WO2020031502A1 - 手術用光学レンズ - Google Patents

手術用光学レンズ Download PDF

Info

Publication number
WO2020031502A1
WO2020031502A1 PCT/JP2019/023544 JP2019023544W WO2020031502A1 WO 2020031502 A1 WO2020031502 A1 WO 2020031502A1 JP 2019023544 W JP2019023544 W JP 2019023544W WO 2020031502 A1 WO2020031502 A1 WO 2020031502A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
transmittance
optical lens
surgical
polarizing
Prior art date
Application number
PCT/JP2019/023544
Other languages
English (en)
French (fr)
Inventor
真三 田村
憲三 和田
Original Assignee
株式会社タレックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タレックス filed Critical 株式会社タレックス
Priority to EP19845955.4A priority Critical patent/EP3816684A4/en
Priority to AU2019320024A priority patent/AU2019320024A1/en
Priority to US16/973,330 priority patent/US11966034B2/en
Priority to JP2020536357A priority patent/JPWO2020031502A1/ja
Priority to CN201980037382.6A priority patent/CN112236695B/zh
Publication of WO2020031502A1 publication Critical patent/WO2020031502A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0012Surgical microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0092Polarisation microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to a surgical spectacle lens used by a practitioner or the like to observe a living tissue when performing a surgical operation, and a surgical optical lens used for a surgical microscope or the like.
  • Polarized spectacle lenses which are supposed to be used in environments such as outdoors with high illuminance and relatively large amounts of reflected light, cause glare with polarizing filters to reduce eye fatigue due to the glare of reflected light It has a function of cutting or attenuating light of a wavelength.
  • a polarizing lens for spectacles using a polarizing element having a transmittance of 30% or more in a visible light wavelength range of 380 to 780 nm is well known, and by prioritizing the brightness of the spectacle lens while maintaining a necessary polarization function to some extent.
  • eyeglass lenses that can be worn on a daily basis (Tarex Co., Ltd., registered trademark: Moai lens).
  • a microscope for microsurgery which performs surgery while enlarging and observing a surgical site, which is a living tissue, is known as eyeglasses used during surgery.
  • An operating microscope equipped with a polarizing means for stereoscopically observing a surgical site by allowing polarized components having different vibration directions to enter is known (Patent Document 1).
  • a dye (die) having fluorescence, phosphorescence, or luminescence is injected into the tissue of the surgical site, and the light excited by stimulating the die is irradiated.
  • a system using surgical spectacles in which light having a specific wavelength is removed by an optical filter having an ability to remove, inhibit, absorb, reflect, or deflect, so that it is easy to see (Patent Document 2).
  • the spectacle lens for surgery described in Patent Document 2 described above removes stimulating light with a polarizing filter when observing a living tissue with light excited from a luminescent dye, but does not use a luminescent dye. However, it does not disclose a polarization property that can be easily seen when performing a normal operation.
  • Patent Literature 1 are surgical microscopes provided with a polarizing lens for stereoscopically observing an operation part, but allow an observer to observe a stereoscopic image on a monitor screen of the microscope. Therefore, bleeding at a specific site such as a tissue, a blood vessel, or blood of a living body cannot be directly discriminated through glasses.
  • none of the conventional surgical spectacle lenses described above can accurately determine the boundary area between intravascular blood and extravascular hemorrhage under normal illumination in an operating room.
  • an object of the present invention is to solve the above-described problems, and for a surgical optical lens used for observing a living tissue, under normal lighting in an operating room, leaked from a capillary into a living tissue.
  • the purpose is to make it possible to find blood, that is, a fine bleeding spot, and to use a surgical optical lens that can be used, for example, as a surgical eyeglass lens or a surgical microscope lens.
  • the present invention relates to a surgical optical lens used under illumination in an operating room, wherein a polarizing filter is provided integrally with a lens material, and a transmittance in a visible light wavelength range of 380 to 780 nm. It is composed of a polarizing lens having an average value of 40% or more, and the ratio of the minimum transmittance in the wavelength range of 580 to 600 nm to the average value of the transmittance in the visible light wavelength range of 380 to 780 nm is within the lens material or a layer integrated therewith.
  • an optical lens for surgery containing a specific wavelength range absorbing dye so that the content is 18 to 50%.
  • the surgical optical lens according to the present invention having the above-described configuration has a polarizing filter provided integrally with the lens material, and can be used to illuminate a room in a state where the surface of a living tissue is wet with a body fluid existing outside the cells. Since the miscellaneous light including irregularly reflected light from the light can be cut by the polarizing filter, a clean view of the tissue surface of the living body without reflected light can be obtained, and the minute portions of the capillaries and the surrounding tissues can be clearly observed.
  • the spectacle lens material having a degree of polarization of 15 to 40% is preferably used to increase the transmittance in the visible light wavelength range of 380 to 780 nm as much as possible so that the spectacle lens is easy to see and bright. This is preferable because the contrast can be improved.
  • This optical lens has an average transmittance of 40% or more in the visible light wavelength range of 380 to 780 nm (a value of the% value is rounded off to the first decimal place.
  • the numerical value of% is the same hereinafter). Since it is a material, a bright field of view can be obtained even when the polarizing filter is used, and the resolution can be enhanced.
  • a more preferable spectacle lens has an average value of the transmittance in the visible light wavelength region of 380 to 780 nm of 45 to 75%, more preferably 50 to 75%.
  • the optical lens for surgery of the present invention contains a specific wavelength absorbing dye, so that the ratio of the minimum transmittance in the wavelength range of 580 to 600 nm to the average value of the transmittance in the visible light wavelength range of 380 to 780 nm is 18 to 50. %, And yellow light in a wavelength range of 580 to 600 nm is cut to the above-mentioned ratio of the amount of transmitted visible light.
  • this optical lens is a lens that selectively transmits orange to red and green light, and in particular, the contrast between orange and other colors including red and green can be strongly recognized. The border between the blood color of the system and other colors can be easily determined.
  • the surgical optical lens according to the present invention is a medical optical lens that makes it easy to visually recognize blood or bleeding spots leaking from blood vessels in living tissue, and to find minute bleeding spots as easily as possible. , And especially a surgical optical lens applicable to surgical glasses.
  • the above-mentioned predetermined ratio of the minimum transmittance in the above-mentioned wavelength range of 580 to 600 nm is less than the lower limit (18%), the contrast becomes strong, but the image becomes too vivid and the eyes are easily tired. It is not preferable because it becomes thin and the field of view becomes dark, and it becomes rather difficult to distinguish a tissue or a thin blood vessel. Further, when the above-mentioned predetermined ratio of the minimum transmittance exceeds the upper limit (50%) of the above-mentioned predetermined range, the contrast between orange and red and other colors is reduced, and it is easy for the eyes to be tired and difficult. This is not preferable because it is not possible to clearly observe the minute portion of the capillaries and the surrounding tissue to such an extent.
  • the predetermined ratio of the minimum transmittance in the wavelength range of 580 to 600 nm is 18 to 50%, preferably 20 to 50%, and more preferably 30 to 50%. Since the surgical optical lens of the present invention is not a spectacle lens used in a normal life, it is not necessary to satisfy a JIS standard or an international standard of a transmittance standard for a general spectacle lens. .
  • a typical example of the specific wavelength absorbing dye capable of adjusting the ratio of the minimum transmittance in a wavelength range of 580 to 600 nm to about 18 to 50% is a tetraazaporphyrin compound, which has a main absorption peak of 565 to 605 nm. It is preferable because the dye exists in the range.
  • FIG. 4 is a graph showing a spectrum of Example 1 and showing a relationship between wavelength and transmittance.
  • 9 is a chart showing a spectrum of Example 2 and showing a relationship between wavelength and transmittance.
  • 9 is a chart showing a spectrum of Example 3 and showing a relationship between wavelength and transmittance.
  • 9 is a graph showing a spectrum of Example 4 and showing a relationship between wavelength and transmittance.
  • FIG. 9 is a chart showing the spectrum of Reference Example 1-5 and showing the relationship between wavelength and transmittance.
  • the eyeglass lens material of the surgical optical lens according to the embodiment of the present invention has a polarizing filter integrally provided and has an average transmittance of 40% or more in a visible light wavelength range of 380 to 780 nm.
  • the polarizing filter is obtained as a polarizing film according to a well-known manufacturing method. For example, a film obtained by impregnating a film made of polyvinyl alcohol (PVA) with iodine or an iodine compound, further adding a dye as necessary, and uniaxially stretching is used. Is preferred.
  • PVA polyvinyl alcohol
  • the material of the polarizing film is not limited to PVA, and a composite film in which a film made of polyethylene terephthalate (PET) or PVA and a film made of triacetyl cellulose, polycarbonate, or the like are laminated can also be used.
  • a uniaxially stretched polarizing film made of PVA or the like is cut in accordance with the size of a meniscus-type optical lens, and is then formed by a well-known pressure molding (press molding) so as to follow a curve (radius of curvature) of the lens.
  • press molding pressure molding
  • a spherical curved surface is molded, and insert molding is performed using a lens molding mold.
  • the polarizing film it is preferable to select a violet polarizing film dyed blue-violet, purple or red-purple, as compared with a gray or brown polarizing film. Since the violet-based polarizing film shows a spectral chart having a minimum value of the transmittance near 595 nm in a wavelength range of 600 nm or less, the green or yellow light is cut to emit orange or red long wavelength light. It is because it is easy to see.
  • the polarizing film used in the present invention is dyed with a predetermined color tone, for example, if the polarizing film is made only of iodine without adding a dye, a gray color is obtained.
  • the gray color thus obtained is used as a basic color, and a dye is added as necessary to color the polarizing film. For example, when a red or yellow dye is added to a polarizing film containing iodine, a brown color tone is obtained, and when a violet dye is added, a violet color tone is obtained.
  • Dyes used in producing the polarizing film are water-soluble dyes, and when subdivided, include basic dyes, acid dyes, direct dyes, acid mordant dyes, soluble vat dyes, and the like. Dyes can be used. Specific examples of the water-soluble dye include black GGN, violet BBN, blue BGR, brown 5GS, green 3GSN, red G3B, yellow GC, and the like.
  • the characteristic evaluation ratio that makes long-wavelength light of orange or red more visible is larger in the order of violet, gray, and brown. From these facts, it is possible to further enhance the action of adding the specific wavelength-absorbing dye to the lens material described above by employing the violet-based polarizing film, so that it is easier to distinguish the colors of orange and red blood.
  • Optical lens it is possible to further enhance the action of adding the specific wavelength-absorbing dye to the lens material described above by employing the violet-based polarizing film, so that it is easier to distinguish the colors of orange and red blood.
  • the material forming the lens material may be either synthetic resin or inorganic glass, and an adhesive layer or a coating layer may be provided integrally with the lens material as needed.
  • a resin that can be cast (cast) molded for an optical lens such as an eyeglass lens can be widely used.
  • MMA methyl methacrylate resin
  • PC polycarbonate resin
  • a medium refractive index resin for example, Nippon Oil & Fats: Corporex, refractive index 1.56
  • a high refractive index resin containing allyl diglycol carbonate as a component thereof and a compound of isocyanate and polythiol for example, Mitsui Chemicals: Thiourethane
  • a thiourethane resin or a urethane resin having a system resin MR-7 and a refractive index of 1.67) is also a typical example.
  • a specific wavelength absorbing dye is blended in the lens material or a layer integral with the lens material so that the ratio of the minimum transmittance in the wavelength range of 580 to 600 nm to the average value of the transmittance in the visible wavelength range of 380 to 780 nm is 18 to 50%.
  • an organic dye containing a tetraazaporphyrin compound is added to a lens material or an adhesive used for interlayer bonding or a coating material for the lens surface or layer surface, and a 10-hour half-life temperature of 90 hours is used as a polymerization initiator.
  • a peroxyester-based peroxide or a peroxyketal-based peroxide at 110110 ° C. is blended.
  • a typical polymerization method for producing a plastic lens using ethylene glycol bisallyl carbonate or the like as a lens material includes a cast polymerization method.
  • a resin material composition comprising a resin lens material, an organic dye and other necessary additives is arranged via a gasket or a tape in order to produce an eyeglass lens.
  • polymerization and curing are performed under predetermined polymerization conditions, and then the mold is released from the glass mold or metal mold to obtain a cured plastic lens material.
  • the tetraazaporphyrin compound which is a typical example of the specific wavelength absorbing dye used in the present invention, is a well-known compound represented by the following chemical formula 1, and furthermore, a commercially available product represented by the following chemical formula 2, which is commercially available from Yamamoto Kasei Co., Ltd. PD-311S manufactured by Yamada Chemical Industries, Ltd .: TAP-2 and TAP-9.
  • Z 1 to Z 8 each independently represent a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a carboxyl group, a sulfonic acid group, or a linear group having 1 to 20 carbon atoms.
  • a ring other than an aromatic ring may be formed via a linking group, and M is two hydrogen atoms, a divalent metal atom, a divalent monosubstituted metal atom, a tetravalent disubstituted metal atom, or an oxy group. Represents a metal atom.
  • the polymerization initiator used in the present invention is a peroxyester peroxide or a peroxyketal peroxide having a 10-hour half-life temperature of 90 to 110 ° C.
  • peroxyester peroxide examples include t-hexyl peroxybenzoate, t-butyl peroxybenzoate, t-hexyl peroxyisopropyl monocarbonate and t-butyl peroxyacetate.
  • peroxyketal-based peroxide includes 1,1-di (t-butylperoxy) cyclohexane.
  • the optical lens has a main absorption peak of visible light spectral transmittance with a sufficient absorbance (same as the transmittance).
  • the surgical optical lens of the present invention may be subjected to a hard coat treatment.
  • a hard coat treatment For example, by immersing a lens in a solution containing a silicon-based compound or the like, a reinforced film can be formed to improve the surface hardness.
  • the performance can be further improved by performing antifogging treatment, antireflection treatment, chemical resistance treatment, antistatic treatment, mirror treatment, and the like.
  • Example 1 3 parts by mass of a polymerization initiator (trade name: Perbutyl Z, manufactured by NOF CORPORATION) is added to 100 parts by mass of a monomer of ethylene glycol bisallyl carbonate (trade name: CR39), and has an absorbency in a wavelength range of 580 to 600 nm.
  • a resin material for lens molding to which 0.0056 parts by mass of an organic dye (Yamamoto Kasei Co., Ltd .: PD-311S, maximum absorption wavelength: 585 nm) was added was used.
  • the polarizing film used was a uniaxially stretched film in which a water-soluble dye (violet) was impregnated into a polyvinyl alcohol (PVA) film by impregnation or the like.
  • the gasket holding the polarizing film as described above is disposed between a pair of molds having a concave surface and a convex surface corresponding to the shape of the eyeglass lens for surgery and can be arranged facing each other, and liquid-tightly fitted.
  • the above prepared resin material is degassed and injected into a cavity formed by leaving an appropriate interval, and is then heated and cured at 100 ° C., and then the temperature is gradually lowered. After completion over 48 hours, the mold was removed to obtain a surgical optical lens.
  • the spectral transmittance of the obtained optical lens for surgery was measured with a U-2000 spectrophotometer manufactured by Hitachi, Ltd.
  • FIG. 1 shows the relationship between the measured wavelength (nm) and the transmittance (%).
  • Table 2 shows the average values of the spectral transmittance of the lens material of Example 1 at wavelengths of 600, 595, 590, 585, and 580 nm, and the spectral transmittance at wavelengths of 380 to 780 nm.
  • the ratio (percentage of A / B) of the minimum transmittance A in the wavelength range of 580 to 600 nm to the average value B of the transmittance in the visible light wavelength range of 380 to 780 nm showing the contrast characteristic is expressed by the following equation (1). It was calculated by substituting the measured values in Table 2, and the value, 18.80 [%], was also shown in Table 2.
  • Example 2 A surgical optical lens in exactly the same manner as in Example 1, except that a polarizing film having a gray color tone which was uniaxially stretched by impregnating iodine into a polyvinyl alcohol (PVA) film and used as a polarizing film was used.
  • PVA polyvinyl alcohol
  • the spectral transmittance of the obtained surgical optical lens was measured in the same manner as in Example 1.
  • the relationship between the wavelength and the transmittance is shown in FIG. 2 (spectral transmittance curve), and the measured values are also shown in Table 2.
  • (A / B) ⁇ 100 [%] in the formula (1) of this lens was 18.99, and the surgical glasses were excellent in contrast as in Example 1.
  • Example 3 In Example 1, a polyvinyl alcohol (PVA) film was used as a polarizing film, and a water-soluble dye (red) was included by impregnation or the like, and a uniaxially stretched brown polarizing film was used. To produce a surgical optical lens.
  • PVA polyvinyl alcohol
  • the spectral transmittance of the obtained surgical optical lens was measured in the same manner as in Example 1.
  • the relationship between the wavelength and the transmittance is shown in FIG. 3 (spectral transmittance curve), and the measured values are also shown in Table 2.
  • (A / B) ⁇ 100 [%] in the mathematical expression (1) of this lens was 19.11, and the surgical glasses were excellent in contrast as in Example 1.
  • an organic dye manufactured by Yamamoto Kasei Co., Ltd .: PD-311S, maximum absorption wavelength: 585 nm
  • a resin for lens molding was added by adding 0.0040 parts by mass of the same organic dye.
  • a medical professional wears the thus-obtained optical lens for surgery of Example 1-4 on an eyeglass frame, and asks a questionnaire about the ease of distinguishing the presence or absence of bleeding from a small blood vessel during surgery. investigated. As a result, bleeding from minute blood vessels having a diameter of 1 mm or less in human living tissue became extremely easy to recognize, and excellent evaluation as medical glasses for excellent surgery and the like was obtained from a majority of the subjects.
  • Example 1 is a lens molding in which no polarizing film was used and 0.0074 parts by mass of an organic dye having absorption in the wavelength range of 580 to 600 nm (Yamamoto Kasei Co., Ltd .: PD-311S, maximum absorption wavelength 585 nm) was added.
  • An optical lens (Reference Example 1) was manufactured in exactly the same manner except that a resin material for use was used.
  • the spectral transmittance of the obtained optical lens was measured in the same manner as in Example 1, and the values of the Lab color system were measured. The measured values are shown in Tables 3 and 4, and the wavelength and the transmittance were measured. The relationship is shown in FIG. 5 (spectral transmittance curve).
  • (A / B) ⁇ 100 [%] in the equation (1) of this lens is 19.25, which is an optical lens not using a polarizing film. It was used as a reference for the blending amount of the region absorbing dye. In Reference Example 1, the contrast is good, but if the polarizing filter is integrated, the field of view may be slightly too dark.
  • Reference Example 2 An optical lens (Reference Example 2) was manufactured in exactly the same manner as in Example 1 except that no polarizing film was used.
  • the body spectral transmittance was measured in the same manner as in Reference Example 1, and the value of the Lab color system was also measured.
  • the relationship between the wavelength and the transmittance was shown in FIG. 5 (spectral transmittance curve).
  • the measured values are shown in Tables 3 and 4.
  • (A / B) ⁇ 100 [%] in the formula (1) of this lens is 30.99, and the compounding amount of the specific wavelength region absorbing dye for obtaining the contrast property of Example 1 using no polarizing film. It was a reference value considered to be an appropriate amount.
  • Reference Example 3-5 In Reference Example 1, 0.0037 parts by mass of an organic dye having absorption in a wavelength range of 580 to 600 nm (PD331S, manufactured by Yamamoto Kasei Co., Ltd., maximum absorption wavelength: 585 nm) was added to 100 parts by mass of the resin material for lens molding. An optical lens of Reference Example 3-5 was produced in exactly the same manner as in Example 3 except that 0.0019 parts by mass (Reference Example 4) and 0.0007 parts by mass (Reference Example 5) were added.
  • P331S organic dye having absorption in a wavelength range of 580 to 600 nm
  • the spectral transmittance of the obtained optical lens for surgery was measured in the same manner as in Reference Example 1, and the value of the Lab color system was also measured.
  • the relationship between the wavelength and the transmittance was shown in FIG. 5 (spectral transmittance curve). , Measured values and the like are also shown in Tables 3 and 4.
  • the values of (A / B) ⁇ 100 [%] in the formula (1) for the lenses of Reference Examples 3, 4, and 5 are 48.65, 72.58, and 95.73, respectively, and no polarizing film is used.
  • This value was a reference value for the amount of the specific wavelength band absorbing dye to be used for obtaining the desired contrast property in the optical lens. That is, in Reference Example 3, the reference value was considered to be an appropriate amount as the blending amount of the specific wavelength band absorbing dye for obtaining the same contrast as in Example 1.
  • the average value of the spectral transmittance at a wavelength of 380 to 780 nm was 70% or more. It was assumed that the sex filter might not be able to cut sufficiently.
  • Example 5 the lens molding resin material was prepared by reacting a prepolymer obtained by reacting a polyisocyanate and a polyhydroxy compound of a polyurethane material with MOCA which is 4,4′-methylenebis (2-chloroaniline) as a curing agent.
  • MOCA 4,4′-methylenebis (2-chloroaniline)
  • a polarizing filter was integrally provided in the same manner as in Example 1 except that the mixing was performed at a quantitative ratio, and that TAP2 (595 nm was the maximum absorption wavelength) of Yamada Chemical Industry was added to 0.0040 part. An optical lens having a red-enhancing polarization was obtained.
  • the spectral transmittance at the wavelength of 600, 595, 590, 585, and 580 nm and the spectral transmittance of the wavelength of 380 to 780 nm are measured. The average value was examined. As a result, excellent surgical glasses having substantially the same number spectral transmittance as in Example 1 and having the same contrast as in Example 1 were obtained.
  • Example 6 In Example 1, 100 parts of a thiourethane resin (MR20 of Mitsui Chemicals, Inc.) was used instead of ethylene glycol bisallyl carbonate as a material of the lens material, and an organic dye (TAP2 (5957 nm, manufactured by Yamada Chemical Industries, Ltd.) having a maximum absorption wavelength of 100 parts) was used. )) was added in the same manner as above except that 0.0040 part was added to the lens material, and a polarizing filter was integrally provided to obtain a high-refractive, polarizing, surgical optical lens in which red was emphasized. Was.
  • the spectral transmittance at wavelengths of 600, 595, 590, 585 and 580 nm and the average value of the spectral transmittance at wavelengths of 380 to 780 nm were examined. Excellent surgical glasses having similar contrast properties were obtained.
  • Example 7 An adhesive was applied between the facing surfaces of the two glass lens materials, and the polarizing film used in Example 1 was inserted between the adhesive layers and laminated.
  • the adhesive used at this time was prepared by adding 0.0080 parts of an organic dye having absorption in a wavelength range of 580 to 600 nm (Yamamoto Kasei Co., Ltd .: PD331S, maximum absorption wavelength: 585 nm).
  • a surgical optical lens having a polarizing property in which red was emphasized was produced.
  • the spectral transmittance at wavelengths of 600, 595, 590, 585 and 580 nm and the average value of the spectral transmittance at wavelengths of 380 to 780 nm were examined. Similarly, excellent surgical glasses having the required contrast were obtained.
  • Example 1 An optical lens was manufactured in exactly the same manner as in Example 1 except that a polarizing film having a degree of polarization of 99% or more was used. The obtained optical lens has an average transmittance as low as about 35%. When this optical lens is used as a surgical optical lens, the transmittance in the visible light region is low, and it is difficult to distinguish the shadow in the surgical region. That was clear.
  • Example 3 an optical lens was prepared by adding only an organic dye (PD331S, manufactured by Yamamoto Kasei Co., Ltd., maximum absorption wavelength: 585 nm) having an absorption in a wavelength range of 580 to 600 nm without using a polarizing film. Such an optical lens cannot remove reflected light or stimulating light under illumination for surgery, and it is difficult to distinguish a fine shaded portion.
  • organic dye P331S, manufactured by Yamamoto Kasei Co., Ltd., maximum absorption wavelength: 585 nm
  • the surgical optical lens of the present invention is a polarizing lens having an average transmittance of 40% or more in the visible light wavelength range, and has a specific wavelength range absorption.
  • the ratio of the minimum transmittance in the wavelength range of 580 to 600 nm to the average value of the transmittance in the visible light wavelength range of 380 to 780 nm is adjusted to 18 to 50%. It had a contrast property that made it easy to identify blood leaked from blood vessels in living tissue.
  • the present invention relates to a surgical optical lens used when performing surgery on humans or animals for the purpose of treatment, diagnosis, inspection, and the like, and for example, surgical glasses used for observing a living tissue such as an organ or an eye.
  • the present invention can be applied as a lens for the medical industry, such as a lens, a lens for a surgical microscope (loupe), and a lens for an endoscope such as a gastroscope.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Filters (AREA)
  • Eyeglasses (AREA)
  • Polarising Elements (AREA)

Abstract

偏光性フィルタが一体に設けられ、可視光線波長域380~780nmの平均透過率が40%以上のレンズ素材であり、前記平均過率に対する波長域580~600nmの最小透過率の割合が18~50%であるように特定波長吸収色素を含有する生体組織観察用レンズとする。波長域580~600nmの黄色系の光が所定割合だけカットされることにより、特に橙色及び赤色と他の色とのコントラストが強く認識され、また橙色及び赤色の血液の色と他の色との境目が判別しやすくなる。

Description

手術用光学レンズ
 この発明は、手術を行なう際に、施術者等が生体組織を観察するために用いる手術用眼鏡レンズや手術用顕微鏡等に用いる手術用光学レンズに関するものである。
 高照度で比較的反射光の多い屋外などの環境で用いられることを想定した偏光眼鏡用レンズは、反射光の眩しさによる目の疲れを少なくするために、偏光フィルターで眩しさの原因となる波長の光をカットしまたは減衰させる機能を有している。
 例えば、可視光線波長域380~780nmの透過率が30%以上の偏光素子を用いた眼鏡用偏光レンズが周知であり、必要な偏光機能をある程度残しながら、眼鏡レンズの明るさを優先することにより、日常的に装着できる眼鏡用レンズ((株)タレックス 登録商標:モアイレンズ)が知られている。
 一方、手術の際に用いられる眼鏡として、生体組織である術部を拡大して観察しながら手術を行なうマイクロサージェリー用の顕微鏡が知られており、また光路を分割して左右の目に互いに異なる振動方向の偏光成分を入射させて術部を立体的に観察するために、偏光手段を備えた手術用顕微鏡が知られている(特許文献1)。
 さらにまた、生体組織のリンパ組織、血管等を可視化するためのシステムとして、蛍光や燐光または発光性のある染料(ダイ)を術部の組織に注入し、ダイを刺激することによって励起した光のうち、特定波長の光を除去、阻害、吸収、反射または偏向する能力を有する光フィルターで除去して見やすくした手術用眼鏡を用いたシステムが知られている(特許文献2)。
特開平4-93912号公報 特開2015-178002号公報
 しかし、上記した特許文献2に記載される手術用の眼鏡レンズは、発光性の染料から励起した光によって生体組織を観察する場合に刺激光を偏光フィルターによって除去するが、発光性染料を用いないで、通常の手術を行なう場合には、見やすくできる偏光性について開示されたものではない。
 また、特許文献1に記載される眼鏡は、手術部を立体的に観察するために、偏光レンズを備えた手術用顕微鏡であるが、顕微鏡のモニター画面において観察者に立体画像を観察させるものであって、特に生体の組織や血管、血液等の特定の部位の出血を、眼鏡を通して直接に見分けられるものではない。
 このように上記した従来の手術用眼鏡レンズは、いずれも通常の手術室内の照明下で、血管内の血液と血管外の出血の境界域の判別を正確にできるものではない。
 そこで、この発明の課題は、上記した問題点を解決し、生体組織を観察する際に用いられる手術用光学レンズについて、通常の手術室内の照明下で、生体組織中に毛細血管から漏れ出た血液、すなわち微細な出血箇所等を見出すことが可能であるようにし、例えば手術用眼鏡レンズまたは手術用顕微鏡用レンズとして適用できる手術用光学レンズとすることである。
 上記の課題を解決するために、この発明は、手術室内の照明下で使用する手術用光学レンズにおいて、偏光性フィルタがレンズ素材と一体に設けられ、可視光線波長域380~780nmの透過率の平均値が40%以上の偏光性レンズからなり、前記レンズ素材またはそれと一体の層内に前記可視光線波長域380~780nmの透過率の平均値に対する波長域580~600nmの最小透過率の割合が18~50%であるように特定波長域吸収色素を含有する手術用光学レンズとしたのである。
 上記したように構成されるこの発明の手術用光学レンズは、偏光性フィルタがレンズ素材と一体に設けられたことにより、生体組織の表面が細胞外に存在する体液で濡れた状態で室内の照明光からの乱反射光を含む雑光を偏光性フィルタによってカットできるので、生体の組織表面を反射光がないクリーンな視界が得られ、毛細血管やその周辺組織の微細な部分まで明瞭に観察できる。
 前記眼鏡レンズ素材は、偏光度15~40%のものを採用することが、可視光線波長域380~780nmの透過率をできるだけ大きくして見やすく明るい眼鏡レンズとし、しかもある程度までは散乱する光をカットして、コントラストを向上させることができるので好ましい。
 また、この光学レンズは、可視光線波長域380~780nmの透過率の平均値が40%以上(%値の小数点第1位以下は四捨五入されている。%の数値について、以下同じ。)のレンズ素材であるので、前記偏光性フィルタを使用する場合でも明るい視界が得られ、解像度も高められる。
 眼鏡レンズの前記透過率の平均値が所定値未満に低すぎる場合には、視界が暗くなって生体組織中の毛細血管の輪郭や、そのような血管から漏れ出た血液の量や色は視認し難くなるので好ましくない。また、透過率があまり高すぎても、反射光を含む雑光を充分に偏光性フィルタによってカットできない状態になる可能性があり、上記した毛細血管の輪郭等を視認し難くなる可能性がある。そのような可能性をできるだけ低くするために、より好ましい眼鏡レンズの380~780nmの可視光線波長域の透過率の平均値は、45~75%であり、さらに好ましくは50~75%である。
 そして、この発明の手術用光学レンズは、特定波長吸収色素を含有することにより、可視光線波長域380~780nmの透過率の平均値に対する波長域580~600nmの最小透過率の割合が18~50%に制限されており、波長域580~600nmの黄色系の光が通常の可視光線の透過光量の上記割合以下にカットされる。そのため、この光学レンズは、橙色から赤色と、緑色の光を選択的に透過するレンズとなり、特に橙色及び赤色と緑色を含む他の色とのコントラストが強く認識できるものとなるので、橙色や赤色系の血液色と他の色との境目が判別しやすくなる。
 したがって、この発明の手術用光学レンズは、生体組織中に血管から漏れ出た血液や出血箇所を視覚的に認識しやすくなり、微細な出血箇所を見つけ出すことを可及的に容易にできる医療用の眼鏡となり、特に手術用眼鏡に適用できる手術用光学レンズになる。
 上記波長域580~600nmの最小透過率の上記所定割合が下限値(18%)未満では、コントラストは強くなるが、鮮やかになりすぎて目が疲れやすくなり、また明るさの感じられる黄色系が薄くなって視界が暗くなり、却って組織や細い血管を判別し難くなるので好ましくない。
 また、上記の最小透過率の所定割合が、上記所定範囲の上限値(50%)を超えると、橙色及び赤色と他の色とのコントラストが低下し、目に優しく疲れ難くなるが、所期した程度に毛細血管やその周辺組織の微細な部分を明瞭に観察できなくなるので、好ましくない。
 上記の理由から、上記波長域580~600nmの最小透過率の所定割合は、18~50%であり、好ましくは20~50%であり、より好ましくは30~50%である。
 なお、この発明の手術用光学レンズは、通常の生活で使用する眼鏡用レンズではないので、一般的な眼鏡用レンズを対象とする透過率の規格のJIS規格や国際規格を満足させる必要はない。
 波長域580~600nmの最小透過率の割合を18~50%程度に調整可能な特定波長吸収色素の代表例としては、テトラアザポルフィリン化合物が挙げられ、このものは主吸収ピークが565~605nmの範囲に存在する色素であることから好ましい。
 上記のような手術用光学レンズをフレームに装着すれば、手術用眼鏡として、生体組織中に血管から漏れ出た血液、すなわち出血箇所を特定しやすいものになる。
 この発明は、所要偏光度の弱い偏光性を有する眼鏡レンズ素材において、可視光線波長域の透過率を所定割合以上に高くし、かつ特定波長吸収色素を含有させて波長域580~600nm透過率を上記所定割合に制限したので、生体組織中に血管から漏れ出た血液、すなわち出血箇所を特定しやすくし、微細な出血箇所を見出すことが可能な医療用眼鏡、特に手術用眼鏡として適用できる手術用光学レンズに適用でき、またはそのような機能を有する手術用眼鏡となる利点がある。
実施例1の分光スペクトルを示し、波長と透過率の関係を示す図表 実施例2の分光スペクトルを示し、波長と透過率の関係を示す図表 実施例3の分光スペクトルを示し、波長と透過率の関係を示す図表 実施例4の分光スペクトルを示し、波長と透過率の関係を示す図表 参考例1-5の分光スペクトルを示し、波長と透過率の関係を示す図表
 この発明の実施形態の手術用光学レンズの眼鏡レンズ素材は、偏光性フィルタが一体に設けられ、可視光線波長域380~780nmの透過率の平均値が40%以上のものである。
 偏光性フィルタは、周知製法に従って偏光フィルムとして得られるが、例えばポリビニルアルコール(PVA)製フィルムにヨウ素もしくはヨウ素化合物含浸等によって含ませ、さらに必要に応じて染料を添加して一軸延伸したものを採用することが好ましい。
 偏光フィルムは、その材質がPVAに限定されるものではなく、ポリエチレンテレフタレート(PET)またはPVA製フィルムにトリアセチルセルロースやポリカーボネートなどからなるフィルムを張り合わせた複合フィルムを用いることもできる。
 一軸延伸されたPVA製などの偏光フィルムは、メニスカス型の光学レンズの大きさに合わせてカットされた後、周知の加圧成形(プレス成形)によって、レンズのカーブ(曲率半径)に沿うように球面形の湾曲面を成形したものとし、レンズ成型用のモールドを用いたインサート成型を行なう。
 上記偏光フィルムは、青紫色、紫色または赤紫色に染色されたバイオレット系の偏光フィルムを選択することが、グレー系やブラウン系の偏光フィルムを選択することに比べて好ましい。前記バイオレット系の偏光フィルムは、600nm以下の波長域のうち595nm付近に透過率の極小値を有する分光チャートを示すことから、緑色や黄色の光をカットして橙色や赤色の長波長の光を見えやすくするからである。
 この発明に用いる偏光フィルムを所定の色調で染色する場合、例えば染料を添加せずにヨウ素のみで偏光フィルムを作製すれば、グレー色のものに仕上がる。このようにして得られるグレー色を基本色とし、必要に応じて染料を添加して偏光フィルムを着色する。例えば、ヨウ素を含有する偏光フィルムに赤色系または黄色系の染料を添加すると、ブラウン系の色調となり、紫色系の染料を添加するとバイオレット系の色調になる。
 偏光フィルムを作製する際に用いる染料は、水溶性染料であり、細分すると塩基性染料、酸性染料、直接染料、酸性媒染染料、可溶性建染め染料などが挙げられるが、特に限定せずに周知の染料を使用可能である。
 水溶性染料の具体例としては、ブラックGGN、バイオレットBBN、ブルーBGR、ブラウン5GS、グリーン3GSN、レッドG3B、イエローGCなどが挙げられる。
 表1に示すように、バイオレット系(V)、グレー系(G)またはブラウン系(B)の偏光性フィルタを選択する場合の目安として、波長域280~495nmでの最大透過率/最小透過率の比(特性評価比)で吸収特性を評価することができる。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、橙色や赤色の長波長の光を見えやすくする特性評価比は、バイオレット系、グレー系、ブラウン系の順に大きい。これらのことからバイオレット系の偏光フィルムを採用することによっても、前述したレンズ素材に対する前記特定波長吸収色素の添加作用をより高めることができるので、橙色及び赤色の血液の色をより判別しやすい手術用光学レンズになる。
 レンズ素材を形成する材料は、合成樹脂、無機質のガラスのいずれであってもよく、必要に応じてレンズ素材と一体に接着剤層やコーティング層を設けてもよい。
 上記合成樹脂の種類としては、眼鏡レンズ等の光学レンズの注型(キャスト)成形可能な樹脂を広く使用可能である。例えば、熱可塑性樹脂として透明性に優れるMMA(メチルメタアクリレート樹脂)やPC(ポリカーボネート樹脂)、注型タイプの熱硬化性樹脂の代表的な樹脂であるCR-39や中屈折率樹脂(例えば、日本油脂製:コーポレックス、屈折率1.56)は、その成分としてアリルジグリコールカーボネートが含まれ、またイソシアネートとポリチオールを化合させた周知の高屈折率樹脂(例えば、三井化学社製:チオウレタン系樹脂MR-7、屈折率1.67)であるチオウレタン樹脂やウレタン樹脂も代表例として挙げられる。
 レンズ素材またはそれと一体の層内に前記可視光線波長域380~780nmの透過率の平均値に対する波長域580~600nmの最小透過率の割合が18~50%であるように特定波長吸収色素を配合するには、レンズ材料または層間接着に用いる接着剤もしくはレンズ表面や層表面に対するコーティング材料に、例えばテトラアザポルフィリン化合物を含む有機系色素を配合し、さらに重合開始剤として10時間半減期温度が90~110℃のパーオキシエステル系過酸化物またはパーオキシケタール系過酸化物を配合する。
 例えば、レンズ材料としてエチレングリコールビスアリルカーボネート等を用いてプラスチックレンズを製造する際の代表的な重合方法としては、注型重合法が挙げられる。
 注型重合法でレンズ素材を作製するには、樹脂レンズ材料および有機系色素その他所要の添加物からなる樹脂原料組成物を、眼鏡レンズを製造するためにガスケットあるいはテープを介して配列された2枚のガラス型あるいは金属型のモールド内に注入した後、所定の重合条件で重合硬化させ、次いでガラス型あるいは金属型から離型して、硬化したプラスチックレンズ素材を得る。
 重合硬化するには、レンズ注型用鋳型に注入し、このレンズ注型用鋳型をオーブンまたは水中等で所定の温度プログラムにて数時間から数十時間かけて加熱し、重合硬化反応を行なって眼鏡レンズを成型する。
 重合硬化は、樹脂原料の組成、触媒、モールドの形状等に応じて温度調整されるが、20~100℃程度の温度で1~48時間かけて加熱する処理であり、硬化成形終了後は、レンズ注型用鋳型からレンズを取り出せばプラスチック眼鏡レンズ素材を得ることができる。
 この発明に用いる特定波長吸収色素の代表例であるテトラアザポルフィリン化合物は、下記の化1の式で示される周知なものであり、さらに化2の式で示されるものの市販品として、山本化成社製:PD-311S、山田化学工業社製:TAP-2、TAP-9などを採用することができる。
Figure JPOXMLDOC01-appb-C000002
[化1の式中、Z~Zは各々独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、カルボキシル基、スルホン酸基、炭素数1~20の直鎖、分岐又は環状のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のモノアルキルアミノ基、炭素数2~20のジアルキルアミノ基、炭素数7~20のジアルキルアミノ基、炭素数7~20のアラルキル基、炭素数6~20のアリール基、ヘテロアリール基、炭素数6~20のアルキルチオ基、炭素数6~20のアリールチオ基を表し、連結基を介して芳香族環を除く環を形成しても良く、Mは2個の水素原子、2価の金属原子、2価の1置換金属原子、4価の2置換金属原子、又はオキシ金属原子を表す。]
Figure JPOXMLDOC01-appb-C000003
 [化2の式中、Cuは2価の銅を、C(t)はターシャリーブチル基を表し、その4個の置換基の置換位置は化1におけるそれぞれZ1とZ2、Z3とZ4、Z5とZ6及びZ7とZ8のいずれかひとつの位置に置換されている位置異性体構造を表す。]
 また、この発明に用いる重合開始剤は、10時間半減期温度が90~110℃のパーオキシエステル系過酸化物またはパーオキシケタール系過酸化物である。
 このようなパーオキシエステル系過酸化物の具体例としては、t-ヘキシル パーオキシベンゾエート、t-ブチル パーオキシベンゾエート、t-へキシル パーオキシイソプロピルモノカーボネートまたはt-ブチル パーオキシアセテートが挙げられる。また、同様にパーオキシケタール系過酸化物は、1,1-ジ(t-ブチルペルオキシ)シクロヘキサンが挙げられる。
 このような重合開始剤によって、色素としてテトラアザポルフィリン化合物を含むアリルジグリコールカーボネート樹脂製レンズであっても、テトラアザポルフィリン化合物の有機系色素としての特性が充分に発揮されて波長565nm~605nmに可視光分光透過率の主吸収ピークを充分な吸収率(透過率に同じ)で有する光学レンズになる。
 また、この発明の手術用光学レンズに、ハードコート処理をしてもよい。例えば、シリコン系化合物などを含む溶液にレンズを浸漬することにより、強化被膜を形成させて表面硬度を向上させることができる。また、防曇処理、反射防止処理、耐薬品性処理、帯電防止処理、ミラー処理などを施して更に性能を向上させることもできる。
[実施例1]
 エチレングリコールビスアリルカーボネートのモノマー(商品名:CR39)100質量部に対し、重合開始剤(日本油脂社製:商品名パーブチルZ)を3質量部添加し、波長域580~600nmに吸収性のある有機色素(山本化成社製:PD-311S、最大吸収波長585nm)を0.0056質量部添加したレンズ成形用樹脂材料を用いた。
 また、偏光フィルムは、ポリビニルアルコール(PVA)製フィルムに、水溶性染料(バイオレット)を含浸等によって含ませ、一軸延伸したフィルムを用いた。
 そして、シリコーン樹脂で形成された円筒状のガスケットの内周面に設けられた環状凸部の側面に、円形状の偏光フィルムの周縁部を係止し、さらにその周縁部にガスケットの内周面に押入れて係止された係止用リングを重ねることにより、係止用リングと環状凸部の間に偏光フィルムの縁部を挟んで保持した。
 このように偏光フィルムを保持したガスケットを、手術用眼鏡レンズの形状に合わせた凹型面と凸型面が対向配置できる一対のモールドの間に配置して液密に嵌め合わせ、前記偏光フィルムとモールドが適当な間隔を空けることによって形成されたキャビティーに、前記調製された樹脂材料を脱気処理してから注入し、100℃に加熱して硬化させ、その後に緩やかに降温させ、全工程を48時間かけて完了させた後、脱型して手術用光学レンズを得た。
 得られた手術用光学レンズについて、分光透過率を日立製作所社製:U-2000スペクトロフォトメーターで測定した。測定された波長(nm)と透過率(%)の関係を図1に示した。
 また、実施例1のレンズ素材についての波長600、595、590、585、580nmにおける分光透過率、波長380~780nmの分光透過率の平均値を表2中に示した。また、コントラスト特性を示す前記可視光線波長域380~780nmの透過率の平均値Bに対する波長域580~600nmの最小透過率Aの割合(A/Bの百分率)を、以下の数式(1)に表2中の測定値を代入して算出し、その値である18.80[%]を表2中に併記した。
 数式(1):
 (A/B)・100[%]=(波長580-600nmの最小透過率/波長380-780nmの分光透過率の平均値)×100
Figure JPOXMLDOC01-appb-T000004
[実施例2]
 実施例1において、偏光フィルムとして、ポリビニルアルコール(PVA)製フィルムに、ヨウ素を含浸等によって含ませて一軸延伸したグレー系色調の偏光フィルムを用いたこと以外は、全く同様にして手術用光学レンズを製造した。
 得られた手術用光学レンズについて、実施例1と同様に分光透過率を測定し、波長と透過率の関係を図2(分光透過率曲線)に示し、また測定値等を表2中に併記した。このレンズの数式(1)の(A/B)・100[%]=18.99であり、実施例1と同様にコントラスト性の優れた手術用眼鏡であった。
[実施例3]
 実施例1において、偏光フィルムとして、ポリビニルアルコール(PVA)製フィルムに、水溶性染料(赤色系)を含浸等によって含ませ、一軸延伸したブラウン系の偏光フィルムを用いたこと以外は、全く同様にして手術用光学レンズを製造した。
 得られた手術用光学レンズについて、実施例1と同様に分光透過率を測定し、波長と透過率の関係を図3(分光透過率曲線)に示し、また測定値等を表2中に併記した。このレンズの数式(1)の(A/B)・100[%]=19.11であり、実施例1と同様にコントラスト性の優れた手術用眼鏡であった。
[実施例4]
  実施例1において、有機色素(山本化成社製:PD-311S、最大吸収波長585nm)を0.0056質量部添加することに代えて、同有機色素を0.0040質量部添加したレンズ成形用樹脂材料を用いたこと以外は、全く同様にして手術用光学レンズを製造した。
 得られた手術用光学レンズについて、実施例1と同様に分光透過率を測定し、波長と透過率の関係を図4(分光透過率曲線)に示し、また測定値等を表2中に併記した。このレンズの数式(1)の(A/B)・100[%]=40.61であり、実施例1と同様にコントラスト性に優れた手術用眼鏡であった。
 このようにして得られた実施例1-4の手術用光学レンズを、眼鏡フレームに装着した眼鏡を医療関係者が着用し、手術時の微小な血管からの出血の有無の見分け易さをアンケート調査した。
 その結果、ヒト生体組織の直径1mm以下の微小な血管からの出血が、極めて見分けやすくなり、優れた手術等の医療用眼鏡であるという優れた評価が、過半数の調査対象者から得られた。
[参考例1]
 実施例1において、偏光フィルムを用いなかったこと及び波長域580~600nmに吸収性のある有機色素(山本化成社製:PD-311S、最大吸収波長585nm)を0.0074質量部添加したレンズ成形用樹脂材料を用いたこと以外は、全く同様にして光学レンズ(参考例1)を製造した。
 得られた光学レンズについて、実施例1と同様にして分光透過率を測定すると共に、Lab表色系の値を測定し、これらの測定値を表3、4中に示し、波長と透過率の関係を図5(分光透過率曲線)に示した。また、このレンズの数式(1)の(A/B)・100[%]=19.25であり、偏光フィルムを用いていない光学レンズであるが、所期したコントラスト性を得るための特定波長域吸収色素の配合量の参考とした。参考例1では、コントラスト性は良好であるが、偏光性フィルタを一体化すると、少し視界が暗くなり過ぎる可能性がある。
[参考例2]
 実施例1において、偏光フィルムを用いなかったこと以外は、全く同様にして光学レンズ(参考例2)を製造した。
 得られた手術用光学レンズについて、参考例1と同様に体分光透過率を測定すると共に、Lab表色系の値も測定し、波長と透過率の関係を図5(分光透過率曲線)に示し、測定値等を表3、4中に併記した。また、このレンズの数式(1)の(A/B)・100[%]=30.99であり、偏光フィルムを用いない実施例1のコントラスト性を得るための特定波長域吸収色素の配合量として適量と考えられる参考値であった。
[参考例3-5]
 参考例1において、波長域580~600nmに吸収性のある有機色素(山本化成社製:PD331S、最大吸収波長585nm)をレンズ成形用樹脂材料100質量部に対して、0.0037質量部(参考例3)、0.0019質量部(参考例4)、0.0007質量部(参考例5)を添加したこと以外は、全く同様にして参考例3-5の光学レンズを製造した。
 得られた手術用光学レンズについて、参考例1と同様に分光透過率を測定すると共に、Lab表色系の値も測定し、波長と透過率の関係を図5(分光透過率曲線)に示し、測定値等を表3、4中に併記した。
 これら参考例3、4、5のレンズの数式(1)の(A/B)・100[%]の値は、それぞれ48.65、72.58、95.73であり、偏光フィルムを用いない光学レンズにおける所期したコントラスト性を得るための特定波長域吸収色素の配合量の参考となる値であった。
 すなわち、参考例3では、実施例1と同様のコントラスト性を得るための特定波長域吸収色素の配合量として適量と考えられる参考値であった。また、参考例4、5については、波長380-780nmの分光透過率の平均値が70%以上になり、偏光フィルムと一体化しても反射光を含む雑光を偏光度を低めに調整した偏光性フィルタでは充分にカットできない状態になる可能性が想定された。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[実施例5]
 実施例1において、レンズ成形用樹脂材料を、ポリウレタン材料のポリイソシアネートとポリヒドロキシ化合物を反応させたプレポリマーと、硬化剤として4,4'-メチレンビス(2-クロロアニリン)であるMOCAとを等量比で混合し、さらに山田化学工業のTAP2(595nmが最大吸収波長)を0.0040部添加したものに変更したこと以外は、実施例1と同様にして、偏光性フィルタを一体に設けた赤色強調の偏光性を有する光学レンズを得た。
 得られた手術用光学レンズについて、実施例1に対して行なった分光透過率の測定と同様に、波長600、595、590、585、580nmにおける分光透過率、波長380~780nmの分光透過率の平均値を調べたが、実施例1とほぼ同様の数分光透過率であり、また実施例1と同様のコントラスト性を有する優れた手術用眼鏡が得られた。
[実施例6] 
 実施例1において、レンズ素材の材料のエチレングリコールビスアリルカーボネートに代えて、チオウレタン樹脂(三井化学のMR20)100部に対して、有機色素(山田化学工業社製:TAP2(5957nmが最大吸収波長))を0.0040部を添加したものをレンズ素材としたこと以外は同様にして、偏光性フィルタを一体に設けて赤色の強調された高屈折性で偏光性のある手術用光学レンズを得た。
 上記同様に、波長600、595、590、585、580nmにおける分光透過率、波長380~780nmの分光透過率の平均値を調べたが、実施例1とほぼ同様の数値であり、実施例1と同様のコントラスト性を有する優れた手術用眼鏡が得られた。
[実施例7] 
 2枚のガラス製レンズ素材の対向面間に、接着剤を塗布し、接着剤層の間に実施例1で用いた偏光フィルムを挿入して積層した。このとき用いた接着剤には、波長域580~600nmに吸収性のある有機色素(山本化成社製:PD331S、最大吸収波長585nm)を0.0080部添加したものであり、前記積層による全層一体化により、赤色が強調して見える偏光性を有する手術用光学レンズを製造した。
 上記同様に、波長600、595、590、585、580nmにおける分光透過率、波長380~780nmの分光透過率の平均値を調べたが、実施例1とほぼ同様の数値であり、実施例1と同様に所要のコントラスト性を有する優れた手術用眼鏡が得られた。
[比較例1]
 実施例1において、偏光度が99%以上の偏光フィルムを使用したこと以外は、全く同様にして光学レンズを製造した。
 得られた光学レンズは、平均透過率は約35%と低いものであり、この光学レンズは、手術用光学レンズとして用いると、可視光域の透過率が低くて手術域の陰影の判別が難しいことは明らかであった。
[比較例2]
 レンズ材料として、ポリウレタンのプレポリマー/モカを等量比で混合する中に、有機染料として山田化学工業のTAP2(595nmが最大吸収波長)を0.0080部添加して赤色強調の偏光性を有するレンズを製造したが、可視光域波長380-780nmの平均透過率は約15%であった。
 従って、このような光学レンズは、手術用光学レンズとして使用しても可視光域の透過率が低すぎて、陰影部の判別が難しいことは明らかであった。
 [比較例3]
 実施例1において、偏光フィルムを使用せず、波長域580~600nmに吸収性のある有機色素(山本化成社製:PD331S、最大吸収波長585nm)染料のみを添加して光学レンズを作製した。
 このような光学レンズは、手術用の照明下で反射光や刺激光を除去できないものであり、細かい陰影部の判別が難しいものであった。
 以上の実施例および比較例の結果からも明らかなように、この発明の手術用光学レンズは、可視光線波長域の透過率の平均値が40%以上の偏光性レンズであり、特定波長域吸収色素を所定量含有して、前記可視光線波長域380~780nmの透過率の平均値に対する波長域580~600nmの最小透過率の割合が18~50%であるように調製されていることにより、生体組織中に血管から漏れ出た血液を特定しやすいコントラスト性を備えたものであった。
 この発明は、人または動物に対して治療、診断、検査などの目的で手術を行なう際に用いられる手術用光学レンズであって、例えば臓器や眼等の生体組織の観察に用いられる手術用眼鏡レンズ、手術用顕微鏡(ルーペ)用レンズ、胃カメラ等の内視鏡用レンズなどの医療産業用のレンズとして適用できるものである。

Claims (6)

  1.  偏光性フィルタがレンズ素材と一体に設けられ、可視光線波長域380~780nmの透過率の平均値が40%以上の偏光性レンズからなり、前記レンズ素材またはそれと一体の層内に前記可視光線波長域380~780nmの透過率の平均値に対する波長域580~600nmの最小透過率の割合が18~50%であるように特定波長域吸収色素を含有する手術用光学レンズ。
  2.  前記偏光性レンズが、偏光度15~40%の偏光性レンズである請求項1に記載の手術用光学レンズ。
  3.  前記可視光線波長域380~780nmの透過率の平均値が、45~75%である請求項1または2に記載の手術用光学レンズ。
  4.  前記特定波長域吸収色素が、テトラアザポルフィリン化合物である請求項1~3のいずれかに記載の手術用光学レンズ。
  5.  前記偏光性フィルタが、青紫色、紫色または赤紫色に染色された偏光性フィルタである請求項1または4に記載の手術用光学レンズ。
  6.  請求項1~5のいずれかに記載の手術用光学レンズからなる手術用眼鏡レンズ。
PCT/JP2019/023544 2018-08-08 2019-06-13 手術用光学レンズ WO2020031502A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19845955.4A EP3816684A4 (en) 2018-08-08 2019-06-13 OPTICAL LENS FOR USE IN SURGERY
AU2019320024A AU2019320024A1 (en) 2018-08-08 2019-06-13 Optical lens for use in surgery
US16/973,330 US11966034B2 (en) 2018-08-08 2019-06-13 Surgical optical lens
JP2020536357A JPWO2020031502A1 (ja) 2018-08-08 2019-06-13 手術用光学レンズ
CN201980037382.6A CN112236695B (zh) 2018-08-08 2019-06-13 手术用光学透镜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/029785 2018-08-08
PCT/JP2018/029785 WO2020031291A1 (ja) 2018-08-08 2018-08-08 手術用光学レンズ

Publications (1)

Publication Number Publication Date
WO2020031502A1 true WO2020031502A1 (ja) 2020-02-13

Family

ID=69414057

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/029785 WO2020031291A1 (ja) 2018-08-08 2018-08-08 手術用光学レンズ
PCT/JP2019/023544 WO2020031502A1 (ja) 2018-08-08 2019-06-13 手術用光学レンズ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029785 WO2020031291A1 (ja) 2018-08-08 2018-08-08 手術用光学レンズ

Country Status (6)

Country Link
US (1) US11966034B2 (ja)
EP (1) EP3816684A4 (ja)
JP (2) JPWO2020031502A1 (ja)
CN (1) CN112236695B (ja)
AU (1) AU2019320024A1 (ja)
WO (2) WO2020031291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259669A1 (ja) * 2021-06-07 2022-12-15 株式会社タレックス 光学レンズ用2液型ウレタン成型材及びポリウレタン樹脂製光学レンズ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493912A (ja) 1990-08-06 1992-03-26 Olympus Optical Co Ltd 手術用顕微鏡
JP2005279255A (ja) * 2004-03-05 2005-10-13 Junichi Shimada 照明装置、フィルタ装置、画像表示装置
US20060033851A1 (en) * 2004-03-25 2006-02-16 Giuseppe Iori Polarized optical elements enhancing color contrast and methods for their manufacture
JP2012173704A (ja) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk 防眩光学要素
WO2014115705A1 (ja) * 2013-01-25 2014-07-31 三菱瓦斯化学株式会社 着色低偏光フィルム、着色低偏光シート、およびレンズ、並びにこれらの製造法
JP2015178002A (ja) 2009-04-21 2015-10-08 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション 手術時イメージングまたはセンチネルリンパ節バイオプシー用の発光ダイ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604824B2 (en) * 1998-02-23 2003-08-12 Charles P. Larson Polarized lens with oxide additive
JP2008134618A (ja) * 2006-10-26 2008-06-12 Hopunikku Kenkyusho:Kk プラスチック眼鏡レンズ
CA2924278C (en) * 2006-11-28 2019-01-08 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
US8210678B1 (en) * 2009-12-21 2012-07-03 Farwig Michael J Multiband contrast-enhancing light filter and polarized sunglass lens comprising same
JP5650963B2 (ja) * 2010-09-13 2015-01-07 タレックス光学工業株式会社 保護眼鏡用遮光レンズ
EP3248055A4 (en) * 2015-01-19 2018-10-24 OptimEyes4U, Inc Ophthalmic spectacle lenses, materials and method
JP6586170B2 (ja) 2015-09-16 2019-10-02 三井化学株式会社 光学材料用重合性組成物、光学材料、光学材料用重合性組成物の製造方法および光学材料の製造方法
CN108474897B (zh) * 2016-06-30 2021-01-15 豪雅镜片泰国有限公司 眼镜镜片的制造方法
WO2018003998A1 (ja) 2016-06-30 2018-01-04 ホヤ レンズ タイランド リミテッド 眼鏡レンズ及び眼鏡
HUE052644T2 (hu) 2016-08-02 2021-05-28 Tokuyama Corp Ragasztóanyag kompozíció, rétegelt anyag, valamint a rétegelt anyagot tartalmazó optikai gyártmány
JPWO2018105593A1 (ja) * 2016-12-06 2019-06-24 三井化学株式会社 積層シートおよびレンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493912A (ja) 1990-08-06 1992-03-26 Olympus Optical Co Ltd 手術用顕微鏡
JP2005279255A (ja) * 2004-03-05 2005-10-13 Junichi Shimada 照明装置、フィルタ装置、画像表示装置
US20060033851A1 (en) * 2004-03-25 2006-02-16 Giuseppe Iori Polarized optical elements enhancing color contrast and methods for their manufacture
JP2015178002A (ja) 2009-04-21 2015-10-08 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション 手術時イメージングまたはセンチネルリンパ節バイオプシー用の発光ダイ
JP2012173704A (ja) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk 防眩光学要素
WO2014115705A1 (ja) * 2013-01-25 2014-07-31 三菱瓦斯化学株式会社 着色低偏光フィルム、着色低偏光シート、およびレンズ、並びにこれらの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816684A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259669A1 (ja) * 2021-06-07 2022-12-15 株式会社タレックス 光学レンズ用2液型ウレタン成型材及びポリウレタン樹脂製光学レンズ
JP2022187266A (ja) * 2021-06-07 2022-12-19 株式会社タレックス 光学レンズ用2液型ウレタン成型材及びポリウレタン樹脂製光学レンズ

Also Published As

Publication number Publication date
US20210247599A1 (en) 2021-08-12
AU2019320024A1 (en) 2021-01-07
US11966034B2 (en) 2024-04-23
JP2023105238A (ja) 2023-07-28
EP3816684A1 (en) 2021-05-05
WO2020031291A1 (ja) 2020-02-13
CN112236695B (zh) 2023-03-31
CN112236695A (zh) 2021-01-15
JPWO2020031502A1 (ja) 2021-08-10
EP3816684A4 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
JP6316918B2 (ja) 室内グレアの低減を発揮するコンタクトレンズ
US9207368B2 (en) Light shielding lens for protective eyeglasses
US20080137030A1 (en) Optical devices with reduced chromatic aberration
KR101786302B1 (ko) 청광차단 소프트 콘택트렌즈의 제조방법 및 이를 이용하여 제조된 소프트 콘택트렌즈
AU2016387726B2 (en) Polarizing lens for spectacles
KR20010084879A (ko) 벤조트리아졸 및 벤조페논을 함유한 uv차단렌즈 및재료
JP2014032273A (ja) フォトクロミックレンズ
JP2023105238A (ja) 手術用光学レンズ
KR20180099824A (ko) 안과용 렌즈
JP2000249989A (ja) 眼用レンズ材料
US20050041299A1 (en) Light filters using the oxidative polymerization product of 3-hydroxykynurenine (3-OHKyn)
JPH0824694B2 (ja) 青視症補正用コンタクトレンズ
US6825975B2 (en) Light filters using the oxidative polymerization product of 3-Hydroxykynurenine (3-OHKyn)
JPH01280464A (ja) 眼用レンズを着色するための重合性色素並びにそれを用いた着色眼用レンズ材料の製造法及び着色眼用レンズ材料
KR20170105452A (ko) 청광차단 소프트 콘택트렌즈의 제조방법 및 이를 이용하여 제조된 소프트 콘택트렌즈
JP2011145341A (ja) 眼鏡用アリルジグリコールカーボネート樹脂製レンズ
JP2794308B2 (ja) 無水晶体眼用レンズ材料
KR102279488B1 (ko) 타트라진 색소를 이용한 청색광차단 콘택트렌즈 및 그 제조방법
JPH02171716A (ja) 眼鏡レンズ
JP3269819B2 (ja) 眼用装着物
JPH119617A (ja) 着色眼内レンズの製造方法
KR20220008695A (ko) 퍼펙트 자외선 차단렌즈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019845955

Country of ref document: EP

Effective date: 20201203

ENP Entry into the national phase

Ref document number: 2020536357

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019320024

Country of ref document: AU

Date of ref document: 20190613

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE