WO2020031503A1 - 炭化珪素単結晶の製造方法 - Google Patents

炭化珪素単結晶の製造方法 Download PDF

Info

Publication number
WO2020031503A1
WO2020031503A1 PCT/JP2019/023627 JP2019023627W WO2020031503A1 WO 2020031503 A1 WO2020031503 A1 WO 2020031503A1 JP 2019023627 W JP2019023627 W JP 2019023627W WO 2020031503 A1 WO2020031503 A1 WO 2020031503A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
silicon carbide
single crystal
carbide single
seed crystal
Prior art date
Application number
PCT/JP2019/023627
Other languages
English (en)
French (fr)
Inventor
俊策 上田
宏樹 高岡
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020031503A1 publication Critical patent/WO2020031503A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present disclosure relates to a method for producing a silicon carbide single crystal.
  • This application claims the priority based on Japanese Patent Application No. 2018-150265 filed on August 9, 2018. The entire contents described in the Japanese patent application are incorporated herein by reference.
  • JP-A-9-110584 Patent Document 1
  • JP-A-2002-201097 Patent Document 2
  • a silicon carbide single crystal is grown on a seed crystal while the seed crystal is fixed with a hook-shaped member. A method is disclosed for causing this to occur.
  • the method for producing a silicon carbide single crystal according to the present disclosure includes the following steps.
  • a seed crystal having a first main surface and a second main surface opposite to the first main surface, a pedestal having a third main surface, and a fixing member are prepared.
  • the second main surface has an outer peripheral portion including all outermost peripheral portions of the second main surface.
  • the seed crystal is fixed to the pedestal by applying the fixing member to the outer peripheral portion in a state where the first main surface is arranged so as to face the third main surface.
  • a silicon carbide single crystal is grown on the second main surface.
  • the center of the second main surface is used as a starting point, and a virtual line along the off direction of the seed crystal is formed.
  • the fixing member is in contact with the outer peripheral portion other than the region within ⁇ 10 °.
  • FIG. 1 is a schematic cross-sectional view showing a first step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 2 is a schematic plan view illustrating a first step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 3 is a flowchart schematically showing a method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a second step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 5 is a schematic sectional view illustrating a third step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 6 is a schematic sectional view illustrating a fourth step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 7 is a schematic plan view showing a fourth step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 8 is a schematic cross-sectional view showing a fifth step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a state where a silicon carbide single crystal is growing on the second main surface.
  • FIG. 10 is a schematic sectional view illustrating a sixth step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 10 is a schematic sectional view illustrating a sixth step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 11 is a schematic plan view showing a first modification of the fourth step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • FIG. 12 is a schematic plan view showing a second modification of the fourth step of the method for manufacturing a silicon carbide single crystal according to the present embodiment.
  • An object of the present disclosure is to provide a method for manufacturing a silicon carbide single crystal that can suppress generation of a heterogeneous polytype. [Effects of the present disclosure] According to the present disclosure, it is possible to provide a method for producing a silicon carbide single crystal that can suppress generation of different types of polytypes.
  • the method for manufacturing silicon carbide single crystal 74 includes the following steps. Seed crystal 10 having first main surface 11 and second main surface 12 on the opposite side of first main surface 11, pedestal 30 having third main surface 33, and fixing member 50 are prepared.
  • the second main surface 12 has an outer peripheral portion 62 including the entire outermost peripheral portion 64 of the second main surface 12. Further, seed crystal 10 is fixed to pedestal 30 by applying fixing member 50 to outer peripheral portion 62 in a state where first main surface 11 is arranged to face third main surface 33.
  • Silicon carbide single crystal 74 is grown on second main surface 12.
  • the center of second main surface 12 is set as a starting point and along the off direction of seed crystal 10.
  • the fixing member 50 is in contact with the outer peripheral portion 62 outside the region within ⁇ 10 ° with respect to the virtual line 90.
  • the center is viewed from a direction perpendicular to second main surface 12.
  • the fixing member 50 may be in contact with the outer peripheral portion 62 other than the region within ⁇ 15 ° with respect to the imaginary line 90 along the off direction of the seed crystal 10.
  • the fixing member 50 may be in contact with the outer peripheral portion 62 other than a region less than ⁇ 30 ° with respect to the virtual line 90 along the off direction of the seed crystal 10.
  • the off direction may be a ⁇ 11-20> direction.
  • the method of manufacturing silicon carbide single crystal 74 according to any one of (1) to (4) above, may further include a step of forming protective film 40 containing carbon on first main surface 11.
  • fixing member 50 includes a ring-shaped portion 60 and a plurality of ring members connected to ring-shaped portion 60 and in contact with outer peripheral portion 62. May be provided.
  • the diameter of the circle inscribed in the plurality of holding portions 63 is the first diameter 111 and the diameter of the second main surface 12 is the second diameter 112
  • the value obtained by subtracting the first diameter 111 from the second diameter 112 is 0. It is larger than 0.5 mm and smaller than 5 mm.
  • the number of the plurality of holding portions 63 may be three or more.
  • the diameter of second main surface 12 may be 150 mm or more.
  • second main surface 12 is off by 1 ° or more and 8 ° or less with respect to (000-1) plane.
  • the surface may be inclined at an angle.
  • a method for manufacturing a silicon carbide single crystal according to the present embodiment will be described.
  • a step of preparing seed crystal 10 and pedestal 30 (S10: FIG. 3) is performed.
  • a seed crystal 10 is prepared.
  • Seed crystal 10 is made of, for example, hexagonal silicon carbide.
  • the polytype of silicon carbide forming seed crystal 10 is, for example, 4H.
  • Seed crystal 10 has first main surface 11, second main surface 12, and first peripheral end surface 13.
  • the second main surface 12 is on the opposite side of the first main surface 11.
  • the first peripheral end surface 13 is connected to each of the first main surface 11 and the second main surface 12.
  • the first main surface 11 is substantially circular.
  • the diameter of first main surface 11 is, for example, 100 mm or more.
  • the diameter of first main surface 11 may be, for example, 150 mm or more.
  • the first main surface 11 is a surface inclined at an off angle of 1 ° or more and 8 ° or less with respect to the ⁇ 0001 ⁇ plane, for example.
  • the first main surface 11 may be a surface inclined at an off angle of 1 ° or more and 8 ° or less with respect to the (0001) plane.
  • the second main surface 12 is substantially circular.
  • the diameter of second main surface 12 is, for example, 100 mm or more.
  • the diameter of second main surface 12 may be, for example, 150 mm or more.
  • the second main surface 12 is a surface inclined at an off angle of 1 ° or more and 8 ° or less with respect to the ⁇ 0001 ⁇ plane, for example.
  • the second main surface 12 may be a surface inclined at an off angle of 1 ° or more and 8 ° or less with respect to the (000-1) plane.
  • a protective film 40 is formed on the first main surface 11 of the seed crystal 10. Specifically, first, a resist is applied to the first main surface 11 using spin coating. Next, the resist is heated. When the resist is heated under the condition of the atmospheric pressure, the heating temperature of the resist is, for example, about 300 ° C. When the resist is heated in a vacuum or in an argon atmosphere, the heating temperature of the resist is, for example, about 1000 ° C. The resist is carbonized by heating. The protective film 40 is formed by carbonizing the resist. The protective film 40 is made of a material containing carbon (C). The thickness of the protective film 40 is, for example, 1 ⁇ m or more and 5 ⁇ m or less. The resist is, for example, a positive or negative photoresist used for manufacturing a semiconductor device. The resist contains, for example, ethyl lactate and butyl acetate.
  • the protective film 40 has a fifth main surface 41, a sixth main surface 42, and a second peripheral end surface 43.
  • the sixth main surface 42 is in contact with the first main surface 11.
  • the fifth main surface 41 is on the opposite side of the sixth main surface 42.
  • the second peripheral end surface 43 is continuous with each of the fifth main surface 41 and the sixth main surface 42.
  • the thickness of protective film 40 may be smaller than the thickness of seed crystal 10.
  • the pedestal 30 is prepared.
  • the pedestal 30 is, for example, cylindrical.
  • the pedestal 30 has a third main surface 33, a fourth main surface 34, and a third peripheral end surface 35.
  • Third main surface 33 is a surface on which seed crystal 10 is attached.
  • the third main surface 33 is planar.
  • the fourth main surface 34 is on the opposite side of the third main surface 33.
  • the third peripheral end surface 35 is continuous with each of the third main surface 33 and the fourth main surface 34.
  • the pedestal 30 is made of, for example, graphite.
  • the fixing member 50 has a ring-shaped part 60 and a plurality of holding parts 63.
  • the ring-shaped portion 60 is, for example, annular.
  • the inner diameter of the ring-shaped portion 60 is equal to or larger than the outer diameter of the pedestal 30.
  • Each of the plurality of holding portions 63 is connected to the ring-shaped portion 60.
  • first main surface 11 of seed crystal 10 is arranged so as to face third main surface 33 of pedestal 30.
  • seed crystal 10 is attached to pedestal 30 via protective film 40 such that fifth main surface 41 of protective film 40 is in contact with third main surface 33 of pedestal 30.
  • second main surface 12 has a central portion 61 and an outer peripheral portion 62.
  • the outer peripheral portion 62 includes the entire outermost peripheral portion 64 of the second main surface 12.
  • the outer peripheral part 62 surrounds the central part 61.
  • Central portion 61 includes center 7 of second main surface 12.
  • the outer peripheral portion 62 includes an outer edge of the second main surface 12.
  • the outer peripheral portion 62 is continuous with the first peripheral end face 13.
  • the fixing member 50 is applied to the outer peripheral portion 62 of the second main surface 12 in a state where the first main surface 11 is arranged so as to face the third main surface 33.
  • the ring-shaped portion 60 of the fixing member 50 is attached to the pedestal 30 by, for example, a bolt (not shown).
  • Each of the plurality of holding portions 63 is in contact with the outer peripheral portion 62 of the second main surface 12.
  • the seed crystal 10 is pressed against the pedestal 30 by raising each of the plurality of holding portions 63 by the ring-shaped portion 60.
  • the fixing member 50 has a function of a hook, and hooks the outer peripheral portion 62 of the seed crystal 10 to lift it. As described above, seed crystal 10 is fixed to pedestal 30.
  • the ring-shaped portion 60 of the fixing member 50 connects the third peripheral end surface 35 of the pedestal 30, the second peripheral end surface 43 of the protective film 40, and the first peripheral end surface 13 of the seed crystal 10. Surrounding.
  • the outer diameter (third diameter 113) of the ring-shaped portion 60 is larger than the diameter of the pedestal 30 (second diameter 112).
  • the number of the plurality of holding parts 63 is, for example, three or more.
  • the plurality of holding units 63 include, for example, a first holding area 51, a second holding area 52, and a third holding area 53.
  • Each of the plurality of holding portions 63 is arranged at a rotationally symmetric position about the center 7 of the second main surface 12.
  • the length 114 of the holding portion 63 along the circumferential direction is, for example, 3 mm or less.
  • the upper limit of the length 114 of the holding portion 63 along the circumferential direction is not particularly limited, but may be, for example, 2.7 mm or less, or may be 2.4 mm or less.
  • the lower limit of the length 114 of the holding portion 63 along the circumferential direction is not particularly limited, but may be, for example, 0.3 mm or more.
  • the first diameter is changed from the second diameter 112 to the first diameter.
  • the value obtained by subtracting 111 is, for example, greater than 0.5 mm and less than 5 mm.
  • the lower limit of the value obtained by subtracting the first diameter 111 from the second diameter 112 is not particularly limited, but may be, for example, larger than 1 mm or larger than 1.5 mm.
  • the upper limit of the value obtained by subtracting the first diameter 111 from the second diameter 112 is not particularly limited, but may be, for example, less than 4.5 mm or less than 4 mm.
  • the radius of a circle inscribed in the plurality of holding portions 63 when viewed from the direction perpendicular to the second main surface 12 is 2 is the shortest distance from the center of the main surface 12 to the holding portion 63. If the radial lengths of the plurality of holding portions 63 are different from each other, the radius of a circle inscribed in the plurality of holding portions 63 when viewed from the direction perpendicular to the second main surface 12 is the second radius. It can be the smallest value among the shortest distances from the center of the main surface 12 to each of the plurality of holding portions 63.
  • crucible 70 is prepared. As shown in FIG. 8, the crucible 70 has a seed crystal holding unit 71 and a raw material storage unit 72. The pedestal 30 is attached to the seed crystal holding unit 71. The seed crystal 10 is attached to the pedestal 30. Silicon carbide raw material 73 is arranged in raw material storage section 72. Silicon carbide raw material 73 is, for example, polycrystalline silicon carbide. Second main surface 12 of seed crystal 10 is arranged to face silicon carbide raw material 73. Part of the outer peripheral portion 62 of the second main surface 12 is covered by the holding portion 63 of the fixing member 50.
  • the crucible 70 is heated under an inert gas atmosphere.
  • Crucible 70 is heated to a temperature of, for example, 2100 ° C. or more and 2500 ° C. or less.
  • Each of seed crystal 10 and silicon carbide raw material 73 is heated such that the temperature of silicon carbide raw material 73 is higher than the temperature of seed crystal 10.
  • the pressure is, for example, 1.3 kPa or more and 13 kPa or less.
  • silicon carbide raw material 73 is sublimated to generate a sublimation gas.
  • the sublimation gas recrystallizes on the second main surface 12 of the seed crystal 10.
  • silicon carbide single crystal 74 grows on second main surface 12 in a step flow manner.
  • Growth surface 75 of silicon carbide single crystal 74 has terrace 15 and step 14.
  • the second main surface 12 is inclined with respect to the ⁇ 0001 ⁇ plane (in other words, in the case of the off surface)
  • Silicon carbide single crystal 74 grows from the outer edge position (growth start position 8) (see FIG. 7).
  • the growth start position 8 is located at the uppermost stream in the off direction on the second main surface 12.
  • silicon carbide single crystal 74 moves from the most upstream flow in off direction (growth start position 8) to the most downstream in the off direction (growth start position 8 with respect to center 7). Grows toward the opposite position). If the holding portion 63 of the fixing member 50 is present at the growth start position 8, the facet formation may be hindered. Therefore, it is desirable not to provide the holding portion 63 of the fixing member 50 at the growth start position 8.
  • the third direction 103 is the [000-1] direction. is there.
  • the fourth direction 104 is an off direction.
  • the off direction is, for example, ⁇ 11-20>.
  • the sixth direction 106 is a direction in which the off direction is projected on the second main surface 12.
  • the direction in which the off direction is projected on the second main surface 12 is the same as the direction in which the [000-1] direction is projected on the second main surface 12.
  • the fifth direction 105 is a direction perpendicular to the second main surface 12.
  • the first direction 101 is a direction parallel to the second main surface 12.
  • the angle ⁇ between the sixth direction 106 and the fourth direction 104 is equal to the off angle.
  • the angle ⁇ formed by the third direction 103 and the fifth direction 105 is equal to the off angle.
  • the sixth direction 106 is a direction in which the [0001] direction is projected onto the second main surface 12. .
  • the growth start position-oriented virtual line (vector) 90 is a direction in which the off direction is projected onto the second main surface 12 (the second direction). This is a virtual line (vector) starting from the center 7 of the second main surface 12 and pointing in six directions 106). That is, the virtual line 90 starts from the center 7 of the second main surface 12 and extends along the off direction of the seed crystal 10 (the fourth direction 104) when viewed from a direction perpendicular to the second main surface 12. ing.
  • Each of the plurality of holding portions 63 of the fixing member 50 is not arranged in an area within ⁇ 10 ° with respect to the growth start position directing virtual line 90.
  • each of the plurality of holding portions 63 is in contact with the outer peripheral portion 62 other than ⁇ 10 ° with respect to the growth start position directing virtual line 90.
  • the first direction 101 is, for example, a direction in which the ⁇ 11-20> direction is projected on the second main surface 12.
  • the second direction 102 is, for example, a ⁇ 1-100> direction.
  • the growth start position directing imaginary line 90 is out of an area within ⁇ 10 °.
  • the fixing member 50 is in contact with the outer peripheral portion 62.
  • the fixing member 50 may be in contact with the outer peripheral portion 62 other than the region within ⁇ 15 ° with respect to the growth start position directing virtual line 90, or may be in contact with the outer peripheral portion 62 other than the region less than ⁇ 30 °. May be.
  • each of the plurality of holding units 63 is arranged. It has not been. In other words, each of the plurality of holding portions 63 is in contact with the second main surface 12 in the outer peripheral portion 62 other than the region between the first virtual line 91 and the second virtual line 92.
  • the rotation angle ( ⁇ ) is, for example, 10 °.
  • the first holding region 51, the second holding region 52, and the third holding region 53 are arranged at positions of 60 °, 180 °, and 300 °, respectively. From another viewpoint, at the positions of 0 °, 120 °, and 240 °, the outer peripheral portion 62 is exposed from the holding portion.
  • the first virtual line 91 is located between the first holding region 51 and the growth start position-oriented virtual line 90.
  • the second virtual line 92 is located between the third holding area 53 and the growth start position-oriented virtual line 90.
  • the second holding area 52 may be located at the most downstream in the off direction.
  • silicon carbide single crystal 74 grows on second main surface 12 over time. Silicon carbide single crystal 74 may be grown such that its diameter increases as the distance from second main surface 12 increases. From another viewpoint, silicon carbide single crystal 74 may be grown such that the length in the direction parallel to second main surface 12 increases from seed crystal 10 toward silicon carbide raw material 73.
  • the function and effect of the method for manufacturing silicon carbide single crystal 74 according to the present embodiment will be described.
  • the outer peripheral portion 62 of the crystal growth surface (second main surface 12) of the seed crystal 10 is covered with the fixing member 50. Since the fixing member 50 is a singular point, the flow of the sublimation gas is smaller in the portion of the second main surface 12 near the fixing member 50 than in the portion of the second main surface 12 far from the fixing member 50. The growth rate tends to increase because of the deterioration and stagnation. A facet is formed in the portion of the second main surface 12 located at the uppermost stream in the off direction. If fixing member 50 is present in this portion, facet formation is likely to be inhibited, and heterogeneous polytypes are likely to be generated in grown silicon carbide single crystal 74.
  • the off direction when viewed from a direction perpendicular to second main surface 12, the off direction is directed to the direction projected onto second main surface 12 and the center is set to the center.
  • the fixed member 50 is in contact with the outer peripheral portion 62 other than the area within ⁇ 10 ° with respect to the virtual line (the growth start position-oriented virtual line 90) as the starting point. Therefore, the portion of the second main surface 12 located at the uppermost stream in the off direction (growth start position 8) is not covered by the fixing member 50. Therefore, it is possible to suppress the fixing member 50 from inhibiting the formation of the facet. As a result, generation of heterogeneous polytypes in grown silicon carbide single crystal 74 can be suppressed.
  • the method for manufacturing silicon carbide single crystal 74 according to the present embodiment further includes a step of forming protective film 40 containing carbon on first main surface 11. Thereby, it is possible to suppress the partial sublimation of silicon carbide from first main surface 11 of seed crystal 10. As a result, formation of macro defects in seed crystal 10 can be suppressed.
  • the diameter of silicon carbide single crystal 74 at the start of crystal growth is Is smaller than the diameter of the second main surface 12.
  • the diameter reduction amount is small, it is possible to enlarge the diameter of grown silicon carbide single crystal 74 to a value equal to or larger than the diameter of seed crystal 10 in the latter stage of crystal growth. In this case, it is possible to use the portion where the diameter has increased in the later stage of growth as the seed crystal 10 in the next crystal growth.
  • the diameter reduction amount is too large, it becomes difficult to increase the diameter of grown silicon carbide single crystal 74 to at least the diameter of seed crystal 10.
  • the inner diameter of the portion where the hook-shaped fixing member 50 covers the seed crystal 10 should not be too small as compared with the diameter of the second main surface 12 of the seed crystal 10.
  • fixing member 50 has ring-shaped portion 60 and a plurality of holding portions 63 connected to ring-shaped portion 60 and in contact with outer peripheral portion 62.
  • the diameter of the circle inscribed in the plurality of holding portions 63 is the first diameter 111 and the diameter of the second main surface 12 is the second diameter 112
  • the value obtained by subtracting the first diameter 111 from the second diameter 112 is 0. It is larger than 0.5 mm and smaller than 5 mm.
  • the diameter of grown silicon carbide single crystal 74 can be increased to be equal to or greater than the diameter of second main surface 12 of seed crystal 10.
  • silicon carbide single crystal 74 can be manufactured continuously.
  • the method of manufacturing silicon carbide single crystal 74 according to the first modification is different from the method of manufacturing silicon carbide single crystal 74 according to the present embodiment mainly in the configuration in which number of holding portions 63 is six.
  • Other structures are the same as the method of manufacturing silicon carbide single crystal 74 according to the present embodiment.
  • a description will be given focusing on a configuration different from the method of manufacturing silicon carbide single crystal 74 according to the present embodiment.
  • the number of holding portions 63 may be six.
  • the holding unit 63 has a first holding area 51, a second holding area 52, a third holding area 53, a fourth holding area 54, a fifth holding area 55, and a sixth holding area 56.
  • the first holding region 51, the second holding region 52, the third holding region 53, the fourth holding region 54, the fifth holding region 55, and the sixth holding region 56 are each 30 °. , 90 °, 150 °, 210 °, 270 ° and 330 °.
  • the outer peripheral portion 62 is exposed from the holding portion at the positions of 0 °, 60 °, 120 °, 180 °, 240 °, and 300 °.
  • the method of manufacturing silicon carbide single crystal 74 according to the second modification is different from the method of manufacturing silicon carbide single crystal 74 according to the present embodiment mainly in the configuration in which number of holding portions 63 is one, Other structures are the same as the method of manufacturing silicon carbide single crystal 74 according to the present embodiment.
  • a description will be given focusing on a configuration different from the method of manufacturing silicon carbide single crystal 74 according to the present embodiment.
  • the number of holding portions 63 may be one. Assuming that the growth start position 8 is 0 °, the holding portion 63 is continuously provided in a region from 30 ° to 330 °, for example. In other words, the outer peripheral portion 62 is exposed from the holding portion 63 in the region from 0 ° to 30 ° and in the region from 330 ° to 0 °. When viewed from a direction perpendicular to the second main surface 12, the holding portion 63 has an arc shape. The holding portion 63 extends along a circular arc around the center 7 of the second main surface 12. From the viewpoint of holding the seed crystal 10 stably, it is desirable that the center angle of the arc-shaped holding portion 63 is 180 ° or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

第1主面と第1主面の反対側にある第2主面とを有する種結晶と、第3主面を有する台座と、固定部材とが準備される。第2主面は、第2主面の最外周部を全て含む外周部を有している。さらに、第1主面が第3主面に対向するように配置された状態で固定部材を外周部に当てることにより、種結晶が台座に固定される。第2主面において炭化珪素単結晶を成長する。種結晶を台座に固定する工程においては、第2主面に対して垂直な方向から見た場合に、第2主面の中心を始点とし、種結晶のオフ方向に沿った仮想線に対して±10°以内の領域以外の外周部において固定部材が接している。

Description

炭化珪素単結晶の製造方法
 本開示は、炭化珪素単結晶の製造方法に関する。本出願は、2018年8月9日に出願した日本特許出願である特願2018-150265号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 特開平9-110584号公報(特許文献1)および特開2002-201097号公報(特許文献2)には、種結晶をフック状部材で固定した状態で、種結晶上に炭化珪素単結晶を成長させる方法が開示されている。
特開平9-110584号公報 特開2002-201097号公報
 本開示に係る炭化珪素単結晶の製造方法は以下の工程を備えている。第1主面と第1主面の反対側にある第2主面とを有する種結晶と、第3主面を有する台座と、固定部材とが準備される。第2主面は、第2主面の最外周部を全て含む外周部を有している。さらに、第1主面が第3主面に対向するように配置された状態で固定部材を外周部に当てることにより、種結晶が台座に固定される。第2主面において炭化珪素単結晶を成長する。種結晶を台座に固定する工程においては、第2主面に対して垂直な方向から見た場合に、第2主面の中心を始点とし、種結晶のオフ方向に沿った仮想線に対して±10°以内の領域以外の外周部において固定部材が接している。
図1は、本実施形態に係る炭化珪素単結晶の製造方法の第1工程を示す断面模式図である。 図2は、本実施形態に係る炭化珪素単結晶の製造方法の第1工程を示す平面模式図である。 図3は、本実施形態に係る炭化珪素単結晶の製造方法を概略的に示すフロー図である。 図4は、本実施形態に係る炭化珪素単結晶の製造方法の第2工程を示す断面模式図である。 図5は、本実施形態に係る炭化珪素単結晶の製造方法の第3工程を示す断面模式図である。 図6は、本実施形態に係る炭化珪素単結晶の製造方法の第4工程を示す断面模式図である。 図7は、本実施形態に係る炭化珪素単結晶の製造方法の第4工程を示す平面模式図である。 図8は、本実施形態に係る炭化珪素単結晶の製造方法の第5工程を示す断面模式図である。 図9は、第2主面に炭化珪素単結晶が成長している状態を示す断面模式図である。 図10は、本実施形態に係る炭化珪素単結晶の製造方法の第6工程を示す断面模式図である。 図11は、本実施形態に係る炭化珪素単結晶の製造方法の第4工程の第1変形例を示す平面模式図である。 図12は、本実施形態に係る炭化珪素単結晶の製造方法の第4工程の第2変形例を示す平面模式図である。
[本開示が解決しようとする課題]
 本開示の目的は、異種ポリタイプの発生を抑制可能な炭化珪素単結晶の製造方法を提供することである。
[本開示の効果]
 本開示によれば、異種ポリタイプの発生を抑制可能な炭化珪素単結晶の製造方法を提供することができる。
 [本開示の実施形態の概要]
 まず、本開示の実施形態の概要について説明する。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
 (1)本開示に係る炭化珪素単結晶74の製造方法は以下の工程を備えている。第1主面11と第1主面11の反対側にある第2主面12とを有する種結晶10と、第3主面33を有する台座30と、固定部材50とが準備される。第2主面12は、第2主面12の最外周部64を全て含む外周部62を有している。さらに、第1主面11が第3主面33に対向するように配置された状態で固定部材50を外周部62に当てることにより、種結晶10が台座30に固定される。第2主面12において炭化珪素単結晶74を成長する。種結晶10を台座30に固定する工程においては、第2主面12に対して垂直な方向から見た場合に、第2主面12の中心を始点とし、種結晶10のオフ方向に沿った仮想線90に対して±10°以内の領域以外の外周部62において固定部材50が接している。
 (2)上記(1)に係る炭化珪素単結晶74の製造方法の種結晶10を台座30に固定する工程においては、第2主面12に対して垂直な方向から見た場合に、中心を始点とし、種結晶10のオフ方向に沿った仮想線90に対して±15°以内の領域以外の外周部62において固定部材50が接していてもよい。
 (3)上記(2)に係る炭化珪素単結晶74の製造方法の種結晶10を台座30に固定する工程においては、第2主面12に対して垂直な方向から見た場合に、中心を始点とし、種結晶10のオフ方向に沿った仮想線90に対して±30°未満の領域以外の外周部62において固定部材50が接していてもよい。
 (4)上記(1)~(3)のいずれかに係る炭化珪素単結晶74の製造方法において、オフ方向は、<11-20>方向であってもよい。
 (5)上記(1)~(4)のいずれかに係る炭化珪素単結晶74の製造方法において、第1主面11に炭素を含む保護膜40を形成する工程をさらに備えていてもよい。
 (6)上記(1)~(5)のいずれかに係る炭化珪素単結晶74の製造方法において、固定部材50は、リング状部60と、リング状部60と連なりかつ外周部62に接する複数の保持部63とを有していてもよい。複数の保持部63に内接する円の直径を第1直径111とし、第2主面12の直径を第2直径112とした場合、第2直径112から第1直径111を差し引いた値は、0.5mmよりも大きく5mm未満である。
 (7)上記(6)に係る炭化珪素単結晶74の製造方法において、複数の保持部63の数は、3以上であってもよい。
 (8)上記(6)または(7)に係る炭化珪素単結晶74の製造方法において、複数の保持部63の各々の周方向の長さは3mm以下であってもよい。
 (9)上記(1)~(8)のいずれかに係る炭化珪素単結晶74の製造方法において、第2主面12の直径は、150mm以上であってもよい。
 (10)上記(1)~(9)のいずれかに係る炭化珪素単結晶74の製造方法において、第2主面12は、(000-1)面に対して1°以上8°以下のオフ角で傾斜した面であってもよい。
 [本開示の実施形態の詳細]
 以下、実施の形態の詳細について図に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 まず、本実施形態に係る炭化珪素単結晶の製造方法について説明する。
 本実施形態に係る炭化珪素単結晶の製造方法においては、まず種結晶10および台座30を準備する工程(S10:図3)が実施される。図1に示されるように、種結晶10が準備される。種結晶10は、たとえば六方晶炭化珪素により構成されている。種結晶10を構成する炭化珪素のポリタイプは、たとえば4Hである。種結晶10は、第1主面11と、第2主面12と、第1周端面13とを有する。第2主面12は、第1主面11の反対側にある。第1周端面13は、第1主面11および第2主面12の各々に連なっている。
 図2に示されるように、第1主面11は、略円形である。第1主面11の直径は、たとえば100mm以上である。第1主面11の直径は、たとえば150mm以上であってもよい。第1主面11は、たとえば{0001}面に対して1°以上8°以下のオフ角で傾斜した面である。具体的には、第1主面11は、(0001)面に対して1°以上8°以下のオフ角で傾斜した面であってもよい。
 第2主面12は、略円形である。第2主面12の直径は、たとえば100mm以上である。第2主面12の直径は、たとえば150mm以上であってもよい。第2主面12は、たとえば{0001}面に対して1°以上8°以下のオフ角で傾斜した面である。具体的には、第2主面12は、(000-1)面に対して1°以上8°以下のオフ角で傾斜した面であってもよい。
 次に、種結晶10の第1主面11に保護膜40が形成される。具体的には、まずレジストがスピンコートを利用して第1主面11に塗布される。次に、レジストが加熱される。レジストが大気圧の条件で加熱される場合、レジストの加熱温度は、たとえば300℃程度である。レジストが真空中またはアルゴン雰囲気で加熱される場合、レジストの加熱温度は、たとえば1000℃程度である。レジストは、加熱により炭化する。レジストが炭化することで保護膜40が形成される。保護膜40は、炭素(C)を含む材料から構成されている。保護膜40の厚みは、たとえば1μm以上5μm以下である。レジストは、たとえば半導体装置の製造用に用いられるポジ型またはネガ型のフォトレジストである。レジストは、たとえば乳酸エチルおよび酢酸ブチルを含有する。
 図4に示されるように、保護膜40は、第5主面41と、第6主面42と、第2周端面43を有している。第6主面42は、第1主面11に接している。第5主面41は、第6主面42とは反対側にある。第2周端面43は、第5主面41および第6主面42の各々に連なっている。保護膜40の厚みは、種結晶10の厚みよりも小さくてもよい。
 次に、台座30が準備される。台座30は、たとえば円柱状である。図5に示されるように、台座30は、第3主面33と、第4主面34と、第3周端面35とを有している。第3主面33は、種結晶10が取り付けられる面である。第3主面33は、平面状である。第4主面34は、第3主面33の反対側にある。第3周端面35は、第3主面33および第4主面34の各々に連なっている。台座30は、たとえばグラファイトにより構成されている。
 次に、固定部材50が準備される。固定部材50は、リング状部60と、複数の保持部63とを有している。リング状部60は、たとえば円環状である。リング状部60の内径は、台座30の外径以上である。複数の保持部63の各々は、リング状部60に連なっている。
 次に、種結晶10を台座30に固定する工程(S20:図3)が実施される。図6に示されるように、種結晶10の第1主面11が、台座30の第3主面33に対向するように配置される。具体的には、保護膜40の第5主面41が、台座30の第3主面33に接するように種結晶10が保護膜40を介して台座30に取り付けられる。図6および図7に示されるように、第2主面12は、中央部61と、外周部62とを有している。外周部62は、第2主面12の最外周部64を全て含んでいる。外周部62は、中央部61を取り囲んでいる。中央部61は、第2主面12の中心7を含んでいる。外周部62は、第2主面12の外縁を含んでいる。外周部62は、第1周端面13に連なっている。
 図6に示されるように、第1主面11が第3主面33に対向するように配置された状態で固定部材50が第2主面12の外周部62に当てられる。具体的には、固定部材50のリング状部60は、たとえばボルト(図示せず)によって台座30に取り付けられる。複数の保持部63の各々は、第2主面12の外周部62に接している。リング状部60によって複数の保持部63の各々が持ち上げられることにより、種結晶10が台座30に押し付けられる。別の観点から言えば、固定部材50はフックの機能を有し、種結晶10の外周部62を引っかけて持ち上げている。以上のように、種結晶10が台座30に固定される。
 図6に示されるように、固定部材50のリング状部60は、台座30の第3周端面35と、保護膜40の第2周端面43と、種結晶10の第1周端面13とを取り囲んでいる。リング状部60材の外径(第3直径113)は、台座30の直径(第2直径112)よりも大きい。
 図7に示されるように、複数の保持部63の数は、たとえば3以上である。複数の保持部63は、たとえば第1保持領域51と、第2保持領域52と、第3保持領域53とを有している。複数の保持部63の各々は、第2主面12の中心7を中心とした回転対称の位置に配置されている。周方向に沿った保持部63の長さ114は、たとえば3mm以下である。周方向に沿った保持部63の長さ114の上限は、特に限定されないが、たとえば2.7mm以下であってもよいし、2.4mm以下であってもよい。周方向に沿った保持部63の長さ114の下限は、特に限定されないが、たとえば0.3mm以上であってもよい。
 図7に示されるように、複数の保持部63に内接する円の直径を第1直径111とし、第2主面12の直径を第2直径112とした場合、第2直径112から第1直径111を差し引いた値は、たとえば0.5mmよりも大きく5mm未満である。第2直径112から第1直径111を差し引いた値の下限は、特に限定されないが、たとえば1mmより大きくてもよいし、1.5mm以上より大きくてもよい。第2直径112から第1直径111を差し引いた値の上限は、特に限定されないが、たとえば4.5mm未満であってもよいし、4mm未満であってもよい。
 なお、複数の保持部63の各々の径方向の長さが同じ場合には、第2主面12に対して垂直な方向から見て、複数の保持部63に内接する円の半径は、第2主面12の中心から保持部63までの最短距離である。もし複数の保持部63の各々の径方向の長さが異なる場合には、第2主面12に対して垂直な方向から見て、複数の保持部63に内接する円の半径は、第2主面12の中心から複数の保持部63の各々までの最短距離の中で最も小さい値とすることができる。
 次に、種結晶10に炭化珪素単結晶74を成長する工程(S30:図3)が実施される。具体的には、まず坩堝70が準備される。図8に示されるように、坩堝70は、種結晶保持部71と、原料収容部72とを有している。種結晶保持部71には、台座30が取り付けられている。台座30には、種結晶10が取り付けられている。原料収容部72には、炭化珪素原料73が配置されている。炭化珪素原料73は、たとえば多結晶炭化珪素である。種結晶10の第2主面12は、炭化珪素原料73に対向するよう配置されている。第2主面12の外周部62の一部は、固定部材50の保持部63に覆われている。
 次に、不活性ガス雰囲気下において坩堝70が加熱される。坩堝70は、たとえば2100℃以上2500℃以下の温度に加熱される。炭化珪素原料73の温度は、種結晶10の温度よりも高くなるように、種結晶10および炭化珪素原料73の各々が加熱される。圧力は、たとえば1.3kPa以上13kPa以下とされる。これにより、炭化珪素原料73が昇華して昇華ガスが発生する。昇華ガスは、種結晶10の第2主面12上において再結晶化する。
 図9に示されるように、炭化珪素単結晶74は、第2主面12上においてステップフロー成長する。炭化珪素単結晶74の成長面75は、テラス15と、ステップ14とを有する。第2主面12が{0001}面に対して傾斜している場合(言い換えれば、オフ面の場合)、第2主面12の中心7から見てオフ方向に位置する第2主面12の外縁の位置(成長開始位置8)(図7参照)から炭化珪素単結晶74が成長する。成長開始位置8は、第2主面12において、オフ方向の最上流に位置する。第2主面12に対して垂直な方向から見て、炭化珪素単結晶74は、オフ方向の最上流(成長開始位置8)からオフ方向の最下流(中心7に対して成長開始位置8とは反対側の位置)に向かって成長する。成長開始位置8に固定部材50の保持部63があると、ファセットの形成が阻害されるおそれがある。そのため、成長開始位置8には、固定部材50の保持部63を設けないことが望ましい。
 図9に示されるように、第2主面12が(000-1)面に対して10°以下の角度θだけ傾斜した面である場合、第3方向103は、[000-1]方向である。第4方向104は、オフ方向である。オフ方向は、たとえば<11-20>である。この場合、第6方向106は、オフ方向を第2主面12に投影した方向である。オフ方向を第2主面12に投影した方向は、[000-1]方向を第2主面12に投影した方向と同じである。
 第5方向105は、第2主面12に対して垂直な方向である。第1方向101は、第2主面12に対して平行な方向である。第6方向106と、第4方向104とがなす角度θは、オフ角に等しい。同様に、第3方向103と、第5方向105とがなす角度θは、オフ角に等しい。なお、第2主面12が(0001)面に対して10°以下の角度だけ傾斜した面である場合、第6方向106は、[0001]方向を第2主面12に投影した方向である。
 図7に示されるように、第2主面12に対して垂直な方向から見た場合、成長開始位置指向仮想線(ベクトル)90は、オフ方向を第2主面12に投影した方向(第6方向106)を向きかつ第2主面12の中心7を始点とした仮想線(ベクトル)である。つまり、仮想線90は、第2主面12に対して垂直な方向から見た場合に、第2主面12の中心7を始点とし、種結晶10のオフ方向(第4方向104)に沿っている。固定部材50の複数の保持部63の各々は、成長開始位置指向仮想線90に対して±10°以内の領域には配置されていない。別の観点から言えば、複数の保持部63の各々は、成長開始位置指向仮想線90に対して±10°以外の外周部62に接している。第1方向101は、たとえば<11-20>方向を第2主面12に投影した方向である。第2方向102は、たとえば<1-100>方向である。
 つまり、種結晶10を台座30に固定する工程においては、第2主面12に対して垂直な方向から見た場合に、成長開始位置指向仮想線90に対して±10°以内の領域以外の外周部62において固定部材50が接している。成長開始位置指向仮想線90に対して±15°以内の領域以外の外周部62において固定部材50が接していてもよいし、±30°未満の領域以外の外周部62において固定部材50が接していてもよい。
 図7に示されるように、第2主面12に対して垂直な方向から見た場合、成長開始位置指向仮想線90を時計回りに回転角度(φ)だけ回転させた第1仮想線(ベクトル)91と、成長開始位置指向仮想線90を反時計回りに回転角度(φ)だけ回転させた第2仮想線(ベクトル)92との間の領域においては、複数の保持部63の各々は配置されていない。別の観点から言えば、第1仮想線91と、第2仮想線92との間の領域以外の外周部62において、複数の保持部63の各々は第2主面12に接している。回転角度(φ)は、たとえば10°である。
 成長開始位置8を0°とすると、第1保持領域51、第2保持領域52、第3保持領域53、それぞれ60°、180°および300°の位置に配置される。別の観点から言えば、0°、120°および240°の位置においては、外周部62が保持部から露出している。第2主面12に対して垂直な方向から見た場合、第1仮想線91は、第1保持領域51と、成長開始位置指向仮想線90との間に位置している。同様に、第2主面12に対して垂直な方向から見た場合、第2仮想線92は、第3保持領域53と、成長開始位置指向仮想線90との間に位置している。第2保持領域52は、オフ方向の最下流に位置していてもよい。
 図10に示されるように、時間の経過に伴って、第2主面12において炭化珪素単結晶74が成長する。炭化珪素単結晶74は、第2主面12から離れるにつれて直径が大きくなるように成長してもよい。別の観点から言えば、種結晶10から炭化珪素原料73に向かうにつれて、第2主面12に平行な方向における長さが大きくなるように炭化珪素単結晶74は成長してもよい。
 次に、本実施形態に係る炭化珪素単結晶74の製造方法の作用効果について説明する。
 フック状の固定部材50を用いて種結晶10を台座30に固定する場合、種結晶10の結晶成長面(第2主面12)の外周部62が固定部材50に覆われる。固定部材50は、特異点となるため、固定部材50に近い第2主面12の部分は、固定部材50から遠く離れている第2主面12の部分と比較して、昇華ガスの流れが悪化して停滞することから、成長速度が増加しやすい。オフ方向の最上流に位置する第2主面12の部分には、ファセットが形成される。この部分に固定部材50が存在すると、ファセットの形成が阻害されやすくなり、成長した炭化珪素単結晶74において異種ポリタイプが発生しやすい。
 本実施形態に係る炭化珪素単結晶74の製造方法においては、第2主面12に対して垂直な方向から見た場合に、オフ方向を第2主面12に投影した方向を向きかつ中心を始点とした仮想線(成長開始位置指向仮想線90)に対して±10°以内の領域以外の外周部62において固定部材50が接している。そのため、オフ方向の最上流に位置する第2主面12の部分(成長開始位置8)は、固定部材50によって覆われていない。したがって、固定部材50がファセットの形成を阻害することを抑制することができる。結果として、成長した炭化珪素単結晶74において、異種ポリタイプが発生すること抑制することができる。
 また本実施形態に係る炭化珪素単結晶74の製造方法は、第1主面11に炭素を含む保護膜40を形成する工程をさらに有している。これにより、種結晶10の第1主面11から炭化珪素が部分的に昇華することを抑制することができる。結果として、種結晶10にマクロ欠陥が形成されることを抑制することができる。
 フック状の固定部材50を用いて種結晶10の第2主面12を押さえることで種結晶10を台座30に固定する場合、結晶成長開始時における炭化珪素単結晶74の直径が、種結晶10の第2主面12の直径よりも小さくなる。減径量が小さい場合、結晶成長後期では、成長した炭化珪素単結晶74の直径を種結晶10の直径と同等以上まで拡大することが可能である。この場合、成長後期の直径が拡大した部分を、次の結晶成長での種結晶10として使用するが可能である。一方で、減径量が大きすぎる場合には、成長した炭化珪素単結晶74の直径を種結晶10の直径と同等以上まで拡大することが困難となる。この場合、使用した種結晶10と同じ径の種結晶10を作製できないため、連続して炭化珪素単結晶74の製造を行うことができない。したがって、フック状の固定部材50が種結晶10上を覆う部分の内径は、種結晶10の第2主面12の直径に比べて、小さくなり過ぎないようにすることが望ましい。
 本実施形態に係る炭化珪素単結晶74の製造方法において、固定部材50は、リング状部60と、リング状部60と連なりかつ外周部62に接する複数の保持部63とを有している。複数の保持部63に内接する円の直径を第1直径111とし、第2主面12の直径を第2直径112とした場合、第2直径112から第1直径111を差し引いた値は、0.5mmよりも大きく5mm未満である。これにより、固定部材50が種結晶10の第2主面12を覆う部分の内径が第2主面12の直径に比べて、小さくなり過ぎることを抑制することができる。そのため、成長した炭化珪素単結晶74の直径を種結晶10の第2主面12の直径と同等以上まで拡大することが可能である。結果として、炭化珪素単結晶74を連続的に製造することができる。
 (第1変形例)
 次に、第1変形例に係る炭化珪素単結晶74の製造方法について説明する。第1変形例に係る炭化珪素単結晶74の製造方法においては、主に、保持部63の数が6である構成において、本実施形態に係る炭化珪素単結晶74の製造方法と異なっており、その他の構成については、本実施形態に係る炭化珪素単結晶74の製造方法と同様である。以下、本実施形態に係る炭化珪素単結晶74の製造方法と異なる構成を中心に説明する。
 図11に示されるように、第1変形例に係る炭化珪素単結晶74の製造方法においては、保持部63の数は、6であってもよい。保持部63は、第1保持領域51、第2保持領域52、第3保持領域53、第4保持領域54、第5保持領域55および第6保持領域56を有している。成長開始位置8を0°とすると、第1保持領域51、第2保持領域52、第3保持領域53、第4保持領域54、第5保持領域55および第6保持領域56は、それぞれ30°、90°、150°、210°、270°および330°の位置に配置される。別の観点から言えば、0°、60°、120°、180°、240°および300°の位置においては、外周部62が保持部から露出している。
 (第2変形例)
 次に、第2変形例に係る炭化珪素単結晶74の製造方法について説明する。第2変形例に係る炭化珪素単結晶74の製造方法においては、主に、保持部63の数が1である構成において、本実施形態に係る炭化珪素単結晶74の製造方法と異なっており、その他の構成については、本実施形態に係る炭化珪素単結晶74の製造方法と同様である。以下、本実施形態に係る炭化珪素単結晶74の製造方法と異なる構成を中心に説明する。
 図12に示されるように、第2変形例に係る炭化珪素単結晶74の製造方法においては、保持部63の数は、1であってもよい。成長開始位置8を0°とすると、保持部63は、たとえば30°から330°までの領域に連続的に設けられている。別の観点から言えば、0°から30°までの領域と、330°から0°までの領域においては、外周部62が保持部63から露出している。第2主面12に対して垂直な方向から見て、保持部63は円弧状である。保持部63は、第2主面12の中心7を中心とした円の円弧に沿って延在している。種結晶10を安定して保持する観点からは、円弧状の保持部63の中心角は、180°以上であることが望ましい。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 7 中心、8 成長開始位置、10 種結晶、11 第1主面、12 第2主面、13 第1周端面、14 ステップ、15 テラス、30 台座、33 第3主面、34 第4主面、35 第3周端面、40 保護膜、41 第5主面、42 第6主面、43 第2周端面、50 固定部材、51 第1保持領域、52 第2保持領域、53 第3保持領域、54 第4保持領域、55 第5保持領域、56 第6保持領域、60 リング状部、61 中央部、62 外周部、63 保持部、64 最外周部、70 坩堝、71 種結晶保持部、72 原料収容部、73 炭化珪素原料、74 炭化珪素単結晶、75 成長面、90 成長開始位置指向仮想線(ベクトル)、91 第1仮想線(ベクトル)、92 第2仮想線(ベクトル)、101 第1方向、102 第2方向、103 第3方向、104 第4方向、105 第5方向、106 第6方向、111 第1直径、112 第2直径、113 第3直径、114 長さ。

Claims (10)

  1.  第1主面と前記第1主面の反対側にある第2主面とを有する種結晶と、第3主面を有する台座と、固定部材とを準備する工程を備え、
     前記第2主面は、前記第2主面の最外周部を全て含む外周部を有し、さらに、
     前記第1主面が前記第3主面に対向するように配置された状態で前記固定部材を前記外周部に当てることにより、前記種結晶を前記台座に固定する工程と、
     前記第2主面において炭化珪素単結晶を成長する工程とを備え、
     前記種結晶を前記台座に固定する工程においては、前記第2主面に対して垂直な方向から見た場合に、前記第2主面の中心を始点とし、前記種結晶のオフ方向に沿った仮想線に対して±10°以内の領域以外の前記外周部において前記固定部材が接している、炭化珪素単結晶の製造方法。
  2.  前記種結晶を前記台座に固定する工程においては、前記第2主面に対して垂直な方向から見た場合に、前記中心を始点とし、前記種結晶のオフ方向に沿った仮想線に対して±15°以内の領域以外の前記外周部において前記固定部材が接している、請求項1に記載の炭化珪素単結晶の製造方法。
  3.  前記種結晶を前記台座に固定する工程においては、前記第2主面に対して垂直な方向から見た場合に、前記中心を始点とし、前記種結晶のオフ方向に沿った仮想線に対して±30°未満の領域以外の前記外周部において前記固定部材が接している、請求項2に記載の炭化珪素単結晶の製造方法。
  4.  前記オフ方向は、<11-20>方向である、請求項1~請求項3のいずれか1項に記載の炭化珪素単結晶の製造方法。
  5.  前記第1主面に炭素を含む保護膜を形成する工程をさらに備えた、請求項1~請求項4のいずれか1項に記載の炭化珪素単結晶の製造方法。
  6.  前記固定部材は、リング状部と、前記リング状部と連なりかつ前記外周部に接する複数の保持部とを有しており、
     前記複数の保持部に内接する円の直径を第1直径とし、前記第2主面の直径を第2直径とした場合、
     前記第2直径から前記第1直径を差し引いた値は、0.5mmよりも大きく5mm未満である、請求項1~請求項5のいずれか1項に記載の炭化珪素単結晶の製造方法。
  7.  前記複数の保持部の数は、3以上である、請求項6に記載の炭化珪素単結晶の製造方法。
  8.  前記複数の保持部の各々の周方向の長さは、3mm以下である、請求項6または請求項7に記載の炭化珪素単結晶の製造方法。
  9.  前記第2主面の直径は、150mm以上である、請求項1~請求項8のいずれか1項に記載の炭化珪素単結晶の製造方法。
  10.  前記第2主面は、(000-1)面に対して1°以上8°以下のオフ角で傾斜した面である、請求項1~請求項9のいずれか1項に記載の炭化珪素単結晶の製造方法。
PCT/JP2019/023627 2018-08-09 2019-06-14 炭化珪素単結晶の製造方法 WO2020031503A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-150265 2018-08-09
JP2018150265 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020031503A1 true WO2020031503A1 (ja) 2020-02-13

Family

ID=69414727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023627 WO2020031503A1 (ja) 2018-08-09 2019-06-14 炭化珪素単結晶の製造方法

Country Status (1)

Country Link
WO (1) WO2020031503A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504297A (ja) * 1999-07-07 2003-02-04 シーメンス アクチエンゲゼルシヤフト SiC種結晶の外周壁を有する種結晶ホルダ
WO2015182474A1 (ja) * 2014-05-29 2015-12-03 住友電気工業株式会社 炭化珪素インゴットの製造方法、炭化珪素種基板、炭化珪素基板、半導体装置および半導体装置の製造方法
WO2016163157A1 (ja) * 2015-04-09 2016-10-13 住友電気工業株式会社 炭化珪素単結晶の製造方法
JP2017154954A (ja) * 2016-03-04 2017-09-07 住友電気工業株式会社 炭化珪素単結晶の製造方法および炭化珪素単結晶の製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504297A (ja) * 1999-07-07 2003-02-04 シーメンス アクチエンゲゼルシヤフト SiC種結晶の外周壁を有する種結晶ホルダ
WO2015182474A1 (ja) * 2014-05-29 2015-12-03 住友電気工業株式会社 炭化珪素インゴットの製造方法、炭化珪素種基板、炭化珪素基板、半導体装置および半導体装置の製造方法
WO2016163157A1 (ja) * 2015-04-09 2016-10-13 住友電気工業株式会社 炭化珪素単結晶の製造方法
JP2017154954A (ja) * 2016-03-04 2017-09-07 住友電気工業株式会社 炭化珪素単結晶の製造方法および炭化珪素単結晶の製造装置

Similar Documents

Publication Publication Date Title
JP4275308B2 (ja) 炭化珪素単結晶の製造方法およびその製造装置
TWI704253B (zh) 在半導體晶圓的正面上沉積磊晶層的方法及實施該方法的設備
JP6880078B2 (ja) 半導体ウェハを保持するためのサセプタ、半導体ウェハの表面上にエピタキシャル層を堆積する方法、およびエピタキシャル層を有する半導体ウェハ
JP6239490B2 (ja) バルク炭化珪素単結晶
JP5012655B2 (ja) 単結晶成長装置
JP2015146416A (ja) 炭化珪素基板用支持部材、炭化珪素成長装置用部材、および炭化珪素エピタキシャル基板の製造方法
JP6812572B2 (ja) 半導体ウェハの表面上への層の堆積の間に配向ノッチを有する半導体ウェハを保持するためのサセプタおよびサセプタを用いることによって層を堆積する方法
JP2005200250A (ja) 窒化物半導体結晶の製造方法及び窒化物半導体基板の製造方法
WO2019043865A1 (ja) サセプタ、エピタキシャル成長装置、エピタキシャルシリコンウェーハの製造方法、ならびにエピタキシャルシリコンウェーハ
JP2020096181A (ja) サセプタ及び化学気相成長装置
WO2020031503A1 (ja) 炭化珪素単結晶の製造方法
JP4654030B2 (ja) SiCウェハおよびその製造方法
JPH1045499A (ja) 炭化珪素単結晶の製造方法およびそれに用いる種結晶
JP5397503B2 (ja) 単結晶成長装置
JP2020026359A (ja) 炭化珪素単結晶の製造方法
JP2020026361A (ja) 炭化珪素単結晶の製造方法
JP2652759B2 (ja) 気相成長装置用バレル型サセプタのウエハポケット
JP7151664B2 (ja) エピタキシャルウェーハの製造方法
JP2010034185A (ja) 気相成長装置用のサセプタ及びエピタキシャルウェーハの製造方法
TWI751564B (zh) 在晶圓的正面上沉積磊晶層的方法和實施該方法的裝置
JP2020026360A (ja) 炭化珪素単結晶の製造方法
JP2014210672A (ja) 炭化珪素単結晶の製造方法
US20150275397A1 (en) Seed crystal for sic single-crystal growth, sic single crystal, and method of manufacturing the sic single crystal
JP6971144B2 (ja) 台座、SiC単結晶の製造装置および製造方法
US20210202294A1 (en) Susceptor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP