする)曲線α(X)が例えば最小二乗法等によって求められ、この求めた曲線α(X)から、第1磁気検出部31a-1の検出結果α(1mm)および第1磁気検出部31a-2の検出結果α(5mm)は、求められる。また、最外側に位置する溶融亜鉛鉄板SPaの外周面からの距離は、検出結果α(X)に強く影響し、溶融亜鉛鉄板SPaが変形している場合もあるので、各第1磁気検出部31a-1~31a-3における溶融亜鉛鉄板SPaの外周面からの距離Xは、距離計等によって実測されても良い。
 このような磁気探傷装置CMは、磁界強度が距離の二乗に反比例して減衰することを利用することによって、最外側の筒状体よりも内側の筒状体での欠陥の有無を、被検査物SPにおける所定の欠陥の位置として簡易に求めることができる。特に、上述したように、断熱管SPaのように二重構造管の場合、相対的に外側に位置する外管(この例では溶融亜鉛鉄板SPa3)での欠陥か、相対的に内側に位置する内管(この例では鋼管SPa1)での欠陥かを判別すれば足りるので、上記磁気探傷装置CMは、被検査物SPが二重構造管である場合に、好適である。
 このような磁気探傷装置Mでは、断熱管SPa等の被検査物SPを探傷する場合、まず、ユーザ(オペレータ)によって被検査物SPの1対の第1および第2励磁コイル11a-1、11a-2が所定の間隔を空けて配置される。そして、ユーザによって図略の電源スイッチがオンされると、制御処理部4は、必要な各部の初期化を実行し、プログラムの実行によって、制御処理部4には、制御部41および欠陥位置処理部42が機能的に構成される。
 ユーザによる探傷開始の指示を入力部5を介して受け付けると、制御部41は、電源部2によって1対の第1および第2励磁コイル11a-1、11a-2に探傷方法に応じた電流を給電する。これによって1対の第1および第2励磁コイル11a-1、11a-2は、探傷方法に応じた磁界(磁場)を生成し、被検査物SPに磁界を印加する。この磁界は、被検査物SPを伝わり、この磁界に起因する磁界が第1群検出部3aの複数の第1磁気検出部31aによって検出され、複数の第1磁気検出部31aは、各検出結果を制御処理部4へ出力する。そして、欠陥位置処理部42は、複数の第1磁気検出部31aの各検出結果に基づいて被検査物SPにおける所定の欠陥の有無を判定し、第1方向に沿った欠陥の位置を判定する。制御部41は、複数の第1磁気検出部31aの各検出結果、欠陥の有無および第1方向に沿った欠陥の位置を出力部6へ出力する。なお、制御部41は、必要に応じて、複数の第1磁気検出部31aの各検出結果、欠陥の有無および第1方向に沿った欠陥の位置をIF部7を介して図略の外部機器へ出力しても良い。
 以上説明したように、本実施形態における磁気探傷装置Mおよびこれに実装された磁気探傷方法は、被検査物SPの外面から互いに異なる複数の第1検出位置で第1群検出部3aにおける複数の第1磁気検出部31aによって磁気を検出できるから、欠陥位置処理部42によって、この各検出結果に基づいて、被検査物SPに対し離接する第1方向(上述の例では径方向)に沿った、被検査物SPにおける所定の欠陥の位置を求めることができる。上述の例では、径方向の内側に位置する鋼管SPa1に欠陥が有るのか、径方向の外側に位置する溶融亜鉛鉄板SPa3に欠陥が有るのかが求められる。
 図4は、実施形態の磁気探傷装置における第1変形形態の構成を示す図である。図5は、実施形態の磁気探傷装置における第2変形形態の構成を示す図である。
 なお、上述の磁気探傷装置Mにおいて、磁気探傷装置Mは、図4に示すように、被検査物SPの外面上に、第1方向に沿って、前記外面から互いに異なる距離の複数の第2検出位置に配置され、磁気を検出する複数の第2磁気検出部31bを備える第2群検出部3bをさらに備えてもよい。この第2群検出部3bは、第1群検出部3aに対し、前記第1方向に直交する第2方向を軸とする軸回りの周方向に沿って所定の角度間隔を空けて配置されている。そして、この場合では、欠陥位置処理部42は、第1群検出部3aにおける複数の第1磁気検出部31aおよび第2群検出部3bにおける複数の第2磁気検出部31bの各検出結果に基づいて、前記第1方向に沿った被検査物SPにおける所定の欠陥の位置であって前記周方向に沿った被検査物SPにおける所定の欠陥の前記位置を求める。より具体的には、第2群検出部3bは、1個でも良いが、断熱管SPaの全周に亘って所定の欠陥を探傷するために、図4に示す例では、第2群検出部3bは、11個の第2群検出部3b-1~3b-11を備えて構成されている。これら11個の第2群検出部3b-1~3b-11それぞれは、断熱管SPaの外面上に、径方向に沿って、断熱管SPaの外面から互いに異なる距離の3箇所の第2検出位置に配置された、3個の磁気検出部31b-1~31b-3を備える。これら第2磁気検出部31b-1~31b-3は、上述の第1磁気検出部31aと同様であるので、その説明を省略する。そして、第2群検出部3b-1は、第1群検出部3aに対し、径方向に直交する断熱管SPの中心軸AX周りに周方向に沿って約30度の角度間隔を空けて配置され、これら11個の第2群検出部3b-1~3b-11は、順次に、断熱管SPaの中心軸AX周りに周方向に沿って約30度の角度間隔を空けて配置されている。すなわち、第1群検出部3aおよび11個の第2群検出部3b-1~3b-11は、順次に、断熱管SPaの中心軸AX周りに周方向に沿って約30度の角度間隔を空けて(つまり等間隔で)配置されている。このような第1変形形態における磁気探傷装置CMは、第1群検出部3aに対し、周方向に沿って配置された第2群検出部3bを備えるので、周方向に亘って欠陥の位置を求めることができる。特に、図4に示す例の磁気探傷装置CMは、断熱管SPaの全周に亘って欠陥の位置を求めることができる。
 また、これら上述の磁気探傷装置Mにおいて、磁気探傷装置Mは、図5に示すように、被検査物SPの外面上に、第1方向に沿って、前記外面から互いに異なる距離の複数の第3検出位置に配置され、磁気を検出する複数の第3磁気検出部31cを備える第3群検出部3cをさらに備えてもよい。この第3群検出部3cは、第1群検出部3aに対し、前記第1方向に直交する第2方向に沿って所定の間隔を空けて配置されている。そして、この場合では、欠陥位置処理部42は、第1群検出部3aにおける複数の第1磁気検出部31aおよび第3群検出部3cにおける複数の第3磁気検出部31cの各検出結果に基づいて、前記第1方向に沿った被検査物SPにおける所定の欠陥の位置であって前記第2方向に沿った被検査物SPにおける所定の欠陥の前記位置を求める。第3群検出部3cは、1個でも良いが、断熱管SPにおける軸方向に沿った所定の範囲に亘って所定の欠陥を探傷するために、図5に示す例では、第3群検出部3cは、4個の第3群検出部3c-1~3b-4を備えて構成されている。これら4個の第3群検出部3c-1~3b-4それぞれは、断熱管SPaの外面上に、径方向に沿って、断熱管SPaの外面から互いに異なる距離の3箇所の第3検出位置に配置された、3個の第3磁気検出部31c-1~31c-3を備える。これら第3磁気検出部31c-1~31c-3は、第1磁気検出部31aと同様であるので、その説明を省略する。そして、第3群検出部3c-1は、第1群検出部3aに対し、径方向に直交する断熱管SPaの中心軸AXの軸方向に沿って所定の間隔を空けて配置され、これら4個の第3群検出部3c-1~3b-4は、順次に、断熱管SPaの中心軸AXの軸方向に沿って所定の間隔を空けて配置されている。すなわち、第1群検出部3aおよび4個の第3群検出部3c-1~3c-4は、順次に、断熱管SPaの中心軸AXの軸方向に沿って所定の間隔を空けて(つまり等間隔で)配置されている。このような第2変形形態における磁気探傷装置CMは、第1群検出部3aに対し、第2方向(図5に示す例では軸方向)に沿って配置された第3群検出部3cを備えるので、第2方向に亘って欠陥の位置を求めることができる。特に、図5に示す例の磁気探傷装置CMは、断熱管SPaの軸方向に沿った所定の範囲に亘って欠陥の位置を求めることができる。
 磁気探傷装置CMは、第1態様の群検出部3aに代え、第2態様の群検出部3Bと第3態様の群検出部3Cとを組み合わせた群検出部を備えて構成されても良い。このような磁気探傷装置Mは、径方向にも軸方向にも亘って欠陥の位置を求めることができる。
 上述の磁気探傷装置Mにおける磁界印加部1は、1対の励磁コイル11a-1、11a-2を備えた第1態様の磁界印加部1aが用いられたが、これに代え、第2態様の磁界印加部1bまたは第3態様の磁界印加部1cが用いられても良い。
 図6は、実施形態の磁気探傷装置における第3変形形態の構成を示す図である。図6Aは、全体構成を示し、図6Bは、励磁コイル周辺の断面図である。図7は、実施形態の磁気探傷装置における第4変形形態の構成を示す図である。図7Aは、励磁コイル周辺の正面図を示し、図7Bは、励磁コイル周辺の断面図である。
 第2態様の磁界印加部1bは、第1態様の磁界印加部1aと同様に、被検査物SPに磁界を印加する装置であり、図6に示すように、励磁コイル11bと、電源部12とを備える。第2態様の磁界印加部1bにおける電源部12は、第1態様の磁界印加部1aにおける電源部12と同様であるので、その説明を省略する。
 励磁コイル11bは、第1態様の励磁コイル11aと同様に、電源部12から電力の供給を受けることによって、磁場を生成し、この生成した磁場を被検査物SPに与える装置である。本第2態様では、励磁コイル11bは、図6に示す1対の第1および第2励磁コイル11b-1、11b-2を備える。
 第1および第2励磁コイル11b-1、11b-2は、それぞれ、磁気遮蔽部111b-1、111b-2と、導体部材112b-1、112b-2とを備える。第1および第2励磁コイル11b-1、11b-2は、互いに同形であるため、磁気遮蔽部111b、導体部材112bおよび励磁コイル11bと総称して以下に説明する。
 磁気遮蔽部111bは、磁気を遮蔽するための部材であり、湾曲した板状に形成されている。磁気遮蔽部111bは、好ましくは、断熱管SPaの形状に応じて湾曲している。より具体的には、磁気遮蔽部111bは、例えば、軸方向に沿って切断した円筒(中空な円柱)の一部であり、軸方向に直交するその断面が弧状(環の一部の形状)となっている。磁気遮蔽部111bは、断熱管SPaの外周面に沿うように、その弧状の断面は、断熱管SPaにおける断面の一部と相似形である。磁気遮蔽部111bの中心角は、断熱管SPaの外周面上(直上(外周面に当接配置)および上方(外周面から離間配置)を含む)に配置可能とするために、180度以下であることが好ましい。なお、その弾性変形によって配置可能であるため、磁気遮蔽部111bの中心角は、180度を若干超えることも可能である。図6に示す例では、断熱管SPの外周を無理なく最大限に覆うことができるように、180度になっている。なお、磁気遮蔽部111bの中心角は、120度、90度および60度のうちのいずれかであっても良い。このような中心角を持つ磁気遮蔽部111bは、180度の場合も含めて、後述するように断熱管SPの全周を囲む場合、同じ形状の複数の励磁コイル11bで実行できる。したがって、同じ形状の励磁コイル11bを量産すれば良いので、量産効果によって励磁コイル11bの低コスト化を図ることができる。
 このような磁気遮蔽部111bは、例えば、電磁鋼板、好ましくは、積層した複数の電磁鋼板で形成される。また例えば、磁気遮蔽部111bは、絶縁皮膜を持つ軟磁性粉末を圧縮形成することによって形成される。
 導体部材112bは、断面丸形や断面角形等の長尺な電気伝導性を持つ線材であり、例えば樹脂や油紙等の絶縁材料を介して磁気遮蔽部111bの外周面に沿って巻回され、コイルを形成する。導体部材112bは、例えば銅やアルミニウム等の比較的高い導電性を持ち、樹脂で絶縁被覆された導体線である。
 このような第1励磁コイル11b-1は、湾曲板状の第1磁気遮蔽部111b-1に長尺な第1導体部材112b-1を巻回して形成されるので、第1導体部材112b-1の一部が径方向で第1磁気遮蔽部111b-1を介して重なる重畳部分を持つ。同様に、第2励磁コイル11b-2は、湾曲板状の第2磁気遮蔽部111b-2に長尺な第2導体部材112b-2を巻回して形成されるので、第2導体部材112b-1の一部が径方向で第2磁気遮蔽部111b-2を介して重なる重畳部分を持つ。
 第1励磁コイル11b-1における第1導体部材112b-1の一方端は、電源部12に接続され、前記第1導体部材112b-1の他方端は、第2励磁コイル11b-2における第2導体部材112b-2の一方端に接続され、そして、前記第2導体部材112b-2の他方端は、電源部12に接続される。このように第1および第2励磁コイル11b-1、11b-2は、直列に接続される。なお、第1および第2励磁コイル11b-1、11b-2に互いに逆方向の電流(逆相の電流)を通電可能とするために、また、第1および第2励磁コイル11b-1、11b-2のうちの一方のみに電流を通電可能とするために、図6に破線で示すように、第1励磁コイル11b-1における第1導体部材112b-1の一方端および他方端は、それぞれ、電源部12に接続され、第2励磁コイル11b-2における第2導体部材112b-2の一方端および他方端は、それぞれ、電源部12に接続されてもよい。
 このような第2態様の磁界印加部1bを備える磁気探傷装置CMは、湾曲した板状の磁気遮蔽部111b-1、111b-2に絶縁材料を介して長尺な導体部材112b-1、112b-2を巻回すことによって形成された1対の励磁コイル11b-1、11b-2を備えている。このため、1対の励磁コイル11b-1、11b-2それぞれにおける各断面形状は、それぞれ、弧状となる。したがって、検査のために、例えば管等の被検査物SPの外面上に、各励磁コイル11b-1、11b-2の凹んだ各曲面を沿わせて1対の励磁コイル11b-1、11b-2を配置できる。一般に、配管は、比較的長尺であり、検査箇所が配管の中央付近にあると、第1態様の磁界印加部1aでは、配管の端部から検査箇所まで前記1対の励磁コイル11a-1、11a-2を移動しなければならず、煩わしく、手間がかかる。また、実際に配設されている配管を検査する場合、配管の固定具や支持具によって前記1対の励磁コイル11a-1、11a-2が検査箇所まで移動できないことも生じ得る。このため、第1態様の磁界印加部1aでは、各励磁コイル11a-1、11a-2を開環可能するために、電気的なコネクタが導体部材112a-1、112a-2に設けられても良いが、前記電気的なコネクタで不具合が生じることも考えられる。しかしながら、第2態様の磁界印加部1bは、上述したように、断熱管SPa等の配管に配置できるため、前記事情を回避できる。
 上述の第2態様の磁界印加部1bは、1対の励磁コイル1を1組備えて構成されたが、これに限定されず、1対の励磁コイル11bを複数組備えて構成されても良い。このような磁気探傷装置Mは、1対の励磁コイル11bを複数組備えるので、複数組の1対の励磁コイル11bを、被検査物SPの長さ方向に沿って配置でき、これによって長さ方向で被検査物SPのより広い範囲を探傷できる。また、上記磁気探傷装置Mは、複数組の1対の励磁コイル11bを、被検査物SPの周方向に沿って配置でき、これによって周方向で被検査物SPのより広い範囲を探傷できる。
 そして、磁気探傷装置Mが複数組の1対の励磁コイル11bを備えて構成される場合に、前記複数組の1対の励磁コイル11bは、円筒状となるように配置されることが好ましい。このような磁気探傷装置Mは、円筒状となるように周方向に順次に隣接させて配置された複数組の1対の励磁コイル11bを備えるので、上記磁気探傷装置Mは、前記複数組の1対の励磁コイル11bで略ヘルムホルツコイルを構成でき、ヘルムホルツコイルのように前記1対の励磁コイル11b間であって周方向全体に亘ってより均一な磁場を形成できる。
 第3態様の磁界印加部11cは、円筒状となるように配置された2組の1対の励磁コイル11bと、図略の電源部12とを備えたものである。第3態様の磁界印加部1cにおける前記図略の電源部12は、第1態様の磁界印加部1aにおける電源部12と同様であるので、その説明を省略する。より具体的には、第3態様の磁界印加部11cは、図7に示すように、1対の第1および第2励磁コイル11b-1、11b-2および1対の第3および第4励磁コイル11b-3、11b-4からなる2組の1対の励磁コイル11bを備えて構成される。この図7に示す例では、1対の第1および第2励磁コイル11b-1、11b-2は、直列に接続され、図略の電源部12に接続される。同様に、1対の第3および第4励磁コイル11b-3、11b-4は、直列に接続され、図略の電源部12に接続される。そして、周方向で互いに隣接する励磁コイル11b同士における各導体部材112bの隣接部分は、好ましくは、径方向に沿って互いに平行となるように配置される。図7に示す例では、周方向で互いに隣接する第1励磁コイル11b-1と第3励磁コイル11b-3における各導体部材112b-1、112b-3の隣接部分P1、P2は、径方向に沿って互いに平行となるように配置されている。同様に、周方向で互いに隣接する第2励磁コイル11b-2と第4励磁コイル11b-4における各導体部材112b-2、112b-4の図略の隣接部分P3、P4は、径方向に沿って互いに平行となるように配置されている。より具体的には、中心角180度の半円筒形状である第1および第3磁気遮蔽部111b-1、111b-3における軸方向に平行な各端面は、径方向に沿うように平坦に形成される。このような形状の第1および第3磁気遮蔽部111b-1、111b-3に第1および第3導体部材112b-1、112b-3を巻回すことによって、前記隣接部分P1、P2では、第1および第3導体部材112b-1、112b-3は、互いに略平行となる。同様に、中心角180度の半円筒形状である第2および第4磁気遮蔽材111b-2、111b-4における軸方向に平行な各端面は、径方向に沿うように平坦に形成される。このような形状の第2および第4磁気遮蔽部111b-2、111b-4に第2および第4導体部材112b-2、112b-4を巻回すことによって、前記隣接部分P3、P4では、第2および第4導体部材112b-2、112b-4は、互いに略平行となる。このような磁気探傷装置Mでは、周方向で互いに隣接する励磁コイル11b-1、11b-3;11b-2、11b-4同士における各導体部材112b-1、112b-3;112b-2、112b-4に互いに逆方向に流れる電流を通電することによって、これら各導体部材112b-1、112b-3;112b-2、112b-4の隣接部分P1、P2;P3、P4が径方向に沿って互いに平行となるように配置されているので、その電流によって誘起される前記隣接部分P1、P2;P3、P4の磁場は、互いに逆方向となり、打ち消し合う(キャンセルされる)。このため、上記磁気探傷装置Mは、前記2組の1対の励磁コイル11b-1、11b-2;11b-3、11b-4を用いてより均一な磁場を形成できる。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる磁気探傷装置は、被検査物に磁界を印加する磁界印加部と、前記被検査物の外面上に、前記被検査物に対し離接する第1方向に沿って、前記外面から互いに異なる距離の複数の第1検出位置に配置され、磁気を検出する複数の第1磁気検出部を備える第1群検出部と、前記第1群検出部における前記複数の第1磁気検出部の各検出結果に基づいて、前記第1方向に沿った、前記被検査物における所定の欠陥の位置を求める欠陥位置処理部とを備える。
 このような磁気探傷装置は、被検査物の外面から互いに異なる複数の第1検出位置で前記第1群検出部における複数の第1磁気検出部によって磁気を検出できるから、前記欠陥位置処理部によって、この各検出結果に基づいて、前記被検査物に対し離接する第1方向に沿った、前記被検査物における所定の欠陥の位置を求めることができる。
 他の一態様では、上述の磁気探傷装置において、前記欠陥位置処理部は、下記条件1および条件2を用いることによって、前記第1群検出部における前記複数の第1磁気検出部の各検出結果に基づいて、前記被検査物の前記外面以内であって前記第1方向に沿った前記外面から互いに異なる距離の複数の被観測位置における各磁界強度を求め、この求めた前記複数の被観測位置における各磁界強度に基づいて、前記被検査物における所定の欠陥の位置を求める。
条件1;前記第1磁気検出部の検出結果は、前記複数の被観測位置での各磁界が前記複数の被観測位置から当該第1磁気検出部の第1検出位置まで伝播してきた前記各磁界の各磁界強度の和であること
条件2;前記磁界強度は、前記被観測位置および前記第1検出位置間の距離と特定の関係があること
 このような磁気探傷装置は、複数の第1磁気検出部の各検出結果に、前記条件1および条件2を用いることによって、複数の被観測位置での磁界強度(磁場強度)に関する複数の関係式を生成でき、これを解析することによって、前記複数の被観測位置における各磁界強度を求めることができる。したがって、上記磁気探傷装置は、これら求めた複数の被観測位置における各磁界強度と、欠陥の無い正常状態の磁界強度と比較することで、欠陥の有無を判定でき、その結果、欠陥の位置を求めることができる。
 他の一態様では、上述の磁気探傷装置において、前記被検査物は、互いに径の異なる複数の筒状体を径方向で複数多重した多重構造管であり、前記欠陥位置処理部は、前記第1群検出部における前記複数の第1磁気検出部のうちの2個の第1磁気検出部を選択し、前記選択した2個の第1磁気検出部のうちの前記第1方向に沿った前記外面からの距離が遠い第1磁気検出部の検出結果から、前記選択した2個の第1磁気検出部のうちの前記第1方向に沿った前記外面からの距離が近い第1磁気検出部の検出結果を前記遠い第1磁気検出部の前記外面からの距離の二乗で除した除算結果を減算し、前記減算した減算結果と所定の判定閾値とを比較することによって、前記複数の筒状体のうちの最外側に位置する筒状体を除く他の筒状体に欠陥があるか否かを、前記被検査物における所定の欠陥の位置として求める。
 このような磁気探傷装置は、磁界強度が距離の二乗に反比例して減衰することを利用することによって、最外側の筒状体よりも内側の筒状体での欠陥の有無を、前記被検査物における所定の欠陥の位置として簡易に求めることができる。特に、二重構造管の場合、相対的に外側に位置する外管での欠陥か、相対的に内側に位置する内管での欠陥かを判別すれば足りるので、上記磁気探傷装置は、被検査物が二重構造管である場合に、好適である。
 他の一態様では、これら上述の磁気探傷装置において、前記被検査物の外面上に、前記第1方向に沿って、前記外面から互いに異なる距離の複数の第2検出位置に配置され、磁気を検出する複数の第2磁気検出部を備える第2群検出部をさらに備え、前記第2群検出部は、前記第1群検出部に対し、前記第1方向に直交する第2方向を軸とする軸回りの周方向に沿って所定の角度間隔を空けて配置され、前記欠陥位置処理部は、前記第1群検出部における前記複数の第1磁気検出部および前記第2群検出部における前記複数の第2磁気検出部の各検出結果に基づいて、前記第1方向に沿った前記被検査物における所定の欠陥の位置であって前記周方向に沿った前記被検査物における所定の欠陥の前記位置を求める。
 このような磁気探傷装置は、第1群検出部に対し、周方向に沿って配置された第2群検出部を備えるので、周方向に亘って欠陥の位置を求めることができる。
 他の一態様では、これら上述の磁気探傷装置において、前記被検査物の外面上に、前記第1方向に沿って、前記外面から互いに異なる距離の複数の第3検出位置に配置され、磁気を検出する複数の第3磁気検出部を備える第3群検出部をさらに備え、前記第3群検出部は、前記第1群検出部に対し、前記第1方向に直交する第2方向に沿って所定の間隔を空けて配置され、前記欠陥位置処理部は、前記第1群検出部における前記複数の第1磁気検出部および前記第3群検出部における前記複数の第3磁気検出部の各検出結果に基づいて、前記第1方向に沿った前記被検査物における所定の欠陥の位置であって前記第2方向に沿った前記被検査物における所定の欠陥の前記位置を求める。
 このような磁気探傷装置は、第1群検出部に対し、第2方向に沿って配置された第3群検出部を備えるので、第2方向に亘って欠陥の位置を求めることができる。
 他の一態様にかかる磁気探傷方法は、被検査物に磁界を印加する磁界印加工程と、前記被検査物の外面上で前記被検査物に対し離接する第1方向に沿って互いに間隔を空けた複数の検出位置それぞれで磁気を検出する磁気検出工程と、前記磁気検出工程で検出された各検出結果に基づいて、前記第1方向に沿った、前記被検査物における所定の欠陥の位置を求める欠陥位置演算工程とを備える。
 このような磁気探傷方法は、被検査物の外面から互いに異なる複数の検出位置で磁気検出工程によって磁気を検出できるから、前記欠陥位置処理工程によって、この各検出結果に基づいて、前記被検査物に対し離接する第1方向に沿った、前記被検査物における所定の欠陥の位置を求めることができる。
 この出願は、2014年11月21日に出願された日本国特許出願特願2014-236335を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、磁気探傷装置および磁気探傷方法を提供できる。
 

Claims (6)

  1.  被検査物に磁界を印加する磁界印加部と、
     前記被検査物の外面上に、前記被検査物に対し離接する第1方向に沿って、前記外面から互いに異なる距離の複数の第1検出位置に配置され、磁気を検出する複数の第1磁気検出部を備える第1群検出部と、
     前記第1群検出部における前記複数の第1磁気検出部の各検出結果に基づいて、前記第1方向に沿った、前記被検査物における所定の欠陥の位置を求める欠陥位置処理部とを備えること
     を特徴とする磁気探傷装置。
  2.  前記欠陥位置処理部は、下記条件1および条件2を用いることによって、前記第1群検出部における前記複数の第1磁気検出部の各検出結果に基づいて、前記被検査物の前記外面以内であって前記第1方向に沿った前記外面から互いに異なる距離の複数の被観測位置における各磁界強度を求め、前記求めた前記複数の被観測位置における各磁界強度に基づいて、前記被検査物における所定の欠陥の位置を求めること
     を特徴とする請求項1に記載の磁気探傷装置。
    条件1;前記第1磁気検出部の検出結果は、前記複数の被観測位置での各磁界が前記複数の被観測位置から当該第1磁気検出部の第1検出位置まで伝播してきた前記各磁界の各磁界強度の和であること
    条件2;前記磁界強度は、前記被観測位置および前記第1検出位置間の距離と特定の関係があること
  3.  前記被検査物は、互いに径の異なる複数の筒状体を径方向で複数多重した多重構造管であり、
     前記欠陥位置処理部は、前記第1群検出部における前記複数の第1磁気検出部のうちの2個の第1磁気検出部を選択し、前記選択した2個の第1磁気検出部のうちの前記第1方向に沿った前記外面からの距離が遠い第1磁気検出部の検出結果から、前記選択した2個の第1磁気検出部のうちの前記第1方向に沿った前記外面からの距離が近い第1磁気検出部の検出結果を前記遠い第1磁気検出部の前記外面からの距離の二乗で除した除算結果を減算し、前記減算した減算結果と所定の判定閾値とを比較することによって、前記複数の筒状体のうちの最外側に位置する筒状体を除く他の筒状体に欠陥があるか否かを、前記被検査物における所定の欠陥の位置として求めること
     を特徴とする請求項1に記載の磁気探傷装置。
  4.  前記被検査物の外面上に、前記第1方向に沿って、前記外面から互いに異なる距離の複数の第2検出位置に配置され、磁気を検出する複数の第2磁気検出部を備える第2群検出部をさらに備え、
     前記第2群検出部は、前記第1群検出部に対し、前記第1方向に直交する第2方向を軸とする軸回りの周方向に沿って所定の角度間隔を空けて配置され、
     前記欠陥位置処理部は、前記第1群検出部における前記複数の第1磁気検出部および前記第2群検出部における前記複数の第2磁気検出部の各検出結果に基づいて、前記第1方向に沿った前記被検査物における所定の欠陥の位置であって前記周方向に沿った前記被検査物における所定の欠陥の前記位置を求めること
     を特徴とする請求項1ないし請求項3のいずれか1項に記載の磁気探傷装置。
  5.  前記被検査物の外面上に、前記第1方向に沿って、前記外面から互いに異なる距離の複数の第3検出位置に配置され、磁気を検出する複数の第3磁気検出部を備える第3群検出部をさらに備え、
     前記第3群検出部は、前記第1群検出部に対し、前記第1方向に直交する第2方向に沿って所定の間隔を空けて配置され、
     前記欠陥位置処理部は、前記第1群検出部における前記複数の第1磁気検出部および前記第3群検出部における前記複数の第3磁気検出部の各検出結果に基づいて、前記第1方向に沿った前記被検査物における所定の欠陥の位置であって前記第2方向に沿った前記被検査物における所定の欠陥の前記位置を求めること
     を特徴とする請求項1ないし請求項4のいずれか1項に記載の磁気探傷装置。
  6.  被検査物に磁界を印加する磁界印加工程と、
     前記被検査物の外面上で前記被検査物に対し離接する第1方向に沿って互いに間隔を空けた複数の検出位置それぞれで磁気を検出する磁気検出工程と、
     前記磁気検出工程で検出された各検出結果に基づいて、前記第1方向に沿った、前記被検査物における所定の欠陥の位置を求める欠陥位置演算工程とを備えること
     を特徴とする磁気探傷方法。
PCT/JP2015/081486 2014-11-21 2015-11-09 磁気探傷装置および磁気探傷方法 WO2016080229A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016560151A JPWO2016080229A1 (ja) 2014-11-21 2015-11-09 磁気探傷装置および磁気探傷方法
US15/519,680 US20170241953A1 (en) 2014-11-21 2015-11-09 Magnetic flaw detection device and magnetic flaw detection method
EP15861676.3A EP3223010A4 (en) 2014-11-21 2015-11-09 Magnetic flaw detection device and magnetic flaw detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-236335 2014-11-21
JP2014236335 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016080229A1 true WO2016080229A1 (ja) 2016-05-26

Family

ID=56013774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081486 WO2016080229A1 (ja) 2014-11-21 2015-11-09 磁気探傷装置および磁気探傷方法

Country Status (4)

Country Link
US (1) US20170241953A1 (ja)
EP (1) EP3223010A4 (ja)
JP (1) JPWO2016080229A1 (ja)
WO (1) WO2016080229A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146338A (ja) * 2017-03-03 2018-09-20 新日鐵住金株式会社 磁気特性測定器、磁気特性測定システム、および磁気特性測定方法
CN117990777A (zh) * 2024-04-03 2024-05-07 山东瑞祥检测有限公司 一种便携式磁粉无损检测装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO345693B1 (en) 2013-10-03 2021-06-14 Schlumberger Technology Bv Pipe damage assessment system and method
NO345517B1 (en) 2014-06-04 2021-03-22 Schlumberger Technology Bv Pipe defect assessment system and method
WO2017100387A1 (en) * 2015-12-09 2017-06-15 Schlumberger Technology Corporation Fatigue life assessment
WO2017161064A1 (en) 2016-03-18 2017-09-21 Schlumberger Technology Corporation Tracking and estimating tubing fatigue in cycles to failure considering non-destructive evaluation of tubing defects
KR102140170B1 (ko) * 2018-11-27 2020-07-31 조선대학교산학협력단 교차 경사형 유도전류를 이용한 비파괴 검사장치용 프로브 및 비파괴 검사장치용 유도코일 제조방법
US11493480B2 (en) * 2020-10-12 2022-11-08 Russell Nde Systems Inc. Method and apparatus for the detection of corrosion under insulation (CUI), corrosion under fireproofing (CUF), and far side corrosion on carbon steel piping and plates
CA3135238A1 (en) * 2020-12-08 2022-06-08 Russell Nde Systems Inc. Apparatus and method of detecting defects in boiler tubes
FR3119891B1 (fr) * 2021-02-12 2023-11-17 Commissariat Energie Atomique Dispositif de caractérisation d’un bain de corium formé ou en cours de formation dans un réacteur nucléaire
FR3119890A1 (fr) * 2021-02-12 2022-08-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de caractérisation d’un bain de corium formé ou en cours de formation dans un réacteur nucléaire
CN113176330A (zh) * 2021-04-30 2021-07-27 重庆能源职业学院 钢丝绳漏磁检测系统及该系统在电梯上的应用
AU2022289736A1 (en) 2021-06-11 2024-02-01 Caleb JORDAN System and method of flux bias for superconducting quantum circuits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506931A (ja) * 2004-07-16 2008-03-06 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 管を非破壊検査するための方法及び装置
JP2008151744A (ja) * 2006-12-20 2008-07-03 Toshiba Corp 鋼板欠陥検査装置
JP2011013087A (ja) * 2009-07-01 2011-01-20 Okayama Univ 漏洩磁束探傷方法及び装置
US20130124109A1 (en) * 2011-10-25 2013-05-16 Jentek Sensors, Inc. Method and Apparatus for Inspection of Corrosion and Other Defects Through Insulation
JP2014044087A (ja) * 2012-08-24 2014-03-13 Okayama Univ パルス磁気を用いた非破壊検査装置及び非破壊検査方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609531A (en) * 1967-10-25 1971-09-28 Forster F M O Combined leakage field and eddy current flaw detector
JP2526578B2 (ja) * 1986-06-26 1996-08-21 日本鋼管株式会社 塗膜損傷検知方法
DE60302653T2 (de) * 2002-02-26 2006-06-14 Shell Int Research Messverfahren zum bestimmen eines oberflächenprofils
JP4234761B2 (ja) * 2006-11-21 2009-03-04 慶一 野々垣 渦電流探傷方法とその装置
JP4526046B1 (ja) * 2010-01-21 2010-08-18 株式会社Ihi検査計測 ガイド波を用いた検査方法
EP2522994A1 (en) * 2011-05-13 2012-11-14 General Electric Company Magnetic inspection systems for inspection of target objects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506931A (ja) * 2004-07-16 2008-03-06 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 管を非破壊検査するための方法及び装置
JP2008151744A (ja) * 2006-12-20 2008-07-03 Toshiba Corp 鋼板欠陥検査装置
JP2011013087A (ja) * 2009-07-01 2011-01-20 Okayama Univ 漏洩磁束探傷方法及び装置
US20130124109A1 (en) * 2011-10-25 2013-05-16 Jentek Sensors, Inc. Method and Apparatus for Inspection of Corrosion and Other Defects Through Insulation
JP2014044087A (ja) * 2012-08-24 2014-03-13 Okayama Univ パルス磁気を用いた非破壊検査装置及び非破壊検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3223010A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146338A (ja) * 2017-03-03 2018-09-20 新日鐵住金株式会社 磁気特性測定器、磁気特性測定システム、および磁気特性測定方法
CN117990777A (zh) * 2024-04-03 2024-05-07 山东瑞祥检测有限公司 一种便携式磁粉无损检测装置

Also Published As

Publication number Publication date
EP3223010A4 (en) 2018-05-09
US20170241953A1 (en) 2017-08-24
JPWO2016080229A1 (ja) 2017-08-31
EP3223010A1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
WO2016080229A1 (ja) 磁気探傷装置および磁気探傷方法
JP5522699B2 (ja) パルス磁気を用いた非破壊検査装置及び非破壊検査方法
JP4756409B1 (ja) 交番磁場を利用した非破壊検査装置および非破壊検査方法
Mao et al. Analytical solutions to eddy current field excited by a probe coil near a conductive pipe
WO2013024858A1 (ja) 磁気探傷方法及び磁気探傷装置
Chen et al. Time-domain analytical solutions to pulsed eddy current field excited by a probe coil outside a conducting ferromagnetic pipe
MX2015009010A (es) Sistema de medicion magnetica para un detector de defectos que tiene magnetizacion longitudinal.
WO2015194635A1 (ja) 非破壊検査装置
Vasić et al. Analytical modelling in low-frequency electromagnetic measurements of steel casing properties
JP6334267B2 (ja) 渦電流探傷装置及び方法
JP2015230249A (ja) 電流センサ検査システム、電流センサ検査方法
JP2016090393A (ja) 磁気探傷装置および磁気探傷装置用励磁コイル
JP6288640B2 (ja) 渦電流探傷プローブ、渦電流探傷装置および渦電流探傷方法
JP2017009549A (ja) 非破壊検査装置
JP6378554B2 (ja) 非破壊検査装置および非破壊検査方法
JP2016114533A (ja) 磁気センサー付配管及び非破壊検査装置
JP2016173340A (ja) 配管検査装置
JP2004028897A (ja) 渦流探傷装置
WO2020032040A1 (ja) 渦電流探傷装置および渦電流探傷方法
JP2013185951A (ja) 電磁気探傷用プローブ
JP2015017938A (ja) 鋼材の破断部検知方法及び鋼材の破断部検知システム
US20220113283A1 (en) Method and apparatus for the detection of corrosion under insulation (cui), corrosion under fireproofing (cuf), and far side corrosion on carbon steel piping and plates
JP2014066688A (ja) 渦流探傷プローブ、渦流探傷装置
JP2016133459A (ja) 渦流探傷プローブ、渦流探傷装置
JP2010236928A (ja) 渦電流探傷方法並びに渦電流探傷センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560151

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15519680

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015861676

Country of ref document: EP