WO2020027244A1 - 化合物 - Google Patents

化合物 Download PDF

Info

Publication number
WO2020027244A1
WO2020027244A1 PCT/JP2019/030135 JP2019030135W WO2020027244A1 WO 2020027244 A1 WO2020027244 A1 WO 2020027244A1 JP 2019030135 W JP2019030135 W JP 2019030135W WO 2020027244 A1 WO2020027244 A1 WO 2020027244A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
species
coordinates
oxygen
metal
Prior art date
Application number
PCT/JP2019/030135
Other languages
English (en)
French (fr)
Inventor
佐々木 健一
絵美 川嶋
井上 一吉
雅敏 柴田
篤史 八百
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US17/264,622 priority Critical patent/US11760650B2/en
Priority to JP2020530408A priority patent/JP6761920B2/ja
Priority to KR1020217002856A priority patent/KR102436599B1/ko
Priority to CN201980050314.3A priority patent/CN112512974B/zh
Publication of WO2020027244A1 publication Critical patent/WO2020027244A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants

Definitions

  • the present invention relates to compounds.
  • An oxide semiconductor used for a thin film transistor has higher carrier mobility than general-purpose amorphous silicon (amorphous silicon may be abbreviated as a-Si), has a large optical band gap, and can be formed at a low temperature. . Therefore, an oxide semiconductor is expected to be applied to a next-generation display that requires large size, high resolution, and high-speed driving, and to a resin substrate or the like having low heat resistance.
  • a sputtering method of sputtering a sputtering target is preferably used.
  • a thin film formed by a sputtering method has a smaller component composition and film thickness in a film surface direction (in a film surface) than a thin film formed by an ion plating method, a vacuum evaporation method, or an electron beam evaporation method. This is because it has excellent in-plane uniformity, and a sputtering method can form a thin film having the same component composition as the sputtering target.
  • Patent Literature 1 discloses a sintered body composed of indium oxide, gallium oxide, and aluminum oxide, wherein the content of gallium is 0.15 or more and 0.49 or less in terms of Ga / (In + Ga) atomic ratio, and content Al / the (in + Ga + Al) was 0.25 less than 0.0001 or more in atomic number ratio, bixbyite and in 2 O 3 phase structure, an in 2 as O 3 phase other than the production phase of beta-Ga 2 GaInO 3-phase O 3 -type structure, or beta-Ga 2 O 3 -type structure GaInO 3 phase and the (Ga, an in) is described for the oxide sintered body containing 2 O 3 phase.
  • a mixture in which the addition amount of Ga was 20 at% and the addition amount of Al was 1 at%, and a mixture in which the addition amount of Ga was 25 at% and the addition amount of Al was 5 at% were fired at 1400 ° C. for 20 hours.
  • an In 2 O 3 phase and a GaInO 3 phase are precipitated from an XRD chart.
  • an oxide compound Since an oxide compound has a large band gap, it is characterized by a low leakage current when the oxide compound is applied to a semiconductor device such as a transistor or a diode. On the other hand, an oxide compound has a problem that a carrier concentration cannot be stably controlled as a semiconductor because of a large band gap, and sufficient conductivity cannot be obtained. There is a demand for new compounds that can solve these problems. Specifically, a compound capable of manufacturing an oxide semiconductor material sufficiently wider than the band gap of a general Si semiconductor is demanded.
  • An object of the present invention is to provide a compound capable of forming an oxide semiconductor material which is sufficiently wide compared to a band gap of a general Si semiconductor.
  • the metal in the following atomic arrangement is a state in which any one of In, Ga, and Al, or any two or more of In, Ga, and Al share the same atomic coordinates at a fixed ratio.
  • the atomic coordinates where the metal is located are x ⁇ 0.01, y ⁇ 0.01, including a width of z ⁇ 0.01,
  • the atomic coordinates where oxygen is located are x ⁇ 0.01, y ⁇ 0.01, Includes a width of z ⁇ 0.01.
  • the space group is P1 and has an atomic configuration shown below.
  • the metal in the following atomic arrangement is a state in which any one of In, Ga, and Al, or any two or more of In, Ga, and Al share the same atomic coordinates at a fixed ratio.
  • the atomic coordinates where the metal is located are x ⁇ 0.01, y ⁇ 0.01, including a width of z ⁇ 0.01,
  • the atomic coordinates where oxygen is located are x ⁇ 0.01, y ⁇ 0.01, Includes a width of z ⁇ 0.01.
  • the metal in the following atomic arrangement is a state in which any one of In, Ga, and Al, or any two or more of In, Ga, and Al share the same atomic coordinates at a fixed ratio.
  • the atomic coordinates where the metal is located are x ⁇ 0.01, y ⁇ 0.01, including a width of z ⁇ 0.01,
  • the atomic coordinates where oxygen is located are x ⁇ 0.01, y ⁇ 0.01, Includes a width of z ⁇ 0.01.
  • a compound which can form an oxide semiconductor material which is sufficiently wider than a band gap of a general Si semiconductor can be provided.
  • Example 4 is a precession photograph of a (10.12 0.00 2.09) plane of a single crystal according to Example 2.
  • 9 is a precession photograph of the (0.00 ⁇ 12.78 ⁇ -6.61) plane of the single crystal according to Example 2.
  • 9 is a precession photograph of a (11.95 ⁇ 7.08 0.00) plane of a single crystal according to Example 2.
  • a numerical range represented by using “to” means a range including a numerical value described before “to” as a lower limit and a numerical value described after “to” as an upper limit. I do.
  • the compound according to this embodiment (hereinafter sometimes referred to as compound A) is formed from an indium element (In), a gallium element (Ga), an aluminum element (Al), and an oxygen element (O).
  • Compound A is a compound whose crystal system shows triclinic.
  • the unit ⁇ corresponds to 10 ⁇ 10 m.
  • the lattice constant and atomic coordinates of compound A can be obtained by measuring an XRD pattern of a single crystal grain of compound A with a single crystal X-ray structure analyzer and performing a crystal structure analysis on the XRD pattern using single crystal structure analysis software. Use the results obtained.
  • the powder XRD pattern of the prepared sample is the same as that of the compound of the present embodiment, because there is no match between JCPDS (Joint Committee of Powder Diffraction Standard) and ICSD (Inorganic Crystal Structure Database), and the compound according to the present embodiment is unknown. There was found.
  • the crystal structure of the compound A according to the present embodiment is obtained by mixing and sintering gallium oxide powder, aluminum oxide powder, and indium oxide powder with a single crystal X-ray structure analyzer D8 QUEST (manufactured by Bruker). Can be used to measure.
  • the X-ray source was MoK ⁇
  • the wavelength was 0.71073 °
  • the tube voltage was 50 kV
  • the tube current was 1 mA
  • the irradiation diameter was 200 ⁇ m ⁇
  • the obtained XRD pattern was analyzed by single crystal structure analysis.
  • the crystal structure can be identified by analyzing with the software APEX3 (manufactured by Bruker).
  • the crystal grain size of the single crystal grain is preferably 30 ⁇ m or more from the viewpoint of easy measurement.
  • the preferable atomic ratio of the indium element (In), the gallium element (Ga), and the aluminum element (Al) is in a range represented by the following formulas (1) to (3).
  • In the formulas (1) to (3), In, Al, and Ga respectively indicate the number of atoms of an indium element, an aluminum element, and a gallium element in the oxide sintered body.
  • the atomic ratio in this specification can be measured by an inductively coupled plasma emission spectrometer (ICP-AES).
  • ICP-AES inductively coupled plasma emission spectrometer
  • the crystal system of the compound A according to the present embodiment is triclinic, and the compound A has a crystal structure that can be assigned to the space group P-1.
  • “ ⁇ ” described between “P” and “1” in the space group “P-1” is originally written after “1” (hereinafter, notations of other space groups). The same applies to).
  • the space group is P-1, and has the following atomic arrangement.
  • the metal in the following atomic arrangement is a state in which any one of In, Ga, and Al, or any two or more of In, Ga, and Al share the same atomic coordinates at a fixed ratio.
  • the atomic coordinates where the metal is located are x ⁇ 0.01, y ⁇ 0.01, including a width of z ⁇ 0.01,
  • the atomic coordinates where oxygen is located are x ⁇ 0.01, y ⁇ 0.01, Includes a width of z ⁇ 0.01.
  • the space group is P-1, and has the following atomic arrangement.
  • the metal in the following atomic arrangement is a state in which any one of In, Ga, and Al, or any two or more of In, Ga, and Al share the same atomic coordinates at a fixed ratio.
  • the atomic coordinates where the metal is located are x ⁇ 0.01, y ⁇ 0.01, including a width of z ⁇ 0.01,
  • the atomic coordinates where oxygen is located are x ⁇ 0.01, y ⁇ 0.01, Includes a width of z ⁇ 0.01.
  • the crystal system of compound A according to the present embodiment is triclinic, and compound A has a crystal structure that can be assigned to space group P1.
  • the space group is P1, and has the following atomic arrangement.
  • the metal in the following atomic arrangement is a state in which any one of In, Ga, and Al, or any two or more of In, Ga, and Al share the same atomic coordinates at a fixed ratio.
  • the atomic coordinates where the metal is located are x ⁇ 0.01, y ⁇ 0.01, including a width of z ⁇ 0.01,
  • the atomic coordinates where oxygen is located are x ⁇ 0.01, y ⁇ 0.01, Includes a width of z ⁇ 0.01.
  • the space group is P1, and has the following atomic arrangement.
  • the metal in the following atomic arrangement is a state in which any one of In, Ga, and Al, or any two or more of In, Ga, and Al share the same atomic coordinates at a fixed ratio.
  • the atomic coordinates where the metal is located are x ⁇ 0.01, y ⁇ 0.01, including a width of z ⁇ 0.01,
  • the atomic coordinates where oxygen is located are x ⁇ 0.01, y ⁇ 0.01, Includes a width of z ⁇ 0.01.
  • the band gap of the compound A is preferably from 1.1 eV to 4.8 eV, more preferably from 1.5 eV to 4.5 eV, further preferably from 2.0 eV to 4.0 eV. More preferably, it is 3.0 eV or more and 3.7 eV or less. It is also preferable that the band gap of compound A is 2.9 eV or more and 3.3 eV or less. Since the band gap of compound A is larger than that of single crystal silicon, compound A is excellent as a power semiconductor material.
  • the band gap of compound A is smaller than that of ⁇ -gallium ( ⁇ -Ga 2 O 3 ), but from the viewpoint of thermal conductivity and bulk resistance, compound A has ⁇ -gallium ( ⁇ -Ga 2 O 3 ), and compound A has a better balance of properties than ⁇ -gallium ( ⁇ -Ga 2 O 3 ), and is promising as a next-generation material.
  • the method of measuring the band gap is as follows.
  • the diffuse reflection spectrum of the sintered body sample was measured, and the area where the reflectance sharply decreased in the spectrum obtained by converting the wavelength on the horizontal axis into energy (unit is eV) was approximated by a straight line (first straight line).
  • a band gap is calculated from the intersection of this straight line (first straight line) and a straight line (second straight line) passing through the maximum reflectance and parallel to the energy axis in the same spectrum.
  • the diffuse reflection spectrum can be measured using a spectrophotometer V-670 (manufactured by JASCO Corporation) equipped with an integrating sphere unit ISN-723 (manufactured by JASCO Corporation).
  • Compound A according to this embodiment has a wide band gap and can improve conductivity. According to the compound A according to this embodiment, an oxide semiconductor material having a band gap sufficiently wider than that of a general Si semiconductor can be manufactured.
  • the method for producing the compound A according to this embodiment is not particularly limited, but includes a solid-phase reaction method, a gas-phase reaction method, a melt method, a solution method, a sol-gel method, a sputtering method, TEOS-CVD, mist CVD, and ion plating. It can be manufactured by a method, a vacuum evaporation method, or an electron beam evaporation method.
  • the compound A containing the indium element (In), the gallium element (Ga), and the aluminum element (Al) is obtained, for example, by sintering indium oxide, gallium oxide, and aluminum oxide.
  • single crystal grains of compound A can be extracted from a polycrystalline sintered body obtained by sintering at 1500 ° C.
  • the sintered body according to the present embodiment is a sintered body including the compound A according to the present embodiment, and is preferably a sintered body including only the compound A according to the present embodiment.
  • the prepared sintered body (single crystal grain) is measured using a single crystal X-ray structure analyzer D8 @ QUEST (manufactured by Bruker), and the obtained XRD pattern is analyzed by APEX3 (manufactured by Bruker) to obtain a lattice constant. Can be calculated.
  • the bulk resistance of the compound A according to the present embodiment is preferably from 0.1 m ⁇ ⁇ cm to 500 m ⁇ ⁇ cm, more preferably from 0.1 m ⁇ ⁇ cm to 100 m ⁇ ⁇ cm, and more preferably from 0.5 m ⁇ ⁇ cm. It is more preferably 50 m ⁇ ⁇ cm or less, and further preferably 1 m ⁇ ⁇ cm or more and 30 m ⁇ ⁇ cm or less. If the bulk resistance of the compound A according to the present embodiment is 500 m ⁇ ⁇ cm or less, the compound A has a sufficiently low resistance and has conductivity as a semiconductor. If the compound A according to the present embodiment has a bulk resistance of 0.1 m ⁇ ⁇ cm or more, the compound A according to the present embodiment is more suitable as a semiconductor material. Bulk resistance can be measured by the method described in the examples.
  • the shape of the compound A is not particularly limited, and may be, for example, a sintered body, a substrate, a thin film, or fine particles, or a precursor before manufacturing these devices. It may be used as a body.
  • Examples of using the compound A according to the present embodiment as a sintered body include a sputtering target, a resistor, a varistor multilayer ceramic capacitor, a slot die, a multilayer ferrite chip inductor, a chip varistor, a thermistor, and a piezoelectric actuator. it can.
  • Examples of using the compound A according to this embodiment as a substrate or a thin film include a field effect transistor, a logic circuit, a memory circuit, a differential amplifier circuit, a power semiconductor element, a (rectifying) diode element, and a Schottky barrier diode element. , Junction transistor element, electrostatic discharge (ESD) protection diode, transient voltage protection (TVS) diode, light emitting diode, metal semiconductor field effect transistor (MESFET), junction field effect transistor (JFET), metal oxide semiconductor field effect transistor ( MOSFET, Schottky source / drain MOSFET, avalanche multiplication type photoelectric conversion element, solid-state imaging element, solar cell element, optical sensor element, display element, resistance change memory, and the like.
  • ESD electrostatic discharge
  • TVS transient voltage protection
  • MOSFET metal oxide semiconductor field effect transistor
  • MOSFET Schottky source / drain MOSFET
  • avalanche multiplication type photoelectric conversion element solid-state imaging element, solar cell element, optical
  • An electronic circuit using an element in the case where the compound A according to this embodiment is used as a substrate or a thin film can be used for an electric device, an electronic device, a vehicle, a power engine, or the like.
  • the mixture was placed in a furnace at 120 ° C. and dried, and only the mixed powder was taken out through a sieve having a mesh of 600 ⁇ m. 8 g of this mixed powder was placed in a 1-inch ⁇ mold, and a press-formed body was produced at a pressure of 20 kPa / cm 2 .
  • the densified press-formed body was put in a platinum crucible, placed in an atmospheric pressure firing furnace, heated to 800 ° C. at 5 ° C./min, held at 800 ° C. for 1 hour, and then at 5 ° C./min. Then, the temperature was raised to 1350 ° C., followed by sintering for 24 hours.
  • the polycrystalline sintered body was again heated to 1575 ° C. at 5 ° C./min, sintered for 2 hours, and left to cool to produce a single crystal.
  • the following evaluation was performed on the obtained polycrystalline sintered body and the single crystal grains taken out of the sintered body.
  • Lattice Constant and Atomic Coordinates For Examples 1, 2, 3, and 4, XRD patterns of the produced single crystal grains were measured using a single crystal X-ray structure analyzer D8 QUEST (manufactured by Bruker). As XRD pattern measurement conditions, the X-ray source was MoK ⁇ , the wavelength was 0.71073 °, the X-ray tube voltage was 50 kV, the tube current was 1 mA, and the irradiation diameter was 200 ⁇ m ⁇ . The obtained XRD pattern was analyzed by single crystal structure analysis software APEX3 (manufactured by Bruker) to obtain a lattice constant, a crystal system, a space group, an atomic ratio, and atomic coordinates. The crystal grain size of the produced single crystal grains was 30 ⁇ m or more.
  • the atomic ratio of single crystal grains was obtained by measuring an XRD pattern using a single crystal X-ray structure analyzer D8 QUEST (manufactured by Bruker) and obtaining an XRD pattern.
  • FIG. 1 shows a precession photograph of the (10.12 0.00 2.09) plane of the single crystal according to Example 2.
  • FIG. 2 shows a precession photograph of the (0.0012.78-6.61) plane of the single crystal according to Example 2.
  • FIG. 3 shows a precession photograph of the (11.95-7.08 0.00) plane of the single crystal according to Example 2.
  • the precession photograph is an XRD pattern obtained by measuring the produced sintered body (single crystal grain) using the single crystal X-ray structure analyzer D8 QUEST (manufactured by Bruker) in the above “(1) Lattice constant and atomic coordinates”.
  • Is equivalent to Table 1 shows the evaluation results of the characteristics of the sintered bodies according to Examples 1 to 4 and Comparative Example 1. With respect to the crystal system, space group, and lattice constant in Table 1, the results obtained by the method described in “(1) Lattice constant and atomic coordinates” are shown for Examples 1 to 4.
  • Tables 2 and 3 show atomic coordinates of compound A contained in the oxide sintered body according to Example 2.
  • Table 4 shows the numerical values of the atomic coordinates in Table 2 to two decimal places
  • Table 5 shows the numerical values of the atomic coordinates in Table 3 to two decimal places.
  • Table 6 and Table 7 show the atomic coordinates of Compound A contained in the oxide sintered body according to Example 1.
  • Table 8 shows the numerical values of the atomic coordinates of Table 6 to two decimal places
  • Table 9 shows the numerical values of the atomic coordinates of Table 7 to two decimal places.
  • Compound A according to Examples 1, 2, 3, and 4 contained a crystal phase satisfying the specified range of lattice constants (a, b, c, ⁇ , ⁇ , and ⁇ ). From Table 1, it was found that the compound A according to Examples 1, 2, 3, and 4 was a compound capable of producing an oxide semiconductor material sufficiently wider than the band gap of a general Si semiconductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Catalysts (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

インジウム元素(In)、ガリウム元素(Ga)、アルミニウム元素(Al)及び酸素元素(O)から形成され、格子定数が、a=10.07±0.15Å,b=10.45±0.15Å,c=11.01±0.15Å,α=111.70±0.50°,β=107.70±0.50°,及びγ=90.00±0.50°であり、結晶系が三斜晶を示す化合物。

Description

化合物
 本発明は、化合物に関する。
 薄膜トランジスタに用いられる酸化物半導体は、汎用のアモルファスシリコン(アモルファスシリコンをa-Siと略記する場合がある。)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できる。そのため、酸化物半導体は、大型、高解像度、及び高速駆動が要求される次世代ディスプレイへの適用、並びに耐熱性の低い樹脂基板等への適用が期待されている。上記酸化物半導体(膜)の形成に当たっては、スパッタリングターゲットをスパッタリングするスパッタリング法が好適に用いられている。これは、スパッタリング法で形成された薄膜が、イオンプレーティング法、真空蒸着法、又は電子ビーム蒸着法で形成された薄膜に比べ、膜面方向(膜面内)における成分組成及び膜厚等の面内均一性に優れており、スパッタリング法によれば、スパッタリングターゲットと同じ成分組成の薄膜を形成できるためである。
 特許文献1には、酸化インジウム、酸化ガリウム、及び酸化アルミニウムからなる焼結体で、前記ガリウムの含有量がGa/(In+Ga)原子数比で0.15以上0.49以下であり、前記アルミニウムの含有量がAl/(In+Ga+Al)原子数比で0.0001以上0.25未満であり、ビックスバイト型構造のIn相と、In相以外の生成相としてβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相を含む酸化物焼結体に関する記載がある。Gaの添加量が20at%、かつAlの添加量が1at%である混合物、並びにGaの添加量が25at%、かつAlの添加量が5at%である混合物のそれぞれを1400℃で20時間焼成した場合、XRDチャートからIn相及びGaInO相が析出することが記載されている。
国際公開第2016/084636号
 酸化物化合物は、バンドギャップが大きいことから、トランジスタ又はダイオード等の半導体デバイスに酸化物化合物を適用した時にリーク電流が低いことが特徴である。一方、酸化物化合物は、バンドギャップが大きいため半導体として安定的にキャリア濃度を制御できないこと、また十分な伝導性が得られないという課題がある。これら課題を解決できる、新規化合物への要望がある。具体的には、一般的なSi半導体のバンドギャップに比べて十分広い酸化物半導体材料を作製できる化合物が要望されている。
 本発明の目的は、一般的なSi半導体のバンドギャップに比べて十分広い酸化物半導体材料を作製できる化合物を提供することである。
 本発明によれば、以下の化合物が提供される。
[1]. インジウム元素(In)、ガリウム元素(Ga)、アルミニウム元素(Al)及び酸素元素(O)から形成され、
 格子定数が、
   a = 10.07±0.15Å,
   b = 10.45±0.15Å,
   c = 11.01±0.15Å,
   α=111.70±0.50°,
   β=107.70±0.50°,及び
   γ= 90.00±0.50°であり、
 結晶系が三斜晶を示す化合物。
[2].空間群がP-1もしくはP1である、[1]に記載の化合物。
[3].空間群がP-1であり、下記に示す原子配置を有する、[1]に記載の化合物。
 ただし、下記原子配置における金属は、In、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
 金属が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含み、
 酸素が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含む。
原子種:金属、原子座標(x=0.04、y=0.36、z=0.87)
原子種:金属、原子座標(x=0.13、y=0.12、z=0.62)
原子種:金属、原子座標(x=0.21、y=0.85、z=0.39)
原子種:金属、原子座標(x=0.23、y=0.11、z=0.97)
原子種:金属、原子座標(x=0.29、y=0.64、z=0.11)
原子種:金属、原子座標(x=0.46、y=0.12、z=0.63)
原子種:金属、原子座標(x=0.58、y=0.14、z=0.01)
原子種:金属、原子座標(x=0.62、y=0.64、z=0.11)
原子種:金属、原子座標(x=0.69、y=0.18、z=0.32)
原子種:金属、原子座標(x=0.09、y=0.88、z=0.03)
原子種:金属、原子座標(x=0.02、y=0.13、z=0.30)
原子種:金属、原子座標(x=0.06、y=0.61、z=0.46)
原子種:金属、原子座標(x=0.15、y=0.40、z=0.19)
原子種:金属、原子座標(x=0.26、y=0.36、z=0.54)
原子種:金属、原子座標(x=0.34、y=0.13、z=0.30)
原子種:金属、原子座標(x=0.41、y=0.61、z=0.45)
原子種:金属、原子座標(x=0.48、y=0.40、z=0.23)
原子種:金属、原子座標(x=0.84、y=0.39、z=0.23)
原子種:酸素、原子座標(x=0.02、y=0.73、z=0.36)
原子種:酸素、原子座標(x=0.03、y=0.45、z=0.29)
原子種:酸素、原子座標(x=0.05、y=0.02、z=0.40)
原子種:酸素、原子座標(x=0.10、y=0.74、z=0.65)
原子種:酸素、原子座標(x=0.10、y=0.23、z=0.06)
原子種:酸素、原子座標(x=0.12、y=0.51、z=0.09)
原子種:酸素、原子座標(x=0.12、y=0.47、z=0.57)
原子種:酸素、原子座標(x=0.13、y=0.79、z=0.17)
原子種:酸素、原子座標(x=0.19、y=0.21、z=0.84)
原子種:酸素、原子座標(x=0.20、y=0.23、z=0.36)
原子種:酸素、原子座標(x=0.25、y=0.66、z=0.49)
原子種:酸素、原子座標(x=0.27、y=0.02、z=0.12)
原子種:酸素、原子座標(x=0.30、y=0.26、z=0.65)
原子種:酸素、原子座標(x=0.33、y=0.44、z=0.29)
原子種:酸素、原子座標(x=0.38、y=0.02、z=0.40)
原子種:酸素、原子座標(x=0.39、y=0.73、z=0.35)
原子種:酸素、原子座標(x=0.41、y=0.24、z=0.07)
原子種:酸素、原子座標(x=0.43、y=0.47、z=0.57)
原子種:酸素、原子座標(x=0.46、y=0.51、z=0.11)
原子種:酸素、原子座標(x=0.47、y=0.79、z=0.15)
原子種:酸素、原子座標(x=0.50、y=0.25、z=0.36)
原子種:酸素、原子座標(x=0.64、y=0.03、z=0.12)
原子種:酸素、原子座標(x=0.66、y=0.34、z=0.23)
原子種:酸素、原子座標(x=0.72、y=0.03、z=0.40)
原子種:酸素、原子座標(x=0.78、y=0.51、z=0.12)
原子種:酸素、原子座標(x=0.80、y=0.25、z=0.06)
原子種:酸素、原子座標(x=0.96、y=0.02、z=0.12)
[4].空間群がP1であり、下記に示す原子配置を有する、請求項1に記載の化合物。
 ただし、下記原子配置における金属はIn、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
 金属が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含み、
 酸素が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含む。
原子種:金属、原子座標(x=0.04、y=0.36、z=0.87)
原子種:金属、原子座標(x=0.13、y=0.12、z=0.62)
原子種:金属、原子座標(x=0.21、y=0.85、z=0.39)
原子種:金属、原子座標(x=0.23、y=0.11、z=0.97)
原子種:金属、原子座標(x=0.29、y=0.64、z=0.11)
原子種:金属、原子座標(x=0.46、y=0.12、z=0.63)
原子種:金属、原子座標(x=0.58、y=0.14、z=0.01)
原子種:金属、原子座標(x=0.62、y=0.64、z=0.11)
原子種:金属、原子座標(x=0.69、y=0.18、z=0.32)
原子種:金属、原子座標(x=0.09、y=0.88、z=0.03)
原子種:金属、原子座標(x=0.02、y=0.13、z=0.30)
原子種:金属、原子座標(x=0.06、y=0.61、z=0.46)
原子種:金属、原子座標(x=0.15、y=0.40、z=0.19)
原子種:金属、原子座標(x=0.26、y=0.36、z=0.54)
原子種:金属、原子座標(x=0.34、y=0.13、z=0.30)
原子種:金属、原子座標(x=0.41、y=0.61、z=0.45)
原子種:金属、原子座標(x=0.48、y=0.40、z=0.23)
原子種:金属、原子座標(x=0.84、y=0.39、z=0.23)
原子種:金属、原子座標(x=0.96、y=0.64、z=0.13)
原子種:金属、原子座標(x=0.87、y=0.88、z=0.38)
原子種:金属、原子座標(x=0.79、y=0.15、z=0.61)
原子種:金属、原子座標(x=0.77、y=0.89、z=0.03)
原子種:金属、原子座標(x=0.71、y=0.36、z=0.89)
原子種:金属、原子座標(x=0.54、y=0.88、z=0.37)
原子種:金属、原子座標(x=0.42、y=0.86、z=0.99)
原子種:金属、原子座標(x=0.38、y=0.36、z=0.89)
原子種:金属、原子座標(x=0.31、y=0.82、z=0.68)
原子種:金属、原子座標(x=0.91、y=0.12、z=0.97)
原子種:金属、原子座標(x=0.98、y=0.87、z=0.70)
原子種:金属、原子座標(x=0.94、y=0.39、z=0.54)
原子種:金属、原子座標(x=0.85、y=0.60、z=0.81)
原子種:金属、原子座標(x=0.74、y=0.64、z=0.46)
原子種:金属、原子座標(x=0.66、y=0.87、z=0.70)
原子種:金属、原子座標(x=0.59、y=0.39、z=0.55)
原子種:金属、原子座標(x=0.52、y=0.60、z=0.77)
原子種:金属、原子座標(x=0.16、y=0.61、z=0.77)
原子種:酸素、原子座標(x=0.02、y=0.73、z=0.36)
原子種:酸素、原子座標(x=0.03、y=0.45、z=0.29)
原子種:酸素、原子座標(x=0.05、y=0.02、z=0.40)
原子種:酸素、原子座標(x=0.10、y=0.74、z=0.65)
原子種:酸素、原子座標(x=0.10、y=0.23、z=0.06)
原子種:酸素、原子座標(x=0.12、y=0.51、z=0.09)
原子種:酸素、原子座標(x=0.12、y=0.47、z=0.57)
原子種:酸素、原子座標(x=0.13、y=0.79、z=0.17)
原子種:酸素、原子座標(x=0.19、y=0.21、z=0.84)
原子種:酸素、原子座標(x=0.20、y=0.23、z=0.36)
原子種:酸素、原子座標(x=0.25、y=0.66、z=0.49)
原子種:酸素、原子座標(x=0.27、y=0.02、z=0.12)
原子種:酸素、原子座標(x=0.30、y=0.26、z=0.65)
原子種:酸素、原子座標(x=0.33、y=0.44、z=0.29)
原子種:酸素、原子座標(x=0.38、y=0.02、z=0.40)
原子種:酸素、原子座標(x=0.39、y=0.73、z=0.35)
原子種:酸素、原子座標(x=0.41、y=0.24、z=0.07)
原子種:酸素、原子座標(x=0.43、y=0.47、z=0.57)
原子種:酸素、原子座標(x=0.46、y=0.51、z=0.11)
原子種:酸素、原子座標(x=0.47、y=0.79、z=0.15)
原子種:酸素、原子座標(x=0.50、y=0.25、z=0.36)
原子種:酸素、原子座標(x=0.64、y=0.03、z=0.12)
原子種:酸素、原子座標(x=0.66、y=0.34、z=0.23)
原子種:酸素、原子座標(x=0.72、y=0.03、z=0.40)
原子種:酸素、原子座標(x=0.78、y=0.51、z=0.12)
原子種:酸素、原子座標(x=0.80、y=0.25、z=0.06)
原子種:酸素、原子座標(x=0.96、y=0.02、z=0.12)
原子種:酸素、原子座標(x=0.98、y=0.27、z=0.64)
原子種:酸素、原子座標(x=0.97、y=0.55、z=0.72)
原子種:酸素、原子座標(x=0.95、y=0.98、z=0.60)
原子種:酸素、原子座標(x=0.90、y=0.26、z=0.35)
原子種:酸素、原子座標(x=0.90、y=0.77、z=0.94)
原子種:酸素、原子座標(x=0.88、y=0.49、z=0.91)
原子種:酸素、原子座標(x=0.88、y=0.53、z=0.43)
原子種:酸素、原子座標(x=0.87、y=0.21、z=0.83)
原子種:酸素、原子座標(x=0.81、y=0.79、z=0.16)
原子種:酸素、原子座標(x=0.80、y=0.77、z=0.64)
原子種:酸素、原子座標(x=0.75、y=0.34、z=0.51)
原子種:酸素、原子座標(x=0.73、y=0.98、z=0.88)
原子種:酸素、原子座標(x=0.70、y=0.74、z=0.35)
原子種:酸素、原子座標(x=0.67、y=0.56、z=0.71)
原子種:酸素、原子座標(x=0.62、y=0.98、z=0.60)
原子種:酸素、原子座標(x=0.61、y=0.27、z=0.65)
原子種:酸素、原子座標(x=0.59、y=0.76、z=0.93)
原子種:酸素、原子座標(x=0.58、y=0.53、z=0.43)
原子種:酸素、原子座標(x=0.54、y=0.49、z=0.89)
原子種:酸素、原子座標(x=0.53、y=0.21、z=0.85)
原子種:酸素、原子座標(x=0.50、y=0.75、z=0.64)
原子種:酸素、原子座標(x=0.36、y=0.97、z=0.88)
原子種:酸素、原子座標(x=0.34、y=0.66、z=0.77)
原子種:酸素、原子座標(x=0.28、y=0.97、z=0.60)
原子種:酸素、原子座標(x=0.22、y=0.49、z=0.88)
原子種:酸素、原子座標(x=0.20、y=0.75、z=0.94)
原子種:酸素、原子座標(x=0.04、y=0.98、z=0.88)
[5].空間群がP-1であり、下記に示す原子配置を有する、[1]に記載の化合物。
 ただし、下記原子配置における金属は、In、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
 金属が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含み、
 酸素が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含む。
原子種:金属、原子座標(x=0.04478、y=0.36228、z=0.86934)
原子種:金属、原子座標(x=0.12677、y=0.11682、z=0.62279)
原子種:金属、原子座標(x=0.21268、y=0.8504、z=0.38665)
原子種:金属、原子座標(x=0.23283、y=0.11047、z=0.97132)
原子種:金属、原子座標(x=0.28695、y=0.64349、z=0.10627)
原子種:金属、原子座標(x=0.45663、y=0.11849、z=0.62655)
原子種:金属、原子座標(x=0.58343、y=0.14455、z=0.0065)
原子種:金属、原子座標(x=0.62181、y=0.6417、z=0.10725)
原子種:金属、原子座標(x=0.68785、y=0.18413、z=0.31614)
原子種:金属、原子座標(x=0.08662、y=0.88097、z=0.03282)
原子種:金属、原子座標(x=0.02388、y=0.13328、z=0.30129)
原子種:金属、原子座標(x=0.0627、y=0.6051、z=0.4561)
原子種:金属、原子座標(x=0.1503、y=0.3962、z=0.1949)
原子種:金属、原子座標(x=0.2624、y=0.36429、z=0.5374)
原子種:金属、原子座標(x=0.34051、y=0.1304、z=0.29845)
原子種:金属、原子座標(x=0.4081、y=0.6082、z=0.4509)
原子種:金属、原子座標(x=0.4821、y=0.39651、z=0.22899)
原子種:金属、原子座標(x=0.8369、y=0.39245、z=0.23049)
原子種:酸素、原子座標(x=0.0157、y=0.7332、z=0.3627)
原子種:酸素、原子座標(x=0.0295、y=0.4499、z=0.285)
原子種:酸素、原子座標(x=0.0518、y=0.0204、z=0.4013)
原子種:酸素、原子座標(x=0.0975、y=0.7442、z=0.6484)
原子種:酸素、原子座標(x=0.1004、y=0.231、z=0.0611)
原子種:酸素、原子座標(x=0.121、y=0.5054、z=0.0929)
原子種:酸素、原子座標(x=0.1218、y=0.4677、z=0.5675)
原子種:酸素、原子座標(x=0.1323、y=0.7893、z=0.17)
原子種:酸素、原子座標(x=0.1917、y=0.2052、z=0.837)
原子種:酸素、原子座標(x=0.1998、y=0.2293、z=0.3578)
原子種:酸素、原子座標(x=0.2461、y=0.6607、z=0.4873)
原子種:酸素、原子座標(x=0.2703、y=0.0197、z=0.1161)
原子種:酸素、原子座標(x=0.2975、y=0.2578、z=0.6451)
原子種:酸素、原子座標(x=0.3274、y=0.4429、z=0.2908)
原子種:酸素、原子座標(x=0.38、y=0.017、z=0.3996)
原子種:酸素、原子座標(x=0.3852、y=0.7303、z=0.3495)
原子種:酸素、原子座標(x=0.4077、y=0.2385、z=0.0657)
原子種:酸素、原子座標(x=0.425、y=0.4654、z=0.5745)
原子種:酸素、原子座標(x=0.4569、y=0.5063、z=0.1142)
原子種:酸素、原子座標(x=0.472、y=0.7862、z=0.1502)
原子種:酸素、原子座標(x=0.50、y=0.2483、z=0.3581)
原子種:酸素、原子座標(x=0.6404、y=0.0285、z=0.122)
原子種:酸素、原子座標(x=0.6587、y=0.3356、z=0.2257)
原子種:酸素、原子座標(x=0.7171、y=0.0302、z=0.3985)
原子種:酸素、原子座標(x=0.7808、y=0.5096、z=0.1234)
原子種:酸素、原子座標(x=0.8007、y=0.2465、z=0.0562)
原子種:酸素、原子座標(x=0.9644、y=0.0248、z=0.117)
[6].空間群がP1であり、下記に示す原子配置を有する、[1]に記載の化合物。
 ただし、下記原子配置における金属はIn、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
 金属が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含み、
 酸素が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含む。
原子種:金属、原子座標(x=0.04478、y=0.36228、z=0.86934)
原子種:金属、原子座標(x=0.12677、y=0.11682、z=0.62279)
原子種:金属、原子座標(x=0.21268、y=0.8504、z=0.38665)
原子種:金属、原子座標(x=0.23283、y=0.11047、z=0.97132)
原子種:金属、原子座標(x=0.28695、y=0.64349、z=0.10627)
原子種:金属、原子座標(x=0.45663、y=0.11849、z=0.62655)
原子種:金属、原子座標(x=0.58343、y=0.14455、z=0.0065)
原子種:金属、原子座標(x=0.62181、y=0.6417、z=0.10725)
原子種:金属、原子座標(x=0.68785、y=0.18413、z=0.31614)
原子種:金属、原子座標(x=0.08662、y=0.88097、z=0.03282)
原子種:金属、原子座標(x=0.02388、y=0.13328、z=0.30129)
原子種:金属、原子座標(x=0.0627、y=0.6051、z=0.4561)
原子種:金属、原子座標(x=0.1503、y=0.3962、z=0.1949)
原子種:金属、原子座標(x=0.2624、y=0.36429、z=0.5374)
原子種:金属、原子座標(x=0.34051、y=0.1304、z=0.29845)
原子種:金属、原子座標(x=0.4081、y=0.6082、z=0.4509)
原子種:金属、原子座標(x=0.4821、y=0.39651、z=0.22899)
原子種:金属、原子座標(x=0.8369、y=0.39245、z=0.23049)
原子種:金属、原子座標(x=0.95522、y=0.63772、z=0.13066)
原子種:金属、原子座標(x=0.87323、y=0.88318、z=0.37721)
原子種:金属、原子座標(x=0.78732、y=0.1496、z=0.61335)
原子種:金属、原子座標(x=0.76717、y=0.88953、z=0.02868)
原子種:金属、原子座標(x=0.71305、y=0.35651、z=0.89373)
原子種:金属、原子座標(x=0.54337、y=0.88151、z=0.37345)
原子種:金属、原子座標(x=0.41657、y=0.85545、z=0.9935)
原子種:金属、原子座標(x=0.37819、y=0.3583、z=0.89275)
原子種:金属、原子座標(x=0.31215、y=0.81587、z=0.68386)
原子種:金属、原子座標(x=0.91338、y=0.11903、z=0.96718)
原子種:金属、原子座標(x=0.97612、y=0.86672、z=0.69871)
原子種:金属、原子座標(x=0.9373、y=0.3949、z=0.5439)
原子種:金属、原子座標(x=0.8497、y=0.6038、z=0.8051)
原子種:金属、原子座標(x=0.7376、y=0.63571、z=0.4626)
原子種:金属、原子座標(x=0.65949、y=0.8696、z=0.70155)
原子種:金属、原子座標(x=0.5919、y=0.3918、z=0.5491)
原子種:金属、原子座標(x=0.5179、y=0.60349、z=0.77101)
原子種:金属、原子座標(x=0.1631、y=0.60755、z=0.76951)
原子種:酸素、原子座標(x=0.0157、y=0.7332、z=0.3627)
原子種:酸素、原子座標(x=0.0295、y=0.4499、z=0.285)
原子種:酸素、原子座標(x=0.0518、y=0.0204、z=0.4013)
原子種:酸素、原子座標(x=0.0975、y=0.7442、z=0.6484)
原子種:酸素、原子座標(x=0.1004、y=0.231、z=0.0611)
原子種:酸素、原子座標(x=0.121、y=0.5054、z=0.0929)
原子種:酸素、原子座標(x=0.1218、y=0.4677、z=0.5675)
原子種:酸素、原子座標(x=0.1323、y=0.7893、z=0.17)
原子種:酸素、原子座標(x=0.1917、y=0.2052、z=0.837)
原子種:酸素、原子座標(x=0.1998、y=0.2293、z=0.3578)
原子種:酸素、原子座標(x=0.2461、y=0.6607、z=0.4873)
原子種:酸素、原子座標(x=0.2703、y=0.0197、z=0.1161)
原子種:酸素、原子座標(x=0.2975、y=0.2578、z=0.6451)
原子種:酸素、原子座標(x=0.3274、y=0.4429、z=0.2908)
原子種:酸素、原子座標(x=0.38、y=0.017、z=0.3996)
原子種:酸素、原子座標(x=0.3852、y=0.7303、z=0.3495)
原子種:酸素、原子座標(x=0.4077、y=0.2385、z=0.0657)
原子種:酸素、原子座標(x=0.425、y=0.4654、z=0.5745)
原子種:酸素、原子座標(x=0.4569、y=0.5063、z=0.1142)
原子種:酸素、原子座標(x=0.472、y=0.7862、z=0.1502)
原子種:酸素、原子座標(x=0.50、y=0.2483、z=0.3581)
原子種:酸素、原子座標(x=0.6404、y=0.0285、z=0.122)
原子種:酸素、原子座標(x=0.6587、y=0.3356、z=0.2257)
原子種:酸素、原子座標(x=0.7171、y=0.0302、z=0.3985)
原子種:酸素、原子座標(x=0.7808、y=0.5096、z=0.1234)
原子種:酸素、原子座標(x=0.8007、y=0.2465、z=0.0562)
原子種:酸素、原子座標(x=0.9644、y=0.0248、z=0.117)
原子種:酸素、原子座標(x=0.9843、y=0.2668、z=0.6373)
原子種:酸素、原子座標(x=0.9705、y=0.5501、z=0.715)
原子種:酸素、原子座標(x=0.9482、y=0.9796、z=0.5987)
原子種:酸素、原子座標(x=0.9025、y=0.2558、z=0.3516)
原子種:酸素、原子座標(x=0.8996、y=0.769、z=0.9389)
原子種:酸素、原子座標(x=0.879、y=0.4946、z=0.9071)
原子種:酸素、原子座標(x=0.8782、y=0.5323、z=0.4325)
原子種:酸素、原子座標(x=0.8677、y=0.2107、z=0.83)
原子種:酸素、原子座標(x=0.8083、y=0.7948、z=0.163)
原子種:酸素、原子座標(x=0.8002、y=0.7707、z=0.6422)
原子種:酸素、原子座標(x=0.7539、y=0.3393、z=0.5127)
原子種:酸素、原子座標(x=0.7297、y=0.9803、z=0.8839)
原子種:酸素、原子座標(x=0.7025、y=0.7422、z=0.3549)
原子種:酸素、原子座標(x=0.6726、y=0.5571、z=0.7092)
原子種:酸素、原子座標(x=0.62、y=0.983、z=0.6004)
原子種:酸素、原子座標(x=0.6148、y=0.2697、z=0.6505)
原子種:酸素、原子座標(x=0.5923、y=0.7615、z=0.9343)
原子種:酸素、原子座標(x=0.575、y=0.5346、z=0.4255)
原子種:酸素、原子座標(x=0.5431、y=0.4937、z=0.8858)
原子種:酸素、原子座標(x=0.528、y=0.2138、z=0.8498)
原子種:酸素、原子座標(x=0.5、y=0.7517、z=0.6419)
原子種:酸素、原子座標(x=0.3596、y=0.9715、z=0.878)
原子種:酸素、原子座標(x=0.3413、y=0.6644、z=0.7743)
原子種:酸素、原子座標(x=0.2829、y=0.9698、z=0.6015)
原子種:酸素、原子座標(x=0.2192、y=0.4904、z=0.8766)
原子種:酸素、原子座標(x=0.1993、y=0.7535、z=0.9438)
原子種:酸素、原子座標(x=0.0356、y=0.9752、z=0.883)
 本発明の一態様に係る化合物によれば、一般的なSi半導体のバンドギャップに比べて十分広い酸化物半導体材料を作製できる化合物を提供することができる。
実施例2に係る単結晶の(10.12 0.00 2.09)面のプリセッション写真である。 実施例2に係る単結晶の(0.00 12.78 -6.61)面のプリセッション写真である。 実施例2に係る単結晶の(11.95 -7.08 0.00)面のプリセッション写真である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前に記載される数値を下限値とし、「~」の後に記載される数値を上限値として含む範囲を意味する。
〔化合物〕
 本実施形態に係る化合物(以下、化合物Aと称する場合がある。)は、インジウム元素(In)、ガリウム元素(Ga)、アルミニウム元素(Al)及び酸素元素(O)から形成される。
 化合物Aの格子定数は、
  a = 10.07±0.15Å,
  b = 10.45±0.15Å,
  c = 11.01±0.15Å,
  α=111.70±0.50°,
  β=107.70±0.50°,及び
  γ= 90.00±0.50°である。
 化合物Aは、結晶系が三斜晶を示す化合物である。
 本実施形態に係る化合物Aにおいて、格子定数は、好ましくは、
  a = 10.07±0.13Å,
  b = 10.45±0.13Å,
  c = 11.01±0.13Å,
  α=111.70±0.40°,
  β=107.70±0.40°,及び
  γ= 90.00±0.40°である。
 本実施形態に係る化合物Aにおいて、格子定数は、より好ましくは、
  a = 10.07±0.10Å,
  b = 10.45±0.10Å,
  c = 11.01±0.10Å,
  α=111.70±0.30°,
  β=107.70±0.30°,及び
  γ= 90.00±0.30°である。
 本明細書において、単位Åは、10-10mに相当する。
 化合物Aの格子定数及び原子座標は、化合物Aの単結晶粒について単結晶X線構造解析装置でXRDパターンを測定し、このXRDパターンについて単結晶構造解析ソフトウェアを用いて結晶構造解析を行って得られた結果を用いる。
 作製したサンプルの粉末XRDパターンはJCPDS (Joint Committee of Powder Diffraction Standard)、及びICSD (Inorganic Crystal Structure Database)で一致するものがなく、本実施形態に係る化合物Aは、未知の結晶構造化合物であることが判明した。
[結晶構造解析]
 本実施形態に係る化合物Aの結晶構造は、酸化ガリウム粉末、酸化アルミニウム粉末、及び酸化インジウム粉末を混合焼結し作製した単結晶粒を単結晶X線構造解析装置D8 QUEST(Bruker社製)を用いて測定できる。この時のX線源はMoKαであり、波長は0.71073Åであり、管電圧は50kVであり、管電流は1mAであり、照射径は200μmφであり、得られたXRDパターンを単結晶構造解析ソフトウェアAPEX3(Bruker社製)で解析することで結晶構造を同定することができる。この時、単結晶粒の結晶粒径は、測定の容易性の観点から、30μm以上であることが好ましい。
 本実施形態に係る化合物Aにおいて、インジウム元素(In)、ガリウム元素(Ga)及びアルミニウム元素(Al)の好ましい原子比は下記式(1)~(3)で表される範囲である。
 30≦In/(In+Ga+Al)≦62 ・・・(1)
 15≦Ga/(In+Ga+Al)≦45 ・・・(2)
  8≦Al/(In+Ga+Al)≦35 ・・・(3)
(式(1)~(3)中、In、Al、Gaは、それぞれ酸化物焼結体中のインジウム元素、アルミニウム元素及びガリウム元素の原子数を示す。)
<原子比の測定方法>
 本明細書における原子比は、誘導結合プラズマ発光分光分析装置(ICP-AES)により測定できる。
<結晶系、及び空間群>
 本実施形態に係る化合物Aの結晶系が三斜晶であり、化合物Aは、空間群P-1に帰属可能な結晶構造を有することが好ましい。なお、空間群「P-1」における「P」と「1」との間に記載の「-」は、本来「1」の上に付して記載される(以下、他の空間群の表記についても同様である)。
(化合物Aの第一の態様)
 本実施形態に係る化合物Aの第一の態様は、空間群がP-1であり、下記に示す原子配置を有する。ただし、下記原子配置における金属は、In、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
 金属が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含み、
 酸素が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含む。
原子種:金属、原子座標(x=0.04、y=0.36、z=0.87)
原子種:金属、原子座標(x=0.13、y=0.12、z=0.62)
原子種:金属、原子座標(x=0.21、y=0.85、z=0.39)
原子種:金属、原子座標(x=0.23、y=0.11、z=0.97)
原子種:金属、原子座標(x=0.29、y=0.64、z=0.11)
原子種:金属、原子座標(x=0.46、y=0.12、z=0.63)
原子種:金属、原子座標(x=0.58、y=0.14、z=0.01)
原子種:金属、原子座標(x=0.62、y=0.64、z=0.11)
原子種:金属、原子座標(x=0.69、y=0.18、z=0.32)
原子種:金属、原子座標(x=0.09、y=0.88、z=0.03)
原子種:金属、原子座標(x=0.02、y=0.13、z=0.30)
原子種:金属、原子座標(x=0.06、y=0.61、z=0.46)
原子種:金属、原子座標(x=0.15、y=0.40、z=0.19)
原子種:金属、原子座標(x=0.26、y=0.36、z=0.54)
原子種:金属、原子座標(x=0.34、y=0.13、z=0.30)
原子種:金属、原子座標(x=0.41、y=0.61、z=0.45)
原子種:金属、原子座標(x=0.48、y=0.40、z=0.23)
原子種:金属、原子座標(x=0.84、y=0.39、z=0.23)
原子種:酸素、原子座標(x=0.02、y=0.73、z=0.36)
原子種:酸素、原子座標(x=0.03、y=0.45、z=0.29)
原子種:酸素、原子座標(x=0.05、y=0.02、z=0.40)
原子種:酸素、原子座標(x=0.10、y=0.74、z=0.65)
原子種:酸素、原子座標(x=0.10、y=0.23、z=0.06)
原子種:酸素、原子座標(x=0.12、y=0.51、z=0.09)
原子種:酸素、原子座標(x=0.12、y=0.47、z=0.57)
原子種:酸素、原子座標(x=0.13、y=0.79、z=0.17)
原子種:酸素、原子座標(x=0.19、y=0.21、z=0.84)
原子種:酸素、原子座標(x=0.20、y=0.23、z=0.36)
原子種:酸素、原子座標(x=0.25、y=0.66、z=0.49)
原子種:酸素、原子座標(x=0.27、y=0.02、z=0.12)
原子種:酸素、原子座標(x=0.30、y=0.26、z=0.65)
原子種:酸素、原子座標(x=0.33、y=0.44、z=0.29)
原子種:酸素、原子座標(x=0.38、y=0.02、z=0.40)
原子種:酸素、原子座標(x=0.39、y=0.73、z=0.35)
原子種:酸素、原子座標(x=0.41、y=0.24、z=0.07)
原子種:酸素、原子座標(x=0.43、y=0.47、z=0.57)
原子種:酸素、原子座標(x=0.46、y=0.51、z=0.11)
原子種:酸素、原子座標(x=0.47、y=0.79、z=0.15)
原子種:酸素、原子座標(x=0.50、y=0.25、z=0.36)
原子種:酸素、原子座標(x=0.64、y=0.03、z=0.12)
原子種:酸素、原子座標(x=0.66、y=0.34、z=0.23)
原子種:酸素、原子座標(x=0.72、y=0.03、z=0.40)
原子種:酸素、原子座標(x=0.78、y=0.51、z=0.12)
原子種:酸素、原子座標(x=0.80、y=0.25、z=0.06)
原子種:酸素、原子座標(x=0.96、y=0.02、z=0.12)
 以上が、本実施形態に係る化合物Aの第一の態様における原子配置である。
(化合物Aの第二の態様)
 本実施形態に係る化合物Aの第二の態様は、空間群がP-1であり、下記に示す原子配置を有する。ただし、下記原子配置における金属は、In、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
 金属が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含み、
 酸素が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含む。
原子種:金属、原子座標(x=0.04478、y=0.36228、z=0.86934)
原子種:金属、原子座標(x=0.12677、y=0.11682、z=0.62279)
原子種:金属、原子座標(x=0.21268、y=0.8504、z=0.38665)
原子種:金属、原子座標(x=0.23283、y=0.11047、z=0.97132)
原子種:金属、原子座標(x=0.28695、y=0.64349、z=0.10627)
原子種:金属、原子座標(x=0.45663、y=0.11849、z=0.62655)
原子種:金属、原子座標(x=0.58343、y=0.14455、z=0.0065)
原子種:金属、原子座標(x=0.62181、y=0.6417、z=0.10725)
原子種:金属、原子座標(x=0.68785、y=0.18413、z=0.31614)
原子種:金属、原子座標(x=0.08662、y=0.88097、z=0.03282)
原子種:金属、原子座標(x=0.02388、y=0.13328、z=0.30129)
原子種:金属、原子座標(x=0.0627、y=0.6051、z=0.4561)
原子種:金属、原子座標(x=0.1503、y=0.3962、z=0.1949)
原子種:金属、原子座標(x=0.2624、y=0.36429、z=0.5374)
原子種:金属、原子座標(x=0.34051、y=0.1304、z=0.29845)
原子種:金属、原子座標(x=0.4081、y=0.6082、z=0.4509)
原子種:金属、原子座標(x=0.4821、y=0.39651、z=0.22899)
原子種:金属、原子座標(x=0.8369、y=0.39245、z=0.23049)
原子種:酸素、原子座標(x=0.0157、y=0.7332、z=0.3627)
原子種:酸素、原子座標(x=0.0295、y=0.4499、z=0.285)
原子種:酸素、原子座標(x=0.0518、y=0.0204、z=0.4013)
原子種:酸素、原子座標(x=0.0975、y=0.7442、z=0.6484)
原子種:酸素、原子座標(x=0.1004、y=0.231、z=0.0611)
原子種:酸素、原子座標(x=0.121、y=0.5054、z=0.0929)
原子種:酸素、原子座標(x=0.1218、y=0.4677、z=0.5675)
原子種:酸素、原子座標(x=0.1323、y=0.7893、z=0.17)
原子種:酸素、原子座標(x=0.1917、y=0.2052、z=0.837)
原子種:酸素、原子座標(x=0.1998、y=0.2293、z=0.3578)
原子種:酸素、原子座標(x=0.2461、y=0.6607、z=0.4873)
原子種:酸素、原子座標(x=0.2703、y=0.0197、z=0.1161)
原子種:酸素、原子座標(x=0.2975、y=0.2578、z=0.6451)
原子種:酸素、原子座標(x=0.3274、y=0.4429、z=0.2908)
原子種:酸素、原子座標(x=0.38、y=0.017、z=0.3996)
原子種:酸素、原子座標(x=0.3852、y=0.7303、z=0.3495)
原子種:酸素、原子座標(x=0.4077、y=0.2385、z=0.0657)
原子種:酸素、原子座標(x=0.425、y=0.4654、z=0.5745)
原子種:酸素、原子座標(x=0.4569、y=0.5063、z=0.1142)
原子種:酸素、原子座標(x=0.472、y=0.7862、z=0.1502)
原子種:酸素、原子座標(x=0.50、y=0.2483、z=0.3581)
原子種:酸素、原子座標(x=0.6404、y=0.0285、z=0.122)
原子種:酸素、原子座標(x=0.6587、y=0.3356、z=0.2257)
原子種:酸素、原子座標(x=0.7171、y=0.0302、z=0.3985)
原子種:酸素、原子座標(x=0.7808、y=0.5096、z=0.1234)
原子種:酸素、原子座標(x=0.8007、y=0.2465、z=0.0562)
原子種:酸素、原子座標(x=0.9644、y=0.0248、z=0.117)
 以上が、本実施形態に係る化合物Aの第二の態様における原子配置である。
 また、本実施形態に係る化合物Aの結晶系が三斜晶であり、化合物Aは、空間群P1に帰属可能な結晶構造を有することが好ましい。
(化合物Aの第三の態様)
 本実施形態に係る化合物Aの第三の態様は、空間群がP1であり、下記に示す原子配置を有する。ただし、下記原子配置における金属はIn、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
 金属が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含み、
 酸素が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含む。
原子種:金属、原子座標(x=0.04、y=0.36、z=0.87)
原子種:金属、原子座標(x=0.13、y=0.12、z=0.62)
原子種:金属、原子座標(x=0.21、y=0.85、z=0.39)
原子種:金属、原子座標(x=0.23、y=0.11、z=0.97)
原子種:金属、原子座標(x=0.29、y=0.64、z=0.11)
原子種:金属、原子座標(x=0.46、y=0.12、z=0.63)
原子種:金属、原子座標(x=0.58、y=0.14、z=0.01)
原子種:金属、原子座標(x=0.62、y=0.64、z=0.11)
原子種:金属、原子座標(x=0.69、y=0.18、z=0.32)
原子種:金属、原子座標(x=0.09、y=0.88、z=0.03)
原子種:金属、原子座標(x=0.02、y=0.13、z=0.30)
原子種:金属、原子座標(x=0.06、y=0.61、z=0.46)
原子種:金属、原子座標(x=0.15、y=0.40、z=0.19)
原子種:金属、原子座標(x=0.26、y=0.36、z=0.54)
原子種:金属、原子座標(x=0.34、y=0.13、z=0.30)
原子種:金属、原子座標(x=0.41、y=0.61、z=0.45)
原子種:金属、原子座標(x=0.48、y=0.40、z=0.23)
原子種:金属、原子座標(x=0.84、y=0.39、z=0.23)
原子種:金属、原子座標(x=0.96、y=0.64、z=0.13)
原子種:金属、原子座標(x=0.87、y=0.88、z=0.38)
原子種:金属、原子座標(x=0.79、y=0.15、z=0.61)
原子種:金属、原子座標(x=0.77、y=0.89、z=0.03)
原子種:金属、原子座標(x=0.71、y=0.36、z=0.89)
原子種:金属、原子座標(x=0.54、y=0.88、z=0.37)
原子種:金属、原子座標(x=0.42、y=0.86、z=0.99)
原子種:金属、原子座標(x=0.38、y=0.36、z=0.89)
原子種:金属、原子座標(x=0.31、y=0.82、z=0.68)
原子種:金属、原子座標(x=0.91、y=0.12、z=0.97)
原子種:金属、原子座標(x=0.98、y=0.87、z=0.70)
原子種:金属、原子座標(x=0.94、y=0.39、z=0.54)
原子種:金属、原子座標(x=0.85、y=0.60、z=0.81)
原子種:金属、原子座標(x=0.74、y=0.64、z=0.46)
原子種:金属、原子座標(x=0.66、y=0.87、z=0.70)
原子種:金属、原子座標(x=0.59、y=0.39、z=0.55)
原子種:金属、原子座標(x=0.52、y=0.60、z=0.77)
原子種:金属、原子座標(x=0.16、y=0.61、z=0.77)
原子種:酸素、原子座標(x=0.02、y=0.73、z=0.36)
原子種:酸素、原子座標(x=0.03、y=0.45、z=0.29)
原子種:酸素、原子座標(x=0.05、y=0.02、z=0.40)
原子種:酸素、原子座標(x=0.10、y=0.74、z=0.65)
原子種:酸素、原子座標(x=0.10、y=0.23、z=0.06)
原子種:酸素、原子座標(x=0.12、y=0.51、z=0.09)
原子種:酸素、原子座標(x=0.12、y=0.47、z=0.57)
原子種:酸素、原子座標(x=0.13、y=0.79、z=0.17)
原子種:酸素、原子座標(x=0.19、y=0.21、z=0.84)
原子種:酸素、原子座標(x=0.20、y=0.23、z=0.36)
原子種:酸素、原子座標(x=0.25、y=0.66、z=0.49)
原子種:酸素、原子座標(x=0.27、y=0.02、z=0.12)
原子種:酸素、原子座標(x=0.30、y=0.26、z=0.65)
原子種:酸素、原子座標(x=0.33、y=0.44、z=0.29)
原子種:酸素、原子座標(x=0.38、y=0.02、z=0.40)
原子種:酸素、原子座標(x=0.39、y=0.73、z=0.35)
原子種:酸素、原子座標(x=0.41、y=0.24、z=0.07)
原子種:酸素、原子座標(x=0.43、y=0.47、z=0.57)
原子種:酸素、原子座標(x=0.46、y=0.51、z=0.11)
原子種:酸素、原子座標(x=0.47、y=0.79、z=0.15)
原子種:酸素、原子座標(x=0.50、y=0.25、z=0.36)
原子種:酸素、原子座標(x=0.64、y=0.03、z=0.12)
原子種:酸素、原子座標(x=0.66、y=0.34、z=0.23)
原子種:酸素、原子座標(x=0.72、y=0.03、z=0.40)
原子種:酸素、原子座標(x=0.78、y=0.51、z=0.12)
原子種:酸素、原子座標(x=0.80、y=0.25、z=0.06)
原子種:酸素、原子座標(x=0.96、y=0.02、z=0.12)
原子種:酸素、原子座標(x=0.98、y=0.27、z=0.64)
原子種:酸素、原子座標(x=0.97、y=0.55、z=0.72)
原子種:酸素、原子座標(x=0.95、y=0.98、z=0.60)
原子種:酸素、原子座標(x=0.90、y=0.26、z=0.35)
原子種:酸素、原子座標(x=0.90、y=0.77、z=0.94)
原子種:酸素、原子座標(x=0.88、y=0.49、z=0.91)
原子種:酸素、原子座標(x=0.88、y=0.53、z=0.43)
原子種:酸素、原子座標(x=0.87、y=0.21、z=0.83)
原子種:酸素、原子座標(x=0.81、y=0.79、z=0.16)
原子種:酸素、原子座標(x=0.80、y=0.77、z=0.64)
原子種:酸素、原子座標(x=0.75、y=0.34、z=0.51)
原子種:酸素、原子座標(x=0.73、y=0.98、z=0.88)
原子種:酸素、原子座標(x=0.70、y=0.74、z=0.35)
原子種:酸素、原子座標(x=0.67、y=0.56、z=0.71)
原子種:酸素、原子座標(x=0.62、y=0.98、z=0.60)
原子種:酸素、原子座標(x=0.61、y=0.27、z=0.65)
原子種:酸素、原子座標(x=0.59、y=0.76、z=0.93)
原子種:酸素、原子座標(x=0.58、y=0.53、z=0.43)
原子種:酸素、原子座標(x=0.54、y=0.49、z=0.89)
原子種:酸素、原子座標(x=0.53、y=0.21、z=0.85)
原子種:酸素、原子座標(x=0.50、y=0.75、z=0.64)
原子種:酸素、原子座標(x=0.36、y=0.97、z=0.88)
原子種:酸素、原子座標(x=0.34、y=0.66、z=0.77)
原子種:酸素、原子座標(x=0.28、y=0.97、z=0.60)
原子種:酸素、原子座標(x=0.22、y=0.49、z=0.88)
原子種:酸素、原子座標(x=0.20、y=0.75、z=0.94)
原子種:酸素、原子座標(x=0.04、y=0.98、z=0.88)
 以上が、本実施形態に係る化合物Aの第三の態様における原子配置である。
(化合物Aの第四の態様)
 本実施形態に係る化合物Aの第四の態様は、空間群がP1であり、下記に示す原子配置を有する。ただし、下記原子配置における金属は、In、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
 金属が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含み、
 酸素が配置される原子座標は、
  x±0.01、
  y±0.01、
  z±0.01の幅を含む。
原子種:金属、原子座標(x=0.04478、y=0.36228、z=0.86934)
原子種:金属、原子座標(x=0.12677、y=0.11682、z=0.62279)
原子種:金属、原子座標(x=0.21268、y=0.8504、z=0.38665)
原子種:金属、原子座標(x=0.23283、y=0.11047、z=0.97132)
原子種:金属、原子座標(x=0.28695、y=0.64349、z=0.10627)
原子種:金属、原子座標(x=0.45663、y=0.11849、z=0.62655)
原子種:金属、原子座標(x=0.58343、y=0.14455、z=0.0065)
原子種:金属、原子座標(x=0.62181、y=0.6417、z=0.10725)
原子種:金属、原子座標(x=0.68785、y=0.18413、z=0.31614)
原子種:金属、原子座標(x=0.08662、y=0.88097、z=0.03282)
原子種:金属、原子座標(x=0.02388、y=0.13328、z=0.30129)
原子種:金属、原子座標(x=0.0627、y=0.6051、z=0.4561)
原子種:金属、原子座標(x=0.1503、y=0.3962、z=0.1949)
原子種:金属、原子座標(x=0.2624、y=0.36429、z=0.5374)
原子種:金属、原子座標(x=0.34051、y=0.1304、z=0.29845)
原子種:金属、原子座標(x=0.4081、y=0.6082、z=0.4509)
原子種:金属、原子座標(x=0.4821、y=0.39651、z=0.22899)
原子種:金属、原子座標(x=0.8369、y=0.39245、z=0.23049)
原子種:金属、原子座標(x=0.95522、y=0.63772、z=0.13066)
原子種:金属、原子座標(x=0.87323、y=0.88318、z=0.37721)
原子種:金属、原子座標(x=0.78732、y=0.1496、z=0.61335)
原子種:金属、原子座標(x=0.76717、y=0.88953、z=0.02868)
原子種:金属、原子座標(x=0.71305、y=0.35651、z=0.89373)
原子種:金属、原子座標(x=0.54337、y=0.88151、z=0.37345)
原子種:金属、原子座標(x=0.41657、y=0.85545、z=0.9935)
原子種:金属、原子座標(x=0.37819、y=0.3583、z=0.89275)
原子種:金属、原子座標(x=0.31215、y=0.81587、z=0.68386)
原子種:金属、原子座標(x=0.91338、y=0.11903、z=0.96718)
原子種:金属、原子座標(x=0.97612、y=0.86672、z=0.69871)
原子種:金属、原子座標(x=0.9373、y=0.3949、z=0.5439)
原子種:金属、原子座標(x=0.8497、y=0.6038、z=0.8051)
原子種:金属、原子座標(x=0.7376、y=0.63571、z=0.4626)
原子種:金属、原子座標(x=0.65949、y=0.8696、z=0.70155)
原子種:金属、原子座標(x=0.5919、y=0.3918、z=0.5491)
原子種:金属、原子座標(x=0.5179、y=0.60349、z=0.77101)
原子種:金属、原子座標(x=0.1631、y=0.60755、z=0.76951)
原子種:酸素、原子座標(x=0.0157、y=0.7332、z=0.3627)
原子種:酸素、原子座標(x=0.0295、y=0.4499、z=0.285)
原子種:酸素、原子座標(x=0.0518、y=0.0204、z=0.4013)
原子種:酸素、原子座標(x=0.0975、y=0.7442、z=0.6484)
原子種:酸素、原子座標(x=0.1004、y=0.231、z=0.0611)
原子種:酸素、原子座標(x=0.121、y=0.5054、z=0.0929)
原子種:酸素、原子座標(x=0.1218、y=0.4677、z=0.5675)
原子種:酸素、原子座標(x=0.1323、y=0.7893、z=0.17)
原子種:酸素、原子座標(x=0.1917、y=0.2052、z=0.837)
原子種:酸素、原子座標(x=0.1998、y=0.2293、z=0.3578)
原子種:酸素、原子座標(x=0.2461、y=0.6607、z=0.4873)
原子種:酸素、原子座標(x=0.2703、y=0.0197、z=0.1161)
原子種:酸素、原子座標(x=0.2975、y=0.2578、z=0.6451)
原子種:酸素、原子座標(x=0.3274、y=0.4429、z=0.2908)
原子種:酸素、原子座標(x=0.38、y=0.017、z=0.3996)
原子種:酸素、原子座標(x=0.3852、y=0.7303、z=0.3495)
原子種:酸素、原子座標(x=0.4077、y=0.2385、z=0.0657)
原子種:酸素、原子座標(x=0.425、y=0.4654、z=0.5745)
原子種:酸素、原子座標(x=0.4569、y=0.5063、z=0.1142)
原子種:酸素、原子座標(x=0.472、y=0.7862、z=0.1502)
原子種:酸素、原子座標(x=0.50、y=0.2483、z=0.3581)
原子種:酸素、原子座標(x=0.6404、y=0.0285、z=0.122)
原子種:酸素、原子座標(x=0.6587、y=0.3356、z=0.2257)
原子種:酸素、原子座標(x=0.7171、y=0.0302、z=0.3985)
原子種:酸素、原子座標(x=0.7808、y=0.5096、z=0.1234)
原子種:酸素、原子座標(x=0.8007、y=0.2465、z=0.0562)
原子種:酸素、原子座標(x=0.9644、y=0.0248、z=0.117)
原子種:酸素、原子座標(x=0.9843、y=0.2668、z=0.6373)
原子種:酸素、原子座標(x=0.9705、y=0.5501、z=0.715)
原子種:酸素、原子座標(x=0.9482、y=0.9796、z=0.5987)
原子種:酸素、原子座標(x=0.9025、y=0.2558、z=0.3516)
原子種:酸素、原子座標(x=0.8996、y=0.769、z=0.9389)
原子種:酸素、原子座標(x=0.879、y=0.4946、z=0.9071)
原子種:酸素、原子座標(x=0.8782、y=0.5323、z=0.4325)
原子種:酸素、原子座標(x=0.8677、y=0.2107、z=0.83)
原子種:酸素、原子座標(x=0.8083、y=0.7948、z=0.163)
原子種:酸素、原子座標(x=0.8002、y=0.7707、z=0.6422)
原子種:酸素、原子座標(x=0.7539、y=0.3393、z=0.5127)
原子種:酸素、原子座標(x=0.7297、y=0.9803、z=0.8839)
原子種:酸素、原子座標(x=0.7025、y=0.7422、z=0.3549)
原子種:酸素、原子座標(x=0.6726、y=0.5571、z=0.7092)
原子種:酸素、原子座標(x=0.62、y=0.983、z=0.6004)
原子種:酸素、原子座標(x=0.6148、y=0.2697、z=0.6505)
原子種:酸素、原子座標(x=0.5923、y=0.7615、z=0.9343)
原子種:酸素、原子座標(x=0.575、y=0.5346、z=0.4255)
原子種:酸素、原子座標(x=0.5431、y=0.4937、z=0.8858)
原子種:酸素、原子座標(x=0.528、y=0.2138、z=0.8498)
原子種:酸素、原子座標(x=0.5、y=0.7517、z=0.6419)
原子種:酸素、原子座標(x=0.3596、y=0.9715、z=0.878)
原子種:酸素、原子座標(x=0.3413、y=0.6644、z=0.7743)
原子種:酸素、原子座標(x=0.2829、y=0.9698、z=0.6015)
原子種:酸素、原子座標(x=0.2192、y=0.4904、z=0.8766)
原子種:酸素、原子座標(x=0.1993、y=0.7535、z=0.9438)
原子種:酸素、原子座標(x=0.0356、y=0.9752、z=0.883)
 以上が、本実施形態に係る化合物Aの第四の態様における原子配置である。
<バンドギャップ>
 化合物Aのバンドギャップは、1.1eV以上4.8eV以下であることが好ましく、1.5eV以上4.5eV以下であることがより好ましく、2.0eV以上4.0eV以下であることがさらに好ましく、3.0eV以上3.7eV以下であることがよりさらに好ましい。また、化合物Aのバンドギャップは、2.9eV以上3.3eV以下であることも好ましい。
 化合物Aのバンドギャップは、単結晶シリコンよりもバンドギャップが大きいため、化合物Aは、パワー半導体用の材料として優れている。また、化合物Aのバンドギャップは、β-ガリア(β-Ga)のバンドギャップよりも小さいが、熱伝導性、及びバルク抵抗値の観点では、化合物Aの方がβ-ガリア(β-Ga)よりも有利であり、化合物Aの方がβ-ガリア(β-Ga)よりも特性のバランスが良く、次世代材料として有望である。
 バンドギャップの測定方法は、次の通りである。焼結体サンプルについて、拡散反射スペクトルを測定し、横軸の波長をエネルギー(単位は、eVである。)に変換したスペクトルにおいて反射率が急激に下がる領域を直線(第一の直線)で近似し、この直線(第一の直線)と、同じスペクトルにおいて最大反射率を通りエネルギー軸に平行な直線(第二の直線)と、の交点からバンドギャップを算出する。拡散反射スペクトルは、積分球ユニットISN-723(日本分光株式会社製)を備えた分光光度計V-670(日本分光株式会社製)を用いて測定できる。
 本実施形態に係る化合物Aは、バンドギャップが広く、伝導性を向上させることができる。本実施形態に係る化合物Aによれば、一般的なSi半導体のバンドギャップに比べてバンドギャップが十分に広い酸化物半導体材料を作製できる。
[化合物Aの製造方法]
 本実施形態に係る化合物Aの製造方法は、特に限定されないが、固相反応法、気相反応法、融液法、溶液法、ゾルゲル法、スパッタリング法、TEOS-CVD、ミストCVD、イオンプレーティング法、真空蒸着法、又は電子ビーム蒸着法により製造できる。
 インジウム元素(In)、ガリウム元素(Ga)、及びアルミニウム元素(Al)を含む化合物Aは、例えば、インジウム酸化物、ガリウム酸化物、及びアルミニウム酸化物を焼結することにより得られる。
 例えば、1500℃で焼結して得た多結晶の焼結体の中から化合物Aの単結晶粒を抽出できる。
〔焼結体〕
 本実施形態に係る焼結体は、本実施形態に係る化合物Aを含む焼結体であり、本実施形態に係る化合物Aのみからなる焼結体であることが好ましい。
 作製した焼結体(単結晶粒)を単結晶X線構造解析装置D8 QUEST(Bruker社製)を用いて測定し、得られたXRDパターンをAPEX3(Bruker社製)で解析することで格子定数を算出することができる。
<バルク抵抗>
 本実施形態に係る化合物Aのバルク抵抗は、0.1mΩ・cm以上500mΩ・cm以下であることが好ましく、0.1mΩ・cm以上100mΩ・cm以下であることがより好ましく、0.5mΩ・cm以上50mΩ・cm以下であることがさらに好ましく、1mΩ・cm以上30mΩ・cm以下であることがよりさらに好ましい。
 本実施形態に係る化合物Aのバルク抵抗が500mΩ・cm以下であれば、抵抗が十分に低い化合物であり半導体として伝導率を有する。また、本実施形態に係る化合物Aのバルク抵抗が0.1mΩ・cm以上であれば、本実施形態に係る化合物Aは、半導体材料としてより好適である。
 バルク抵抗は、実施例に記載の方法により測定できる。
<化合物Aの用途>
 本実施形態に係る化合物Aをデバイス用の部材として用いる場合、化合物Aの形状は、特に限定されないが、例えば、焼結体、基板、薄膜、もしくは微粒子、またはこれらのデバイスを作製する前の前駆体として用いてもよい。
 本実施形態に係る化合物Aを焼結体として用いる場合の例としては、スパッタリングターゲット、抵抗体、バリスタ積層セラミックコンデンサ、スロットダイ、積層フェライトチップインダクタ、チップバリスタ、サーミスタ、及び圧電アクチュエータなどにも適用できる。
 本実施形態に係る化合物Aを基板又は薄膜として用いる場合の例は、電界効果型トランジスタ、論理回路、メモリ回路、及び差動増幅回路、パワー半導体素子、(整流)ダイオード素子、ショットキーバリアダイオード素子、ジャンクショントランジスタ素子、静電気放電(ESD)保護ダイオード、過渡電圧保護(TVS)ダイオード、発光ダイオード、金属半導体電界効果トランジスタ(MESFET)、接合型電界効果トランジスタ(JFET)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、ショットキーソース/ドレインMOSFET、アバランシェ増倍型光電変換素子、固体撮像素子、太陽電池素子、光センサ素子、表示素子、及び抵抗変化メモリ等にも適用できる。
 上記の本実施形態に係る化合物Aを基板又は薄膜として用いる場合の素子を用いた電子回路は、電気機器、電子機器、車両、又は動力機関等に用いることができる。
 以下、本発明を実施例と比較例を用いて説明する。しかしながら、本発明はこれら実施例に限定されない。
[結晶構造解析に用いる単結晶の作製法]
(実施例1、2、3及び4)
 表1に示す金属組成比率(at%)となるように酸化ガリウム粉末、酸化アルミニウム粉末、及び酸化インジウム粉末を合計70gとなるように秤量した。秤量した粉末を瑪瑙(めのう)製のポットに入れ、サイズが2mmΦ、重さが150gである撹拌子としてのジルコニアボール、サイズが5mmΦ、重さが150gである撹拌子としてのジルコニアボール、バインダーとしてPVA(Poly(vinyl alcohol)(ポリビニルアルコール))を0.35g、及び純水56gを入れ、遊星型ボールミルにより220rpmで6時間混合粉砕を行った。その後、120℃の炉に入れ乾燥させ、600μmメッシュのふるいで混合粉末のみを取出した。
 この混合粉末8gを1インチφの金型に入れ、20kPa/cmの圧力でプレス成型体を作製した。
 次に、この緻密化したプレス成型体をプラチナるつぼに入れ大気圧焼成炉に設置して、5℃/minで800℃まで昇温した後、800℃で1時間保持した後、5℃/minで1350℃まで昇温した後、24時間焼結し、放置冷却して室温まで温度を下げ多結晶の焼結体とした。この多結晶の焼結体を再び5℃/minで1575℃まで昇温した後、2時間焼結し、放置冷却して単結晶を作製した。
 得られた多結晶の焼結体、及び焼結体から取り出した単結晶粒について、以下の評価を行った。
(比較例1)
 以下の仕様のシリコンウエハに関して評価を実施した。
  ・基板厚み:650μm
  ・比抵抗 :8.7Ωcm
  ・導電性 :P型
  ・結晶方位:<100>
[評価]
 実施例1、2、3、4、及び比較例1について以下の評価を実施し、評価結果を表1に示す。比較例1に係るシリコンウエハについても、
(1)格子定数及び原子座標
 実施例1、2、3、及び4について、作製した単結晶粒を単結晶X線構造解析装置D8 QUEST(Bruker社製)を用いてXRDパターンを測定した。XRDパターンの測定条件として、X線源はMoKα、波長は0.71073Å、X線の管電圧は50kV、管電流は1mA、照射径は200μmφであった。得られたXRDパターンを単結晶構造解析ソフトウェアAPEX3(Bruker社製)で解析して、格子定数、結晶系、空間群、原子比及び原子座標を得た。なお、作製した単結晶粒の結晶粒径は30μm以上だった。
(2)バルク抵抗(mΩ・cm)
 得られた化合物のバルク抵抗は、多結晶の焼結体表面を研磨して、焼結体の内側を露出させて得た面について測定した。バルク抵抗(単位は、mΩ・cmとした。)を、抵抗率計ロレスタ(三菱化学株式会社製)を使用して、四探針法(JIS K 7194:1994)に基づき測定した。
 測定箇所は、焼結体を研磨して露出させた面の中心の1箇所、及び焼結体を研磨して露出させた面の四隅と中心との中間点の4箇所、計5箇所とし、5箇所の測定箇所の平均値をバルク抵抗値とした。
(3)多結晶の焼結体のバンドギャップ
 多結晶の焼結体サンプルについて、拡散反射スペクトルを測定し、横軸の波長をエネルギー(単位は、eVとした。)に変換したスペクトルにおいて反射率が急激に下がる領域を直線(第一の直線)で近似し、この直線(第一の直線)と、同じスペクトルにおいて最大反射率を通りエネルギー軸に平行な直線(第二の直線)と、の交点からバンドギャップを算出した。拡散反射スペクトルは積分球ユニットISN-723(日本分光株式会社製)を備えた分光光度計V-670(日本分光株式会社製)を用いて測定した。
(4)単結晶粒の原子比
 単結晶粒の原子比(金属組成比率)は、単結晶X線構造解析装置D8 QUEST(Bruker社製)を用いてXRDパターンを測定し、得られたXRDパターンを単結晶構造解析ソフトウェアAPEX3(Bruker社製)で解析することによって得られた。実施例1~4に係る単結晶粒は、表1に示す金属組成比率(単位は、at%とした。)であることを確認した。
 比較例1に係るシリコンウエハについても、上記「(2)バルク抵抗」及び「(3)多結晶の焼結体のバンドギャップ」に記載の方法と同様にしてバルク抵抗及びバンドギャップを測定した。
〔評価結果〕
(実施例2)
 図1に実施例2に係る単結晶の(10.12 0.00 2.09)面のプリセッション写真を示す。
 図2に実施例2に係る単結晶の(0.00 12.78 -6.61)面のプリセッション写真を示す。
 図3に実施例2に係る単結晶の(11.95 -7.08 0.00)面のプリセッション写真を示す。
 プリセッション写真は、上記「(1)格子定数及び原子座標」において、作製した焼結体(単結晶粒)を単結晶X線構造解析装置D8 QUEST(Bruker社製)を用いて測定したXRDパターンに相当する。
 表1に実施例1~4並びに比較例1に係る焼結体の特性評価結果を示す。なお、表1の結晶系、空間群、格子定数について、実施例1~4については上記「(1)格子定数及び原子座標」に記載の方法で得られた結果を示した。
Figure JPOXMLDOC01-appb-T000001
 実施例2に係る酸化物焼結体が含む化合物Aの原子座標を表2及び表3に示す。表4には、表2の原子座標の数値を小数点以下第2位まで表示して示し、表5には、表3の原子座標の数値を小数点以下第2位まで表示して示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1に係る酸化物焼結体が含む化合物Aの原子座標を表6及び表7に示す。表8には、表6の原子座標の数値を小数点以下第2位まで表示して示し、表9には、表7の原子座標の数値を小数点以下第2位まで表示して示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1より、実施例1、2、3及び4に係る化合物Aは、規定する格子定数(a、b、c、α、β、及びγ)の範囲を満たす結晶相を含むことが分かった。
 表1より、実施例1、2、3及び4に係る化合物Aは、一般的なSi半導体のバンドギャップに比べて十分広い酸化物半導体材料を作製できる化合物であることが分かった。

Claims (4)

  1.  インジウム元素(In)、ガリウム元素(Ga)、アルミニウム元素(Al)及び酸素元素(O)から形成され、
     格子定数が、
       a = 10.07±0.15Å,
       b = 10.45±0.15Å,
       c = 11.01±0.15Å,
       α=111.70±0.50°,
       β=107.70±0.50°,及び
       γ= 90.00±0.50°であり、
     結晶系が三斜晶を示す化合物。
  2.  空間群がP-1もしくはP1である、請求項1に記載の化合物。
  3.  空間群がP-1であり、下記に示す原子配置を有する、請求項1に記載の化合物。
     ただし、下記原子配置における金属は、In、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
     金属が配置される原子座標は、
      x±0.01、
      y±0.01、
      z±0.01の幅を含み、
     酸素が配置される原子座標は、
      x±0.01、
      y±0.01、
      z±0.01の幅を含む。
    原子種:金属、原子座標(x=0.04、y=0.36、z=0.87)
    原子種:金属、原子座標(x=0.13、y=0.12、z=0.62)
    原子種:金属、原子座標(x=0.21、y=0.85、z=0.39)
    原子種:金属、原子座標(x=0.23、y=0.11、z=0.97)
    原子種:金属、原子座標(x=0.29、y=0.64、z=0.11)
    原子種:金属、原子座標(x=0.46、y=0.12、z=0.63)
    原子種:金属、原子座標(x=0.58、y=0.14、z=0.01)
    原子種:金属、原子座標(x=0.62、y=0.64、z=0.11)
    原子種:金属、原子座標(x=0.69、y=0.18、z=0.32)
    原子種:金属、原子座標(x=0.09、y=0.88、z=0.03)
    原子種:金属、原子座標(x=0.02、y=0.13、z=0.30)
    原子種:金属、原子座標(x=0.06、y=0.61、z=0.46)
    原子種:金属、原子座標(x=0.15、y=0.40、z=0.19)
    原子種:金属、原子座標(x=0.26、y=0.36、z=0.54)
    原子種:金属、原子座標(x=0.34、y=0.13、z=0.30)
    原子種:金属、原子座標(x=0.41、y=0.61、z=0.45)
    原子種:金属、原子座標(x=0.48、y=0.40、z=0.23)
    原子種:金属、原子座標(x=0.84、y=0.39、z=0.23)
    原子種:酸素、原子座標(x=0.02、y=0.73、z=0.36)
    原子種:酸素、原子座標(x=0.03、y=0.45、z=0.29)
    原子種:酸素、原子座標(x=0.05、y=0.02、z=0.40)
    原子種:酸素、原子座標(x=0.10、y=0.74、z=0.65)
    原子種:酸素、原子座標(x=0.10、y=0.23、z=0.06)
    原子種:酸素、原子座標(x=0.12、y=0.51、z=0.09)
    原子種:酸素、原子座標(x=0.12、y=0.47、z=0.57)
    原子種:酸素、原子座標(x=0.13、y=0.79、z=0.17)
    原子種:酸素、原子座標(x=0.19、y=0.21、z=0.84)
    原子種:酸素、原子座標(x=0.20、y=0.23、z=0.36)
    原子種:酸素、原子座標(x=0.25、y=0.66、z=0.49)
    原子種:酸素、原子座標(x=0.27、y=0.02、z=0.12)
    原子種:酸素、原子座標(x=0.30、y=0.26、z=0.65)
    原子種:酸素、原子座標(x=0.33、y=0.44、z=0.29)
    原子種:酸素、原子座標(x=0.38、y=0.02、z=0.40)
    原子種:酸素、原子座標(x=0.39、y=0.73、z=0.35)
    原子種:酸素、原子座標(x=0.41、y=0.24、z=0.07)
    原子種:酸素、原子座標(x=0.43、y=0.47、z=0.57)
    原子種:酸素、原子座標(x=0.46、y=0.51、z=0.11)
    原子種:酸素、原子座標(x=0.47、y=0.79、z=0.15)
    原子種:酸素、原子座標(x=0.50、y=0.25、z=0.36)
    原子種:酸素、原子座標(x=0.64、y=0.03、z=0.12)
    原子種:酸素、原子座標(x=0.66、y=0.34、z=0.23)
    原子種:酸素、原子座標(x=0.72、y=0.03、z=0.40)
    原子種:酸素、原子座標(x=0.78、y=0.51、z=0.12)
    原子種:酸素、原子座標(x=0.80、y=0.25、z=0.06)
    原子種:酸素、原子座標(x=0.96、y=0.02、z=0.12)
  4.  空間群がP1であり、下記に示す原子配置を有する、請求項1に記載の化合物。
     ただし、下記原子配置における金属はIn、Ga、及びAlのいずれか一つ、もしくはIn,Ga,及びAlのいずれか二つ以上が、一定の比率で同一原子座標を共有している状態であり、
     金属が配置される原子座標は、
      x±0.01、
      y±0.01、
      z±0.01の幅を含み、
     酸素が配置される原子座標は、
      x±0.01、
      y±0.01、
      z±0.01の幅を含む。
    原子種:金属、原子座標(x=0.04、y=0.36、z=0.87)
    原子種:金属、原子座標(x=0.13、y=0.12、z=0.62)
    原子種:金属、原子座標(x=0.21、y=0.85、z=0.39)
    原子種:金属、原子座標(x=0.23、y=0.11、z=0.97)
    原子種:金属、原子座標(x=0.29、y=0.64、z=0.11)
    原子種:金属、原子座標(x=0.46、y=0.12、z=0.63)
    原子種:金属、原子座標(x=0.58、y=0.14、z=0.01)
    原子種:金属、原子座標(x=0.62、y=0.64、z=0.11)
    原子種:金属、原子座標(x=0.69、y=0.18、z=0.32)
    原子種:金属、原子座標(x=0.09、y=0.88、z=0.03)
    原子種:金属、原子座標(x=0.02、y=0.13、z=0.30)
    原子種:金属、原子座標(x=0.06、y=0.61、z=0.46)
    原子種:金属、原子座標(x=0.15、y=0.40、z=0.19)
    原子種:金属、原子座標(x=0.26、y=0.36、z=0.54)
    原子種:金属、原子座標(x=0.34、y=0.13、z=0.30)
    原子種:金属、原子座標(x=0.41、y=0.61、z=0.45)
    原子種:金属、原子座標(x=0.48、y=0.40、z=0.23)
    原子種:金属、原子座標(x=0.84、y=0.39、z=0.23)
    原子種:金属、原子座標(x=0.96、y=0.64、z=0.13)
    原子種:金属、原子座標(x=0.87、y=0.88、z=0.38)
    原子種:金属、原子座標(x=0.79、y=0.15、z=0.61)
    原子種:金属、原子座標(x=0.77、y=0.89、z=0.03)
    原子種:金属、原子座標(x=0.71、y=0.36、z=0.89)
    原子種:金属、原子座標(x=0.54、y=0.88、z=0.37)
    原子種:金属、原子座標(x=0.42、y=0.86、z=0.99)
    原子種:金属、原子座標(x=0.38、y=0.36、z=0.89)
    原子種:金属、原子座標(x=0.31、y=0.82、z=0.68)
    原子種:金属、原子座標(x=0.91、y=0.12、z=0.97)
    原子種:金属、原子座標(x=0.98、y=0.87、z=0.70)
    原子種:金属、原子座標(x=0.94、y=0.39、z=0.54)
    原子種:金属、原子座標(x=0.85、y=0.60、z=0.81)
    原子種:金属、原子座標(x=0.74、y=0.64、z=0.46)
    原子種:金属、原子座標(x=0.66、y=0.87、z=0.70)
    原子種:金属、原子座標(x=0.59、y=0.39、z=0.55)
    原子種:金属、原子座標(x=0.52、y=0.60、z=0.77)
    原子種:金属、原子座標(x=0.16、y=0.61、z=0.77)
    原子種:酸素、原子座標(x=0.02、y=0.73、z=0.36)
    原子種:酸素、原子座標(x=0.03、y=0.45、z=0.29)
    原子種:酸素、原子座標(x=0.05、y=0.02、z=0.40)
    原子種:酸素、原子座標(x=0.10、y=0.74、z=0.65)
    原子種:酸素、原子座標(x=0.10、y=0.23、z=0.06)
    原子種:酸素、原子座標(x=0.12、y=0.51、z=0.09)
    原子種:酸素、原子座標(x=0.12、y=0.47、z=0.57)
    原子種:酸素、原子座標(x=0.13、y=0.79、z=0.17)
    原子種:酸素、原子座標(x=0.19、y=0.21、z=0.84)
    原子種:酸素、原子座標(x=0.20、y=0.23、z=0.36)
    原子種:酸素、原子座標(x=0.25、y=0.66、z=0.49)
    原子種:酸素、原子座標(x=0.27、y=0.02、z=0.12)
    原子種:酸素、原子座標(x=0.30、y=0.26、z=0.65)
    原子種:酸素、原子座標(x=0.33、y=0.44、z=0.29)
    原子種:酸素、原子座標(x=0.38、y=0.02、z=0.40)
    原子種:酸素、原子座標(x=0.39、y=0.73、z=0.35)
    原子種:酸素、原子座標(x=0.41、y=0.24、z=0.07)
    原子種:酸素、原子座標(x=0.43、y=0.47、z=0.57)
    原子種:酸素、原子座標(x=0.46、y=0.51、z=0.11)
    原子種:酸素、原子座標(x=0.47、y=0.79、z=0.15)
    原子種:酸素、原子座標(x=0.50、y=0.25、z=0.36)
    原子種:酸素、原子座標(x=0.64、y=0.03、z=0.12)
    原子種:酸素、原子座標(x=0.66、y=0.34、z=0.23)
    原子種:酸素、原子座標(x=0.72、y=0.03、z=0.40)
    原子種:酸素、原子座標(x=0.78、y=0.51、z=0.12)
    原子種:酸素、原子座標(x=0.80、y=0.25、z=0.06)
    原子種:酸素、原子座標(x=0.96、y=0.02、z=0.12)
    原子種:酸素、原子座標(x=0.98、y=0.27、z=0.64)
    原子種:酸素、原子座標(x=0.97、y=0.55、z=0.72)
    原子種:酸素、原子座標(x=0.95、y=0.98、z=0.60)
    原子種:酸素、原子座標(x=0.90、y=0.26、z=0.35)
    原子種:酸素、原子座標(x=0.90、y=0.77、z=0.94)
    原子種:酸素、原子座標(x=0.88、y=0.49、z=0.91)
    原子種:酸素、原子座標(x=0.88、y=0.53、z=0.43)
    原子種:酸素、原子座標(x=0.87、y=0.21、z=0.83)
    原子種:酸素、原子座標(x=0.81、y=0.79、z=0.16)
    原子種:酸素、原子座標(x=0.80、y=0.77、z=0.64)
    原子種:酸素、原子座標(x=0.75、y=0.34、z=0.51)
    原子種:酸素、原子座標(x=0.73、y=0.98、z=0.88)
    原子種:酸素、原子座標(x=0.70、y=0.74、z=0.35)
    原子種:酸素、原子座標(x=0.67、y=0.56、z=0.71)
    原子種:酸素、原子座標(x=0.62、y=0.98、z=0.60)
    原子種:酸素、原子座標(x=0.61、y=0.27、z=0.65)
    原子種:酸素、原子座標(x=0.59、y=0.76、z=0.93)
    原子種:酸素、原子座標(x=0.58、y=0.53、z=0.43)
    原子種:酸素、原子座標(x=0.54、y=0.49、z=0.89)
    原子種:酸素、原子座標(x=0.53、y=0.21、z=0.85)
    原子種:酸素、原子座標(x=0.50、y=0.75、z=0.64)
    原子種:酸素、原子座標(x=0.36、y=0.97、z=0.88)
    原子種:酸素、原子座標(x=0.34、y=0.66、z=0.77)
    原子種:酸素、原子座標(x=0.28、y=0.97、z=0.60)
    原子種:酸素、原子座標(x=0.22、y=0.49、z=0.88)
    原子種:酸素、原子座標(x=0.20、y=0.75、z=0.94)
    原子種:酸素、原子座標(x=0.04、y=0.98、z=0.88)
PCT/JP2019/030135 2018-08-01 2019-08-01 化合物 WO2020027244A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/264,622 US11760650B2 (en) 2018-08-01 2019-08-01 Compound
JP2020530408A JP6761920B2 (ja) 2018-08-01 2019-08-01 化合物
KR1020217002856A KR102436599B1 (ko) 2018-08-01 2019-08-01 화합물
CN201980050314.3A CN112512974B (zh) 2018-08-01 2019-08-01 化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-145480 2018-08-01
JP2018145480 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027244A1 true WO2020027244A1 (ja) 2020-02-06

Family

ID=69231206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030135 WO2020027244A1 (ja) 2018-08-01 2019-08-01 化合物

Country Status (6)

Country Link
US (1) US11760650B2 (ja)
JP (1) JP6761920B2 (ja)
KR (1) KR102436599B1 (ja)
CN (1) CN112512974B (ja)
TW (1) TWI770407B (ja)
WO (1) WO2020027244A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176591A1 (ja) * 2022-03-16 2023-09-21 出光興産株式会社 焼結体、スパッタリングターゲット、酸化物薄膜、薄膜トランジスタ、電子機器、及び焼結体の製造方法
JP7430843B1 (ja) 2023-09-14 2024-02-13 株式会社アルバック 酸化物半導体薄膜、半導体デバイス及びその製造方法、並びにスパッタリングターゲット及びスパッタリングターゲットの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005202A1 (ja) * 2013-07-09 2015-01-15 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032422A1 (ja) * 2008-09-19 2010-03-25 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
WO2011040028A1 (ja) * 2009-09-30 2011-04-07 出光興産株式会社 In-Ga-Zn-O系酸化物焼結体
JP2013018660A (ja) * 2011-07-07 2013-01-31 Sharp Corp 複無機化合物系およびその利用、並びに、複無機化合物系の製造方法
JP5965338B2 (ja) * 2012-07-17 2016-08-03 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP5343224B1 (ja) * 2012-09-28 2013-11-13 Roca株式会社 半導体装置および結晶
JP6284710B2 (ja) * 2012-10-18 2018-02-28 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
WO2014112376A1 (ja) * 2013-01-16 2014-07-24 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP2014214359A (ja) * 2013-04-26 2014-11-17 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP5397794B1 (ja) * 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP5528612B1 (ja) 2013-07-09 2014-06-25 Roca株式会社 半導体装置
JP5800209B2 (ja) * 2014-04-25 2015-10-28 三菱マテリアル株式会社 酸化物スパッタリングターゲットおよびその製造方法
US10000842B2 (en) * 2014-06-26 2018-06-19 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
CN107001144A (zh) 2014-11-25 2017-08-01 住友金属矿山株式会社 氧化物烧结体、溅射用靶、以及使用其得到的氧化物半导体薄膜
JP6097458B1 (ja) * 2015-07-30 2017-03-15 出光興産株式会社 結晶質酸化物半導体薄膜、結晶質酸化物半導体薄膜の製造方法及び薄膜トランジスタ
US20170144920A1 (en) * 2015-11-20 2017-05-25 Giga Solar Materials Corp. Crystalline oxides, preparation thereof and conductive pastes containing the same
JP6904517B2 (ja) 2016-06-30 2021-07-14 株式会社Flosfia 結晶性酸化物半導体膜およびその製造方法
JP7014355B2 (ja) * 2017-06-28 2022-02-01 株式会社Flosfia 積層構造体および半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005202A1 (ja) * 2013-07-09 2015-01-15 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176591A1 (ja) * 2022-03-16 2023-09-21 出光興産株式会社 焼結体、スパッタリングターゲット、酸化物薄膜、薄膜トランジスタ、電子機器、及び焼結体の製造方法
JP7430843B1 (ja) 2023-09-14 2024-02-13 株式会社アルバック 酸化物半導体薄膜、半導体デバイス及びその製造方法、並びにスパッタリングターゲット及びスパッタリングターゲットの製造方法

Also Published As

Publication number Publication date
JP6761920B2 (ja) 2020-09-30
CN112512974B (zh) 2022-12-23
KR102436599B1 (ko) 2022-08-25
KR20210035198A (ko) 2021-03-31
US20210309535A1 (en) 2021-10-07
TW202018137A (zh) 2020-05-16
US11760650B2 (en) 2023-09-19
JPWO2020027244A1 (ja) 2020-10-01
TWI770407B (zh) 2022-07-11
CN112512974A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
JP5928856B2 (ja) InGaO3(ZnO)結晶相からなる酸化物半導体用スパッタリングターゲット及びその製造方法
US8858844B2 (en) In—Ga—Zn—O type sputtering target
JP6334598B2 (ja) 酸化物焼結体、その製造方法及びスパッタリングターゲット
KR101841314B1 (ko) 산화물 소결체 및 그 제조방법, 스퍼터링 타겟, 산화물 투명 도전막 및 그 제조방법, 그리고 태양 전지
JP2015157755A (ja) 複合酸化物焼結体及びそれからなるスパッタリングターゲット
Huang et al. Colossal permittivity and dielectric relaxation of (Li, In) Co-doped ZnO ceramics
JPWO2009157535A6 (ja) InGaO3(ZnO)結晶相からなる酸化物半導体用スパッタリングターゲット及びその製造方法
KR101853575B1 (ko) 산화물 소결체와 그 제조 방법, 스퍼터 타겟, 및 반도체 디바이스
WO2020027244A1 (ja) 化合物
JP7263408B2 (ja) 結晶質酸化物薄膜、アモルファス酸化物薄膜、薄膜トランジスタ、及び電子機器
TWI649264B (zh) Oxide semiconductor and semiconductor device
TW201835002A (zh) 氧化物半導體膜、薄膜電晶體、氧化物燒結體及濺鍍靶材
Zhang et al. Optical and electrical properties of room temperature prepared α-IGZO thin films using an In2Ga2ZnO7 ceramic target
KR102095828B1 (ko) 산화물 소결체 및 스퍼터링 타깃
Gupta et al. Effect of substrate temperature on structural and optoelectrical properties of silver doped zinc oxide thin films
Yadav et al. Dielectric and structural properties of pure and Sn-mixed Ga2O3 compounds
Fen et al. Study on the Effect of Mg Dopant on the Properties of ZnO Thin Film Prepared by Sol Gel
JP6078288B2 (ja) スパッタリングターゲット、半導体薄膜及びそれを用いた薄膜トランジスタ
Zainun et al. Crystalline Size Effect on the Electrical Properties of Zinc Oxide Nano‐Structured Thin Films for Solar Cell Applications
TW202314012A (zh) 濺鍍靶及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843600

Country of ref document: EP

Kind code of ref document: A1